JP2013194611A - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP2013194611A
JP2013194611A JP2012062942A JP2012062942A JP2013194611A JP 2013194611 A JP2013194611 A JP 2013194611A JP 2012062942 A JP2012062942 A JP 2012062942A JP 2012062942 A JP2012062942 A JP 2012062942A JP 2013194611 A JP2013194611 A JP 2013194611A
Authority
JP
Japan
Prior art keywords
intake
compressor
pipe
engine
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012062942A
Other languages
Japanese (ja)
Other versions
JP5803766B2 (en
Inventor
Masahiro Asano
正裕 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012062942A priority Critical patent/JP5803766B2/en
Priority to DE102013102463.7A priority patent/DE102013102463B4/en
Publication of JP2013194611A publication Critical patent/JP2013194611A/en
Application granted granted Critical
Publication of JP5803766B2 publication Critical patent/JP5803766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an engine control device in which a rotating speed of a compressor can be estimated accurately according to a simple method regardless of the presence/absence and introduction quantity of an EGR gas.SOLUTION: An engine control device includes an acquisition means, a storage means and an estimation means. At a downstream side from a connecting part of an intake pipe 11 and EGR piping 13 and a compressor 16a, the acquisition means acquires an intake density correlation value correlated with an intake density within the intake pipe 11. The storage means stores a correlation between an intake density correlation value prepared beforehand and a rotating speed of the compressor 16a. The estimation means estimates the rotating speed of the compressor 16a on the basis of the intake density correlation value acquired by the acquisition means and the correlation stored in the storage means.

Description

本発明は、過給機及びEGR装置を備えるエンジンの制御装置に関する。   The present invention relates to an engine control device including a supercharger and an EGR device.

過給機の回転数(コンプレッサの回転数)は、過給機やエンジンの保護及びエンジンの制御にとって重要な指標である。コンプレッサの回転数が高くなりすぎると、過給機及びエンジンが故障するおそれがあるため、コンプレッサの回転数を制限する必要がある。また、コンプレッサの回転数はガスの過給状態を示す指標であることから、コンプレッサの回転数がエンジンの制御に用いられることがある。   The number of revolutions of the supercharger (the number of revolutions of the compressor) is an important index for the protection of the supercharger and the engine and the control of the engine. If the rotational speed of the compressor becomes too high, the turbocharger and the engine may be damaged, and therefore it is necessary to limit the rotational speed of the compressor. Further, since the rotation speed of the compressor is an index indicating the supercharging state of the gas, the rotation speed of the compressor may be used for engine control.

それゆえ、コンプレッサの回転数を正確に取得することが望ましい。しかしながら、コンプレッサの回転数を検出するために専用の回転センサを設けることは、コストアップとなり好ましくない。   Therefore, it is desirable to accurately acquire the rotation speed of the compressor. However, it is not preferable to provide a dedicated rotation sensor for detecting the rotation speed of the compressor because the cost increases.

そこで、特許文献1では、吸気量−過給圧−コンプレッサ回転数定常関係と、過給圧取得値と、筒内吸入空気量とから定常状態における暫定コンプレッサ回転数を算出し、さらに暫定コンプレッサ回転数を補正して実際の運転状態におけるコンプレッサ回転数を推定している。   Therefore, in Patent Document 1, the temporary compressor rotational speed in the steady state is calculated from the intake air amount-supercharging pressure-compressor rotational speed steady relationship, the supercharging pressure acquisition value, and the in-cylinder intake air amount, and further, the temporary compressor rotational speed is calculated. The number of rotations of the compressor in the actual operating state is estimated by correcting the number.

また、特許文献2では、コンプレッサに導入される空気密度とコンプレッサ回転数との相関関係と、取得した空気密度とからコンプレッサ回転数を算出している。さらに、吸気圧力比(過給圧/大気圧)とコンプレッサ回転数との相関関係と、取得した吸気圧力比とからコンプレッサ回転数を算出している。   Further, in Patent Document 2, the compressor rotational speed is calculated from the correlation between the air density introduced into the compressor and the compressor rotational speed and the acquired air density. Further, the compressor rotational speed is calculated from the correlation between the intake pressure ratio (supercharging pressure / atmospheric pressure) and the compressor rotational speed and the acquired intake pressure ratio.

特許第4671068号公報Japanese Patent No. 4671068 特開2011−185263号公報JP 2011-185263 A

しかしながら、特許文献1の場合、EGRガスの導入は考慮されていない。EGRガスが導入されると、過給圧−吸気量−コンプレッサ回転数の相関にずれが生じる。したがって、コンプレッサがEGRガスを使用するエンジンに設置されている場合、特許文献1の回転数推定方法は、コンプレッサの回転数を推定するには適さない。   However, in the case of Patent Document 1, introduction of EGR gas is not considered. When EGR gas is introduced, a deviation occurs in the correlation between the supercharging pressure, the intake air amount, and the compressor rotational speed. Therefore, when the compressor is installed in an engine that uses EGR gas, the rotational speed estimation method of Patent Document 1 is not suitable for estimating the rotational speed of the compressor.

一方、特許文献2の場合は、EGR装置の作動時とEGR装置の非作動時のそれぞれについて、空気密度とコンプレッサ回転数との相関関係データ、あるいは吸気圧力比とコンプレッサ回転数との相関関係データを備えておき、EGRガスの使用状況に応じて切り替えて用いている。したがって、相関関係データの収集が煩雑になるおそれがある。さらに、EGRガス量が変化する場合は、精度良く推定されないおそれがある。   On the other hand, in the case of Patent Document 2, the correlation data between the air density and the compressor rotational speed or the correlation data between the intake pressure ratio and the compressor rotational speed for each of the operation of the EGR device and the non-operation of the EGR device. Are switched and used in accordance with the state of use of the EGR gas. Therefore, there is a possibility that the collection of correlation data becomes complicated. Furthermore, when the amount of EGR gas changes, there is a possibility that it cannot be estimated accurately.

本発明は、上記実情を鑑みてなされたものである。本発明の目的は、EGRガスの有無及び導入量に関わらず、コンプレッサの回転数を、簡易な方法で精度良く推定することが可能なエンジン制御装置を提供することである。   The present invention has been made in view of the above circumstances. An object of the present invention is to provide an engine control device capable of accurately estimating the rotation speed of a compressor by a simple method regardless of the presence or absence and the introduction amount of EGR gas.

