JP2013195219A - Internal defect inspection device and internal defect inspection method - Google Patents

Internal defect inspection device and internal defect inspection method Download PDF

Info

Publication number
JP2013195219A
JP2013195219A JP2012062331A JP2012062331A JP2013195219A JP 2013195219 A JP2013195219 A JP 2013195219A JP 2012062331 A JP2012062331 A JP 2012062331A JP 2012062331 A JP2012062331 A JP 2012062331A JP 2013195219 A JP2013195219 A JP 2013195219A
Authority
JP
Japan
Prior art keywords
measured
microwave
frequency
defect
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012062331A
Other languages
Japanese (ja)
Other versions
JP5917218B2 (en
Inventor
Yuichi Koreeda
雄一 是枝
Atsushi Mase
淳 間瀬
Naoki Ishida
直樹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKKO AUTOMATION KK
Kyushu University NUC
Original Assignee
HAKKO AUTOMATION KK
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKKO AUTOMATION KK, Kyushu University NUC filed Critical HAKKO AUTOMATION KK
Priority to JP2012062331A priority Critical patent/JP5917218B2/en
Publication of JP2013195219A publication Critical patent/JP2013195219A/en
Application granted granted Critical
Publication of JP5917218B2 publication Critical patent/JP5917218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inspection device and an inspection method which can easily detect a layered defect inside a measured object with high accuracy in a short period.SOLUTION: An inspection device comprises: a transmission antenna 1 outputting a microwave 8 applied to a measured object 10; and a reception antenna 2 which is spatially separated from the transmission antenna 1 and which receives a reflected wave 9 of the microwave 8 reflecting on the measured object 10, so as to detect a layered defect 11 inside the measured object 10. The microwave 8 applied to the measured object 10 includes a frequency causing interference due to multiple reflection between a surface 12 of the measured object 10 and the defect 11. The intensity of the reflected wave 9 at the frequency is measured, so that the defect 11 inside the measured object 10 is detected.

Description

本発明は、各種製品を構成する物品の内部に生じた欠陥を非破壊で検出する内部欠陥検査装置及び方法に関し、特にマイクロ波の反射特性を利用して内部の層状の欠陥を検出する内部欠陥検査装置及び内部欠陥の検査方法に関する。   The present invention relates to an internal defect inspection apparatus and method for nondestructively detecting defects generated inside articles constituting various products, and in particular, internal defects for detecting internal layered defects using microwave reflection characteristics. The present invention relates to an inspection apparatus and an internal defect inspection method.

従来、物体の内部の欠陥などを非破壊で検出する方法や装置として、例えば、特許文献1〜3に記載された方法や装置が知られている。特許文献1には従来のタイヤの剥離検査装置の一例が記載されている。タイヤの一方の表面側から加熱手段によりタイヤを加熱し、剥離部分の熱伝導が小さいことを利用して、加熱された部分の温度分布を測定することにより剥離の発生を検出するものである。   Conventionally, methods and devices described in Patent Documents 1 to 3, for example, are known as methods and devices for nondestructively detecting defects inside an object. Patent Document 1 describes an example of a conventional tire peeling inspection apparatus. The occurrence of delamination is detected by measuring the temperature distribution of the heated portion by utilizing the fact that the tire is heated from one surface side of the tire by a heating means and the heat conduction of the delamination portion is small.

特許文献2に記載の検査装置は、マイクロ波などの電磁波を測定対象となるコンクリート構造物に向けて照射し、そこからの反射波の強度や位相を検出することにより、その構造物の内部に生じたクラックや剥離などの欠陥を検出するものであり、電磁波の照射・検知手段を測定対象物上で走査することにより検出結果を画像データとして出力するものである。特許文献2においては、照射用のアンテナに対して検出用のアンテナを分離して設置し、その設置角度を照射されたマイクロ波が正反射する方向からずらすことで表面反射のノイズを減らす構成が記載されている。   The inspection apparatus described in Patent Document 2 irradiates an electromagnetic wave such as a microwave toward a concrete structure to be measured, and detects the intensity and phase of the reflected wave from the inside of the structure. A defect such as a crack or a peeling that occurs is detected, and the detection result is output as image data by scanning an irradiation / detection means of electromagnetic waves on the measurement object. In Patent Document 2, the detection antenna is separated from the irradiation antenna, and the installation angle is shifted from the direction in which the irradiated microwave is regularly reflected to reduce the noise of the surface reflection. Have been described.

特許文献3に記載の装置は、主として小型の部品等の内部の欠陥などを非破壊で測定する装置であり、検出を容易に、かつ高精度に行うことを目的として、送受信共用のアンテナを用いて構成したマイクロ波の共振系の中に被測定物を配置し、欠陥によるマイクロ波の透過波又は反射波の振幅の変化を検出する構成となっている。   The device described in Patent Document 3 is a device that mainly measures non-destructive internal defects such as small parts, and uses a shared antenna for the purpose of easy and high-precision detection. An object to be measured is arranged in a microwave resonance system configured as described above, and a change in the amplitude of the transmitted wave or reflected wave of the microwave due to a defect is detected.

特開2005−207763号公報Japanese Patent Laid-Open No. 2005-207763 特開2007−121214号公報JP 2007-121214 A 特許3754556号公報Japanese Patent No. 3754556

ゴム板や樹脂板などの板状の部材を用いた様々な工業部材や製品が使用されており、このような材料や製品において、その板状部材の張り合わせ部などの剥離や不適合層の混入のような内部に生じた層状の欠陥を短時間に簡易に、かつ高精度に検出することが望まれている。しかしながら、上記の従来の検査方法や装置では、このような要求に対しては十分な性能は得られない。   Various industrial members and products using plate-like members such as rubber plates and resin plates are used. In such materials and products, peeling of the laminated parts of the plate-like members and mixing of incompatible layers It is desired to detect such a layered defect generated inside easily and accurately in a short time. However, the conventional inspection method and apparatus described above cannot provide sufficient performance for such a requirement.

特許文献1の温度分布の測定による方法では、測定に一定の時間を要することや周囲環境の影響もあることから、短時間の検査や高精度の測定が難しい。   In the method based on the temperature distribution measurement of Patent Document 1, it takes a certain amount of time for measurement and the influence of the surrounding environment, so that it is difficult to perform a short-time inspection and high-accuracy measurement.

一方、特許文献2に記載の検査方式はコンクリート構造物などの欠陥検査を目的とした方式であることから、板状部材の内部の欠陥などのように、小さな部分の欠陥や厚さが薄い物体の内部の層状の欠陥を検査する場合には精度が不十分である。また、検査装置も複雑かつ大型化してしまう。   On the other hand, since the inspection method described in Patent Document 2 is a method for the purpose of defect inspection of concrete structures and the like, a small portion of a defect such as a defect inside a plate member or a thin object The accuracy is insufficient when inspecting the layered defects inside. In addition, the inspection apparatus becomes complicated and large.

また、特許文献3に記載の、アンテナと被測定物を含んだマイクロ波の共振回路を構成する方式では、アンテナと被測定物との間の距離により測定値が変化してしまうため、正確な測定を行うためには上記の距離を精度よく一定に保つ必要がある。このため、特許文献3の装置を用いて、内部の剥離欠陥を短時間に簡易に測定することは難しい。   Further, in the method of configuring a microwave resonance circuit including an antenna and a device under test described in Patent Document 3, the measured value changes depending on the distance between the antenna and the device under test. In order to perform measurement, it is necessary to keep the above distance constant with high accuracy. For this reason, it is difficult to easily measure internal peeling defects in a short time using the apparatus of Patent Document 3.

そこで、本発明は、係る問題を解決するためになされたものであり、被測定物の内部の層状の欠陥を短時間に簡易に、かつ高精度に検出することができる検査装置および検査方法を提供することを目的とする。   Therefore, the present invention has been made to solve such a problem, and an inspection apparatus and an inspection method capable of easily and accurately detecting a layered defect inside a measurement object in a short time. The purpose is to provide.

