JP2013194880A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2013194880A
JP2013194880A JP2012065415A JP2012065415A JP2013194880A JP 2013194880 A JP2013194880 A JP 2013194880A JP 2012065415 A JP2012065415 A JP 2012065415A JP 2012065415 A JP2012065415 A JP 2012065415A JP 2013194880 A JP2013194880 A JP 2013194880A
Authority
JP
Japan
Prior art keywords
diameter portion
outer ring
rolling bearing
small
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012065415A
Other languages
Japanese (ja)
Inventor
Shinichi Yoshioka
晋一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012065415A priority Critical patent/JP2013194880A/en
Publication of JP2013194880A publication Critical patent/JP2013194880A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6607Retaining the grease in or near the bearing
    • F16C33/6614Retaining the grease in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amount of grease filled into a rolling bearing and obtain an enhancing effect in lubricating performance corresponding to the increased amount.SOLUTION: An outer ring 3 of a rolling bering includes a plurality of rows of raceway surfaces 3a, and an inside inner peripheral surface 3b positioned between the plurality of rows of raceway surfaces 3a. A peripheral groove 15 is formed in the inside inner peripheral surface 3b of the outer ring 3, and a large diameter portion 13 is formed by a groove bottom surface 15a of the peripheral groove 15. An inner periphery of the outer ring 3 in a direction with the peripheral groove 15 extending is provided with a small diameter portion 14 having a smaller diameter than the large diameter portion 13 and smoothly connected to the large diameter portion 13.

Description

本発明は、転がり軸受、例えば鉄道車両の車軸の支持に使用される転がり軸受に関する。   The present invention relates to a rolling bearing, for example, a rolling bearing used for supporting an axle of a railway vehicle.

鉄道車両の車軸を支持する軸受としては、背面組み合わせの複列の円錐ころ軸受が広く用いられる。図6に示す転がり軸受31は、この背面組み合わせの複列の円錐ころ軸受である。   As a bearing for supporting an axle of a railway vehicle, a double-row tapered roller bearing combined with a back surface is widely used. A rolling bearing 31 shown in FIG. 6 is a double-row tapered roller bearing of this back combination.

この転がり軸受31は、円錐状の軌道面を有する外輪32と、同じく円錐状の軌道面を有する内輪33と、円錐ころ34と、シール装置35とを主要な構成要素として備える。外輪32の内周面と内輪33の外周面との間の空間(軸受の内部空間)には、グリースが封入されており、このグリースの漏洩や異物の浸入が、外輪32の内周の軸方向両側に装着したシール装置35により防止される。外輪32が車両側の軸箱に固定され、内輪33が車軸36に固定される。   The rolling bearing 31 includes an outer ring 32 having a conical raceway surface, an inner ring 33 having a conical raceway surface, a tapered roller 34, and a seal device 35 as main components. Grease is sealed in the space between the inner peripheral surface of the outer ring 32 and the outer peripheral surface of the inner ring 33 (the inner space of the bearing). Leakage of grease or intrusion of foreign matter is caused by the inner shaft of the outer ring 32. This is prevented by the sealing devices 35 mounted on both sides in the direction. The outer ring 32 is fixed to the axle box on the vehicle side, and the inner ring 33 is fixed to the axle 36.

この種の複列の円錐ころ軸受では、使用時に、車軸36と共に内輪33が回転する。その際に生じる遠心力により、グリースは、軸方向両側に押し込まれ、シール装置35近傍に滞留する傾向がある。このため、なんら対策を施さない場合、封入されたグリースのうち、軸受31の回転部の潤滑に寄与する割合は少なくなり、軸受寿命の低下やメンテナンス周期の短期化等を招く。   In this type of double-row tapered roller bearing, the inner ring 33 rotates together with the axle 36 during use. Due to the centrifugal force generated at that time, the grease tends to be pushed in on both sides in the axial direction and stay in the vicinity of the sealing device 35. For this reason, if no countermeasure is taken, the ratio of the enclosed grease that contributes to lubrication of the rotating portion of the bearing 31 decreases, leading to a decrease in bearing life and a shortened maintenance cycle.

このような問題に対する対策として、軸受31の内部空間に封入するグリースの量を増加させることが考えられる。このための軸受の構成として、例えば特許文献1では、図6に示すように、外輪32の中央部内径面に環状の凹部37を設けることが開示されている。   As a countermeasure against such a problem, it is conceivable to increase the amount of grease enclosed in the internal space of the bearing 31. As a configuration of the bearing for this purpose, for example, Patent Document 1 discloses that an annular recess 37 is provided on the inner diameter surface of the central portion of the outer ring 32 as shown in FIG.

特開平7−301244号公報JP 7-301244 A

ところで、このような環状凹部37が外輪32に設けられていると、この環状凹部37にグリースが溜まる。図6のように、軸受31が車軸36を支持した状態では、環状凹部37内に付着したグリースから分離した基油は、重力の影響により、環状凹部37内を流下し環状凹部37の下側に溜まる。しかし、外輪32に設けられた環状凹部37の両側の側面が、半径方向に伸びているため、この環状凹部37の下側に溜まった基油は、この側面を乗り越えることができず、軌道面には供給され難い。そのため、環状凹部37によって軸受の内部空間に保持できるグリースの量を増加させることはできても、グリースの増加に見合った潤滑性能の向上効果を得ることはできない。   By the way, when such an annular recess 37 is provided in the outer ring 32, grease accumulates in the annular recess 37. As shown in FIG. 6, in a state where the bearing 31 supports the axle 36, the base oil separated from the grease adhering in the annular recess 37 flows down in the annular recess 37 due to the influence of gravity, and is below the annular recess 37. Accumulate. However, since the side surfaces on both sides of the annular recess 37 provided in the outer ring 32 extend in the radial direction, the base oil accumulated on the lower side of the annular recess 37 cannot get over the side surface, and the raceway surface. It is hard to be supplied. Therefore, even if the amount of grease that can be held in the internal space of the bearing by the annular recess 37 can be increased, it is not possible to obtain an effect of improving the lubricating performance commensurate with the increase in grease.