上記課題を解決するため、請求項1に記載の発明は、エンジンの吸気管に設置されたコンプレッサと前記エンジンの排気管に配置されたタービンとを含む過給機と、前記吸気管と前記排気管とに接続されたEGR配管を含み前記排気管内の排気の一部をEGRガスとして前記吸気管に還流させるEGR装置と、を備えたエンジンを制御するエンジン制御装置であって、前記吸気管と前記EGR配管との接続部及び前記コンプレッサよりも下流において、前記吸気管内の吸気の密度と相関がある吸気密度相関値を取得する取得手段と、あらかじめ作成された前記吸気密度相関値と前記コンプレッサの回転数との相関関係を記憶した記憶手段と、前記取得手段により取得される前記吸気密度相関値と前記記憶手段に記憶された前記相関関係とに基づいて、前記コンプレッサの回転数を推定する推定手段と、を備える。   In order to solve the above-mentioned problem, the invention according to claim 1 is a supercharger including a compressor installed in an intake pipe of an engine and a turbine arranged in an exhaust pipe of the engine, the intake pipe, and the exhaust. An engine control device for controlling an engine, comprising an EGR device including an EGR pipe connected to a pipe and recirculating a part of the exhaust gas in the exhaust pipe to the intake pipe as EGR gas, An acquisition means for acquiring an intake density correlation value correlated with the density of the intake air in the intake pipe downstream of the connection portion with the EGR pipe and the compressor, the intake density correlation value created in advance and the compressor Based on the storage means storing the correlation with the rotational speed, the intake density correlation value acquired by the acquisition means, and the correlation stored in the storage means. There are, and a estimation unit that estimates a rotation speed of the compressor.

請求項1の構成によれば、EGR装置の作動時は、コンプレッサにより圧縮された空気と、排気管から吸気管に還流されるEGRガスと、が混合された吸気がエンジンに供給される。また、EGR装置の非作動時には、コンプレッサにより圧縮された空気が吸気としてエンジンに供給される。   According to the first aspect of the present invention, when the EGR device is operated, intake air in which air compressed by the compressor and EGR gas recirculated from the exhaust pipe to the intake pipe is mixed is supplied to the engine. Further, when the EGR device is not operated, the air compressed by the compressor is supplied to the engine as intake air.

吸気圧(過給圧)とコンプレッサの回転数とには、相関関係があることが知られている。しかしながら、EGR装置の作動時とEGR装置の非作動時とでは、吸気圧とコンプレッサの回転数との相関関係は異なる。本発明者は、EGR装置の作動時とEGR装置の非作動時とで相関関係が異なる原因が、EGRガスの導入による吸気温度の変化であるとの知見を得た。さらに、本発明者は、EGRガスの導入による吸気温度の変化を考慮した吸気密度相関値(吸気の密度と相関がある値)とコンプレッサの回転数との間には、EGRガスの有無、及び導入量に関わらず強い相関があるという知見を得た。すなわち、あらかじめ作成した吸気密度相関値とコンプレッサの回転数との相関関係を用いれば、コンプレッサの回転数を精度良く推定できることを発見した。   It is known that there is a correlation between the intake pressure (supercharging pressure) and the rotation speed of the compressor. However, the correlation between the intake pressure and the rotational speed of the compressor differs between when the EGR device is operating and when the EGR device is not operating. The present inventor has found that the cause of the difference in correlation between when the EGR device is operated and when the EGR device is not operated is a change in intake air temperature due to the introduction of EGR gas. Furthermore, the present inventor has determined whether or not there is EGR gas between the intake air density correlation value (a value having a correlation with the intake air density) considering the change in intake air temperature due to the introduction of EGR gas, and the rotation speed of the compressor, and It was found that there was a strong correlation regardless of the amount introduced. That is, the present inventors have found that the compressor rotational speed can be accurately estimated by using the correlation between the intake density correlation value prepared in advance and the compressor rotational speed.

上記構成によれば、取得手段により取得された吸気密度相関値と、あらかじめ作成された吸気密度相関値とコンプレッサの回転数との相関関係とに基づいて、コンプレッサの回転数が推定される。よって、EGRガスの有無及び導入量に関わらず、コンプレッサの回転数を、簡易な方法で精度良く推定することができる。   According to the above configuration, the rotational speed of the compressor is estimated based on the intake air density correlation value acquired by the acquisition means and the correlation between the intake air density correlation value created in advance and the rotational speed of the compressor. Therefore, regardless of the presence or absence of EGR gas and the introduction amount, the rotation speed of the compressor can be accurately estimated by a simple method.

エンジンシステムの構成図。The block diagram of an engine system. 吸気圧とコンプレッサの回転数との関係を示す図(EGRなし)。The figure which shows the relationship between the intake pressure and the rotation speed of the compressor (without EGR). 吸気圧とコンプレッサの回転数との関係を示す図。The figure which shows the relationship between intake pressure and the rotation speed of a compressor. 吸気密度相関値とコンプレッサの回転数との関係を示す図。The figure which shows the relationship between an intake density correlation value and the rotation speed of a compressor. 過給機を保護する処理手順を示すフローチャート。The flowchart which shows the process sequence which protects a supercharger. コンプレッサの回転数の推定を行うサブルーチンを示すフローチャート。The flowchart which shows the subroutine which estimates the rotation speed of a compressor. EGR装置の変形例。The modification of an EGR apparatus.

以下、ディーゼルエンジンに具現化した実施形態について、図面を参照しつつ説明する。まず、図1を参照して、エンジンシステムの構成について説明する。   Hereinafter, an embodiment embodied in a diesel engine will be described with reference to the drawings. First, the configuration of the engine system will be described with reference to FIG.

エンジン10は、吸気管11と、吸気管11に接続された燃焼室15と、燃焼室15に接続された排気管12と、燃焼室15に突出するようにして設けられた燃料噴射弁14とを備えている。吸気管11に吸入された空気は、吸気管11を通って燃焼室15に流入し、燃焼室15で圧縮されて高温になる。そして、高温の吸気が充填された燃焼室15へ、燃料噴射弁14から燃料が噴射されると、燃料は自己着火して燃焼する。その際に発生する排気は、排気管12を通ってエンジン10の外部に放出される。なお、燃料噴射弁14は、エンジン10の運転状態に応じて、後述するECU30(電子制御装置)により操作される。これにより、燃料噴射量は制御される。   The engine 10 includes an intake pipe 11, a combustion chamber 15 connected to the intake pipe 11, an exhaust pipe 12 connected to the combustion chamber 15, and a fuel injection valve 14 provided so as to protrude into the combustion chamber 15. It has. The air sucked into the intake pipe 11 flows into the combustion chamber 15 through the intake pipe 11 and is compressed in the combustion chamber 15 to become a high temperature. When fuel is injected from the fuel injection valve 14 into the combustion chamber 15 filled with high-temperature intake air, the fuel self-ignites and burns. Exhaust gas generated at this time is discharged to the outside of the engine 10 through the exhaust pipe 12. The fuel injection valve 14 is operated by an ECU 30 (an electronic control device) described later according to the operating state of the engine 10. Thereby, the fuel injection amount is controlled.