第1の観点では、本発明は、被測定物の内部の層状の欠陥を検出する検査装置であって、前記被測定物に照射されるマイクロ波を出力する送信アンテナと、該送信アンテナと空間的に分離され、前記マイクロ波の前記被測定物からの反射波を受信する受信アンテナとを有し、前記マイクロ波は前記被測定物の表面と前記欠陥間の多重反射による干渉を生ずる周波数を含み、前記周波数における前記反射波の強度を測定することにより前記欠陥を検出することを特徴とする内部欠陥検査装置を提供する。   In a first aspect, the present invention is an inspection apparatus for detecting a layered defect in an object to be measured, the transmitting antenna outputting a microwave irradiated to the object to be measured, the transmission antenna and the space And a receiving antenna that receives a reflected wave of the microwave from the object to be measured, and the microwave has a frequency that causes interference due to multiple reflections between the surface of the object to be measured and the defect. And an internal defect inspection apparatus that detects the defect by measuring the intensity of the reflected wave at the frequency.

本発明では、送信アンテナと受信アンテナを分離し、照射するマイクロ波の周波数を被測定物の表面と前記欠陥間の多重反射による干渉を生ずるように設定する。欠陥が存在し、前記の干渉が生ずる場合、特定の周波数において反射波は最大振幅または最小振幅となるため、干渉を利用しないで単に反射波の強度や位相を検出して欠陥を判別する場合に比べて、感度向上が得られる。また、高い検出精度を得るためには、被測定物の欠陥と表面以外の箇所から生ずる反射波を除去してノイズを減らす必要があるが、送信アンテナと受信アンテナとを共用した場合、アンテナの前段に方向性結合器やアイソレータが必要となるので、これらのデバイス内およびデバイス間の接続部での反射や、照射波のアンテナ開口部からの反射を除くことが困難であるため、十分なS/Nを得ることは難しい。本発明では送信アンテナと受信アンテナとが分離されているため、被測定物の内部の層状の欠陥に対しても高い検出精度を得ることができる。以上より、層状の欠陥を短時間に簡易に、かつ高精度に検出することができる。   In the present invention, the transmitting antenna and the receiving antenna are separated, and the frequency of the irradiated microwave is set so as to cause interference due to multiple reflection between the surface of the object to be measured and the defect. When there is a defect and the above-mentioned interference occurs, the reflected wave has the maximum amplitude or the minimum amplitude at a specific frequency. Therefore, when the defect is identified by simply detecting the intensity or phase of the reflected wave without using the interference. Compared to the sensitivity improvement. In addition, in order to obtain high detection accuracy, it is necessary to reduce noise by removing the reflected wave generated from a defect other than the surface of the object to be measured and the surface, but when the transmitting antenna and the receiving antenna are shared, Since a directional coupler or isolator is required in the previous stage, it is difficult to eliminate reflection at the connection between these devices and between devices, and reflection from the antenna opening of the irradiation wave. / N is difficult to get. In the present invention, since the transmitting antenna and the receiving antenna are separated, high detection accuracy can be obtained even for a layered defect inside the object to be measured. As described above, the layered defect can be detected easily and with high accuracy in a short time.

また、本発明では、マイクロ波の出力パワーを有効に利用し、被測定物上で一定以上の反射波強度を確保できる範囲で、マイクロ波の照射領域の形状が被測定物にとって最適な形状となるようにすることができる。被測定物の表面に凹凸があり反射波に変動が起きる場合は、マイクロ波の照射範囲をそれらの凹凸部分を広くカバーするような被測定物に最適な大きさにすることで、その変動を平均化して除去することが可能となる。   Further, in the present invention, the shape of the irradiation region of the microwave is the optimum shape for the object to be measured within a range where the reflected wave intensity of a certain level or more can be secured on the object to be measured by effectively using the output power of the microwave. Can be. If there is unevenness on the surface of the object being measured and the reflected wave fluctuates, the fluctuation can be reduced by making the microwave irradiation range optimal for the object to be measured so as to cover these uneven parts widely. It becomes possible to remove by averaging.

第2の観点では、本発明は、前記第1の観点の内部欠陥検査装置において、マイクロ波の一部を透過する半透過反射板を有し、前記送信アンテナから出力されたマイクロ波の一部が前記半透過反射板を透過して前記被測定物の表面にほぼ垂直に照射され、前記被測定物からの反射波の一部が前記半透過反射板により反射されて前記受信アンテナに入射するように構成されることを特徴とする。   In a second aspect, the present invention provides the internal defect inspection apparatus according to the first aspect, further comprising a transflective plate that transmits a part of the microwave, and a part of the microwave output from the transmission antenna. Is transmitted through the semi-transmissive reflector and irradiated to the surface of the object to be measured substantially perpendicularly, and a part of the reflected wave from the object to be measured is reflected by the semi-transmissive reflector and enters the receiving antenna. It is comprised so that it may be comprised.

第3の観点では、本発明は、前記第1の観点の内部欠陥検査装置において、マイクロ波の一部を透過する半透過反射板を有し、前記送信アンテナから出力されたマイクロ波の一部が前記半透過反射板により反射されて前記被測定物の表面にほぼ垂直に照射され、前記被測定物からの反射波の一部が前記半透過反射板を透過して前記受信アンテナに入射するように構成されることを特徴とする。   In a third aspect, the present invention provides the internal defect inspection apparatus according to the first aspect, further comprising a transflective plate that transmits a part of the microwave, and a part of the microwave output from the transmission antenna. Is reflected by the transflective reflector and irradiated almost perpendicularly to the surface of the object to be measured, and a part of the reflected wave from the object to be measured is transmitted through the semitransmissive reflector and enters the receiving antenna. It is comprised so that it may be comprised.

前記第2の観点および第3の観点の内部欠陥検査装置は、従来、平面度などを測定するために使用されているフィゾー光学干渉計に類似の構成であり、半透過反射板を用いることにより、照射するマイクロ波を被測定物の表面にほぼ垂直に照射し、かつ、送信アンテナと受信アンテナとを空間的に分離することができる。照射するマイクロ波を被測定物の表面にほぼ垂直に照射することにより、送信アンテナおよび受信アンテナと被測定物との間の距離に対する設定許容度を大きくでき、また、前記距離に対する検出信号の変動を抑えることができる。   The internal defect inspection apparatus according to the second and third aspects has a configuration similar to a Fizeau optical interferometer conventionally used for measuring flatness and the like, and uses a transflective plate. The surface of the object to be measured can be irradiated almost perpendicularly to the surface of the object to be measured, and the transmitting antenna and the receiving antenna can be spatially separated. By irradiating the surface of the object to be measured almost perpendicularly to the surface of the object to be measured, it is possible to increase the setting tolerance for the distance between the transmitting antenna and the receiving antenna and the object to be measured, and the fluctuation of the detection signal with respect to the distance. Can be suppressed.

第4の観点では、本発明は、前記第1乃至第3のいずれかの観点の内部欠陥検査装置において、前記受信アンテナにより受信された受信信号に含まれる前記被測定物の表面形状に依存した信号を特定する手段と、前記の特定された信号を除去する手段を有することを特徴とする。被測定物の表面形状が固定されている場合、受信信号には被測定物の表面形状に依存した一定のノイズ信号が常に含まれることになる。表面形状に対応したノイズ信号波形を予め把握しておくことにより、それを受信信号より除くことができる。これにより不要なノイズを除去し、検出信号のS/Nを改善することができる。   In a fourth aspect, the present invention depends on the surface shape of the object to be measured included in the received signal received by the receiving antenna in the internal defect inspection apparatus according to any one of the first to third aspects. It has a means to specify a signal, and a means to remove the specified signal. When the surface shape of the object to be measured is fixed, the received signal always includes a certain noise signal depending on the surface shape of the object to be measured. By grasping in advance the noise signal waveform corresponding to the surface shape, it can be removed from the received signal. Thereby, unnecessary noise can be removed and the S / N of the detection signal can be improved.