本発明は、上記事情に鑑み、転がり軸受に封入されるグリースの量を増加させつつその増加量に見合った潤滑性能の向上効果を得ることを課題とする。   In view of the above circumstances, an object of the present invention is to obtain an effect of improving the lubricating performance commensurate with the increase amount while increasing the amount of grease enclosed in the rolling bearing.

前記課題を解決するための本発明の転がり軸受は、複列の軌道面、および複列の軌道面間に位置する内部内周面を有する固定側の外輪と、外輪の軌道面に対向する複列の軌道面を有する回転側の内輪と、外輪と内輪の軌道面間に配置された複列の転動体と、外輪と内輪の間の空間に封入されたグリースとを備えた転がり軸受において、前記外輪の内部内周面に周方向溝を設け、周方向溝の溝底面で大径部を形成し、周方向溝が延びる方向の外輪内周に、大径部よりも小径でかつ大径部と滑らかにつながった小径部を設けたことを特徴とする。   A rolling bearing according to the present invention for solving the above-mentioned problems includes a double-row raceway surface, a fixed-side outer ring having an inner inner circumferential surface located between the double-row raceway surfaces, and a double-side raceway surface facing the raceway surface of the outer ring. In a rolling bearing provided with an inner ring on the rotation side having a raceway surface in a row, a double row rolling element disposed between raceway surfaces of the outer ring and the inner ring, and grease sealed in a space between the outer ring and the inner ring, A circumferential groove is provided on the inner inner circumferential surface of the outer ring, a large-diameter portion is formed at the groove bottom surface of the circumferential groove, and the outer ring inner circumference in the direction in which the circumferential groove extends has a smaller diameter and a larger diameter than the large-diameter portion. A small diameter part smoothly connected to the part is provided.

ここで、大径部と小径部は、転がり軸受の軸心からの距離が大径であるものと小径であるものとを意味する。   Here, the large-diameter portion and the small-diameter portion mean that the distance from the axis of the rolling bearing is large or small.

以上の構成においては、周方向溝の溝底面で形成した大径部が外輪の内部内周面に対して凹部を形成するので、内部内周面に周方向溝が存在しない場合と比べ、この周方向溝の容量分だけ転がり軸受に封入できるグリース量が増加する。   In the above configuration, the large-diameter portion formed at the groove bottom surface of the circumferential groove forms a recess with respect to the inner inner circumferential surface of the outer ring, so that compared with the case where there is no circumferential groove on the inner inner circumferential surface. The amount of grease that can be sealed in the rolling bearing is increased by the circumferential groove capacity.

軸受の運転中は、遠心力の影響で周方向溝に潤滑グリースが溜まり、溜まったグリースから基油が分離する。周方向溝が延びる方向の外輪内周に、大径部よりも小径でかつ大径部と滑らかにつながる小径部を設けることにより、小径部と内部内周面の境界では、基油が小径部から内部内周面に移行する際の障害となる段差が小さくなり、あるいは消失する。そのため、小径部に達した基油が内部内周面を介して外輪軌道面に供給され易くなり、軌道面での潤滑に寄与する潤滑グリースの割合が高まる。従って、転がり軸受に封入されるグリースの量を増加させつつその増加量に見合った潤滑性能の向上効果を得ることが可能となる。   During operation of the bearing, lubricating grease accumulates in the circumferential groove due to the centrifugal force, and the base oil separates from the accumulated grease. By providing a small-diameter portion that is smaller in diameter than the large-diameter portion and smoothly connected to the large-diameter portion on the inner periphery of the outer ring in the direction in which the circumferential groove extends, the base oil is provided in the small-diameter portion at the boundary between the small-diameter portion and the internal inner peripheral surface. The step which becomes an obstacle when shifting from the inner peripheral surface to the inner peripheral surface becomes smaller or disappears. Therefore, the base oil that has reached the small diameter portion is easily supplied to the outer ring raceway surface via the inner peripheral surface, and the ratio of lubricating grease that contributes to lubrication on the raceway surface is increased. Accordingly, it is possible to increase the amount of grease enclosed in the rolling bearing while obtaining an effect of improving the lubricating performance commensurate with the increased amount.

上記の構成では、前記小径部を内部内周面よりも大径に形成し、内部内周面と同径に形成し、あるいは内部内周面よりも小径に形成することができる。通常は、以上に列挙した順で、小径部に達した基油の外輪軌道面への供給がよりスムーズなものとなる。   In the above configuration, the small-diameter portion can be formed to have a larger diameter than the inner inner peripheral surface, the same diameter as the inner inner peripheral surface, or a smaller diameter than the inner inner peripheral surface. Normally, the supply of the base oil that has reached the small diameter portion to the outer ring raceway surface becomes smoother in the order listed above.

小径部を内部内周面より小径に形成した場合では、小径部の軸方向両側を、相互間の軸方向距離が外径側で拡大する傾斜面状に形成するのが望ましい。これにより、小径部に達した基油の外輪軌道面への供給がさらにスムーズなものとなる。   When the small-diameter portion is formed to have a smaller diameter than the inner inner peripheral surface, it is desirable to form both sides in the axial direction of the small-diameter portion into an inclined surface shape in which the axial distance between them increases on the outer diameter side. Thereby, the supply of the base oil reaching the small diameter portion to the outer ring raceway surface becomes smoother.

外輪内周の小径部は、例えば周方向溝を軸心に対して偏心させることで形成することができる。   The small diameter portion of the inner periphery of the outer ring can be formed by, for example, decentering the circumferential groove with respect to the axis.

また、小径部は、外輪に取り付けた別部材の内周面で構成することもできる。かかる構成であれば、別部材の形状・寸法を変えることで小径部の形態を変更することができ、設計変更が容易なものとなる。この場合、周方向溝を軸心と同軸の環状に形成し、この周方向溝に前記別部材を取り付けるようにすれば、周方向溝を精度良く低コストに形成することが可能となる。   Moreover, a small diameter part can also be comprised by the internal peripheral surface of another member attached to the outer ring | wheel. If it is this structure, the form of a small diameter part can be changed by changing the shape and dimension of another member, and a design change will become easy. In this case, if the circumferential groove is formed in an annular shape coaxial with the axis, and the separate member is attached to the circumferential groove, the circumferential groove can be accurately formed at low cost.