吸気管11から排気管12にわたって、過給機16が設けられている。過給機16は、吸気管11に設置されたコンプレッサ16aと、排気管12に設置されたタービン16bとを含む。タービン16bは、排気の流速エネルギにより駆動される。コンプレッサ16aは、タービン16bと同軸駆動され、吸入される空気を圧縮する。これにより、燃焼室15に流入する空気は過給されて充填効率が向上する。なお、過給機16が可変ノズル過給機の場合は、エンジン10の運転状態に応じて、ECU30によりノズルが操作される。   A supercharger 16 is provided from the intake pipe 11 to the exhaust pipe 12. The supercharger 16 includes a compressor 16 a installed in the intake pipe 11 and a turbine 16 b installed in the exhaust pipe 12. The turbine 16b is driven by exhaust flow velocity energy. The compressor 16a is driven coaxially with the turbine 16b and compresses the sucked air. Thereby, the air flowing into the combustion chamber 15 is supercharged, and the charging efficiency is improved. When the supercharger 16 is a variable nozzle supercharger, the nozzle is operated by the ECU 30 according to the operating state of the engine 10.

吸気管11には、コンプレッサ16aよりも下流に、インタークーラ17が設置され、インタークーラ17よりも下流に、スロットルバルブ25が設置されている。インタークーラ17は、コンプレッサ16aで圧縮された空気を冷却して体積を減少させる。これにより、燃焼室15に流入する空気の充填効率は更に向上する。スロットルバルブ25は、エンジン10の運転状態に応じて開閉され、燃焼室15へ流入する空気の流量を調整する。   In the intake pipe 11, an intercooler 17 is installed downstream of the compressor 16 a, and a throttle valve 25 is installed downstream of the intercooler 17. The intercooler 17 cools the air compressed by the compressor 16a to reduce the volume. Thereby, the charging efficiency of the air flowing into the combustion chamber 15 is further improved. The throttle valve 25 is opened and closed according to the operating state of the engine 10 and adjusts the flow rate of air flowing into the combustion chamber 15.

排気管12には、タービン16bよりも下流に、排気を浄化する浄化装置18が設置されている。浄化装置18としては、例えば、排気中のPM(粒子状物質)を捕集するためのDPF(Diesel Particulate Filter)、排気中のNOx(窒素酸化物)を浄化するNOx触媒、及び排気中のHC(炭化水素)やCO(一酸化炭素)を浄化する酸化触媒等がある。   The exhaust pipe 12 is provided with a purification device 18 for purifying exhaust gas downstream of the turbine 16b. Examples of the purification device 18 include a DPF (Diesel Particulate Filter) for collecting PM (particulate matter) in the exhaust, a NOx catalyst for purifying NOx (nitrogen oxide) in the exhaust, and HC in the exhaust. There are oxidation catalysts for purifying (hydrocarbon) and CO (carbon monoxide).

また、エンジン10は、EGR配管13とEGRバルブ19とを含むEGR装置20を備える。EGR装置20は、排気管12内の排気の一部をEGRガスとして、EGR配管13を通して吸気管11に還流させる。これにより、燃焼室15の燃焼温度が抑制され、NOxの発生が低減される。   The engine 10 includes an EGR device 20 that includes an EGR pipe 13 and an EGR valve 19. The EGR device 20 recirculates a part of the exhaust gas in the exhaust pipe 12 as EGR gas to the intake pipe 11 through the EGR pipe 13. Thereby, the combustion temperature of the combustion chamber 15 is suppressed and generation | occurrence | production of NOx is reduced.

EGR配管13は、排気管12におけるタービン16bよりも上流部分から分岐して、吸気管11におけるスロットルバルブ25よりも下流部分で吸気管11に接続されている。よって、排気管12におけるタービン16bよりも上流部分の排気ガスが、吸気管11に導入される(高圧EGR)。その際、吸気管11においてスロットルバルブ25を閉じ側に制御することにより、EGRガスの導入をアシストすることも可能である。   The EGR pipe 13 branches from an upstream portion of the exhaust pipe 12 relative to the turbine 16 b and is connected to the intake pipe 11 at a downstream portion of the intake pipe 11 relative to the throttle valve 25. Therefore, the exhaust gas upstream of the turbine 16b in the exhaust pipe 12 is introduced into the intake pipe 11 (high pressure EGR). At that time, it is possible to assist the introduction of EGR gas by controlling the throttle valve 25 to the closed side in the intake pipe 11.

EGRバルブ19は、EGR配管13に取り付けられており、EGR配管13の流通路を開閉する。それにより、EGR配管13の流路面積が調整され、EGRガスの導入量が調整される。EGR装置20の作動時は、EGRバルブ19の開度に応じた量のEGRガスが導入される。一方、EGR装置20の非作動時は、EGRバルブ19は全閉され、EGRガスの導入量はゼロとなる。EGRバルブ19の開閉は、エンジン10の運転状態に応じて、ECU30により操作される。   The EGR valve 19 is attached to the EGR pipe 13 and opens and closes the flow path of the EGR pipe 13. As a result, the flow area of the EGR pipe 13 is adjusted, and the amount of EGR gas introduced is adjusted. When the EGR device 20 is in operation, an amount of EGR gas corresponding to the opening of the EGR valve 19 is introduced. On the other hand, when the EGR device 20 is not in operation, the EGR valve 19 is fully closed, and the amount of EGR gas introduced is zero. The opening and closing of the EGR valve 19 is operated by the ECU 30 according to the operating state of the engine 10.

なお、EGR装置20は、EGRクーラ(図示しない)を備えていてもよい。EGRクーラがEGR配管13に設置されている場合、EGRガスは、EGRクーラにより冷却され体積が減少される。これにより、燃焼室15に流入する吸気の充填効率は向上する。   The EGR device 20 may include an EGR cooler (not shown). When the EGR cooler is installed in the EGR pipe 13, the EGR gas is cooled by the EGR cooler and the volume is reduced. Thereby, the charging efficiency of the intake air flowing into the combustion chamber 15 is improved.

EGR装置20の作動時は、スロットルバルブ25を通過した空気と、EGR配管13を通って還流されるEGRガスとが混合したものが、吸気として燃焼室15に充填される。一方、EGR装置20の非作動時は、スロットルバルブ25を通過した空気が、吸気として燃焼室15に充填される。この吸気の状態を検知する圧力センサ21及び温度センサ22が、吸気管11においてコンプレッサ16a及び吸気管11とEGR配管13との接続部分よりも下流側に設けられている。圧力センサ21及び温度センサ22は、それぞれ吸気の圧力及び温度を測定する。なお、本実施形態において、圧力センサ21及び温度センサ22は取得手段に含まれる。   When the EGR device 20 is in operation, a mixture of air that has passed through the throttle valve 25 and EGR gas that is recirculated through the EGR pipe 13 is filled into the combustion chamber 15 as intake air. On the other hand, when the EGR device 20 is not in operation, the air that has passed through the throttle valve 25 is filled into the combustion chamber 15 as intake air. A pressure sensor 21 and a temperature sensor 22 that detect the state of the intake air are provided in the intake pipe 11 on the downstream side of the compressor 16 a and the connection portion between the intake pipe 11 and the EGR pipe 13. The pressure sensor 21 and the temperature sensor 22 measure the pressure and temperature of the intake air, respectively. In the present embodiment, the pressure sensor 21 and the temperature sensor 22 are included in the acquisition unit.