第5の観点では、本発明は、前記第1乃至第4のいずれかの観点の内部欠陥検査装置において、前記送信アンテナから出力されるマイクロ波の周波数と異なる周波数のマイクロ波である局部波を発信する局部発振器と、前記局部波と前記受信アンテナにより受信された受信信号とを合波し両者の周波数の差の周波数を有する差周波数信号を生成するミキサと、前記差周波数信号を通過させる周波数フィルタとを有することを特徴とする。本観点の発明は、ヘテロダイン方式の検出を行うものである。本発明による内部欠陥検査装置を実用する場合、送信アンテナからのマイクロ波出力を電波法で規定されているレベルまで下げる必要があり、その周波数によっては、出力レベルを非常に小さく抑える必要が生ずる。この場合、受信信号をそのままアンプで増幅するだけでは検出信号のS/Nが低くなり欠陥の検出ができない場合が起こり得る。そこで、本観点の内部欠陥検査装置では、ヘテロダイン方式を採用し、先ず受信信号を局部波と合波することにより中間周波数へダウンコンバートする。その後、ノイズなどの不要成分をフィルタ等で除去した後に、ノイズフィギュアの小さなアンプで増幅する。これにより任意の周波数帯域でS/Nの高い検出が実現可能となる。   In a fifth aspect, the present invention provides the internal defect inspection apparatus according to any one of the first to fourth aspects, wherein a local wave that is a microwave having a frequency different from the frequency of the microwave output from the transmission antenna is detected. A transmitting local oscillator, a mixer for combining the local wave and the received signal received by the receiving antenna to generate a difference frequency signal having a frequency difference between the two, and a frequency for allowing the difference frequency signal to pass And a filter. The invention according to this aspect performs heterodyne detection. When the internal defect inspection apparatus according to the present invention is put into practical use, it is necessary to reduce the microwave output from the transmission antenna to a level defined by the Radio Law, and depending on the frequency, it is necessary to keep the output level very small. In this case, there is a possibility that the S / N of the detection signal is lowered and the defect cannot be detected by simply amplifying the received signal with an amplifier as it is. Therefore, the internal defect inspection apparatus according to this aspect employs a heterodyne system, and first down-converts the received signal to an intermediate frequency by combining with the local wave. Thereafter, unnecessary components such as noise are removed by a filter or the like, and then amplified by an amplifier having a small noise figure. Thereby, detection with high S / N can be realized in an arbitrary frequency band.

第6の観点では、本発明は、被測定物の内部にある層状の欠陥を検出する検査方法であって、送信アンテナが、前記被測定物の表面と前記欠陥間の多重反射による干渉を生ずる周波数を含むマイクロ波を出力し被測定物に照射するステップと、前記送信アンテナと空間的に分離された受信アンテナが、前記マイクロ波の前記被測定物からの反射波を受信するステップとを含み、前記周波数における前記反射波の強度を測定することを特徴とする内部欠陥の検査方法を提供する。   In a sixth aspect, the present invention is an inspection method for detecting a layered defect in an object to be measured, wherein a transmitting antenna causes interference due to multiple reflections between the surface of the object to be measured and the defect. Outputting a microwave including a frequency and irradiating the object to be measured; and a receiving antenna spatially separated from the transmission antenna receiving a reflected wave of the microwave from the object to be measured. A method for inspecting an internal defect is provided, wherein the intensity of the reflected wave at the frequency is measured.

第7の観点では、本発明は、前記第6の観点の内部欠陥の検査方法において、前記被測定物は、板状の部分を有し、該板状の部分の内部に生じた剥離状の欠陥を検出することを特徴とする。特に、板状の被測定物において内部の層状の欠陥に対して高い検出精度を得るためには、被測定物の欠陥と表面および裏面以外の箇所から生ずる反射波を除去してノイズを減らすことが重要である。本発明では送信アンテナと受信アンテナとが分離されているため、板状の被測定物の内部の層状の欠陥に対しても高い検出精度を得ることができる。   In a seventh aspect, the present invention provides the method for inspecting an internal defect according to the sixth aspect, wherein the object to be measured has a plate-like portion, and a peeled shape generated inside the plate-like portion. It is characterized by detecting a defect. In particular, in order to obtain high detection accuracy for internal layered defects in a plate-like object to be measured, noise is reduced by removing reflected waves generated from parts other than the object and the front and back surfaces of the object to be measured. is important. In the present invention, since the transmitting antenna and the receiving antenna are separated, high detection accuracy can be obtained even for a layered defect inside the plate-like object to be measured.

第8の観点では、本発明は、前記第7の観点の内部欠陥の検査方法において、前記板状の部分は層状のゴムを貼り合わせた部分であることを特徴とする。特に層状のゴム製品においては、内部に剥離欠陥が生じた場合、その部分の誘電率の変化が大きいため多重干渉を生ずるのに十分なマイクロ波の反射率が得られ、本発明を用いることにより、より簡易に、かつ高精度に検出することが可能となる。層状のゴム製品の一例としてはタイヤが挙げられる。   In an eighth aspect, the present invention is characterized in that in the internal defect inspection method according to the seventh aspect, the plate-like portion is a portion in which layered rubber is bonded. Especially in layered rubber products, when a peeling defect occurs inside, the change in the dielectric constant of that part is large, so that a sufficient microwave reflectivity to cause multiple interference can be obtained. Thus, detection can be performed more easily and with high accuracy. An example of a layered rubber product is a tire.

以上のように、本発明の内部欠陥検査装置及び内部欠陥の検査方法によれば、被測定物の内部の層状の欠陥を短時間に簡易に、かつ高精度に検出することができる検査装置および検査方法が得られる。   As described above, according to the internal defect inspection apparatus and the internal defect inspection method of the present invention, an inspection apparatus capable of easily and accurately detecting a layered defect inside the object to be measured in a short time, and An inspection method is obtained.

実施例1に係る内部欠陥検査装置の模式的な構成図。1 is a schematic configuration diagram of an internal defect inspection apparatus according to Embodiment 1. FIG. 照射するマイクロ波の周波数に対する反射波の強度を示す図。The figure which shows the intensity | strength of the reflected wave with respect to the frequency of the microwave to irradiate. 実施例1に係る内部欠陥検査装置の全体の構成を示すシステム構成図。1 is a system configuration diagram showing the overall configuration of an internal defect inspection apparatus according to Embodiment 1. FIG. 実施例1に係る内部欠陥検査装置に使用するIQミキサの内部構成図。1 is an internal configuration diagram of an IQ mixer used in an internal defect inspection apparatus according to Embodiment 1. FIG. 実施例1に係る内部欠陥検査装置を用いて、層状のゴム製品の内部の剥離欠陥を測定した結果の一例を示す図。The figure which shows an example of the result of having measured the peeling defect inside a layered rubber product using the internal defect inspection apparatus which concerns on Example 1. FIG. 実施例2に係る内部欠陥検査装置の模式的な構成図。FIG. 6 is a schematic configuration diagram of an internal defect inspection apparatus according to a second embodiment. 実施例3に係る内部欠陥検査装置の模式的な構成図。FIG. 6 is a schematic configuration diagram of an internal defect inspection apparatus according to a third embodiment.

以下、図面を参照して本発明の内部欠陥検査装置を実施例により詳細に説明する。なお、図面の説明において同一の要素には同一符号を付し、その重複した説明を省略する。   Hereinafter, an internal defect inspection apparatus of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description thereof is omitted.