上記何れかの構成において少なくとも小径部に撥油被膜を形成すれば、小径部に達した基油が被膜ではじかれるため、小径部から外輪軌道面への基油の供給がよりスムーズに行われる。   If the oil repellent coating is formed on at least the small diameter portion in any of the above configurations, the base oil reaching the small diameter portion is repelled by the coating, so that the base oil is more smoothly supplied from the small diameter portion to the outer ring raceway surface. .

上記何れかの構成において、前記小径部もしくは大径部のうち、どちらか一方または双方の周方向位置を識別するための表示を外輪の端面に設ければ、作業者が外輪をハウジングに固定する際に、表示を視認することによって小径部を下にして軸受装置を組み付けることが容易となる。   In any one of the above-described configurations, if an indication for identifying one or both of the small-diameter portion and the large-diameter portion is provided on the end surface of the outer ring, the operator fixes the outer ring to the housing. At this time, it is easy to assemble the bearing device with the small diameter portion facing down by visually recognizing the display.

上記何れかの構成において、浸炭焼入れした際の過浸炭による外輪の割損を防止するため、前記大径部における外輪の最小肉厚を、外輪の外径寸法の3%以上にするのが望ましい。   In any one of the above-described configurations, in order to prevent breakage of the outer ring due to excessive carburization when carburizing and quenching, it is desirable that the minimum thickness of the outer ring in the large diameter portion be 3% or more of the outer diameter dimension of the outer ring. .

上記何れかの構成において、前記外輪を、小径部を下にしてハウジングに固定するのが望ましい。この構成であれば、大径部に溜まったグリースから分離した基油が重力で小径部に集まるため、小径部から外輪軌道面に供給される基油量が増大する。   In any one of the configurations described above, it is desirable that the outer ring is fixed to the housing with the small diameter portion facing down. With this configuration, the base oil separated from the grease accumulated in the large diameter portion gathers in the small diameter portion due to gravity, so the amount of base oil supplied from the small diameter portion to the outer ring raceway surface increases.

上記何れかの構成の転がり軸受を有する鉄道車両車軸用軸受装置であれば、各構成の転がり軸受に対応した上記の効果が享受できる。   If it is a rolling stock axle bearing device which has a rolling bearing of one of the above-mentioned composition, it can enjoy the above-mentioned effect corresponding to a rolling bearing of each composition.

本発明によれば、周方向溝の容量分だけ転がり軸受に封入できるグリース量が増す。また、軸受の運転中にグリースから分離した基油が小径部から外輪軌道面へ供給され易くなるため、軸受の潤滑性が向上する。これにより、転がり軸受に封入されるグリースの量を増加させつつその増加量に見合った潤滑性能の向上効果を得ることができ、転がり軸受の軸受寿命の増大やメンテナンス周期の長期化等を達成することが可能となる。   According to the present invention, the amount of grease that can be enclosed in the rolling bearing is increased by the capacity of the circumferential groove. Further, since the base oil separated from the grease is easily supplied from the small diameter portion to the outer ring raceway surface during the operation of the bearing, the lubricity of the bearing is improved. As a result, while increasing the amount of grease enclosed in the rolling bearing, it is possible to obtain an effect of improving the lubrication performance commensurate with the increased amount, thereby achieving an increase in the bearing life of the rolling bearing, an extension of the maintenance cycle, and the like. It becomes possible.

本発明の第1実施形態に係る転がり軸受の軸方向断面図である。It is an axial sectional view of the rolling bearing according to the first embodiment of the present invention. 本発明の第1実施形態に係る転がり軸受の外輪を示す断面図であって、(A)が軸方向断面図、(B)が径方向断面図((A)のA−A線断面図)である。It is sectional drawing which shows the outer ring | wheel of the rolling bearing which concerns on 1st Embodiment of this invention, Comprising: (A) is axial sectional drawing, (B) is radial sectional drawing (AA sectional view taken on the line AA). It is. 本発明の第2実施形態に係る転がり軸受の外輪を示す断面図であって、(A)が軸方向断面図、(B)が径方向断面図((A)のB−B線断面図)である。It is sectional drawing which shows the outer ring | wheel of the rolling bearing which concerns on 2nd Embodiment of this invention, Comprising: (A) is axial sectional drawing, (B) is radial sectional drawing (BB sectional drawing of (A)). It is. 本発明の第3実施形態に係る転がり軸受の外輪を示す断面図であって、(A)が軸方向断面図、(B)が径方向断面図((A)のC−C線断面図)である。It is sectional drawing which shows the outer ring | wheel of the rolling bearing which concerns on 3rd Embodiment of this invention, Comprising: (A) is axial direction sectional drawing, (B) is radial direction sectional drawing (CC sectional view taken on the line of (A)). It is. 本発明の第1実施形態の変形例を示す断面図であって、(A)が外輪の軸方向断面図、(B)がその径方向断面図((A)のD−D線断面図)である。It is sectional drawing which shows the modification of 1st Embodiment of this invention, Comprising: (A) is an axial sectional view of an outer ring | wheel, (B) is the radial sectional view (DD sectional view taken on the line of (A)). It is. 従来の転がり軸受の軸方向断面図である。It is an axial sectional view of a conventional rolling bearing.

以下、本発明を実施するための形態について図面に基づき説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1に、本発明の第1実施形態に係る転がり軸受1を示す。この転がり軸受1は、鉄道車両の車軸2を支持するもので、図1では、背面組み合わせの複列の円すいころ軸受を例示している。転がり軸受1は、外輪3と、内輪4と、転動体としての複数の円すいころ5と、保持器6と、シール装置7とを主要な構成要素として備える。転がり軸受1と、車軸2とで鉄道車両車軸用軸受装置が構成される。   FIG. 1 shows a rolling bearing 1 according to a first embodiment of the present invention. The rolling bearing 1 supports an axle 2 of a railway vehicle, and FIG. 1 illustrates a double-row tapered roller bearing in a rear combination. The rolling bearing 1 includes an outer ring 3, an inner ring 4, a plurality of tapered rollers 5 as rolling elements, a cage 6, and a seal device 7 as main components. The rolling bearing 1 and the axle 2 constitute a railway vehicle axle bearing device.