さらに、エンジン10は、エンジン10の運転状態を検出するセンサとして、エンジン10の出力軸であるクランクシャフト31の回転数を検出するクランクセンサ23や、運転者によるアクセルペダル32の操作量を検出するアクセルセンサ24等を備えている。なお、本実施形態において、クランクセンサ23は検出手段に相当する。   Further, the engine 10 detects the operation amount of the accelerator pedal 32 by the driver or the crank sensor 23 that detects the rotation speed of the crankshaft 31 that is the output shaft of the engine 10 as a sensor that detects the operating state of the engine 10. An accelerator sensor 24 and the like are provided. In the present embodiment, the crank sensor 23 corresponds to detection means.

上記各種センサの検出値は、ECU30に入力される。ECU30は、CPU(中央処理装置)、ROM及びRAM(記憶装置)よりなるマイクロコンピュータを主体として構成され、ROMに記憶された各種の制御プログラムを実行する。また、ECU30は、各種センサの検出値に基づき、EGRバルブ19及び燃料噴射弁14を操作する。なお、本実施形態において、ECU30は、エンジン制御装置、記憶手段、及び推定手段に相当する。   The detection values of the various sensors are input to the ECU 30. The ECU 30 is mainly configured by a microcomputer including a CPU (central processing unit), a ROM, and a RAM (storage device), and executes various control programs stored in the ROM. Further, the ECU 30 operates the EGR valve 19 and the fuel injection valve 14 based on detection values of various sensors. In the present embodiment, the ECU 30 corresponds to an engine control device, storage means, and estimation means.

次に、コンプレッサ16aの回転数Ncmpの推定について述べる。図2に、EGRガスの導入がない場合における、吸気圧(過給圧)と1分あたりのコンプレッサ16aの回転数Ncmpの関係を示す。同図の各点は、1分あたりのエンジン10の回転数Neを1000rpm、1500rpm、2000rpm、2500rpm、3000rpm、と変更して、吸気圧とコンプレッサ16aの回転数Ncmpの関係を求めたものである。図示されるように、エンジン10の回転数Neごとに、各点は1つの曲線上に乗っている。すなわち、エンジン10の各回転数Neにおいて、吸気圧とコンプレッサ16aの回転数Ncmpとには相関がある。   Next, estimation of the rotation speed Ncmp of the compressor 16a will be described. FIG. 2 shows the relationship between the intake pressure (supercharging pressure) and the rotation speed Ncmp of the compressor 16a per minute when no EGR gas is introduced. Each point in the figure is obtained by changing the rotational speed Ne of the engine 10 per minute to 1000 rpm, 1500 rpm, 2000 rpm, 2500 rpm, and 3000 rpm, and obtaining the relationship between the intake pressure and the rotational speed Ncmp of the compressor 16a. . As shown in the drawing, each point is on one curve for each rotation speed Ne of the engine 10. That is, at each rotation speed Ne of the engine 10, there is a correlation between the intake pressure and the rotation speed Ncmp of the compressor 16a.

図3に、エンジン10の回転数Neを2000rpmとし、EGRガスの導入がある場合と、EGRガスの導入がない場合における、吸気圧とコンプレッサ16aの回転数Ncmpの関係を示す。EGRガスの導入がない場合は、吸気圧とコンプレッサ16aの回転数Ncmpとの間には図2と同様な相関が見られる。一方、EGRガスの導入がある場合も、吸気圧とコンプレッサ16aの回転数Ncmpとの間には相関が見られる。しかしながら、EGRガスがある場合の相関関係を示す曲線は、EGRガスがない場合の相関関係を示す曲線からずれている。さらに、このずれは、EGRガスの導入量が多くなるほど大きくなる。すなわち、EGRガスの有無及び導入量に応じて、吸気圧とコンプレッサ16aの回転数Ncmpとの相関関係は変化する。   FIG. 3 shows the relationship between the intake pressure and the rotational speed Ncmp of the compressor 16a when the rotational speed Ne of the engine 10 is 2000 rpm and EGR gas is introduced and when EGR gas is not introduced. When no EGR gas is introduced, a correlation similar to that in FIG. 2 is observed between the intake pressure and the rotation speed Ncmp of the compressor 16a. On the other hand, even when EGR gas is introduced, there is a correlation between the intake pressure and the rotation speed Ncmp of the compressor 16a. However, the curve indicating the correlation in the presence of EGR gas is deviated from the curve indicating the correlation in the absence of EGR gas. Furthermore, this deviation increases as the amount of EGR gas introduced increases. That is, the correlation between the intake pressure and the rotation speed Ncmp of the compressor 16a varies depending on the presence / absence of the EGR gas and the introduction amount.

本発明者は、EGRガスの有無及び導入量に応じて相関関係が変化する原因を調査したところ、EGRガスが吸気管11に導入されることによる吸気温度の変化が原因であるとの知見を得た。さらに、本発明者は、EGRガスの導入による吸気温度の変化を考慮した吸気密度相関値とコンプレッサ16aの回転数Ncmpとの間には、EGRガスの有無、及び導入量に関わらず強い相関があるという知見を得た。   The present inventor investigated the cause of the change in correlation depending on the presence or absence of the EGR gas and the amount of introduction, and found that the change in the intake air temperature caused by the introduction of the EGR gas into the intake pipe 11 is the cause. Obtained. Further, the present inventor has a strong correlation between the intake density correlation value considering the change in the intake air temperature due to the introduction of the EGR gas and the rotation speed Ncmp of the compressor 16a regardless of the presence or absence of the EGR gas and the introduction amount. The knowledge that there is.

図4に、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの関係を示す。各点は、エンジン10の回転数Neを1500rpm、2000rpm、2500rpmと変更して、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの関係を求めたものである。エンジン10の回転数Neを1500rpm及び2500rpmとしたときは、EGRガスの導入がある場合とEGRガスの導入がない場合とについて、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの関係を求めている。エンジン10の回転数Neを2000rpmとしたときは、可変ノズル過給機のノズル開度を変化させることにより、EGRガスの導入なしの場合を含めて吸気のEGRガス率を4通りに変化させた場合について、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの関係を求めている。   FIG. 4 shows the relationship between the intake density correlation value and the rotational speed Ncmp of the compressor 16a. Each point is obtained by changing the rotational speed Ne of the engine 10 to 1500 rpm, 2000 rpm, and 2500 rpm, and obtaining the relationship between the intake density correlation value and the rotational speed Ncmp of the compressor 16a. When the rotational speed Ne of the engine 10 is set to 1500 rpm and 2500 rpm, the relationship between the intake density correlation value and the rotational speed Ncmp of the compressor 16a is obtained for the case where EGR gas is introduced and the case where no EGR gas is introduced. Yes. When the rotation speed Ne of the engine 10 was 2000 rpm, the EGR gas rate of intake air was changed in four ways by changing the nozzle opening of the variable nozzle supercharger, including the case where no EGR gas was introduced. In some cases, the relationship between the intake density correlation value and the rotational speed Ncmp of the compressor 16a is obtained.