図1は、実施例1に係る内部欠陥検査装置20の模式的な構成図である。図1において、本実施例の内部欠陥検査装置20は、被測定物10に照射されるマイクロ波8を出力する送信アンテナ1と、送信アンテナ1と空間的に分離され、マイクロ波8の被測定物10からの反射波9を受信する受信アンテナ2とを有し、被測定物10の内部の層状の欠陥11を検出する検査装置である。被測定物10に照射されるマイクロ波8は被測定物10の表面12と欠陥11間の多重反射による干渉を生ずる周波数を含み、その周波数における反射波9の強度を測定することにより被測定物10の内部の欠陥11を検出する。送信アンテナ1から出力されるマイクロ波8の波源の生成および受信アンテナ2で受信された反射波9からの検出信号の生成は回路部3で行われる。   FIG. 1 is a schematic configuration diagram of an internal defect inspection apparatus 20 according to the first embodiment. In FIG. 1, an internal defect inspection apparatus 20 according to the present embodiment includes a transmission antenna 1 that outputs a microwave 8 that is irradiated onto a device under test 10 and a transmission antenna 1 that is spatially separated from the transmission antenna 1. The inspection apparatus includes a receiving antenna 2 that receives a reflected wave 9 from an object 10 and detects a layered defect 11 inside the object to be measured 10. The microwave 8 applied to the object to be measured 10 includes a frequency that causes interference due to multiple reflections between the surface 12 of the object to be measured 10 and the defect 11, and the object to be measured is measured by measuring the intensity of the reflected wave 9 at that frequency. 10 internal defects 11 are detected. The circuit unit 3 generates a wave source of the microwave 8 output from the transmitting antenna 1 and generates a detection signal from the reflected wave 9 received by the receiving antenna 2.

図1において、被測定物10の表面12と欠陥11との間の間隔をd、マイクロ波8の入射角、即ち表面12の法線と成す角度をθ、マイクロ波8の周波数をf、被測定物10の比誘電率をεとし、欠陥11の比誘電率が剥離による空隙などの場合のようにεより小さいとすると、表面12と欠陥11間の多重反射による干渉により、反射波9の強度は式(1)を満たすとき最小となり、式(2)を満たすとき最大となる。但し、mは任意の整数、cは真空中の光速である。 In FIG. 1, the distance between the surface 12 of the object to be measured 10 and the defect 11 is d, the incident angle of the microwave 8, that is, the angle formed with the normal of the surface 12, θ, the frequency of the microwave 8 is f, If the relative permittivity of the measured object 10 is ε r and the relative permittivity of the defect 11 is smaller than ε r as in the case of a void due to peeling, the reflected wave is reflected by interference due to multiple reflection between the surface 12 and the defect 11. The intensity of 9 is minimum when Expression (1) is satisfied, and is maximum when Expression (2) is satisfied. Here, m is an arbitrary integer, and c is the speed of light in vacuum.

Figure 2013195219
Figure 2013195219

Figure 2013195219
Figure 2013195219

図2は、照射するマイクロ波8の周波数に対する反射波9の強度を示す図である。被測定物10の欠陥11がない部分においては、上記のdの値を表裏面間の厚さとして、式(1)、式(2)を満たす周波数において、表面12と裏面13間の多重反射による干渉が生じ、図2の破線に示すような特性となる。一方、欠陥11が存在する部分においては、dの値は表裏面間の厚さよりも小さいので、式(1)、式(2)を満たす周波数は欠陥11が存在しない場合よりも大きくなり、図2の実線で示す特性となる。例えば、反射波が最小強度となる周波数は欠陥11がない部分ではF、欠陥11がある部分ではFとなり、周波数Fで被測定物10を移動させながら反射波9の強度を測定した場合、欠陥11がある部分ではその強度は大きく減少する。欠陥11の表面からの深さdによって式(1)、式(2)を満たす周波数は変化するが、表面12と欠陥11間の多重反射による干渉を生ずる欠陥の存在によって反射波9の強度は大きく変化するので、本発明では、多重反射による干渉を利用しないで単にマイクロ波の欠陥11からの反射強度や位相を検出する場合に比べて、短時間に簡易に、かつ高精度に検出可能である。 FIG. 2 is a diagram showing the intensity of the reflected wave 9 with respect to the frequency of the microwave 8 to be irradiated. In a portion where the defect 11 of the object to be measured 10 is not present, the multiple reflection between the front surface 12 and the rear surface 13 is performed at a frequency satisfying the expressions (1) and (2), with the value of d as the thickness between the front and back surfaces. Interference occurs, and the characteristics shown by the broken line in FIG. 2 are obtained. On the other hand, in the portion where the defect 11 exists, the value of d is smaller than the thickness between the front and back surfaces. Therefore, the frequency satisfying the equations (1) and (2) becomes larger than the case where the defect 11 does not exist. The characteristic indicated by the solid line 2 is obtained. For example, the frequency at which the reflected wave has the minimum intensity is F 1 in the portion where the defect 11 is not present and F 2 in the portion where the defect 11 is present, and the intensity of the reflected wave 9 is measured while moving the DUT 10 at the frequency F 2 . In this case, the strength of the portion having the defect 11 is greatly reduced. The frequency satisfying the equations (1) and (2) varies depending on the depth d from the surface of the defect 11, but the intensity of the reflected wave 9 depends on the presence of the defect that causes interference due to multiple reflection between the surface 12 and the defect 11. Since it changes greatly, in the present invention, it is possible to detect easily and with high accuracy in a short time as compared with the case of simply detecting the reflection intensity or phase from the microwave defect 11 without using interference due to multiple reflection. is there.

ここで、本発明において検出回路を簡易化するためには、多重反射による干渉を明確に生じさせる必要があり、このためには、被測定物10の表面12と欠陥11が略並行であるか、または、平行でない場合、1つの欠陥における表面からの深さの変化量が照射するマイクロ波の波長に対して十分に小さいこと、例えばマイクロ波の波長の1/5以下であることが望ましく、さらに、照射するマイクロ波の周波数は、式(1)でm=1を満たす周波数より大きく、通常用いられるマイクロ波の周波数の範囲内で設定することが望ましい。   Here, in order to simplify the detection circuit in the present invention, it is necessary to clearly cause interference due to multiple reflections. For this purpose, is the surface 12 of the DUT 10 and the defect 11 substantially parallel? Or if not parallel, it is desirable that the amount of change in depth from the surface of one defect is sufficiently small with respect to the wavelength of the irradiated microwave, for example, 1/5 or less of the wavelength of the microwave, Furthermore, it is desirable that the frequency of the microwave to be irradiated is set to be larger than the frequency satisfying m = 1 in the equation (1) and within the range of the commonly used microwave frequency.

図3は実施例1に係る内部欠陥検査装置20の全体の構成を示すシステム構成図である。図3に示すように、回路部3において、先ず、固定周波数fのマイクロ波を発信する発振器31により生成された信号に、掃引周波数として可変の周波数fのマイクロ波を発信する掃引発振器32により生成された信号をアップコンバータ33により合波して周波数f+fの送信波を生成する。この送信波をアッテネータ34により電波法によって規定された送信強度に調整し、送信アンテナ1からマイクロ波8として放射し被測定物10へ照射する。図1に示すように、マイクロ波8は被測定物10の表面12、裏面13や欠陥11等の誘電率が変化する境界面で反射し、その反射波9を受信アンテナ2で受信する。受信波の振幅A4は、図2のような干渉の情報を含んでおり、送信周波数f+fの関数で表わされる。 FIG. 3 is a system configuration diagram illustrating the overall configuration of the internal defect inspection apparatus 20 according to the first embodiment. As shown in FIG. 3, in the circuit unit 3, first, a sweep oscillator 32 that transmits a microwave having a variable frequency f 2 as a sweep frequency to a signal generated by an oscillator 31 that transmits a microwave having a fixed frequency f 1. Are combined by the up-converter 33 to generate a transmission wave of frequency f 1 + f 2 . The transmission wave is adjusted to a transmission intensity defined by the radio wave law by an attenuator 34, and is emitted as a microwave 8 from the transmission antenna 1 and applied to the object 10 to be measured. As shown in FIG. 1, the microwave 8 is reflected on the boundary surface where the dielectric constant changes, such as the front surface 12, the back surface 13, and the defect 11 of the DUT 10, and the reflected wave 9 is received by the receiving antenna 2. The amplitude A4 of the received wave includes interference information as shown in FIG. 2 and is represented by a function of the transmission frequency f 1 + f 2 .