外輪3の内周面には、複列の円すい状の軌道面3aと、複列の軌道面3aの間に設けられた内部内周面3bとが同軸に設けられる。円すい状軌道面3aの内径端と内部内周面3bの軸方向端部とは同一の内径寸法を有する。内輪4は、外周面に複列の円すい状の軌道面4aを有し、軌道面4aごとに分割されて形成される。円すいころ5は、対向する外輪3の軌道面3aと内輪4の軌道面4aとの間に転動自在に介在している。複列配置された円すいころ5の各ころ列で、各円すいころ5が保持器6によって円周方向等間隔に保持されている。外輪3と内輪4との間に形成される空間(転がり軸受1の内部空間)にはグリース等の潤滑剤が封入され、この空間を軸方向両端部においてシール装置7がシールしている。シール装置7は、例えば外輪に圧入されるシールケース7aと、図示省略のシールリップを有するシール部材で構成される。シール装置7は、油切り8との間で接触シールを構成する。   On the inner peripheral surface of the outer ring 3, a double row conical raceway surface 3a and an inner inner peripheral surface 3b provided between the double row raceway surfaces 3a are provided coaxially. The inner diameter end of the conical track surface 3a and the axial end of the inner inner peripheral surface 3b have the same inner diameter dimension. The inner ring 4 has a double-row conical raceway surface 4a on the outer peripheral surface, and is divided for each raceway surface 4a. The tapered roller 5 is movably interposed between the raceway surface 3a of the outer ring 3 and the raceway surface 4a of the inner ring 4 which face each other. In each roller row of tapered rollers 5 arranged in a double row, each tapered roller 5 is held by a cage 6 at equal intervals in the circumferential direction. A space formed between the outer ring 3 and the inner ring 4 (inner space of the rolling bearing 1) is filled with a lubricant such as grease, and the sealing device 7 seals this space at both ends in the axial direction. The seal device 7 is constituted by, for example, a seal case 7a press-fitted into the outer ring and a seal member having a seal lip (not shown). The seal device 7 constitutes a contact seal with the oil drainer 8.

外輪3は、外周面3cをハウジングとしての鉄道車両の軸箱9に固定される。分割された内輪4は、その間に配された間座10と、その軸方向両側に配された油切り8と共に、車軸2に外嵌される。これらの部材は、車軸2の先端側に蓋部材11をボルト12によって締結することによって、蓋部材11と車軸2の肩部2aとの間で挟持固定される。   The outer ring 3 is fixed to an axle box 9 of a railway vehicle having an outer peripheral surface 3c as a housing. The divided inner ring 4 is externally fitted to the axle 2 together with a spacer 10 disposed therebetween and oil drains 8 disposed on both sides in the axial direction. These members are clamped and fixed between the lid member 11 and the shoulder portion 2 a of the axle 2 by fastening the lid member 11 to the front end side of the axle 2 with a bolt 12.

図2(B)に示すように、外輪3の内部内周面3bには、内部内周面3bより大径の大径部13と、大径部13よりも小径をなし、大径部13の180°対向位置に形成され、かつ大径部13と滑らかにつながった小径部14とが設けられている。ここで、大径部13と小径部14は、転がり軸受1の軸心Oからの距離が大径であるものと小径であるものとを意味する。外輪3は、小径部14が最下端に位置し、大径部13が最上端に位置するように軸箱9に固定されている。   As shown in FIG. 2B, the inner peripheral surface 3b of the outer ring 3 has a large diameter portion 13 larger in diameter than the inner inner peripheral surface 3b and a smaller diameter than the large diameter portion 13, and the large diameter portion 13 And a small-diameter portion 14 that is formed at a 180 ° -opposing position and is smoothly connected to the large-diameter portion 13. Here, the large diameter portion 13 and the small diameter portion 14 mean that the distance from the axis O of the rolling bearing 1 is a large diameter and a small diameter. The outer ring 3 is fixed to the axle box 9 so that the small diameter portion 14 is positioned at the lowermost end and the large diameter portion 13 is positioned at the uppermost end.

図2(B)に示すように、外輪3の内部内周面3bには有端の周方向溝15が設けられている。周方向溝15の溝底面15aは断面真円状であり、かつその中心が軸心Oに対して上方に偏心している。そのため、周方向溝15の溝深さは、最上端が最も大きく、下方に向かうほど浅くなっている。最下端では周方向溝15の溝深さは0になっており、周方向溝15の周方向両端が内部内周面3bに滑らかにつながっている。周方向溝15の底面15aの最上端を含む周辺領域が大径部13を構成し、周方向溝15の周方向両端間の内部内周面3bが小径部14を構成する。   As shown in FIG. 2B, a circumferential groove 15 with ends is provided on the inner inner peripheral surface 3 b of the outer ring 3. The groove bottom surface 15 a of the circumferential groove 15 has a perfect circular cross section, and the center thereof is eccentric upward with respect to the axis O. Therefore, the groove depth of the circumferential groove 15 is the largest at the uppermost end and becomes shallower toward the lower side. At the lowest end, the groove depth of the circumferential groove 15 is 0, and both circumferential ends of the circumferential groove 15 are smoothly connected to the inner inner peripheral surface 3b. The peripheral region including the uppermost end of the bottom surface 15 a of the circumferential groove 15 constitutes the large diameter portion 13, and the inner inner circumferential surface 3 b between the circumferential ends of the circumferential groove 15 constitutes the small diameter portion 14.

図2(A)に示すように、周方向溝15は、底面15aとその軸方向両側の2つの側面15bから構成されている。側面15bは、両側面15b間の距離が内径側で拡大する傾斜状に形成されている。   As shown in FIG. 2A, the circumferential groove 15 includes a bottom surface 15a and two side surfaces 15b on both sides in the axial direction. The side surface 15b is formed in an inclined shape in which the distance between both side surfaces 15b increases on the inner diameter side.

大径部13における外輪3の最小肉厚は、外輪の外径寸法の3%以上とする。これによって、外輪3の製作時に浸炭焼入れした場合でも、過浸炭による外輪3の割損を抑制することができる。かかる構成は特に外輪3を肌焼鋼で形成した場合に有益となる。   The minimum thickness of the outer ring 3 in the large-diameter portion 13 is 3% or more of the outer diameter dimension of the outer ring. Thereby, even when carburizing and quenching is performed at the time of manufacturing the outer ring 3, it is possible to suppress breakage of the outer ring 3 due to excessive carburization. Such a configuration is particularly beneficial when the outer ring 3 is formed of case-hardened steel.