図示されるように、エンジン10の回転数Neが1500rpmの場合、EGRガスの有無に関わらず、各点はほぼ1つの曲線上にある。エンジン10の回転数Neが2500rpmの場合も、1500rpmとは異なる曲線上ではあるが、EGRガスの有無に関わらず、各点はほぼ1つの曲線上にある。また、エンジン10の回転数Neが2000rpmの場合は、1500rpm及び2500rpmとは異なる曲線上ではあるが、EGRガスの有無及び導入量に関わらず、各点はほぼ1つの曲線上にある。すなわち、エンジン10の各回転数Neにおいて、EGRガスの有無及び導入量に関わらず、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの間には強い相関がある。   As shown in the figure, when the rotational speed Ne of the engine 10 is 1500 rpm, each point is substantially on one curve regardless of the presence or absence of EGR gas. Even when the rotational speed Ne of the engine 10 is 2500 rpm, it is on a curve different from 1500 rpm, but each point is on almost one curve regardless of the presence or absence of EGR gas. Further, when the rotational speed Ne of the engine 10 is 2000 rpm, it is on a curve different from 1500 rpm and 2500 rpm, but each point is on almost one curve regardless of the presence or absence of the EGR gas and the introduction amount. That is, at each rotation speed Ne of the engine 10, there is a strong correlation between the intake density correlation value and the rotation speed Ncmp of the compressor 16a regardless of the presence or absence and the introduction amount of EGR gas.

したがって、あらかじめ作成した吸気密度相関値とコンプレッサ16aの回転数Ncmpとの相関関係を用いれば、EGRガスの有無及び導入量に関わらず、コンプレッサ16aの回転数Ncmpを精度良く推定できる。さらに、エンジン10の回転数Neごとに、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの相関関係を作成すれば、エンジン10の回転数Neを変化させてもコンプレッサ16aの回転数Ncmpを推定できる。なお、あらかじめ作成した相関関係は、ECU30の記憶装置に格納される。   Therefore, if the correlation between the intake density correlation value created in advance and the rotation speed Ncmp of the compressor 16a is used, the rotation speed Ncmp of the compressor 16a can be accurately estimated regardless of the presence or absence of the EGR gas and the introduction amount. Furthermore, if the correlation between the intake air density correlation value and the rotation speed Ncmp of the compressor 16a is created for each rotation speed Ne of the engine 10, the rotation speed Ncmp of the compressor 16a is estimated even if the rotation speed Ne of the engine 10 is changed. it can. The correlation created in advance is stored in the storage device of the ECU 30.

以下、コンプレッサ16aの回転数Ncmpを推定し、推定した回転数Ncmpに基づいて過給機16を保護する処理手順について、図5〜6のフローチャートを参照しつつ説明する。図5は、過給機16を保護する処理を実行するメインルーチンである。本処理は、ECU30により定期的に繰り返し実行される。   Hereinafter, a processing procedure for estimating the rotation speed Ncmp of the compressor 16a and protecting the supercharger 16 based on the estimated rotation speed Ncmp will be described with reference to the flowcharts of FIGS. FIG. 5 is a main routine for executing processing for protecting the supercharger 16. This process is periodically and repeatedly executed by the ECU 30.

まず、S1において、コンプレッサ16aの回転数の上限値Nlimを決定する。上限値Nlimは、過給機16が故障するおそれがない最大許容値とすることができる。   First, in S1, an upper limit value Nlim of the rotation speed of the compressor 16a is determined. The upper limit value Nlim may be a maximum allowable value that does not cause the turbocharger 16 to fail.

次に、S2において、コンプレッサ16aの回転数Ncmpを推定するサブルーチンを実行する。図6は、コンプレッサ16aの回転数Ncmpを推定するサブルーチンである。本サブルーチンでは、まず、エンジン10の回転数Neをクランクセンサ23により検出する(S21)。   Next, in S2, a subroutine for estimating the rotation speed Ncmp of the compressor 16a is executed. FIG. 6 is a subroutine for estimating the rotation speed Ncmp of the compressor 16a. In this subroutine, first, the rotational speed Ne of the engine 10 is detected by the crank sensor 23 (S21).

続いて、吸気管11において、吸気管11とEGR配管13の接続部分及びコンプレッサ16aよりも下流側に存在する吸気の吸気圧Pを、圧力センサ21により測定する(S22)。さらに、吸気管11の同じ部分に存在する吸気の吸気温度Tを、温度センサ22により測定する(S23)。そして、圧力センサ21により測定された吸気圧Pを温度センサ22により測定された吸気温度Tで除算してP/Tを算出する。算出されたP/Tは、気体の状態方程式PV=nRTから分かるように、吸気の密度に相関がある値である。算出されたP/Tを吸気密度相関値とする(S24)。   Subsequently, in the intake pipe 11, the intake pressure P of the intake air existing downstream of the connecting portion of the intake pipe 11 and the EGR pipe 13 and the compressor 16a is measured by the pressure sensor 21 (S22). Further, the intake air temperature T of the intake air existing in the same portion of the intake pipe 11 is measured by the temperature sensor 22 (S23). Then, the intake pressure P measured by the pressure sensor 21 is divided by the intake air temperature T measured by the temperature sensor 22 to calculate P / T. The calculated P / T is a value having a correlation with the density of the intake air, as can be seen from the gas state equation PV = nRT. The calculated P / T is set as an intake air density correlation value (S24).

さらに、S25において、あらかじめエンジン10の回転数Neごとに作成された、吸気密度相関値P/Tとコンプレッサ16aの回転数Ncmpとの相関関係を、ECU30の記憶装置から読み出す。そして、検出されたエンジン10の回転数Neと、取得された吸気密度相関値P/Tと、読み出した相関関係とに基づいて、コンプレッサ16aの回転数Ncmpを推定する。その後、本サブルーチンの処理を終了し、メインサブルーチンのS3に戻る。   Further, in S25, the correlation between the intake density correlation value P / T and the rotation speed Ncmp of the compressor 16a, which is created in advance for each rotation speed Ne of the engine 10, is read from the storage device of the ECU 30. Then, based on the detected rotation speed Ne of the engine 10, the acquired intake air density correlation value P / T, and the read correlation, the rotation speed Ncmp of the compressor 16a is estimated. Thereafter, the processing of this subroutine is terminated, and the process returns to S3 of the main subroutine.