本発明の内部欠陥検査装置において、マイクロ波の周波数によっては、送信アンテナ1から放射されるマイクロ波の出力強度は電波法により非常に小さな強度に制限される。その場合、受信アンテナ2での受信強度も非常に小さくなり、アンプで増幅するだけではS/Nが不十分となり、精度よく測定することができない場合が生ずる。そこで、本実施例では、高い検出感度を得るため、送信アンテナ1から出力されるマイクロ波の周波数と異なる周波数のマイクロ波である局部波を発信する局部発振器と、局部波と受信アンテナ2により受信された受信信号とを合波し両者の周波数の差の周波数を有する差周波数信号を生成するミキサと、差周波数信号を通過させる周波数フィルタとを備え、ヘテロダイン方式により受信回路を構成している。すなわち、本実施例において、局部発振器として掃引発振器32を使用し、受信アンテナ2により受信された受信信号をローノイズアンプ36で増幅した後、ミキサ35において掃引発振器32により生成された信号と合波することにより、受信信号の周波数f+fと掃引発振器32の信号の周波数fの差の周波数 fを有する信号を得ている。ここで、ミキサ35からの出力には差の周波数f、元の周波数f+f、和の周波数f+2fの信号が含まれるため、それをバンドパスフィルタ37を通過させることにより差の周波数fのみを有する信号を得ている。 In the internal defect inspection apparatus of the present invention, depending on the frequency of the microwave, the output intensity of the microwave radiated from the transmitting antenna 1 is limited to a very small intensity by the radio wave method. In that case, the reception intensity at the reception antenna 2 also becomes very small, and the signal-to-noise ratio becomes insufficient just by amplifying with the amplifier, and there is a case where the measurement cannot be performed with high accuracy. Therefore, in this embodiment, in order to obtain high detection sensitivity, a local oscillator that transmits a local wave that is a microwave having a frequency different from the frequency of the microwave output from the transmission antenna 1, and the local wave and the reception antenna 2 receive the signal. The received signal is combined with the received signal to generate a difference frequency signal having a frequency difference between the two and a frequency filter that allows the difference frequency signal to pass therethrough, and a receiving circuit is configured by a heterodyne method. That is, in this embodiment, the sweep oscillator 32 is used as a local oscillator, the received signal received by the receiving antenna 2 is amplified by the low noise amplifier 36, and then combined with the signal generated by the sweep oscillator 32 in the mixer 35. it allows to obtain a signal having a frequency f 1 of the difference between the frequency f 2 of the frequency f 1 + f 2 and the signal of the sweep oscillator 32 of the received signal. Here, since the output from the mixer 35 includes signals of the difference frequency f 1 , the original frequency f 1 + f 2 , and the sum frequency f 1 + 2f 2 , the difference is obtained by passing the signal through the band-pass filter 37. to obtain a signal having only the frequency f 1.

周波数f以外の不用成分が除去された信号はローノイズアンプ38で増幅され、欠陥情報を有する計測信号としてIQミキサ40に入力され、IQミキサ40内で発振器31の周波数fの参照波信号と合波され、検出信号が得られる。 The signal from which unnecessary components other than the frequency f 1 are removed is amplified by the low noise amplifier 38 and input to the IQ mixer 40 as a measurement signal having defect information, and the reference wave signal of the frequency f 1 of the oscillator 31 in the IQ mixer 40. The signals are combined to obtain a detection signal.

図4は本実施例に使用するIQミキサの内部構成図である。図4において、計測信号をパワーディバイダ41で2つに分け、その分けられた同位相の2つの信号をそれぞれミキサ43、ミキサ44のRFポートに入力する。一方、参照波信号はハイブリッド42に入力され、位相が互いに90度異なる2つの信号に分けられ、それぞれミキサ43、ミキサ44のLOポートに入力する。ミキサ43、ミキサ44では、それぞれ計測信号と参照波信号の差の周波数信号と和の周波数信号が生成され、それぞれローパスフィルタ45、ローパスフィルタ46を通過させることにより差の周波数信号だけを取り出す。取り出される信号は、受信波の位相δと振幅A4の情報を含んだsin波成分とcos波成分の検出信号として出力される。   FIG. 4 is an internal configuration diagram of an IQ mixer used in this embodiment. In FIG. 4, the measurement signal is divided into two by the power divider 41, and the divided two signals having the same phase are input to the RF ports of the mixer 43 and the mixer 44, respectively. On the other hand, the reference wave signal is input to the hybrid 42, divided into two signals whose phases are different from each other by 90 degrees, and input to the LO ports of the mixer 43 and the mixer 44, respectively. In the mixer 43 and the mixer 44, a frequency signal that is the sum of the difference between the measurement signal and the reference wave signal is generated, and only the difference frequency signal is extracted by passing through the low-pass filter 45 and the low-pass filter 46, respectively. The extracted signal is output as a detection signal of a sin wave component and a cos wave component including information on the phase δ and amplitude A4 of the received wave.

次に、本発明にかかる内部欠陥の検査方法について説明する。先ず、図1のように、送信アンテナ1から出力したマイクロ波8が被測定物10の表面12で正反射して反射波9として受信アンテナ2に入射するように送信アンテナ1と受信アンテナ2を配置する。図3において、マイクロ波8の周波数f+fが式(1)をm≧1の範囲で満たし、被測定物10の表面12と欠陥11間の多重反射による干渉を生ずるように固定の周波数fと掃引周波数fを設定する。掃引周波数fを変化させることによりマイクロ波8の周波数f+fを変化させて反射波9の強度を測定し、特定の周波数に対する強度、または周波数変化に対する強度の変化量の大きさから欠陥を検出する。 Next, an internal defect inspection method according to the present invention will be described. First, as shown in FIG. 1, the transmission antenna 1 and the reception antenna 2 are set so that the microwave 8 output from the transmission antenna 1 is regularly reflected by the surface 12 of the object to be measured 10 and enters the reception antenna 2 as a reflected wave 9. Deploy. In FIG. 3, the frequency f 1 + f 2 of the microwave 8 satisfies the formula (1) in a range of m ≧ 1, and a fixed frequency is generated so as to cause interference due to multiple reflection between the surface 12 of the object to be measured 10 and the defect 11. setting the f 1 and the sweep frequency f 2. The intensity of the reflected wave 9 is measured by changing the frequency f 1 + f 2 of the microwave 8 by changing the sweep frequency f 2 , and the defect is determined from the intensity for a specific frequency or the magnitude of the intensity change with respect to the frequency change. Is detected.

図5は、実施例1の内部欠陥検査装置20を用いて、層状のゴム製品の剥離欠陥を測定した結果の一例を示す図である。28〜29GHzの周波数のマイクロ波を掃引して送信アンテナ1から被測定物の表面に照射し、IQミキサから得られた検出信号の振幅の上記周波数内における最大値と最小値の差を算出してプロットした結果である。横軸はマイクロ波を照射した基準点からの相対的な位置である。図5に示すように、剥離欠陥のある位置では明確な信号出力の増加が得られ、目的とした欠陥の検出が確認できた。   FIG. 5 is a diagram illustrating an example of a result of measuring a peeling defect of a layered rubber product using the internal defect inspection apparatus 20 of Example 1. A microwave having a frequency of 28 to 29 GHz is swept and irradiated from the transmitting antenna 1 onto the surface of the object to be measured, and the difference between the maximum value and the minimum value of the amplitude of the detection signal obtained from the IQ mixer is calculated. And plotted. The horizontal axis is the relative position from the reference point irradiated with the microwave. As shown in FIG. 5, a clear increase in signal output was obtained at the position where there was a peeling defect, and the detection of the intended defect could be confirmed.