また、図示は省略するが、外輪3の端面3dには、大径部13(特に溝深さの最大の部分部)と小径部14のうち、どちらか一方または双方の位置を識別するための表示が設けられている。このような表示を外輪3の製作段階で端面3dに形成しておけば、外輪3の軸箱9への取り付けの際に、作業者がこの表示を視認することによって、大径部13を最上端に配置し、小径部14を最下端に配置することが容易となり、組み立て時の作業性が増す。この表示の一例として、外輪端面3dに例えば円形状、くさび形状等の識別表示を刻印したものが考えられる。   Although not shown, the end face 3d of the outer ring 3 is used to identify the position of one or both of the large-diameter portion 13 (particularly the portion having the maximum groove depth) and the small-diameter portion 14. A display is provided. If such a display is formed on the end surface 3d at the stage of manufacturing the outer ring 3, the operator can visually recognize the display when attaching the outer ring 3 to the axle box 9, so that the large-diameter portion 13 is at the maximum. It becomes easy to arrange | position at the upper end and arrange | position the small diameter part 14 to the lowest end, and workability | operativity at the time of an assembly increases. As an example of this display, for example, an identification display such as a circular shape or a wedge shape may be engraved on the outer ring end surface 3d.

以上のように構成された転がり軸受1では、次のような効果を享受できる。   The rolling bearing 1 configured as described above can enjoy the following effects.

転がり軸受1の運転中は、遠心力により周方向溝15にグリースが溜まり、溜まったグリースから基油が分離する。分離した基油は、小径部14が周方向溝15の延びる方向に形成されていること、大径部13と小径部14が周方向溝15を介して滑らかにつながっていること、および小径部14が下側に位置するように外輪3が軸箱9に固定されていること、から重力の作用を受けて周方向溝15を下方に流れ、小径部14に移行する。   During operation of the rolling bearing 1, grease is collected in the circumferential groove 15 by centrifugal force, and the base oil is separated from the accumulated grease. In the separated base oil, the small-diameter portion 14 is formed in the extending direction of the circumferential groove 15, the large-diameter portion 13 and the small-diameter portion 14 are smoothly connected via the circumferential groove 15, and the small-diameter portion Since the outer ring 3 is fixed to the axle box 9 so that 14 is positioned on the lower side, the outer ring 3 flows downward in the circumferential groove 15 due to the action of gravity and shifts to the small diameter portion 14.

本実施形態の転がり軸受では、図6で説明した転がり軸受31とは異なり、小径部14の軸方向両側に段差が存在しない。このため、周方向溝15を流下して小径部14に達した基油は、内部内周面3bを介して外輪3の軌道面3aにスムーズに移行する。外輪軌道面3aに達した基油は、円すいころ5の転がりにより外輪軌道面3a全体に行き渡る。   In the rolling bearing of this embodiment, unlike the rolling bearing 31 described in FIG. 6, there are no steps on both axial sides of the small diameter portion 14. For this reason, the base oil that has flowed down the circumferential groove 15 and reached the small diameter portion 14 smoothly transitions to the raceway surface 3a of the outer ring 3 via the inner inner peripheral surface 3b. The base oil that has reached the outer ring raceway surface 3 a reaches the entire outer ring raceway surface 3 a by the rolling of the tapered rollers 5.

このように、基油が小径部14およびその周辺でスムーズに外輪3の軌道面3aに供給されるため、外輪3の軌道面3aに対する基油の供給量を増大させることができる。そのため、軌道面3aに潤沢な基油を供給することができ、軸受の潤滑性能が向上する。   Thus, since the base oil is smoothly supplied to the raceway surface 3a of the outer ring 3 around the small diameter portion 14 and the periphery thereof, the supply amount of the base oil to the raceway surface 3a of the outer ring 3 can be increased. Therefore, abundant base oil can be supplied to the raceway surface 3a, and the lubrication performance of the bearing is improved.

また、周方向溝15を形成することで内部内周面3bに凹部が形成されるので、内部内周面3bに周方向溝が存在しない場合と比べ、この大径部13の容量分だけ転がり軸受1に封入できるグリース量が増加する。従って、転がり軸受1に封入されるグリースの量を増加させつつその増加量に見合った潤滑性能の向上効果を得ることが可能となる。   In addition, since the concave portion is formed in the inner inner peripheral surface 3b by forming the circumferential groove 15, the rolling is performed by the capacity of the large diameter portion 13 as compared with the case where the circumferential groove is not present in the inner inner peripheral surface 3b. The amount of grease that can be sealed in the bearing 1 increases. Accordingly, it is possible to obtain an effect of improving the lubricating performance commensurate with the increase amount while increasing the amount of grease sealed in the rolling bearing 1.

以上の説明では、周方向溝15を有端として、小径部14を内部内周面3bと同径寸法に形成した場合を例示したが、図5(A)(B)に示すように、軸心Oに対して偏心させた周方向溝15を環状に形成してもよい。この場合、周方向溝15の内部内周面3bに対する深さは最上端で最大となり、最下端で最小となる。従って、周方向溝15の溝底面15aの最上端を含む円周方向の周辺領域で大径部13が形成され、溝底面15aの最下端を含む円周方向の周辺領域で小径部14が形成される。この場合でも小径部14における溝底面15aと内部内周面3bとの間の段差が小さくなるので、小径部14に集まった基油を、内部内周面3bを経てスムーズに外輪軌道面3aに移行させることができる。   In the above description, the case where the circumferential groove 15 is an end and the small diameter portion 14 is formed to have the same diameter as the inner inner peripheral surface 3b is illustrated. However, as shown in FIGS. The circumferential groove 15 eccentric with respect to the center O may be formed in an annular shape. In this case, the depth of the circumferential groove 15 with respect to the inner inner peripheral surface 3b is maximum at the uppermost end and minimum at the lowermost end. Accordingly, the large-diameter portion 13 is formed in the circumferential peripheral region including the uppermost end of the groove bottom surface 15a of the circumferential groove 15, and the small-diameter portion 14 is formed in the circumferential peripheral region including the lowermost end of the groove bottom surface 15a. Is done. Even in this case, the level difference between the groove bottom surface 15a and the inner inner peripheral surface 3b in the small diameter portion 14 is reduced, so that the base oil collected in the small diameter portion 14 can be smoothly transferred to the outer ring raceway surface 3a through the inner inner peripheral surface 3b. Can be migrated.