S3では、推定されたコンプレッサ16aの回転数Ncmpが、上限値Nlimより大きいかどうかを判定する。コンプレッサ16aの回転数Ncmpが上限値Nlim以下の場合は(No)、そのまま本処理を終了する。一方、コンプレッサ16aの回転数Ncmpが上限値Nlimより大きい場合は(Yes)、S4に進む。   In S3, it is determined whether or not the estimated rotation speed Ncmp of the compressor 16a is larger than the upper limit value Nlim. When the rotation speed Ncmp of the compressor 16a is equal to or lower than the upper limit value Nlim (No), this process is terminated as it is. On the other hand, when the rotation speed Ncmp of the compressor 16a is larger than the upper limit value Nlim (Yes), the process proceeds to S4.

S4では、コンプレッサ16aの回転数Ncmpを低減する処理を実行して、過給機16を保護する。コンプレッサ16aの回転数Ncmpを低減する具体的な処理例として、次のようなものがある。過給機16が可変ノズル過給機の場合は、可変ノズルを開いて排気の流速エネルギを小さくすることにより、コンプレッサ16aの回転数Ncmpを低くする。また、過給機16が可変ノズル過給機でない場合は、燃料噴射弁14を操作して燃料噴射量を制限し、エンジン10の出力を制限する。これにより、コンプレッサ16aの回転数Ncmpは低減される。   In S4, the process which reduces the rotation speed Ncmp of the compressor 16a is performed, and the supercharger 16 is protected. Specific processing examples for reducing the rotational speed Ncmp of the compressor 16a include the following. When the supercharger 16 is a variable nozzle supercharger, the rotational speed Ncmp of the compressor 16a is lowered by opening the variable nozzle to reduce the flow velocity energy of the exhaust. When the supercharger 16 is not a variable nozzle supercharger, the fuel injection valve 14 is operated to limit the fuel injection amount and the output of the engine 10 is limited. Thereby, the rotation speed Ncmp of the compressor 16a is reduced.

以上説明した本実施形態は以下の効果を奏する。   The present embodiment described above has the following effects.

・EGR装置20の作動時は、コンプレッサ16aにより圧縮された空気と、排気管12から吸気管11に還流されるEGRガスと、が混合された吸気がエンジン10に供給される。また、EGR装置20の非作動時には、コンプレッサ16aにより圧縮された空気が吸気としてエンジン10に供給される。   When the EGR device 20 is in operation, intake air in which air compressed by the compressor 16 a and EGR gas recirculated from the exhaust pipe 12 to the intake pipe 11 is mixed is supplied to the engine 10. Further, when the EGR device 20 is not operated, the air compressed by the compressor 16a is supplied to the engine 10 as intake air.

そして、圧力センサ21及び温度センサ22により、吸気の密度に相関がある吸気密度相関値が取得される。また、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの相関関係があらかじめ作成され、ECU30の記憶装置に格納されている。よって、EGRガスの有無及び導入量に関わらず、吸気密度相関値と、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの相関関係とに基づいて、コンプレッサ16aの回転数Ncmpが推定される。すなわち、コンプレッサ16aの回転数Ncmpを、簡易な方法で精度良く推定することができる。   Then, the pressure sensor 21 and the temperature sensor 22 obtain an intake density correlation value correlated with the intake density. Further, a correlation between the intake air density correlation value and the rotation speed Ncmp of the compressor 16 a is created in advance and stored in the storage device of the ECU 30. Therefore, the rotation speed Ncmp of the compressor 16a is estimated based on the intake air density correlation value and the correlation between the intake air density correlation value and the rotation speed Ncmp of the compressor 16a regardless of the presence or absence of the EGR gas and the introduction amount. That is, the rotational speed Ncmp of the compressor 16a can be accurately estimated by a simple method.

・クランクセンサ23により検出されたエンジン10の回転数Neと、取得された吸気密度相関値と、エンジン10の回転数Neごとに作成されている相関関係とに基づいて、コンプレッサ16aの回転数Ncmpが推定される。よって、エンジン10の回転数Neを変化させても、コンプレッサ16aの回転数Ncmpを推定することができる。また、エンジン10の回転数Neは、エンジン10のクランクシャフト31に通常設置されているクランクセンサ23により検出される。そのため、新たに回転センサを設ける必要はなく、コストアップにならない。   Based on the rotation speed Ne of the engine 10 detected by the crank sensor 23, the acquired intake air density correlation value, and the correlation created for each rotation speed Ne of the engine 10, the rotation speed Ncmp of the compressor 16a Is estimated. Therefore, even if the rotation speed Ne of the engine 10 is changed, the rotation speed Ncmp of the compressor 16a can be estimated. The rotational speed Ne of the engine 10 is detected by a crank sensor 23 that is normally installed on the crankshaft 31 of the engine 10. Therefore, it is not necessary to newly provide a rotation sensor, and the cost is not increased.

・吸気密度相関値は、圧力センサ21により測定された吸気圧Pを、温度センサ22により測定された吸気温度Tで除算して算出される。よって、吸気密度相関値は、EGRガスの導入による温度変化が考慮されたパラメータであるため、EGRガスの有無、導入量に関わらず、コンプレッサ16aの回転数Ncmpと強い相関関係を有する。   The intake density correlation value is calculated by dividing the intake pressure P measured by the pressure sensor 21 by the intake air temperature T measured by the temperature sensor 22. Therefore, since the intake density correlation value is a parameter that takes into account the temperature change due to the introduction of EGR gas, it has a strong correlation with the rotational speed Ncmp of the compressor 16a regardless of the presence or absence of the EGR gas and the introduction amount.

・EGR配管13は、吸気管11においてコンプレッサ16aよりも下流に設けられたスロットルバルブ25よりも下流部分と、排気管12におけるタービン16bよりも上流部分とに接続される。よって、スロットルバルブ25を閉じ側に制御することによりEGRガスの導入をアシストすることも可能である。また、排気管12におけるタービン16bよりも上流部分から、高圧EGRガスが吸気管11に導入される。   The EGR pipe 13 is connected to a portion downstream of the throttle valve 25 provided downstream of the compressor 16 a in the intake pipe 11 and a portion upstream of the turbine 16 b of the exhaust pipe 12. Therefore, it is possible to assist the introduction of the EGR gas by controlling the throttle valve 25 to the closed side. Further, high-pressure EGR gas is introduced into the intake pipe 11 from a portion of the exhaust pipe 12 upstream of the turbine 16 b.

高圧EGRガスの導入は、吸気温度に与える影響が大きいが、吸気密度相関値とコンプレッサ16aの回転数Ncmpとの相関関係から、コンプレッサ16aの回転数Ncmpを簡単に精度良く推定することができる。したがって、高圧EGRガスの導入にも対応できる。   Although the introduction of the high-pressure EGR gas has a large influence on the intake air temperature, the rotation speed Ncmp of the compressor 16a can be easily and accurately estimated from the correlation between the intake air density correlation value and the rotation speed Ncmp of the compressor 16a. Therefore, it can respond also to introduction of high-pressure EGR gas.