なお、上記の層状のゴム製品の測定においては、マイクロ波の照射範囲を、表面の凹凸よる反射波の変動が平均化して低減されるように考慮した。   In the measurement of the layered rubber product, the microwave irradiation range was considered so that the fluctuation of the reflected wave due to the surface irregularities was averaged and reduced.

また、表面に周期的な凹凸を有する被測定物においては、表面の凹凸による反射波の変動によって計測信号に現れるノイズ波形は表面形状に応じてほぼ一定となるので、その波形を信号処理により除去することも可能である。   In addition, in the object to be measured having periodic unevenness on the surface, the noise waveform that appears in the measurement signal due to the fluctuation of the reflected wave due to the unevenness on the surface becomes almost constant according to the surface shape, so the waveform is removed by signal processing It is also possible to do.

図6は、実施例2に係る内部欠陥検査装置21の模式的な構成図である。図6において、本実施例の内部欠陥検査装置21は、実施例1と同様に、被測定物10に照射されるマイクロ波8を出力する送信アンテナ1と、送信アンテナ1と空間的に分離され、マイクロ波の被測定物10からの反射波19を受信する受信アンテナ2とを有し、被測定物10の内部の層状の欠陥11を検出する検査装置である。被測定物10に照射されるマイクロ波8は被測定物10の表面12と欠陥11間の多重反射による干渉を生ずる周波数を含み、その周波数における反射波19の強度を測定することにより被測定物10の内部の欠陥11を検出する。送信アンテナ1から出力されるマイクロ波8の波源の生成および受信アンテナ2で受信された反射波19からの検出信号の生成は回路部3で行われる。   FIG. 6 is a schematic configuration diagram of the internal defect inspection apparatus 21 according to the second embodiment. In FIG. 6, the internal defect inspection apparatus 21 of the present embodiment is spatially separated from the transmission antenna 1 that outputs the microwave 8 irradiated to the device under test 10 and the transmission antenna 1, as in the first embodiment. The inspection apparatus includes a receiving antenna 2 that receives a reflected wave 19 from a microwave measurement object 10 and detects a layered defect 11 inside the measurement object 10. The microwave 8 applied to the object to be measured 10 includes a frequency that causes interference due to multiple reflections between the surface 12 of the object to be measured 10 and the defect 11, and measures the intensity of the reflected wave 19 at the frequency. 10 internal defects 11 are detected. The circuit unit 3 generates a wave source of the microwave 8 output from the transmitting antenna 1 and a detection signal from the reflected wave 19 received by the receiving antenna 2.

本実施例においては、マイクロ波の一部を透過する半透過反射板4を有し、送信アンテナ1から出力されたマイクロ波8の一部が半透過反射板4を透過して被測定物10の表面12にほぼ垂直に照射され、被測定物10からの反射波の一部が半透過反射板4により反射されて受信アンテナ2に反射波19として入射するように構成されている。また、本実施例では、マイクロ波8が被測定物10以外で反射されて受信アンテナ2に入射するのを避けるため、マイクロ波8の半透過反射板4により反射された成分を吸収体5で吸収している。半透過反射板4としては、使用するマイクロ波の周波数においてマイクロ波の一部を反射、透過する機能を有する板状の材料であればよく、例えば、アクリル板などを使用できる。   In this embodiment, it has a transflective plate 4 that transmits a part of the microwave, and a part of the microwave 8 output from the transmitting antenna 1 transmits through the transflective plate 4 to be measured 10. The surface 12 is irradiated almost perpendicularly, and a part of the reflected wave from the object to be measured 10 is reflected by the semi-transmissive reflecting plate 4 and enters the receiving antenna 2 as a reflected wave 19. In the present embodiment, the component reflected by the transflective plate 4 of the microwave 8 is reflected by the absorber 5 in order to avoid the microwave 8 being reflected by the part other than the device under test 10 and entering the receiving antenna 2. Absorbs. The transflective plate 4 may be a plate-like material having a function of reflecting and transmitting a part of the microwave at the microwave frequency to be used. For example, an acrylic plate can be used.

図1に示す実施例1の構成においては、アンテナ位置を固定して被測定物10を取り替える場合、送信アンテナ1および受信アンテナ2と被測定物10との間の距離により測定箇所に入射するマイクロ波8の入射角度θが変化し、この結果、式(1)、式(2)を満たす最小強度、最大強度を与える周波数が若干変化してしまう。このため、被測定物10はある程度同じ位置に設置する必要がある。一方、本実施例においては、半透過反射板4を用いて、マイクロ波を被測定物の表面にほぼ垂直に照射することにより入射角度θは常に0となり、理論的には被測定物10との間の距離に対して式(1)、式(2)を満たす周波数は依存性しない。この結果、本実施例においては被測定物10に対する設定許容度を大きくでき、また、被測定物10の設定位置に対する検出信号の変動を抑えることができる。   In the configuration of the first embodiment shown in FIG. 1, when the device under test 10 is replaced while the antenna position is fixed, the microscopic light that enters the measurement location due to the distance between the transmission antenna 1 and the reception antenna 2 and the device under test 10. The incident angle θ of the wave 8 changes, and as a result, the frequency that gives the minimum intensity and the maximum intensity satisfying the expressions (1) and (2) slightly changes. For this reason, the DUT 10 needs to be installed at the same position to some extent. On the other hand, in the present embodiment, the incident angle θ is always 0 by irradiating the surface of the object to be measured substantially perpendicularly using the transflective plate 4, and theoretically, The frequency satisfying the expressions (1) and (2) does not depend on the distance between the two. As a result, in this embodiment, the setting tolerance for the device under test 10 can be increased, and the fluctuation of the detection signal with respect to the set position of the device under test 10 can be suppressed.

図7は、実施例3に係る内部欠陥検査装置22の模式的な構成図である。図7において、本実施例の内部欠陥検査装置22は、実施例1および2と同様に、被測定物10に照射されるマイクロ波8を出力する送信アンテナ1と、送信アンテナ1と空間的に分離され、マイクロ波8の被測定物10からの反射波29を受信する受信アンテナ2とを有し、被測定物10の内部の層状の欠陥11を検出する検査装置であり、被測定物10に照射されるマイクロ波8は被測定物10の表面12と欠陥11間の多重反射による干渉を生ずる周波数を含み、その周波数における反射波29の強度を測定することにより被測定物10の内部の欠陥11を検出する。また、実施例2と同様に、本実施例ではマイクロ波は被測定物10の表面12にほぼ垂直に照射される。   FIG. 7 is a schematic configuration diagram of the internal defect inspection apparatus 22 according to the third embodiment. In FIG. 7, the internal defect inspection apparatus 22 according to the present embodiment is similar to the first and second embodiments in that the transmission antenna 1 that outputs the microwave 8 that irradiates the DUT 10 and the transmission antenna 1 are spatially separated. The inspection apparatus includes a receiving antenna 2 that receives a reflected wave 29 from the object to be measured 10 of the microwave 8 and detects a layered defect 11 inside the object to be measured 10. The microwave 8 radiated to includes a frequency that causes interference due to multiple reflections between the surface 12 of the object to be measured 10 and the defect 11, and by measuring the intensity of the reflected wave 29 at the frequency, The defect 11 is detected. Similarly to the second embodiment, in this embodiment, the microwave is applied to the surface 12 of the DUT 10 almost perpendicularly.

但し、本実施例においては、マイクロ波の一部を透過する半透過反射板4を有し、送信アンテナ1から出力されたマイクロ波8の一部が半透過反射板4により反射されて被測定物10の表面12にほぼ垂直に照射され、被測定物10からの反射波の一部が半透過反射板4を透過して受信アンテナ2に反射波29として入射するように構成されている。マイクロ波8の半透過反射板4を透過した成分は吸収体5で吸収される。図7に示すように、半透過反射板4のマイクロ波8の進行方向に対する角度は、半透過反射板4のマイクロ波の透過率、反射率、偏波特性などの入射角度に対する依存性を考慮して、最適な構成となるように任意に設定できる。   However, in this embodiment, it has a transflective plate 4 that transmits part of the microwave, and a part of the microwave 8 output from the transmitting antenna 1 is reflected by the transflective plate 4 to be measured. The surface 12 of the object 10 is irradiated substantially perpendicularly, and a part of the reflected wave from the object to be measured 10 is transmitted through the transflective plate 4 and enters the receiving antenna 2 as a reflected wave 29. The component of the microwave 8 that has passed through the transflective plate 4 is absorbed by the absorber 5. As shown in FIG. 7, the angle of the transflective plate 4 with respect to the traveling direction of the microwave 8 depends on the incident angle such as the transmittance, reflectivity, and polarization characteristics of the microwave of the transflective plate 4. In consideration, it can be arbitrarily set to obtain an optimum configuration.