この構成では、小径部14から内部内周面3bへの基油の移動をよりスムーズに行うため、図5(A)に示すように、小径部14において、周方向溝15の両側面15bを、内径側ほど相互間の軸方向距離を拡大させた傾斜面状に形成するのが望ましい。   In this configuration, in order to more smoothly move the base oil from the small diameter portion 14 to the inner inner peripheral surface 3b, the both side surfaces 15b of the circumferential groove 15 are formed in the small diameter portion 14 as shown in FIG. It is desirable that the inner diameter side be formed in an inclined surface shape in which the axial distance between them is increased.

図3に、本発明の第2実施形態に係る転がり軸受1の外輪3を示す。図2(A)(B)に示す第1実施形態では、小径部14を内部内周面3bと同径もしくは内部内周面3bよりも大径に形成していたが、この第2実施形態では、小径部14を内部内周面3bよりも小径に形成している。   FIG. 3 shows the outer ring 3 of the rolling bearing 1 according to the second embodiment of the present invention. In the first embodiment shown in FIGS. 2 (A) and 2 (B), the small-diameter portion 14 is formed to have the same diameter as the inner inner peripheral surface 3b or larger diameter than the inner inner peripheral surface 3b, but this second embodiment. Then, the small diameter part 14 is formed in a smaller diameter than the internal inner peripheral surface 3b.

第2実施形態でも、図3(B)に示すように、外輪3の内部内周面3bに、外輪3(軸受1)の軸心Oに対して上側に偏心する有端の周方向溝15が設けられている。   Also in the second embodiment, as shown in FIG. 3 (B), an end circumferential groove 15 that is eccentric to the upper side with respect to the axis O of the outer ring 3 (bearing 1) is formed on the inner peripheral surface 3b of the outer ring 3. Is provided.

周方向溝15の円周方向両端間では、内部内周面3bの軸方向一部領域(図面では中央領域)が円周方向である程度の幅をもって内径側に突出し、外輪3と一体の突出部16を構成している。この突出部16の内周面は、中心を軸心Oよりも上方に偏心させ、かつ曲率半径を内部内周面3bの曲率半径よりも大きくした円弧状断面を有する。そのため、突出部16の内周面の内部内周面3bからの突出幅は下方に向けて徐々に大きくなり、最下端で最も大きくなっている。この構成でも周方向溝15の底面15aの最上端を含む円周方向の周辺領域が大径部13を構成し、突出部16の内周面の最下端を含む円周方向の周辺領域が小径部14を構成する。周方向溝15の底面15aの両端は滑らかに突出部16の内周面につながっており、そのために大径部13から小径部14にかけての領域には基油の流通を阻害するような段差が形成されておらず、基油は滑らかに小径部14に移行することができる。   Between both ends in the circumferential direction of the circumferential groove 15, a partial area in the axial direction (the central area in the drawing) of the inner inner peripheral surface 3 b protrudes toward the inner diameter side with a certain width in the circumferential direction, and is a protrusion that is integral with the outer ring 3. 16 is constituted. The inner peripheral surface of the projecting portion 16 has an arcuate cross section in which the center is decentered above the axis O and the radius of curvature is larger than the radius of curvature of the inner inner peripheral surface 3b. Therefore, the protruding width of the inner peripheral surface of the protruding portion 16 from the inner inner peripheral surface 3b gradually increases downward, and is the largest at the lowermost end. Even in this configuration, the circumferential peripheral region including the uppermost end of the bottom surface 15 a of the circumferential groove 15 constitutes the large-diameter portion 13, and the circumferential peripheral region including the lowermost end of the inner peripheral surface of the protruding portion 16 has a small diameter. Part 14 is configured. Both ends of the bottom surface 15a of the circumferential groove 15 are smoothly connected to the inner peripheral surface of the protruding portion 16, and for this reason, there is a level difference in the region from the large diameter portion 13 to the small diameter portion 14 that inhibits the flow of the base oil. It is not formed, and the base oil can smoothly transition to the small diameter portion 14.

また、図3(A)に示すように、突出部16の軸方向両側は、その円周方向全長にわたって山形に形成され、その頂部を挟む軸方向両側は相互間の軸方向距離が外径側で拡大する傾斜面16aで構成されている。その他の構成については、第1実施形態と同様であるので、説明を省略する。   Further, as shown in FIG. 3A, both sides in the axial direction of the protruding portion 16 are formed in a mountain shape over the entire length in the circumferential direction, and the axial distance between the both sides in the axial direction sandwiching the top is on the outer diameter side. It is comprised by the inclined surface 16a expanded by. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

本実施形態では、小径部14が内部内周面3bから内径側に突出しており、同一の周方向位置では、外輪3の軌道面3aより内径側にある。そのため、小径部14に流入した基油がより外輪3の軌道面3aに流れ込みやすくなる。この基油の流れ込みは、小径部14の軸方向両側が傾斜面16aで構成されているため、さらに円滑化する。   In the present embodiment, the small-diameter portion 14 protrudes from the inner inner peripheral surface 3b to the inner diameter side, and is located on the inner diameter side from the raceway surface 3a of the outer ring 3 at the same circumferential position. Therefore, the base oil that has flowed into the small diameter portion 14 is more likely to flow into the raceway surface 3 a of the outer ring 3. This flow of the base oil is further smoothed because the both sides in the axial direction of the small diameter portion 14 are constituted by the inclined surfaces 16a.

図4に、本発明の第3実施形態に係る転がり軸受1の外輪3を示す。この実施形態では、図4(B)に示すように、図3(A)(B)に示す第2実施形態と異なり、突出部16を外輪3とは別部材17で形成している。   In FIG. 4, the outer ring | wheel 3 of the rolling bearing 1 which concerns on 3rd Embodiment of this invention is shown. In this embodiment, as shown in FIG. 4 (B), unlike the second embodiment shown in FIGS. 3 (A) and 3 (B), the protruding portion 16 is formed by a member 17 different from the outer ring 3.