・吸気管11において、コンプレッサ16aと、吸気管11とEGR配管13との接続部と、の間にインタークーラ17が設置される。よって、コンプレッサ16aで圧縮された空気が下流のインタークーラ17により冷却され、燃焼室15への吸気の充填効率が向上する。また、インタークーラ17はEGR配管13の上流に設置されるので、高圧EGRガスによりインタークーラ17が腐食されるおそれがない。   In the intake pipe 11, an intercooler 17 is installed between the compressor 16 a and a connection portion between the intake pipe 11 and the EGR pipe 13. Therefore, the air compressed by the compressor 16a is cooled by the downstream intercooler 17, and the efficiency of charging the intake air into the combustion chamber 15 is improved. Moreover, since the intercooler 17 is installed upstream of the EGR pipe 13, there is no possibility that the intercooler 17 is corroded by the high-pressure EGR gas.

さらに、上述した実施形態に限定されず、例えば次のように実施することもできる。   Further, the present invention is not limited to the above-described embodiment, and can be implemented as follows, for example.

・吸気密度相関値は、吸気管11においてEGR配管13との接続部から燃焼室15との接続部までの部分に存在する吸気の質量を、その部分の容積で除算したものとしてもよい。この場合は、吸気流量の検出値等に基づいて、吸気の質量を算出することができる。また、容積はエンジン10の設計値等に基づいて予め算出することができる。   The intake air density correlation value may be a value obtained by dividing the mass of intake air existing in a portion from the connection portion with the EGR pipe 13 to the connection portion with the combustion chamber 15 in the intake pipe 11 by the volume of that portion. In this case, the mass of the intake air can be calculated based on the detected value of the intake air flow rate. Further, the volume can be calculated in advance based on the design value of the engine 10 or the like.

・図7に示すように、EGR配管13は、吸気管11におけるコンプレッサ16aの上流部分と、排気管12においてタービン16bの下流側に設けられた浄化装置18よりも下流部分とに接続されるようにしてもよい。このようなEGR装置20は、排気管12において低排気圧部分に存在する排気の一部を、吸気管11において負圧が低い部分に還流させる。こうした構成であっても、EGRガスの導入により吸気の温度が影響を受けるため、吸気密度相関値に基づいてコンプレッサ回転数を求める利益がある。   As shown in FIG. 7, the EGR pipe 13 is connected to the upstream portion of the compressor 16a in the intake pipe 11 and the downstream portion of the exhaust pipe 12 relative to the purification device 18 provided on the downstream side of the turbine 16b. It may be. Such an EGR device 20 recirculates a part of the exhaust gas existing in the low exhaust pressure portion of the exhaust pipe 12 to the low negative pressure portion of the intake pipe 11. Even in such a configuration, since the temperature of the intake air is affected by the introduction of the EGR gas, there is a benefit of obtaining the compressor rotation speed based on the intake air density correlation value.

・記憶手段は、光学ディスク等の持ち運び可能なメディアや、ハードディスク等の外部記憶装置でもよい。   The storage means may be a portable medium such as an optical disk or an external storage device such as a hard disk.

・エンジン10は、ガソリンエンジンや、その他のエンジンでもよい。   The engine 10 may be a gasoline engine or other engines.

10…エンジン、11…吸気管、12…排気管、13…EGR配管、16…過給機、16a…コンプレッサ、16b…タービン、20…EGR装置、21…圧力センサ、22…温度センサ。   DESCRIPTION OF SYMBOLS 10 ... Engine, 11 ... Intake pipe, 12 ... Exhaust pipe, 13 ... EGR piping, 16 ... Supercharger, 16a ... Compressor, 16b ... Turbine, 20 ... EGR apparatus, 21 ... Pressure sensor, 22 ... Temperature sensor.

Claims (6)

エンジン(10)の吸気管(11)に設置されたコンプレッサ(16a)と前記エンジンの排気管(12)に配置されたタービン(16b)とを含む過給機(16)と、前記吸気管と前記排気管とに接続されたEGR配管(13)を含み前記排気管内の排気の一部をEGRガスとして前記吸気管に還流させるEGR装置(20)と、を備えたエンジンを制御するエンジン制御装置(30)であって、
前記吸気管と前記EGR配管との接続部及び前記コンプレッサよりも下流において、前記吸気管内の吸気の密度と相関がある吸気密度相関値を取得する取得手段と、
あらかじめ作成された前記吸気密度相関値と前記コンプレッサの回転数との相関関係を記憶した記憶手段と、
前記取得手段により取得される前記吸気密度相関値と前記記憶手段に記憶された前記相関関係とに基づいて、前記コンプレッサの回転数を推定する推定手段と、
を備えることを特徴とするエンジン制御装置。
A turbocharger (16) including a compressor (16a) installed in an intake pipe (11) of an engine (10) and a turbine (16b) arranged in the exhaust pipe (12) of the engine; and the intake pipe An engine control device for controlling an engine, including an EGR device (20) including an EGR pipe (13) connected to the exhaust pipe and recirculating a part of the exhaust gas in the exhaust pipe to the intake pipe as EGR gas (30)
An acquisition means for acquiring an intake density correlation value correlated with the density of the intake air in the intake pipe at the downstream of the compressor and the connection portion of the intake pipe and the EGR pipe;
Storage means for storing a correlation between the intake density correlation value created in advance and the rotation speed of the compressor;
Estimating means for estimating the rotational speed of the compressor based on the intake air density correlation value acquired by the acquiring means and the correlation stored in the storage means;
An engine control device comprising:
前記エンジンの回転数を検出する検出手段(23)を備え、
前記相関関係は、前記エンジンの回転数ごとに作成されており、
前記推定手段は、前記検出手段により検出される前記エンジンの回転数と、前記取得手段により取得される前記吸気密度相関値と、前記記憶手段に記憶された前記相関関係とに基づいて、前記コンプレッサの回転数を推定する請求項1に記載のエンジン制御装置。
A detecting means (23) for detecting the rotational speed of the engine;
The correlation is created for each engine speed,
The estimation means is based on the engine speed detected by the detection means, the intake density correlation value acquired by the acquisition means, and the correlation stored in the storage means. The engine control apparatus according to claim 1, wherein the engine speed is estimated.
前記取得手段は、前記吸気管と前記EGR配管との接続部及び前記コンプレッサよりも下流において、前記吸気管内の吸気圧を測定する圧力センサ(21)と前記吸気管内の吸気温度を測定する温度センサ(22)とを含み、
前記吸気密度相関値は、前記圧力センサにより測定された吸気圧と前記温度センサにより測定された吸気温度とから算出する請求項1又は2に記載のエンジン制御装置。
The acquisition means includes a pressure sensor (21) for measuring the intake pressure in the intake pipe and a temperature sensor for measuring the intake air temperature in the intake pipe, downstream of the connection portion between the intake pipe and the EGR pipe and the compressor. (22)
The engine control device according to claim 1, wherein the intake air density correlation value is calculated from an intake air pressure measured by the pressure sensor and an intake air temperature measured by the temperature sensor.
前記吸気密度相関値は、前記圧力センサにより測定された吸気圧を、前記温度センサにより測定された吸気温度で除算して算出する請求項3に記載のエンジン制御装置。   The engine control apparatus according to claim 3, wherein the intake air density correlation value is calculated by dividing the intake air pressure measured by the pressure sensor by the intake air temperature measured by the temperature sensor. 前記エンジンは、前記吸気管において前記コンプレッサよりも下流にスロットルバルブ(25)を備え、
前記EGR配管は、前記吸気管における前記スロットルバルブよりも下流部分と、前記排気管における前記タービンよりも上流部分とに接続されている請求項1〜4のいずれかに記載のエンジン制御装置。
The engine includes a throttle valve (25) downstream of the compressor in the intake pipe,
The engine control device according to any one of claims 1 to 4, wherein the EGR pipe is connected to a portion of the intake pipe downstream of the throttle valve and a portion of the exhaust pipe upstream of the turbine.
前記吸気管において前記コンプレッサと前記接続部との間にインタークーラ(17)を設置した請求項5に記載のエンジン制御装置。   The engine control device according to claim 5, wherein an intercooler (17) is installed between the compressor and the connecting portion in the intake pipe.
JP2012062942A 2012-03-20 2012-03-20 Engine control device Expired - Fee Related JP5803766B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012062942A JP5803766B2 (en) 2012-03-20 2012-03-20 Engine control device
DE102013102463.7A DE102013102463B4 (en) 2012-03-20 2013-03-12 machine control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062942A JP5803766B2 (en) 2012-03-20 2012-03-20 Engine control device