本実施例においても、実施例2と同様に、被測定物10に対する設定許容度を大きくでき、また、被測定物10の設定位置に対する検出信号の変動を抑えることができる。   Also in the present embodiment, as in the second embodiment, the setting tolerance for the device under test 10 can be increased, and the variation of the detection signal with respect to the set position of the device under test 10 can be suppressed.

なお、本発明は上記の実施例に限定されるものではないことは言うまでもなく、目的や用途に応じて設計変更可能である。例えば、反射波から得られる信号強度が大きく、必要なS/Nが得られれば、回路部の構成は、通常のアンプと、平均化処理やフィルタなどによるノイズ低減回路と、ピーク値や振幅の検出回路などの信号処理回路を用いても構成可能であり、ヘテロダイン方式を採用しなくてもよい。また、本発明の対象とする被測定物は、表面と欠陥との間で多重反射による干渉を生ずるような層状の欠陥を有するものであれば如何なる物体であってもよい。   Needless to say, the present invention is not limited to the above-described embodiments, and the design can be changed according to the purpose and application. For example, if the signal intensity obtained from the reflected wave is large and the required S / N is obtained, the circuit configuration can be as follows: a normal amplifier, a noise reduction circuit using an averaging process or a filter, a peak value or an amplitude A signal processing circuit such as a detection circuit may be used, and the heterodyne method may not be employed. The object to be measured as an object of the present invention may be any object as long as it has a layered defect that causes interference due to multiple reflection between the surface and the defect.

1 送信アンテナ
2 受信アンテナ
3 回路部
4 半透過反射板
5 吸収体
8 マイクロ波
9、19、29 反射波
10 被測定物
11 欠陥
12 表面
13 裏面
20、21、22 内部欠陥検査装置
31 発振器
32 掃引発振器
33 アップコンバータ
34 アッテネータ
35、43、44 ミキサ
36、38 ローノイズアンプ
37 バンドパスフィルタ
40 IQミキサ
41 パワーディバイダ
42 ハイブリッド
45、46 ローパスフィルタ
DESCRIPTION OF SYMBOLS 1 Transmitting antenna 2 Receiving antenna 3 Circuit part 4 Transflective board 5 Absorber 8 Microwave
9, 19, 29 Reflected wave
DESCRIPTION OF SYMBOLS 10 Measured object 11 Defect 12 Front surface 13 Back surface 20, 21, 22 Internal defect inspection apparatus 31 Oscillator 32 Sweep oscillator 33 Up converter 34 Attenuator 35, 43, 44 Mixer 36, 38 Low noise amplifier 37 Band pass filter 40 IQ mixer 41 Power divider 42 Hybrid 45, 46 Low-pass filter

Claims (8)

被測定物の内部の層状の欠陥を検出する検査装置であって、前記被測定物に照射されるマイクロ波を出力する送信アンテナと、該送信アンテナと空間的に分離され、前記マイクロ波の前記被測定物からの反射波を受信する受信アンテナとを有し、前記マイクロ波は前記被測定物の表面と前記欠陥間の多重反射による干渉を生ずる周波数を含み、前記周波数における前記反射波の強度を測定することにより前記欠陥を検出することを特徴とする内部欠陥検査装置。   An inspection apparatus for detecting a layered defect inside an object to be measured, the transmitting antenna outputting a microwave irradiated to the object to be measured, and the transmission antenna spatially separated from the microwave A reception antenna that receives a reflected wave from the object to be measured, and the microwave includes a frequency that causes interference due to multiple reflections between the surface of the object to be measured and the defect, and the intensity of the reflected wave at the frequency An internal defect inspection apparatus, wherein the defect is detected by measuring the defect. マイクロ波の一部を透過する半透過反射板を有し、前記送信アンテナから出力されたマイクロ波の一部が前記半透過反射板を透過して前記被測定物の表面にほぼ垂直に照射され、前記被測定物からの反射波の一部が前記半透過反射板により反射されて前記受信アンテナに入射するように構成されることを特徴とする請求項1に記載の内部欠陥検査装置。   A transflective plate that transmits a part of the microwave, and a part of the microwave that is output from the transmitting antenna is transmitted through the transflective plate and irradiated to the surface of the object to be measured substantially perpendicularly; 2. The internal defect inspection apparatus according to claim 1, wherein a part of the reflected wave from the object to be measured is reflected by the transflective plate and is incident on the receiving antenna. マイクロ波の一部を透過する半透過反射板を有し、前記送信アンテナから出力されたマイクロ波の一部が前記半透過反射板により反射されて前記被測定物の表面にほぼ垂直に照射され、前記被測定物からの反射波の一部が前記半透過反射板を透過して前記受信アンテナに入射するように構成されることを特徴とする請求項1に記載の内部欠陥検査装置。   A transflective plate that transmits a part of the microwave, and a part of the microwave output from the transmitting antenna is reflected by the transflective plate to irradiate the surface of the object to be measured substantially perpendicularly; The internal defect inspection apparatus according to claim 1, wherein a part of the reflected wave from the object to be measured is configured to pass through the transflective plate and enter the receiving antenna. 前記受信アンテナにより受信された受信信号に含まれる前記被測定物の表面形状に依存した信号を特定する手段と、前記の特定された信号を除去する手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の内部欠陥検査装置。   2. The apparatus according to claim 1, further comprising: means for specifying a signal depending on a surface shape of the object to be measured included in a reception signal received by the reception antenna; and means for removing the specified signal. 5. The internal defect inspection apparatus according to any one of 4 above. 前記送信アンテナから出力されるマイクロ波の周波数と異なる周波数のマイクロ波である局部波を発信する局部発振器と、前記局部波と前記受信アンテナにより受信された受信信号とを合波し両者の周波数の差の周波数を有する差周波数信号を生成するミキサと、前記差周波数信号を通過させる周波数フィルタとを有することを特徴とする請求項1乃至5のいずれか1項に記載の内部欠陥検査装置。   A local oscillator that transmits a local wave that is a microwave having a frequency different from the frequency of the microwave output from the transmitting antenna, and the received signal received by the local wave and the receiving antenna are combined to The internal defect inspection apparatus according to claim 1, further comprising: a mixer that generates a difference frequency signal having a difference frequency; and a frequency filter that passes the difference frequency signal. 被測定物の内部にある層状の欠陥を検出する検査方法であって、
送信アンテナが、前記被測定物の表面と前記欠陥間の多重反射による干渉を生ずる周波数を含むマイクロ波を出力し被測定物に照射するステップと、
前記送信アンテナと空間的に分離された受信アンテナが、前記マイクロ波の前記被測定物からの反射波を受信するステップと
を含み、前記周波数における前記反射波の強度を測定することを特徴とする内部欠陥の検査方法。
An inspection method for detecting a layered defect in an object to be measured,
A step of transmitting a microwave including a frequency that causes interference due to multiple reflection between the surface of the object to be measured and the defect and irradiating the object to be measured;
A receiving antenna spatially separated from the transmitting antenna receives the reflected wave of the microwave from the object to be measured, and measures the intensity of the reflected wave at the frequency Internal defect inspection method.
前記被測定物は、板状の部分を有し、該板状の部分の内部に生じた剥離状の欠陥を検出することを特徴とする請求項7に記載の内部欠陥の検査方法。   The internal defect inspection method according to claim 7, wherein the object to be measured has a plate-like portion, and a peeling-like defect generated inside the plate-like portion is detected. 前記板状の部分は層状のゴムを貼り合わせた部分であることを特徴とする請求項8に記載の内部欠陥の検査方法。   The internal defect inspection method according to claim 8, wherein the plate-like portion is a portion where layered rubber is bonded.
JP2012062331A 2012-03-19 2012-03-19 Internal defect inspection apparatus and internal defect inspection method Active JP5917218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062331A JP5917218B2 (en) 2012-03-19 2012-03-19 Internal defect inspection apparatus and internal defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062331A JP5917218B2 (en) 2012-03-19 2012-03-19 Internal defect inspection apparatus and internal defect inspection method

Publications (2)

Publication Number Publication Date
JP2013195219A true JP2013195219A (en) 2013-09-30
JP5917218B2 JP5917218B2 (en) 2016-05-11

Family

ID=49394351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062331A Active JP5917218B2 (en) 2012-03-19 2012-03-19 Internal defect inspection apparatus and internal defect inspection method

Country Status (1)

Country Link
JP (1) JP5917218B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077192A (en) * 2016-11-11 2018-05-17 東洋ゴム工業株式会社 Tire inspection device and inspection method
CN110530898A (en) * 2019-08-13 2019-12-03 北海市产品检验检测中心 The non-contact real-time detection apparatus of crack initiation inside and outside rock sample
WO2022270864A1 (en) * 2021-06-24 2022-12-29 (주)엠텔리 Golf ball sorting device
KR20230000210A (en) * 2021-06-24 2023-01-02 성균관대학교산학협력단 Golf ball balance analysis apparatus
US11946964B2 (en) 2021-12-27 2024-04-02 International Business Machines Corporation Dual-sideband microwave interferometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026186B1 (en) * 2014-09-19 2016-12-09 Saint-Gobain Centre De Rech Et D'Etudes Europeen NON-DESTRUCTIVE CONTROL METHOD

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845279A (en) * 1971-10-04 1973-06-28
JPS6324147A (en) * 1986-01-08 1988-02-01 ハ−キユルス・インコ−ポレ−テツド Device and method of detecting feature of paper-like articles
JPH05322800A (en) * 1992-03-27 1993-12-07 Asahi Glass Co Ltd Inner quality evaluating method for fused cast refractory
US6005397A (en) * 1991-07-29 1999-12-21 Colorado State University Research Foundation Microwave thickness measurement and apparatus
JP2002350364A (en) * 2002-05-17 2002-12-04 Toshiba It & Control Systems Corp Microwave apparatus for measuring concentration
JP2004128113A (en) * 2002-10-01 2004-04-22 Kobe Steel Ltd Method and apparatus for measuring life of semiconductor carrier
JP2008076174A (en) * 2006-09-20 2008-04-03 Yazaki Corp Method and device for detecting abnormality of shield member
JP2009145312A (en) * 2007-12-12 2009-07-02 Terahertz Laboratory Co Inspection apparatus and inspection method
JP2009250821A (en) * 2008-04-08 2009-10-29 Yazaki Corp Method and device for detecting abnormality of shield member
JP2009281850A (en) * 2008-05-22 2009-12-03 Yazaki Corp Method and device for detecting abnormality of shield member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845279A (en) * 1971-10-04 1973-06-28
JPS6324147A (en) * 1986-01-08 1988-02-01 ハ−キユルス・インコ−ポレ−テツド Device and method of detecting feature of paper-like articles
US6005397A (en) * 1991-07-29 1999-12-21 Colorado State University Research Foundation Microwave thickness measurement and apparatus
JPH05322800A (en) * 1992-03-27 1993-12-07 Asahi Glass Co Ltd Inner quality evaluating method for fused cast refractory
US5363106A (en) * 1992-03-27 1994-11-08 Asahi Glass Company, Ltd. Method for evaluating internal quality of fused cast refractories
JP2002350364A (en) * 2002-05-17 2002-12-04 Toshiba It & Control Systems Corp Microwave apparatus for measuring concentration
JP2004128113A (en) * 2002-10-01 2004-04-22 Kobe Steel Ltd Method and apparatus for measuring life of semiconductor carrier
JP2008076174A (en) * 2006-09-20 2008-04-03 Yazaki Corp Method and device for detecting abnormality of shield member
JP2009145312A (en) * 2007-12-12 2009-07-02 Terahertz Laboratory Co Inspection apparatus and inspection method
JP2009250821A (en) * 2008-04-08 2009-10-29 Yazaki Corp Method and device for detecting abnormality of shield member
JP2009281850A (en) * 2008-05-22 2009-12-03 Yazaki Corp Method and device for detecting abnormality of shield member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077192A (en) * 2016-11-11 2018-05-17 東洋ゴム工業株式会社 Tire inspection device and inspection method
WO2018088274A1 (en) * 2016-11-11 2018-05-17 東洋ゴム工業株式会社 Tire inspecting device and inspecting method
CN110530898A (en) * 2019-08-13 2019-12-03 北海市产品检验检测中心 The non-contact real-time detection apparatus of crack initiation inside and outside rock sample
CN110530898B (en) * 2019-08-13 2024-03-15 北海市产品检验检测中心 Non-contact real-time detection device for internal and external cracking of rock test piece
WO2022270864A1 (en) * 2021-06-24 2022-12-29 (주)엠텔리 Golf ball sorting device
KR20230000210A (en) * 2021-06-24 2023-01-02 성균관대학교산학협력단 Golf ball balance analysis apparatus
KR102569745B1 (en) 2021-06-24 2023-08-24 (주)엠텔리 Golf ball balance analysis apparatus
US11946964B2 (en) 2021-12-27 2024-04-02 International Business Machines Corporation Dual-sideband microwave interferometer

Also Published As

Publication number Publication date
JP5917218B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6214917B2 (en) Internal defect inspection apparatus and internal defect inspection method
JP5917218B2 (en) Internal defect inspection apparatus and internal defect inspection method
US10509065B1 (en) Imaging of electromagnetic fields
US20100282968A1 (en) Device and method for terahertz imaging with combining terahertz technology and amplitude-division interference technology
EP2788135B1 (en) Microwave probe for furnace refractory material
US9228826B2 (en) Apparatus and method for contactless thickness measurement
EP3049796B1 (en) Nondestructive, absolute determination of thickness or depth in dielectric materials
Meier et al. Millimeter-wave tomographic imaging of composite materials based on phase evaluation
Zhang et al. Broadband millimeter-wave imaging radar-based 3-D holographic reconstruction for nondestructive testing
Wu et al. Application of terahertz time domain spectroscopy for NDT of oxide-oxide ceramic matrix composites
WO2017216942A1 (en) Terahertz wave measuring device
Yasui et al. Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging
Gusakov et al. Correlation enhanced-scattering diagnostics of small scale plasma turbulence
EP3906418B1 (en) Imaging of electromagnetic fields
Grünsteidl et al. Measurement of the attenuation of elastic waves at GHz frequencies using resonant thickness modes
Zamiri et al. Laser ultrasonic receivers based on organic photorefractive polymer composites
Fan et al. Enhanced measurement of paper basis weight using phase shift in terahertz time-domain spectroscopy
JP6799599B2 (en) Systems and methods for characterizing objects or samples
JP5246801B2 (en) Sheet number inspection device
JP2018054392A (en) Inspection device and inspection method
Pałka et al. Monitoring of air voids at plastic-metal interfaces by terahertz radiation
Greeney et al. Dielectric microscopy with submillimeter resolution
Kaname et al. Fast three-dimensional terahertz imaging with continuous-wave photomixing
Wu et al. Research on Non-destructive test of porous ceramic insulation material for spacecraft based on Terahertz continuous wave imaging technology
Hisatake Asynchronous near-field measurement and far-field characterization using electrooptic probes in the millimeter-wave band

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120831

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250