具体的に説明すると、外輪3の内部内周面3bには、内部内周面3bと同軸で、かつ内部内周面3bよりも大径の周方向溝15が環状に設けられている。内部内周面3bに対する周方向溝15の深さは一定である。また、周方向溝15の両側面15bは半径方向に延びる面としている。周方向溝15の下端には、外輪とは別体の後付部材17が圧入等の手段で取り付けられている。後付部材17は円周方向に延びる薄肉円弧状の部材で、その外周面は周方向溝15の溝底面15aと同曲率の円弧面状に形成される。後付部材17の内周面は、軸心Oに対して上方に偏心した円弧面状をなし、かつその曲率半径は外周面の曲率半径よりも大きい。そのため、突出部16の内部内周面3bからの突出幅は下方に向けて徐々に大きくなり、最下端で最も大きくなっている。以上の構成では、周方向溝15の溝底面15aのうち、最上端を含む円周方向の周辺領域が大径部13を構成し、後付部材17の内周面のうち、最下端を含む円周方向の一部領域が小径部14を構成する。   More specifically, the inner circumferential surface 3b of the outer ring 3 is provided with a circumferential groove 15 that is coaxial with the inner inner circumferential surface 3b and has a larger diameter than the inner inner circumferential surface 3b. The depth of the circumferential groove 15 with respect to the inner inner peripheral surface 3b is constant. Further, both side surfaces 15b of the circumferential groove 15 are surfaces extending in the radial direction. A rear member 17 separate from the outer ring is attached to the lower end of the circumferential groove 15 by means such as press fitting. The retrofitting member 17 is a thin arc-shaped member extending in the circumferential direction, and the outer peripheral surface thereof is formed in an arc surface shape having the same curvature as the groove bottom surface 15 a of the circumferential groove 15. The inner peripheral surface of the retrofit member 17 has an arcuate surface shape that is eccentric upward with respect to the axis O, and the radius of curvature thereof is larger than the radius of curvature of the outer peripheral surface. Therefore, the protrusion width from the inner inner peripheral surface 3b of the protrusion 16 gradually increases downward, and is maximum at the lowermost end. In the above configuration, the circumferential peripheral region including the uppermost end of the groove bottom surface 15 a of the circumferential groove 15 constitutes the large diameter portion 13, and the lowermost end of the inner peripheral surface of the retrofitting member 17 is included. A partial region in the circumferential direction constitutes the small diameter portion 14.

後付部材17の円周方向両端は傾斜面17aになっており、この傾斜面17aは周方向溝15の溝底面15aおよび後付部材17の内周面に滑らかにつながっている。そのため、大径部13から小径部14に至る基油の流通が阻害されることはない。   Both ends in the circumferential direction of the retrofitting member 17 are inclined surfaces 17 a, and the inclined surfaces 17 a are smoothly connected to the groove bottom surface 15 a of the circumferential groove 15 and the inner peripheral surface of the retrofitting member 17. Therefore, the flow of the base oil from the large diameter portion 13 to the small diameter portion 14 is not hindered.

本実施形態では、周方向溝15が内部内周面3bと同軸に形成されているので、周方向溝15を旋削等により加工する際にも心出しが容易であり、周方向溝15の加工精度を高めることができる。また、後付部材17の形状を変更することで、小径部14の形状を容易に変更することができ、設計変更にも容易に対応可能となる。その他の構成については、第2実施形態と同様であるので、説明を省略する。   In this embodiment, since the circumferential groove 15 is formed coaxially with the inner inner peripheral surface 3b, centering is easy even when the circumferential groove 15 is machined by turning or the like, and the circumferential groove 15 is machined. Accuracy can be increased. Moreover, the shape of the small diameter part 14 can be easily changed by changing the shape of the retrofit member 17, and it becomes possible to easily cope with a design change. Since other configurations are the same as those in the second embodiment, the description thereof is omitted.

以上に述べた各実施形態において、小径部14にはPTFE等からなる撥油被膜を形成するのが望ましい。このように小径部14に撥油被膜を形成することで、小径部14に移行した基油が撥油作用を受けるため、内部内周面3b、さらには外輪軌道面3aに移行し易くなる。この撥油被膜は、外輪3の内周面の最下端付近のみに限定して形成する他、周方向溝15の延びる方向であって、かつ外輪3の内周面の下側半分(図5に両矢印Xで例示する軸心Oの鉛直方向直下の周方向位置から両側に90°までの範囲)の領域全てに形成してもよい。   In each of the embodiments described above, it is desirable to form an oil repellent film made of PTFE or the like on the small diameter portion 14. By forming the oil-repellent coating on the small-diameter portion 14 in this way, the base oil that has moved to the small-diameter portion 14 is subjected to an oil-repellent action, so that it easily shifts to the inner inner peripheral surface 3b and further to the outer ring raceway surface 3a. The oil-repellent coating is formed only in the vicinity of the lowermost end of the inner peripheral surface of the outer ring 3, and is the direction in which the circumferential groove 15 extends and the lower half of the inner peripheral surface of the outer ring 3 (FIG. 5). May be formed in the entire region from the circumferential position immediately below the vertical direction of the axis O exemplified by the double arrow X to 90 ° on both sides.

以上の各実施形態では、鉄道車両の車軸2の支持に使用される転がり軸受1を例示したが、本発明の転がり軸受はこれに限定されず、例えば圧延機をはじめとする産業機器一般での回転軸の支持に広く使用することが可能である。また、上記実施形態では、転がり軸受1の軸受形式として複列の円すいころ軸受を例示したが、これ以外の軸受形式、例えば複列の円筒ころ軸受や複列の玉軸受等の転がり軸受についても本発明を適用することが可能である。   In each of the above embodiments, the rolling bearing 1 used for supporting the axle 2 of the railway vehicle has been exemplified. However, the rolling bearing of the present invention is not limited to this, and for example, in general industrial equipment including a rolling mill. It can be widely used for supporting the rotating shaft. Moreover, in the said embodiment, although the double row tapered roller bearing was illustrated as a bearing type of the rolling bearing 1, it is also about other bearing types, for example, rolling bearings, such as a double row cylindrical roller bearing and a double row ball bearing. The present invention can be applied.

1 転がり軸受
2 車軸
3 外輪
3a 軌道面
3b 内部内周面
3c 外周面
3d 端面
4 内輪
4a 軌道面
5 ころ(転動体)
13 大径部
14 小径部
15 周方向溝
15a 底面
15b 側面
16 突出部
17 別部材
O 軸心
DESCRIPTION OF SYMBOLS 1 Rolling bearing 2 Axle 3 Outer ring 3a Track surface 3b Inner inner peripheral surface 3c Outer peripheral surface 3d End surface 4 Inner ring 4a Track surface 5 Roller (rolling element)
13 Large-diameter portion 14 Small-diameter portion 15 Circumferential groove 15a Bottom surface 15b Side surface 16 Projection portion 17 Separate member O Axis center

Claims (9)

複列の軌道面、および複列の軌道面間に位置する内部内周面を有する固定側の外輪と、外輪の軌道面に対向する複列の軌道面を有する回転側の内輪と、外輪と内輪の軌道面間に配置された複列の転動体と、外輪と内輪の間の空間に封入されたグリースとを備えた転がり軸受において、
前記外輪の内部内周面に周方向溝を設け、周方向溝の溝底面で大径部を形成し、周方向溝が延びる方向の外輪内周に、大径部よりも小径でかつ大径部と滑らかにつながった小径部を設けたことを特徴とする転がり軸受。
A fixed-side outer ring having a double-row raceway surface and an inner inner circumferential surface located between the double-row raceway surfaces; a rotary-side inner ring having a double-row raceway surface facing the raceway surface of the outer ring; and an outer ring; In a rolling bearing provided with double row rolling elements arranged between raceways of the inner ring and grease sealed in a space between the outer ring and the inner ring,
A circumferential groove is provided on the inner inner circumferential surface of the outer ring, a large-diameter portion is formed at the groove bottom surface of the circumferential groove, and the outer ring inner circumference in the direction in which the circumferential groove extends has a smaller diameter and a larger diameter than the large-diameter portion. A rolling bearing characterized by providing a small-diameter part smoothly connected to the part.
前記小径部を内部内周面よりも大径に形成した請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the small-diameter portion is formed to have a larger diameter than the inner peripheral surface. 前記小径部を内部内周面と同径に形成した請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the small-diameter portion is formed to have the same diameter as the inner inner peripheral surface. 前記小径部を内部内周面よりも小径に形成した請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the small-diameter portion is formed to have a smaller diameter than the inner peripheral surface. 前記小径部の軸方向両側を、相互間の軸方向距離が外径側で拡大する傾斜面状に形成した請求項4に記載の転がり軸受。   The rolling bearing according to claim 4, wherein both sides in the axial direction of the small-diameter portion are formed in an inclined surface shape in which an axial distance between them is enlarged on the outer diameter side. 前記周方向溝を軸心に対して偏心させて形成した請求項1〜5何れか1項に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the circumferential groove is formed eccentrically with respect to an axis. 前記小径部を、外輪に取り付けた別部材の内周面で構成した請求項1〜6の何れか1項に記載の転がり軸受。   The rolling bearing according to any one of claims 1 to 6, wherein the small-diameter portion is configured by an inner peripheral surface of another member attached to the outer ring. 前記小径部もしくは大径部のうち、どちらか一方または双方の周方向位置を識別するための表示を外輪の端面に設けた請求項1〜7の何れか1項に記載の転がり軸受。   The rolling bearing according to any one of claims 1 to 7, wherein an indication for identifying one or both circumferential positions of the small diameter portion or the large diameter portion is provided on an end surface of the outer ring. 請求項1〜8の何れか1項に記載された転がり軸受を有する鉄道車両車軸用軸受装置。   A railcar axle bearing device comprising the rolling bearing according to any one of claims 1 to 8.
JP2012065415A 2012-03-22 2012-03-22 Rolling bearing Pending JP2013194880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065415A JP2013194880A (en) 2012-03-22 2012-03-22 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065415A JP2013194880A (en) 2012-03-22 2012-03-22 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2013194880A true JP2013194880A (en) 2013-09-30

Family

ID=49394092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065415A Pending JP2013194880A (en) 2012-03-22 2012-03-22 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2013194880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125821A1 (en) * 2015-02-05 2016-08-11 Ntn株式会社 Bearing for main electric motor, support structure for main shaft of main electric motor, and main electric motor for railway vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125821A1 (en) * 2015-02-05 2016-08-11 Ntn株式会社 Bearing for main electric motor, support structure for main shaft of main electric motor, and main electric motor for railway vehicle

Similar Documents

Publication Publication Date Title
JP6530381B2 (en) Grease lubricated angular contact ball bearing
JP2017203551A (en) Ball bearing, and motor and spindle device using the same
JP4941310B2 (en) Bearing structure
JP6710566B2 (en) Bearing device, assembly, and sealing device
JP2016153685A (en) Rolling bearing
JP2018135892A (en) Rolling bearing device
JP2014105809A (en) Retainer for rolling bearing
JP4851245B2 (en) Rolling bearing
JP2013194880A (en) Rolling bearing
JP2012117628A (en) Sealing device and rolling bearing
JP2017110744A (en) Tapered roller bearing
JP5146189B2 (en) Rolling bearing
JP6115698B2 (en) Crown type cage for ball bearings
JP5444935B2 (en) Lubricating device for rolling bearings
JP2012163124A (en) Rolling bearing apparatus with pulley
JP2016014412A (en) Roller bearing and method of application therefor
JP2013194768A (en) Retainer and rolling bearing
JP6236878B2 (en) Split bearing device
JP2010116107A (en) Axle device for railway vehicle
JP2015075218A (en) Roller bearing with seal device
JP2014152790A (en) Seal device for rolling bearing
JP2019173918A (en) Four-point contact ball bearing and cage for ball bearing using the same
CN108331835A (en) Biserial closed type taper roller roller bearing
JP5363304B2 (en) Full complement cylindrical roller bearings
JP2007309458A (en) Bearing device for axle of railroad vehicle