Publications (2)

Publication Number Publication Date
JP2013194611A true JP2013194611A (en) 2013-09-30
JP5803766B2 JP5803766B2 (en) 2015-11-04

Family

ID=49112340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062942A Expired - Fee Related JP5803766B2 (en) 2012-03-20 2012-03-20 Engine control device

Country Status (2)

Country Link
JP (1) JP5803766B2 (en)
DE (1) DE102013102463B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106948956A (en) * 2015-10-20 2017-07-14 通用汽车环球科技运作有限责任公司 The method of explosive motor of the operation with turbocharger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394030A (en) * 1986-10-08 1988-04-25 Mazda Motor Corp Rotational speed detecting device for exhaust gas turbo-supercharger
JP2002266690A (en) * 2001-03-12 2002-09-18 Toyota Motor Corp Control device for internal combustion engine
JP2006022763A (en) * 2004-07-09 2006-01-26 Denso Corp Control device of internal combustion engine including turbo charger
JP2007321687A (en) * 2006-06-02 2007-12-13 Denso Corp Control device for internal combustion engine with turbocharger
JP2008510094A (en) * 2004-08-13 2008-04-03 カミンズ インコーポレーテッド Turbocharger speed determination technique
JP4671068B2 (en) * 2009-01-29 2011-04-13 トヨタ自動車株式会社 Internal combustion engine system control device
JP2011185263A (en) * 2010-02-09 2011-09-22 Mitsubishi Heavy Ind Ltd Control device of engine with turbocharger
JP2011241733A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Revolution speed detection device of turbocharger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394030A (en) * 1986-10-08 1988-04-25 Mazda Motor Corp Rotational speed detecting device for exhaust gas turbo-supercharger
JP2002266690A (en) * 2001-03-12 2002-09-18 Toyota Motor Corp Control device for internal combustion engine
JP2006022763A (en) * 2004-07-09 2006-01-26 Denso Corp Control device of internal combustion engine including turbo charger
JP2008510094A (en) * 2004-08-13 2008-04-03 カミンズ インコーポレーテッド Turbocharger speed determination technique
JP2007321687A (en) * 2006-06-02 2007-12-13 Denso Corp Control device for internal combustion engine with turbocharger
JP4671068B2 (en) * 2009-01-29 2011-04-13 トヨタ自動車株式会社 Internal combustion engine system control device
JP2011185263A (en) * 2010-02-09 2011-09-22 Mitsubishi Heavy Ind Ltd Control device of engine with turbocharger
JP2011241733A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Revolution speed detection device of turbocharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106948956A (en) * 2015-10-20 2017-07-14 通用汽车环球科技运作有限责任公司 The method of explosive motor of the operation with turbocharger
CN106948956B (en) * 2015-10-20 2021-07-23 通用汽车环球科技运作有限责任公司 Method of operating an internal combustion engine having a turbocharger

Also Published As

Publication number Publication date
JP5803766B2 (en) 2015-11-04
DE102013102463B4 (en) 2018-12-13
DE102013102463A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US9133792B2 (en) Unit for estimating the rotational speed of a turbocharger and system and method for controlling an internal combustion engine with a turbocharger
US9109544B2 (en) Device and method for compressor and charge air cooler protection in an internal combustion engine
US20110067396A1 (en) Pressure estimation systems and methods
JP2011185159A (en) Abnormality diagnosing device of internal combustion engine with supercharger
US10683822B2 (en) Fuel-cetane-number estimation method and apparatus
CN103477057A (en) Turbocharger boost control using exhaust pressure estimated from engine cylinder pressure
JP4285141B2 (en) Fuel injection control device for diesel engine
GB2492428A (en) Method and apparatus for controlling the operation of a turbocharged internal combustion engine.
JP2015121214A (en) System for detecting leakage in intake line of internal combustion engine
JP5376051B2 (en) Abnormality detection apparatus and abnormality detection method for EGR system
JP5660323B2 (en) EGR control device for internal combustion engine
JP5282695B2 (en) Control device for an internal combustion engine with a supercharger
JP5867624B2 (en) Control device for internal combustion engine
JP2010242617A (en) Abnormality detection system for internal combustion engine
JP4648274B2 (en) Control device for internal combustion engine
JP2008038737A (en) Catalyst deterioration detecting device
JP5803766B2 (en) Engine control device
EP3674535A1 (en) An inferential sensor
JP2016061216A (en) Control device of internal combustion engine
US10480441B2 (en) System and method for controlling exhaust gas temperature
JP2015218688A (en) Control device for engine with turbosupercharger
JP4542489B2 (en) Exhaust manifold internal temperature estimation device for internal combustion engine
JP2010048133A (en) Malfunction detecting device for air flow meter
JP5760924B2 (en) In-cylinder pressure estimation device for internal combustion engine
JP2018178775A (en) Filter regeneration control device and filter regeneration control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees