JP2013195167A - Radar signal processing apparatus and radar signal processing method - Google Patents

Radar signal processing apparatus and radar signal processing method Download PDF

Info

Publication number
JP2013195167A
JP2013195167A JP2012061135A JP2012061135A JP2013195167A JP 2013195167 A JP2013195167 A JP 2013195167A JP 2012061135 A JP2012061135 A JP 2012061135A JP 2012061135 A JP2012061135 A JP 2012061135A JP 2013195167 A JP2013195167 A JP 2013195167A
Authority
JP
Japan
Prior art keywords
rainfall intensity
phase difference
intensity
reflection factor
rainfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012061135A
Other languages
Japanese (ja)
Inventor
Maho Sato
真帆 佐藤
Yoshiyuki Yabugaki
吉幸 藪垣
Yuuji Maeda
融磁 前田
Hiroshi Sakamaki
洋 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012061135A priority Critical patent/JP2013195167A/en
Publication of JP2013195167A publication Critical patent/JP2013195167A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress an output of a rainfall intensity estimation value far from a reality even when a change rate of a phase difference between polarized waves is locally changed.SOLUTION: A phase difference calculation section 19 calculates a phase difference between polarized waves of a horizontal polarization reception signal and a vertical polarization reception signal, and a reflected wave intensity calculation section 18 calculates reflected wave intensity from at least one of the horizontal polarization reception signal and the vertical polarization reception signal. A phase difference rainfall intensity calculation section 21 calculates phase difference rainfall intensity which is a rainfall intensity estimation value on the basis of a distance change rate of the phase difference, and a reflective factor rainfall intensity calculation section 20 calculates reflective factor rainfall intensity which is the rainfall intensity estimation value on the basis of the reflected wave intensity. A synthesis section 22 selects the phase difference rainfall intensity when the phase difference rainfall intensity and the reflective factor rainfall intensity satisfy a predetermined condition, and select the reflective factor rainfall intensity and outputs it as a rainfall intensity estimation value R when the phase difference rainfall intensity and the reflective factor rainfall intensity do not satisfy a predetermined condition.

Description

本発明は、レーダ信号処理装置およびレーダ信号処理方法に関する。より詳しくは、水平偏波および垂直偏波の2つの電波を用いて降雨強度を推定するレーダ信号処理装置およびレーダ信号処理方法に関する。   The present invention relates to a radar signal processing device and a radar signal processing method. More specifically, the present invention relates to a radar signal processing apparatus and a radar signal processing method for estimating rainfall intensity using two radio waves of horizontal polarization and vertical polarization.

広く用いられている単一偏波の気象レーダでは、エコー強度と降雨強度の間に成立する関係式を用いて、降雨強度の推定を行っている(例えば、特許文献1参照)。しかし、この関係式は雨滴の粒径分布によって大きく変化するため、単一偏波の気象レーダで正確な降雨強度を求めることは困難である。   In a widely used single-polarization weather radar, the rainfall intensity is estimated using a relational expression established between the echo intensity and the rainfall intensity (see, for example, Patent Document 1). However, since this relational expression changes greatly depending on the particle size distribution of raindrops, it is difficult to obtain an accurate rainfall intensity with a single-polarization weather radar.

一般に雨滴は球を垂直方向に押し潰した回転楕円体に近い形状をしている。大きな粒径の雨滴は扁平度が大きく、小さな粒径の雨滴は扁平度が小さくほぼ球形となる。そのため、水平偏波と垂直偏波を用いた二重偏波レーダ観測を行えば、雨滴の形状に関する情報、すなわち粒径分布に対応する情報が得られるため、精度の高い降雨強度計測が可能になる。降雨領域を電波が通過する途中で生じる偏波間位相差の単位距離当たりの変化量は、降雨強度計測の精度向上に有効である。偏波間位相差とは、受信した信号の水平偏波と垂直偏波の位相の差のことで、偏波間位相差の単位距離当たりの変化量で降雨強度を推定する。   In general, raindrops have a shape close to a spheroid obtained by squashing a sphere in the vertical direction. Raindrops with a large particle size have a large flatness, and raindrops with a small particle size have a small flatness and are almost spherical. Therefore, if dual-polarization radar observation using horizontal and vertical polarization is performed, information on the shape of the raindrop, that is, information corresponding to the particle size distribution can be obtained, which enables highly accurate rainfall intensity measurement. Become. The amount of change per unit distance in the phase difference between polarized waves that occurs during the passage of radio waves through the rainfall region is effective in improving the accuracy of rainfall intensity measurement. The inter-polarization phase difference is the difference between the horizontal polarization and the vertical polarization phase of the received signal, and the rainfall intensity is estimated from the amount of change per unit distance of the inter-polarization phase difference.

特許文献2には、エコー強度から算出した降雨強度の暫定推定値を用いて、偏波間位相差φdpの距離微分を計算する際の距離微分区間Dを設定し、距離微分区間Dを用いて位相差φdpを距離で微分した位相差距離微分値Kdpから、降雨強度推定値Rを算出するレーダ信号処理装置が記載されている。特許文献3の気象レーダシステムでは、水平偏波の受信電力と垂直偏波の受信電力、偏波間位相差の3つから降水強度算出処理を行い、スムージング処理を行って降水強度を得る。   In Patent Literature 2, a distance differential section D for calculating the distance differential of the inter-polarization phase difference φdp is set using a provisional estimated value of the rainfall intensity calculated from the echo intensity, and the position using the distance differential section D is set. A radar signal processing device is described that calculates a rainfall intensity estimated value R from a phase difference distance differential value Kdp obtained by differentiating the phase difference φdp with respect to distance. In the meteorological radar system of Patent Document 3, precipitation intensity calculation processing is performed based on the received power of horizontal polarization, received power of vertical polarization, and phase difference between polarizations, and smoothing processing is performed to obtain precipitation intensity.

特開2003−344556号公報JP 2003-344556 A 特開2005−17082号公報JP 2005-17082 A 特開2011−27545号公報JP 2011-27545 A

二重偏波レーダで降雨強度の推定値を算出する際、偏波間位相差変化率Kdpを用いることによって、降雨減衰の影響をあまり受けずに降雨強度を算出することができる。しかし、偏波間位相差変化率Kdpの値が安定せず、算出した降雨強度が実際の降雨強度より大きくなりすぎることがあるという問題がある。   When calculating the estimated value of the rainfall intensity with the dual polarization radar, the rainfall intensity can be calculated without much influence of the rain attenuation by using the polarization phase difference change rate Kdp. However, there is a problem that the value of the polarization phase difference change rate Kdp is not stable, and the calculated rainfall intensity may be larger than the actual rainfall intensity.

本発明は、上述の状況に鑑みてなされたもので、偏波間位相差変化率が局所的に変化している場合でも、実際からかけ離れた降雨強度の推定値を出力するのを抑制することを目的とする。   The present invention has been made in view of the above-described situation, and suppresses outputting an estimated value of rainfall intensity far from the actual value even when the rate of change in phase difference between polarizations locally changes. Objective.

上述の目的を達成するため、本発明に係るレーダ信号処理装置は、水平偏波および垂直偏波の2つの電波を空間に放射し、空間に存在する物体で反射された電波を、2つの偏波で水平偏波受信信号および垂直偏波受信信号として受信し、水平偏波受信信号および垂直偏波受信信号に対して処理を施すことにより二重偏波計測値を取得するレーダ信号処理装置であって、位相差算出部は、水平偏波受信信号と垂直偏波受信信号との偏波間の位相差を算出し、反射波強度算出部は、水平偏波受信信号および垂直偏波受信信号の少なくとも一方から反射波強度を算出する。位相差降雨強度算出部は、位相差の距離変化率に基づく降雨強度推定値である位相差降雨強度を算出し、反射因子降雨強度算出部は、反射波強度に基づく降雨強度推定値である反射因子降雨強度を算出する。そして、合成部は、位相差降雨強度と反射因子降雨強度とが、定めた条件を満たす場合に、位相差降雨強度を選択し、定めた条件を満たさない場合に、反射因子降雨強度を選択して、降雨強度推定値として出力する。   In order to achieve the above-described object, the radar signal processing apparatus according to the present invention radiates two radio waves of horizontal polarization and vertical polarization into space, and converts the radio waves reflected by an object existing in the space into two polarizations. A radar signal processing device that receives dual-polarized measurement values by receiving signals as horizontal polarization reception signals and vertical polarization reception signals and processing the horizontal polarization reception signals and vertical polarization reception signals. The phase difference calculation unit calculates a phase difference between the polarizations of the horizontal polarization reception signal and the vertical polarization reception signal, and the reflected wave intensity calculation unit calculates the horizontal polarization reception signal and the vertical polarization reception signal. The reflected wave intensity is calculated from at least one. The phase difference rainfall intensity calculation unit calculates the phase difference rainfall intensity, which is a rainfall intensity estimation value based on the distance change rate of the phase difference, and the reflection factor rainfall intensity calculation unit is a reflection, which is the rainfall intensity estimation value based on the reflected wave intensity. Calculate factor rainfall intensity. The combining unit selects the phase difference rainfall intensity when the phase difference rainfall intensity and the reflection factor rainfall intensity satisfy the predetermined condition, and selects the reflection factor rainfall intensity when the predetermined condition is not satisfied. And output as an estimated rainfall intensity.

本発明によれば、水平偏波と垂直偏波の受信信号から得られる偏波間位相差変化率が局所的に変化している場合でも、実際からかけ離れた降雨強度の推定値を出力するのを抑制できる。   According to the present invention, even when the rate of change in phase difference between polarizations obtained from received signals of horizontal polarization and vertical polarization changes locally, an estimated value of rainfall intensity far from the actual is output. Can be suppressed.

本発明の実施の形態に係るレーダ信号処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the radar signal processing apparatus which concerns on embodiment of this invention. 実施の形態に係るレーダ信号処理装置の観測領域の距離区分を示す図である。It is a figure which shows the distance division of the observation area | region of the radar signal processing apparatus which concerns on embodiment. 実施の形態に係る降雨強度の算出方法を説明する図である。It is a figure explaining the calculation method of the rainfall intensity which concerns on embodiment. 実施の形態に係る降雨推定の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of the rainfall estimation which concerns on embodiment.

(実施の形態)
図1は、本発明の実施の形態に係るレーダ信号処理装置の構成例を示すブロック図である。レーダ信号処理装置は、送信信号発生部11、送信部12、分割部13、送受信切替部14H、送受信切替部14V、空中線15、受信部16H、受信部16V、A−D変換部17H、A−D変換部17V、反射波強度算出部18、位相差算出部19、反射因子降雨強度算出部20、位相差降雨強度算出部21、および、合成部22を備える。
(Embodiment)
FIG. 1 is a block diagram showing a configuration example of a radar signal processing apparatus according to an embodiment of the present invention. The radar signal processing apparatus includes a transmission signal generation unit 11, a transmission unit 12, a division unit 13, a transmission / reception switching unit 14H, a transmission / reception switching unit 14V, an antenna 15, a reception unit 16H, a reception unit 16V, an A-D conversion unit 17H, and an A-. A D conversion unit 17V, a reflected wave intensity calculation unit 18, a phase difference calculation unit 19, a reflection factor rainfall intensity calculation unit 20, a phase difference rainfall intensity calculation unit 21, and a synthesis unit 22 are provided.

実施の形態では、理解を容易にするため、レーダ信号処理装置に送信信号発生部11からA−D変換部17H,17Vまでを含む例を挙げているが、電波を放射して受信信号を得るレーダ装置を独立して、レーダ信号処理装置が、レーダ装置から受信信号を得る構成でもよい。その場合、レーダ信号処理装置は、反射波強度算出部18、位相差算出部19、反射因子降雨強度算出部20、位相差降雨強度算出部21、および、合成部22を備える。   In the embodiment, in order to facilitate understanding, an example is given in which the radar signal processing device includes the transmission signal generation unit 11 to the A-D conversion units 17H and 17V. However, the reception signal is obtained by radiating radio waves. A configuration in which the radar device is independent and the radar signal processing device obtains a reception signal from the radar device may be employed. In that case, the radar signal processing apparatus includes a reflected wave intensity calculation unit 18, a phase difference calculation unit 19, a reflection factor rainfall intensity calculation unit 20, a phase difference rainfall intensity calculation unit 21, and a synthesis unit 22.

さらに、複数のレーダ装置に対して、1台のレーダ信号処理装置を設けて、複数のレーダ装置からそれぞれの受信信号をレーダ信号処理装置に送信する構成をとることもできる。   Furthermore, it is also possible to provide a configuration in which one radar signal processing device is provided for a plurality of radar devices, and each received signal is transmitted from the plurality of radar devices to the radar signal processing device.

送信信号発生部11では、レーダが空中に放射する送信波のもととなる送信信号を発生する。この送信信号は送信部12にて加工され、その結果として送信波が送信部12から出力される。送信波は、送信部12にて送信信号は大電力信号へと増幅される。送信部12ではさらに必要に応じて送信波を変調する。通常は、レーダの距離分解能を得るために、パルス変調が施される。   The transmission signal generator 11 generates a transmission signal that is a source of a transmission wave that the radar radiates into the air. This transmission signal is processed by the transmission unit 12, and as a result, a transmission wave is output from the transmission unit 12. The transmission signal is amplified by the transmission unit 12 into a high power signal. The transmitter 12 further modulates the transmission wave as necessary. Usually, in order to obtain the distance resolution of the radar, pulse modulation is performed.

分割部13では、送信部12から出力された送信波を2分割し、それぞれ送受信切替部14Hと送受信切替部14Vへと出力される。送受信切替部14Hおよび送受信切替部14Vでは、レーダ装置の送信タイミングにおいては、分割部13から出力された送信波を空中線15へと伝送する。またレーダ装置の受信タイミングにおいては、空中線15で受信された受信波をそれぞれ受信部16Hおよび受信部16Vへと伝送する。   The division unit 13 divides the transmission wave output from the transmission unit 12 into two and outputs the divided waves to the transmission / reception switching unit 14H and the transmission / reception switching unit 14V, respectively. The transmission / reception switching unit 14H and the transmission / reception switching unit 14V transmit the transmission wave output from the dividing unit 13 to the antenna 15 at the transmission timing of the radar apparatus. Also, at the reception timing of the radar device, the received wave received by the antenna 15 is transmitted to the receiving unit 16H and the receiving unit 16V, respectively.

空中線15は、送受信切替部14Hから伝送される送信波と送受信切替部14Vから伝送される送信波の2つが入力される。空中線15では、送受信切替部14Hから伝送された送信波を水平偏波で大気中へ放射し、送受信切替部14Vから伝送された送信波を垂直偏波で大気中へ放射する。   The antenna 15 receives two transmission waves, the transmission wave transmitted from the transmission / reception switching unit 14H and the transmission wave transmitted from the transmission / reception switching unit 14V. In the antenna 15, the transmission wave transmitted from the transmission / reception switching unit 14H is radiated into the atmosphere with horizontal polarization, and the transmission wave transmitted from the transmission / reception switching unit 14V is radiated into the atmosphere with vertical polarization.

大気で反射された反射電波は空中線15で受信される。反射電波のうちの水平偏波成分は空中線15から送受信切替部14Hを経て受信部16Hへと伝送される。また、反射電波のうちの垂直偏波成分は空中線15から送受信切替部14Vを経て受信部16Vへと伝送される。受信部16Hと受信部16Vは、それぞれ入力された水平偏波受信信号と垂直偏波受信信号に対して増幅および周波数変換を施す。   The reflected radio wave reflected by the atmosphere is received by the antenna 15. The horizontally polarized wave component of the reflected radio wave is transmitted from the antenna 15 to the receiving unit 16H via the transmission / reception switching unit 14H. Further, the vertically polarized wave component of the reflected radio wave is transmitted from the antenna 15 to the receiving unit 16V via the transmission / reception switching unit 14V. The receiving unit 16H and the receiving unit 16V perform amplification and frequency conversion on the input horizontal polarization reception signal and vertical polarization reception signal, respectively.

受信部16Hおよび受信部16Vから出力される周波数変換後の受信信号は、それぞれA−D変換部17H、17Vによってアナログ信号からディジタル信号へと変換される。変換された後の信号を以後は単に水平偏波受信信号および垂直偏波受信信号と呼ぶ。   The frequency-converted received signals output from the receiving unit 16H and the receiving unit 16V are converted from analog signals to digital signals by the AD converting units 17H and 17V, respectively. The converted signals are hereinafter simply referred to as horizontal polarization reception signals and vertical polarization reception signals.

なお、レーダ信号処理装置の構成として、図1では一つの送信部12で発生された送信波を分割部13で2分割し、水平偏波と垂直偏波を同時に送信するようなものとしている。レーダ信号処理装置にはその他の構成を持つものもある。例えば、水平偏波と垂直偏波を同時に送信するのではなく、スイッチで両偏波を切り替えることにより、水平偏波と垂直偏波を交互に観測するものもある。   As a configuration of the radar signal processing apparatus, in FIG. 1, a transmission wave generated by one transmission unit 12 is divided into two by a division unit 13 so that horizontal polarization and vertical polarization are transmitted simultaneously. Some radar signal processing apparatuses have other configurations. For example, there is a technique in which horizontal polarization and vertical polarization are alternately observed by switching both polarizations with a switch, instead of simultaneously transmitting horizontal polarization and vertical polarization.

A−D変換部17Hは、水平偏波受信信号を反射波強度算出部18および位相差算出部19に送る。A−D変換部17Vは、垂直偏波受信信号を位相差算出部19に送る。   The A-D converter 17H sends the horizontally polarized wave reception signal to the reflected wave intensity calculator 18 and the phase difference calculator 19. The AD conversion unit 17V sends the vertically polarized wave reception signal to the phase difference calculation unit 19.

反射波強度算出部18は、水平偏波受信信号から受信信号の電力値である反射波強度を算出する。一般に、レーダのターゲットとなる雨滴は、ランダムに空間分布するので、受信信号もランダムな性質をもつ。そこで、反射波強度の算出においては、複数回のレーダパルス送信で得られ且つ統計的に独立な複数の受信信号を平均化処理(すなわち、積分処理)することにより、反射波強度の推定値のゆらぎを抑圧して、反射波強度の精度を向上させている。反射波強度は、観測領域の方位角と距離の区分(格子)ごとに算出される。   The reflected wave intensity calculator 18 calculates the reflected wave intensity, which is the power value of the received signal, from the horizontally polarized wave received signal. In general, since raindrops that are radar targets are randomly distributed in space, the received signal also has random characteristics. Therefore, in the calculation of the reflected wave intensity, the estimated value of the reflected wave intensity is calculated by averaging (that is, integrating) a plurality of statistically independent received signals obtained by a plurality of radar pulse transmissions. The accuracy of reflected wave intensity is improved by suppressing fluctuations. The reflected wave intensity is calculated for each azimuth and distance section (grid) of the observation region.

なお、ここでは、反射波強度を、水平偏波受信信号に基づいて算出したが、垂直偏波受信信号に基づいて算出してもよく、または、水平偏波受信信号および垂直偏波受信信号の両方に基づいて算出してもよい。   Here, the reflected wave intensity is calculated based on the horizontal polarization reception signal, but may be calculated based on the vertical polarization reception signal, or the horizontal polarization reception signal and the vertical polarization reception signal may be calculated. You may calculate based on both.

反射因子降雨強度算出部20は、気象レーダ方程式を用いて、反射波強度から降雨のレーダ反射因子を計算し、さらに、レーダ反射因子と降雨強度との関係式を用いて、レーダ反射因子に基づく降雨強度の推定値である反射因子降雨強度Rに変換する。レーダ反射因子Zと反射因子降雨強度Rとの間の関係式としては、たとえば、以下の式(1)が用いられる。
= B・Zβ (1)
式(1)において、Rは降雨強度[mm/h]、Bおよびβは定数である。Zはレーダ反射因子[mm/m]であり、降雨の単位体積当たりのレーダ反射率に対応している。定数Bおよびβは、降雨のタイプによって異なるものの、標準的には、B=200、β=1.6の値がよく用いられている。反射因子Zと反射因子降雨強度Rは、観測領域の方位角と距離の区分(格子)ごとに算出される。
The reflection factor rainfall intensity calculation unit 20 calculates the radar reflection factor of the rain from the reflected wave intensity using the weather radar equation, and further based on the radar reflection factor using the relational expression between the radar reflection factor and the rainfall intensity. is an estimate of the rain intensity is converted into the reflection factor rainfall intensity R Z. The relationship between the radar reflectivity factor Z and the reflection factor rainfall R Z, for example, the following equation (1) is used.
R Z = B · Z β (1)
In Equation (1), R Z is the rainfall intensity [mm / h], and B and β are constants. Z is a radar reflection factor [mm 6 / m 3 ], which corresponds to the radar reflectance per unit volume of rainfall. Although the constants B and β differ depending on the type of rainfall, values of B = 200 and β = 1.6 are often used as standard. The reflection factor Z and the reflection factor rainfall intensity R Z are calculated for each azimuth and distance category (grid) of the observation region.

一方、位相差算出部19は、水平偏波受信信号と垂直偏波受信信号との偏波間位相差(以下、単に位相差ともいう)φdpを算出する。位相差φdpは、水平偏波受信信号と垂直偏波受信信号との相互相関係数の位相(偏角)を計算することにより算出され、以下の式(2)のように表される。
φdp = arg(<shh・svv>) (2)
式(2)において、shhは水平偏波を送信して水平偏波を受信することにより得られる受信信号であり、右肩の*は、複素共役を表す。svvは、垂直偏波を送信して垂直偏波を受信することにより得られる受信信号である。また、<>は集合平均を、argは偏角をそれぞれ表す。
On the other hand, the phase difference calculation unit 19 calculates an inter-polarization phase difference (hereinafter also simply referred to as a phase difference) φdp between the horizontal polarization reception signal and the vertical polarization reception signal. The phase difference φdp is calculated by calculating the phase (deflection angle) of the cross-correlation coefficient between the horizontally polarized wave received signal and the vertically polarized wave received signal, and is expressed as the following equation (2).
φdp = arg (<s * hh · svv>) (2)
In Expression (2), shh is a received signal obtained by transmitting horizontal polarization and receiving horizontal polarization, and * on the right shoulder represents a complex conjugate. svv is a received signal obtained by transmitting vertical polarization and receiving vertical polarization. <> Represents a set average, and arg represents a declination.

実際の信号処理においては、信号のエルゴード性を仮定して、時間平均または時間積分によって集合平均を実現する。すなわち、複数回のパルス送信により得られる信号の平均処理または積分処理となる。ここで、平均処理または積分処理に用いられるデータ数を、積分数と称する。位相差φdpは、観測領域の方位角と距離の区分(格子)ごとに算出される。   In actual signal processing, assuming the ergodic nature of the signal, collective averaging is realized by time averaging or time integration. That is, it is an average process or an integration process of signals obtained by a plurality of pulse transmissions. Here, the number of data used for the averaging process or the integration process is referred to as an integration number. The phase difference φdp is calculated for each azimuth and distance section (grid) of the observation region.

位相差降雨強度算出部21は、位相差φdpの、距離方向の変化率である位相差変化率Kdpを算出し、位相差変化率Kdpに基づく降雨強度の推定値である位相差降雨強度RKdpを算出する。位相差変化率Kdpは、レーダ観測データから得られる水平偏波と垂直偏波の間の偏波間位相差φdpの、距離方向の変化率であって、以下の式(3)のように表される。
Kdp = (φdp(r1)−φdp(r2))/2(r1−r2) (3)
式(3)において、φdp(r1)、φdp(r2)はそれぞれ距離r1、r2における水平偏波受信信号と垂直偏波受信信号の位相差である。位相差変化率Kdpは、観測領域の方位角と距離の区分(格子)ごとに算出される。
The phase difference rainfall intensity calculation unit 21 calculates a phase difference change rate Kdp that is a rate of change of the phase difference φdp in the distance direction, and a phase difference rainfall intensity R Kdp that is an estimated value of the rainfall intensity based on the phase difference change rate Kdp. Is calculated. The phase difference change rate Kdp is the change rate in the distance direction of the inter-polarization phase difference φdp between the horizontal polarization and the vertical polarization obtained from the radar observation data, and is expressed by the following equation (3). The
Kdp = (φdp (r1) −φdp (r2)) / 2 (r1−r2) (3)
In Expression (3), φdp (r1) and φdp (r2) are phase differences between the horizontally polarized wave reception signal and the vertically polarized wave reception signal at distances r1 and r2, respectively. The phase difference change rate Kdp is calculated for each azimuth and distance section (grid) of the observation region.

位相差変化率Kdpを位相差降雨強度RKdpに変換する式としては、以下の式(4)があげられる(たとえば、「Richard J.Doviak and Dusan S.Zrnic,Doppler Radar and Weather Observations, Second エディション、Academic Press、Inc.,1993.p.234」参照)。
Kdp = 5.1(Kdp・λ)0.866 [mm/h] (4)
式(4)において、RKdpは降雨強度[mm/h]、λはレーダ電波の波長[cm]であり、位相差変化率Kdpの単位は[deg/km]である。位相差降雨強度RKdpは、観測領域の方位角と距離の区分(格子)ごとに算出される。
The following formula (4) is given as an expression for converting the phase difference change rate Kdp into the phase difference rainfall intensity RKdp (for example, “Richard J. Doviak and Dusan S. Zrnic, Doppler Radar and Weather Observations, Second Edition”). Academic Press, Inc., 1993, p. 234).
R Kdp = 5.1 (Kdp · λ) 0.866 [mm / h] (4)
In Equation (4), R Kdp is the rainfall intensity [mm / h], λ is the wavelength [cm] of the radar radio wave, and the unit of the phase difference change rate Kdp is [deg / km]. The phase difference rainfall intensity R Kdp is calculated for each azimuth angle and distance section (grid) of the observation region.

合成部22は、反射因子降雨強度と位相差降雨強度から、方位角および距離の区分(格子)ごとの降雨強度推定値Rを算出する。具体的には、格子ごとに反射因子降雨強度と位相差降雨強度が定めた条件を満たすかどうかで、その格子の反射因子降雨強度または位相差降雨強度を選択して、その格子の降雨強度推定値Rとして出力する。   The synthesizer 22 calculates an estimated rainfall intensity value R for each azimuth and distance category (grid) from the reflection factor rainfall intensity and the phase difference rainfall intensity. Specifically, depending on whether or not the reflection factor rainfall intensity and the phase difference rainfall intensity satisfy the conditions defined for each grid, select the reflection factor rainfall intensity or phase difference rainfall intensity for that grid and estimate the rainfall intensity of that grid. Output as value R.

図2は、実施の形態に係るレーダ信号処理装置の観測領域の距離区分を示す図である。観測領域の方位角ごとに、レーダ装置から昇順に区分番号を振るものとする。区分の間隔をΔxで表す。   FIG. 2 is a diagram illustrating distance sections of observation regions of the radar signal processing device according to the embodiment. For each azimuth angle of the observation area, division numbers are assigned in ascending order from the radar device. The interval between sections is represented by Δx.

降雨強度推定値Rを算出する第1の判定条件では、方位角ごとに、格子の距離区分の番号をiとして、
(|RKdp(i+1)−R(i+1)|−|RKdp(i−1)―R(i−1)|)/2Δx < α
の場合は、位相差降雨強度RKdpをその格子の降雨強度推定値Rとして採用する(判定1)。ここで、i+1およびi−1は、着目する格子と同じ方位角の1つ後および1つ前の距離区分の番号を示す。Δxは距離区分の間隔、αは定数である。
In the first determination condition for calculating the rainfall intensity estimated value R, for each azimuth angle, the number of the grid distance section is i,
(| R Kdp (i + 1) −R Z (i + 1) | − | R Kdp (i−1) −R Z (i−1) |) / 2Δx <α
In this case, the phase difference rainfall intensity R Kdp is adopted as the rainfall intensity estimated value R of the grid (determination 1). Here, i + 1 and i-1 indicate the numbers of the distance sections one after and one before the same azimuth as the lattice of interest. Δx is an interval between distance sections, and α is a constant.

判定1を逆に言えば、
(|RKdp(i+1)−R(i+1)|−|RKdp(i−1)―R(i−1)|)/2Δx ≧ α
の場合は、その距離区分iの反射因子降雨強度を、その距離区分iの降雨強度推定値Rとして採用する。すなわち、区分iの1つ後の区分i+1における位相差降雨強度と反射因子降雨強度の差の絶対値と、区分iの1つ前の区分i−1における位相差降雨強度と反射因子降雨強度の差の絶対値との差分が、定めた値以上の場合に、区分iの反射因子降雨強度をその区分iの降雨強度推定値Rとして選択する。
Speaking judgment 1 in reverse,
(| R Kdp (i + 1) −R Z (i + 1) | − | R Kdp (i−1) −R Z (i−1) |) / 2Δx ≧ α
In this case, the reflection factor rainfall intensity of the distance section i is adopted as the rainfall intensity estimated value R of the distance section i. That is, the absolute value of the difference between the phase difference rainfall intensity and the reflection factor rainfall intensity in the section i + 1 immediately after the section i, and the phase difference rainfall intensity and the reflection factor rainfall intensity in the section i-1 immediately before the section i. When the difference from the absolute value of the difference is equal to or greater than a predetermined value, the reflection factor rainfall intensity of the section i is selected as the rainfall intensity estimated value R of the section i.

第2の判定条件は、格子ごとに、
Kdp<R*β
の場合は位相差降雨強度RKdpをその格子の降雨強度推定値Rとして採用する(判定2)。βは定数である。
The second determination condition is as follows:
R Kdp <R Z * β
In this case, the phase difference rainfall intensity R Kdp is adopted as the rainfall intensity estimated value R of the grid (determination 2). β is a constant.

判定2を逆に言えば、
Kdp≧R*β
の場合は、反射因子降雨強度をその格子の降雨強度推定値Rとして採用する。すなわち、格子ごとに、位相差降雨強度が反射因子降雨強度の定数倍以上の場合に、格子の反射因子降雨強度を、その格子の降雨強度推定値Rとして選択する。
Speaking of decision 2 in reverse,
R Kdp ≧ R Z * β
In this case, the reflection factor rainfall intensity is adopted as the rainfall intensity estimation value R of the grid. That is, for each grid, when the phase difference rainfall intensity is greater than or equal to a constant multiple of the reflection factor rainfall intensity, the reflection factor rainfall intensity of the grid is selected as the rainfall intensity estimation value R for the grid.

図3は、実施の形態に係る降雨強度の算出方法を説明する図である。反射波強度は、距離によって大きく変動することはないが、位相差は、変動することがあり、その変化の大きい距離では、位相差変化率の絶対値が大きくなり、位相差降雨強度が実際より大きくなる場合がある。位相差降雨強度と反射因子降雨強度の差の絶対値が、区分iの前後で変化するときに、その区分iの位相差降雨強度を棄却するのが判定1である。また、着目する区分iの位相差降雨強度が反射因子降雨強度の定数倍以上の場合に、その区分iの位相差降雨強度を棄却するのが判定2である。図3では、判定2で位相差降雨強度が棄却される場合を示す。判定1の定数αと判定2の定数βは、実際の観測に基づいて設定することができる。   FIG. 3 is a diagram for explaining a method of calculating rainfall intensity according to the embodiment. The reflected wave intensity does not fluctuate greatly depending on the distance, but the phase difference may fluctuate. At a distance where the change is large, the absolute value of the phase difference change rate becomes large, and the phase difference rainfall intensity is greater than the actual one. May be larger. When the absolute value of the difference between the phase difference rainfall intensity and the reflection factor rainfall intensity changes before and after the section i, the decision 1 is to reject the phase difference rainfall intensity of the section i. Further, in the case where the phase difference rainfall intensity of the section i of interest is equal to or larger than a constant multiple of the reflection factor rainfall intensity, the judgment 2 is to reject the phase difference rainfall intensity of the section i. In FIG. 3, the case where the phase difference rainfall intensity is rejected in the determination 2 is shown. The constant α for determination 1 and the constant β for determination 2 can be set based on actual observation.

判定1と判定2は、それぞれ単独で用いて、格子ごとの降雨強度推定値Rを出力してもよい。あるいは、判定1と判定2を合わせた論理積を1つの条件として判定してもよい。すなわち、
(|RKdp(i+1)−R(i+1)|−|RKdp(i−1)―R(i−1)|)/2Δx < α
で、かつ、
Kdp<R*β
の場合に、位相差降雨強度RKdpをその格子の降雨強度推定値Rとして採用する。それ以外の場合は、反射因子降雨強度をその格子の降雨強度推定値Rとして採用する。
The determination 1 and the determination 2 may be used independently to output the rainfall intensity estimated value R for each grid. Alternatively, the logical product of the determination 1 and the determination 2 may be determined as one condition. That is,
(| R Kdp (i + 1) −R Z (i + 1) | − | R Kdp (i−1) −R Z (i−1) |) / 2Δx <α
And
R Kdp <R Z * β
In this case, the phase difference rainfall intensity R Kdp is adopted as the rainfall intensity estimated value R of the grid. In other cases, the reflection factor rainfall intensity is adopted as the rainfall intensity estimation value R of the grid.

図4は、実施の形態に係る降雨推定の処理の一例を示すフローチャートである。図4のフローチャートは、上述の判定1と判定2の論理積を条件として判定する場合を示す。反射波強度算出部18は、受信信号を入力して(ステップS01)、格子ごとに平均化処理を行って反射波強度を算出する(ステップS02)。そして、反射因子降雨強度算出部20は、反射波強度からレーダ反射因子を算出し、格子ごとの反射因子降雨強度を算出する(ステップS03)。   FIG. 4 is a flowchart illustrating an example of a rainfall estimation process according to the embodiment. The flowchart of FIG. 4 shows a case where the determination is performed using the logical product of the above-described determination 1 and determination 2 as a condition. The reflected wave intensity calculator 18 receives the received signal (step S01), performs an averaging process for each grating, and calculates the reflected wave intensity (step S02). Then, the reflection factor rainfall intensity calculation unit 20 calculates the radar reflection factor from the reflected wave intensity, and calculates the reflection factor rainfall intensity for each lattice (step S03).

反射因子降雨強度の算出に並行して、位相差算出部19は、水平偏波受信信号と垂直偏波受信信号を入力して(ステップS11)、その差を平均化処理して偏波間位相差を算出する(ステップS12)。そして、位相差降雨強度算出部21は、偏波間位相差の距離変化率を算出し、格子ごとの位相差降雨強度を算出する(ステップS13)。   In parallel with the calculation of the reflection factor rainfall intensity, the phase difference calculation unit 19 inputs the horizontal polarization reception signal and the vertical polarization reception signal (step S11), averages the difference, and performs the phase difference between the polarizations. Is calculated (step S12). And the phase difference rainfall intensity calculation part 21 calculates the distance change rate of the phase difference between polarized waves, and calculates the phase difference rainfall intensity for every grating | lattice (step S13).

合成部22は、格子ごとの反射因子降雨強度と位相差降雨強度から、判定1の条件
(|RKdp(i+1)−R(i+1)|−|RKdp(i−1)―R(i−1)|)/2Δx < α
が満たされ(ステップS21;YES)、かつ、判定2の条件RKdp<R*βが満たされる場合(ステップS22;YES)、その格子の位相差降雨強度を、降雨強度推定値Rとして選択して出力する(ステップS23)。
The combining unit 22 determines the condition for determination 1 from the reflection factor rainfall intensity and the phase difference rainfall intensity for each grid.
(| R Kdp (i + 1) −R Z (i + 1) | − | R Kdp (i−1) −R Z (i−1) |) / 2Δx <α
Is satisfied (step S21; YES) and the condition R Kdp <R Z * β of determination 2 is satisfied (step S22; YES), the phase difference rainfall intensity of the grid is selected as the rainfall intensity estimated value R. And output (step S23).

判定1の条件が満たされない場合(ステップS21;NO)、または判定2の条件が満たされない場合は(ステップS22;NO)、その格子の反射因子降雨強度を、降雨強度推定値Rとして選択して出力する(ステップS24)。   When the condition of determination 1 is not satisfied (step S21; NO), or when the condition of determination 2 is not satisfied (step S22; NO), the reflection factor rainfall intensity of the grid is selected as the rainfall intensity estimated value R. Output (step S24).

以上説明したように、本実施の形態のレーダ信号処理装置によれば、水平偏波と垂直偏波の受信信号から得られる偏波間位相差変化率が局所的に変化している場合でも、実際からかけ離れた降雨強度の推定値を出力するのを抑制できる。   As described above, according to the radar signal processing apparatus of the present embodiment, even if the polarization phase difference change rate obtained from the horizontally polarized wave and vertically polarized wave received signals is locally changed, It can suppress outputting the estimated value of the rainfall intensity far from.

11 送信信号発生部
12 送信部
13 分割部
14H、14V 送受信切替部
15 空中線
16H、16V 受信部
17H、17V A−D変換部
18 反射波強度算出部
19 位相差算出部
20 反射因子降雨強度算出部
21 位相差降雨強度算出部
22 合成部
11 Transmission signal generator
12 Transmitter
13 Dividing unit 14H, 14V Transmission / reception switching unit
15 Antenna 16H, 16V Receiver 17H, 17V A-D converter
18 Reflected wave intensity calculator
19 Phase difference calculator
20 Reflection factor rainfall intensity calculator
21 Phase difference rainfall intensity calculation part
22 Synthesizer

Claims (6)

水平偏波および垂直偏波の2つの電波を空間に放射し、空間に存在する物体で反射された電波を、2つの偏波で水平偏波受信信号および垂直偏波受信信号として受信し、前記水平偏波受信信号および前記垂直偏波受信信号に対して処理を施すことにより二重偏波計測値を取得するレーダ信号処理装置であって、
前記水平偏波受信信号と前記垂直偏波受信信号との偏波間の位相差を算出する位相差算出部と、
前記水平偏波受信信号および前記垂直偏波受信信号の少なくとも一方から反射波強度を算出する反射波強度算出部と、
前記位相差の距離変化率に基づく降雨強度推定値である位相差降雨強度を算出する位相差降雨強度算出部と、
前記反射波強度に基づく降雨強度推定値である反射因子降雨強度を算出する反射因子降雨強度算出部と、
前記位相差降雨強度と前記反射因子降雨強度とが、定めた条件を満たす場合に、前記位相差降雨強度を選択し、前記定めた条件を満たさない場合に、前記反射因子降雨強度を選択して、降雨強度推定値として出力する合成部と、
を備えるレーダ信号処理装置。
Two radio waves of horizontal polarization and vertical polarization are radiated into space, and radio waves reflected by objects existing in the space are received as horizontal polarization reception signals and vertical polarization reception signals with two polarizations, A radar signal processing device for obtaining a dual polarization measurement value by performing processing on a horizontal polarization reception signal and the vertical polarization reception signal,
A phase difference calculation unit that calculates a phase difference between the polarizations of the horizontal polarization reception signal and the vertical polarization reception signal;
A reflected wave intensity calculator that calculates a reflected wave intensity from at least one of the horizontal polarization reception signal and the vertical polarization reception signal;
A phase difference rainfall intensity calculation unit for calculating a phase difference rainfall intensity that is a rainfall intensity estimation value based on a distance change rate of the phase difference;
A reflection factor rainfall intensity calculating unit for calculating a reflection factor rainfall intensity that is an estimated rainfall intensity value based on the reflected wave intensity;
When the phase difference rainfall intensity and the reflection factor rainfall intensity satisfy a predetermined condition, the phase difference rainfall intensity is selected, and when the predetermined condition is not satisfied, the reflection factor rainfall intensity is selected. A synthesis unit that outputs the estimated rainfall intensity;
A radar signal processing apparatus comprising:
前記位相差降雨強度算出部は、観測領域の距離の区分ごとの前記位相差降雨強度を算出し、
前記反射因子降雨強度算出部は、前記観測領域の距離の前記区分ごとの前記反射因子降雨強度を算出し、
前記合成部は、1つの前記区分の1つ後の前記区分における前記位相差降雨強度と前記反射因子降雨強度の差の絶対値と、前記1つの前記区分の1つ前の前記区分における前記位相差降雨強度と前記反射因子降雨強度の差の絶対値との差分が、定めた値以上の場合に前記1つの前記区分の前記反射因子降雨強度をその区分の前記降雨強度推定値として選択する、
請求項1に記載のレーダ信号処理装置。
The phase difference rainfall intensity calculating unit calculates the phase difference rainfall intensity for each segment of the observation area distance,
The reflection factor rainfall intensity calculating unit calculates the reflection factor rainfall intensity for each of the segments of the distance of the observation area,
The combining unit includes an absolute value of a difference between the phase difference rainfall intensity and the reflection factor rainfall intensity in the section immediately after the one section, and the position in the section immediately before the one section. When the difference between the absolute value of the difference between the phase difference rainfall intensity and the reflection factor rainfall intensity is equal to or greater than a predetermined value, the reflection factor rainfall intensity of the one category is selected as the rainfall intensity estimate value of the category.
The radar signal processing apparatus according to claim 1.
前記合成部は、前記位相差降雨強度が前記反射因子降雨強度の定数倍以上の場合に、前記反射因子降雨強度を前記降雨強度推定値として選択する、請求項1または2に記載のレーダ信号処理装置。   3. The radar signal processing according to claim 1, wherein the combining unit selects the reflection factor rainfall intensity as the rainfall intensity estimated value when the phase difference rainfall intensity is equal to or larger than a constant multiple of the reflection factor rainfall intensity. apparatus. 水平偏波および垂直偏波の2つの電波を空間に放射し、空間に存在する物体で反射された電波を、2つの偏波で水平偏波受信信号および垂直偏波受信信号として受信し、前記水平偏波受信信号および前記垂直偏波受信信号に対して処理を施すことにより二重偏波計測値を取得するレーダ信号処理装置が行うレーダ信号処理方法であって、
前記水平偏波受信信号と前記垂直偏波受信信号との偏波間の位相差を算出する位相差算出ステップと、
前記水平偏波受信信号および前記垂直偏波受信信号の少なくとも一方から反射波強度を算出する反射波強度算出ステップと、
前記位相差の距離変化率に基づく降雨強度推定値である位相差降雨強度を算出する位相差降雨強度算出ステップと、
前記反射波強度に基づく降雨強度推定値である反射因子降雨強度を算出する反射因子降雨強度算出ステップと、
前記位相差降雨強度と前記反射因子降雨強度とが、定めた条件を満たす場合に、前記位相差降雨強度を選択し、前記定めた条件を満たさない場合に、前記反射因子降雨強度を選択して、降雨強度推定値として出力する合成ステップと、
を備えるレーダ信号処理方法。
Two radio waves of horizontal polarization and vertical polarization are radiated into space, and radio waves reflected by objects existing in the space are received as horizontal polarization reception signals and vertical polarization reception signals with two polarizations, A radar signal processing method performed by a radar signal processing device that acquires a dual polarization measurement value by performing processing on a horizontal polarization reception signal and the vertical polarization reception signal,
A phase difference calculating step for calculating a phase difference between the polarizations of the horizontal polarization reception signal and the vertical polarization reception signal;
A reflected wave intensity calculating step for calculating a reflected wave intensity from at least one of the horizontal polarization reception signal and the vertical polarization reception signal;
A phase difference rainfall intensity calculating step for calculating a phase difference rainfall intensity which is a rainfall intensity estimated value based on a distance change rate of the phase difference;
A reflection factor rainfall intensity calculating step for calculating a reflection factor rainfall intensity which is a rainfall intensity estimated value based on the reflected wave intensity;
When the phase difference rainfall intensity and the reflection factor rainfall intensity satisfy a predetermined condition, the phase difference rainfall intensity is selected, and when the predetermined condition is not satisfied, the reflection factor rainfall intensity is selected. A synthesis step to output as a rainfall intensity estimate;
A radar signal processing method comprising:
前記位相差降雨強度算出ステップでは、観測領域の距離の区分ごとの前記位相差降雨強度を算出し、
前記反射因子降雨強度算出ステップでは、前記観測領域の距離の前記区分ごとの前記反射因子降雨強度を算出し、
前記合成ステップでは、1つの前記区分の1つ後の前記区分における前記位相差降雨強度と前記反射因子降雨強度の差の絶対値と、前記1つの前記区分の1つ前の前記区分における前記位相差降雨強度と前記反射因子降雨強度の差の絶対値との差分が、定めた値以上の場合に前記1つの前記区分の前記反射因子降雨強度をその区分の前記降雨強度推定値として選択する、
請求項4に記載のレーダ信号処理方法。
In the phase difference rainfall intensity calculating step, the phase difference rainfall intensity is calculated for each segment of the observation area distance,
In the reflection factor rainfall intensity calculating step, the reflection factor rainfall intensity for each of the sections of the distance of the observation area is calculated,
In the synthesis step, an absolute value of a difference between the phase difference rainfall intensity and the reflection factor rainfall intensity in the section immediately after the one section, and the position in the section immediately before the one section. When the difference between the absolute value of the difference between the phase difference rainfall intensity and the reflection factor rainfall intensity is equal to or greater than a predetermined value, the reflection factor rainfall intensity of the one category is selected as the rainfall intensity estimate value of the category.
The radar signal processing method according to claim 4.
前記合成ステップでは、前記位相差降雨強度が前記反射因子降雨強度の定数倍以上の場合に、前記反射因子降雨強度を前記降雨強度推定値として選択する、請求項4または5に記載のレーダ信号処理方法。   The radar signal processing according to claim 4 or 5, wherein, in the synthesis step, the reflection factor rainfall intensity is selected as the rainfall intensity estimation value when the phase difference rainfall intensity is equal to or larger than a constant multiple of the reflection factor rainfall intensity. Method.
JP2012061135A 2012-03-16 2012-03-16 Radar signal processing apparatus and radar signal processing method Pending JP2013195167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061135A JP2013195167A (en) 2012-03-16 2012-03-16 Radar signal processing apparatus and radar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061135A JP2013195167A (en) 2012-03-16 2012-03-16 Radar signal processing apparatus and radar signal processing method

Publications (1)

Publication Number Publication Date
JP2013195167A true JP2013195167A (en) 2013-09-30

Family

ID=49394310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061135A Pending JP2013195167A (en) 2012-03-16 2012-03-16 Radar signal processing apparatus and radar signal processing method

Country Status (1)

Country Link
JP (1) JP2013195167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592075C1 (en) * 2015-08-31 2016-07-20 Открытое акционерное общество "Бортовые аэронавигационные системы" Method for unambiguous measurement of range to meteorological object
WO2018131787A1 (en) * 2017-01-16 2018-07-19 한국건설기술연구원 Method for estimating rainfall intensity using multiple elevation observation data of ultra-short-range dual-polarization radar
JP2021092407A (en) * 2019-12-09 2021-06-17 コリア インスティテュート オフ コンストラクション テクノロジー Rainfall intensity estimation method using multiple altitude observation data of ultrashort distance dual polarization radar and estimation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222135A (en) * 1993-01-21 1994-08-12 Japan Radio Co Ltd Meterological radar
JP2003344556A (en) * 2002-05-27 2003-12-03 Toshiba Corp Weather observation and estimation system, meteorological radar information analyzer and weather estimation modeling apparatus
JP2005017082A (en) * 2003-06-25 2005-01-20 Mitsubishi Electric Corp Device and method for processing radar signal
EP2278353A2 (en) * 2009-07-24 2011-01-26 Kabushiki Kaisha Toshiba Weather radar apparatus and rainfall rate calculation method
JP2011027545A (en) * 2009-07-24 2011-02-10 Toshiba Corp Weather radar system and rainfall rate calculation method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222135A (en) * 1993-01-21 1994-08-12 Japan Radio Co Ltd Meterological radar
JP2003344556A (en) * 2002-05-27 2003-12-03 Toshiba Corp Weather observation and estimation system, meteorological radar information analyzer and weather estimation modeling apparatus
JP2005017082A (en) * 2003-06-25 2005-01-20 Mitsubishi Electric Corp Device and method for processing radar signal
EP2278353A2 (en) * 2009-07-24 2011-01-26 Kabushiki Kaisha Toshiba Weather radar apparatus and rainfall rate calculation method
JP2011027545A (en) * 2009-07-24 2011-02-10 Toshiba Corp Weather radar system and rainfall rate calculation method for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
栗城 稔: "XバンドMPレーダの活用について —Cバンドレーダ雨量計と対比して—", 平成22年度 河川情報シンポジウム 講演集, JPN6015044198, December 2010 (2010-12-01), JP, pages 3 - 1, ISSN: 0003189454 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592075C1 (en) * 2015-08-31 2016-07-20 Открытое акционерное общество "Бортовые аэронавигационные системы" Method for unambiguous measurement of range to meteorological object
WO2018131787A1 (en) * 2017-01-16 2018-07-19 한국건설기술연구원 Method for estimating rainfall intensity using multiple elevation observation data of ultra-short-range dual-polarization radar
KR101912773B1 (en) 2017-01-16 2018-10-29 한국건설기술연구원 Rainfall intensity estimation method using observation data of K-band dual polarization radar at short distance
JP2021092407A (en) * 2019-12-09 2021-06-17 コリア インスティテュート オフ コンストラクション テクノロジー Rainfall intensity estimation method using multiple altitude observation data of ultrashort distance dual polarization radar and estimation device

Similar Documents

Publication Publication Date Title
US9689969B2 (en) Doppler radar test system
JP6148622B2 (en) Radar equipment
CN110927723B (en) Intelligent monitoring and early warning system and method for millimeter wave radar debris flow
US9329266B2 (en) Weather radar apparatus, observation sequence generation method, and observation sequence generation program
JP6328329B2 (en) Dual polarization radar apparatus and radar signal processing method
JP2019527835A (en) New automotive radar using 3D printed Luneburg lens
EP2278353A3 (en) Weather radar apparatus and rainfall rate calculation method
JP2011027546A (en) Weather radar system and rainfall rate calculation method for the same
JP6037762B2 (en) Wind measuring device
WO2017051647A1 (en) Precipitation particle determination device, weather radar device, precipitation particle determination method, and precipitation particle determination program
JP2013195167A (en) Radar signal processing apparatus and radar signal processing method
JP2013160548A (en) Double polarization radar device and cross polarization differential phase correction method
JP4097143B2 (en) Radar signal processing apparatus and method
CN110927724B (en) Intelligent monitoring system and method for millimeter wave radar debris flow
JP6586462B2 (en) Water vapor observation device
JP6445145B2 (en) Precipitation intensity calculation apparatus, weather radar apparatus, precipitation intensity calculation method, and precipitation intensity calculation program
JP4266810B2 (en) Wind speed vector calculation device
JP2006226713A (en) Meteorological radar device
JP5398424B2 (en) Meteorological radar system and its precipitation intensity calculation method and program
JP5196959B2 (en) Radar equipment
JP5491788B2 (en) Weather radar system and its precipitation intensity calculation method
JP5253281B2 (en) Radar equipment
JP3292679B2 (en) Radar equipment
CN103852595B (en) A kind of method of Low level wind detection
CN113126097A (en) Meteorological detection method and digital phased array weather radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315