JP2013194367A - Estimation method of embedment depth from vibration characteristics of rigid body simulating boulder - Google Patents

Estimation method of embedment depth from vibration characteristics of rigid body simulating boulder Download PDF

Info

Publication number
JP2013194367A
JP2013194367A JP2012059942A JP2012059942A JP2013194367A JP 2013194367 A JP2013194367 A JP 2013194367A JP 2012059942 A JP2012059942 A JP 2012059942A JP 2012059942 A JP2012059942 A JP 2012059942A JP 2013194367 A JP2013194367 A JP 2013194367A
Authority
JP
Japan
Prior art keywords
specimen
rigid body
ground
boulder
vibration characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059942A
Other languages
Japanese (ja)
Other versions
JP5943660B2 (en
Inventor
Takahiro Fukada
隆弘 深田
Ryoji Senhei
良二 泉並
太一 ▲高▼馬
Taichi Takama
Tomoyasu Sugiyama
友康 杉山
Osamu Nunokawa
修 布川
Kei Shibuya
啓 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONSTRUCTION ENGINEERING RESEARCH INSTITUTE FOUNDATION
Railway Technical Research Institute
West Japan Railway Co
Original Assignee
CONSTRUCTION ENGINEERING RESEARCH INSTITUTE FOUNDATION
Railway Technical Research Institute
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONSTRUCTION ENGINEERING RESEARCH INSTITUTE FOUNDATION, Railway Technical Research Institute, West Japan Railway Co filed Critical CONSTRUCTION ENGINEERING RESEARCH INSTITUTE FOUNDATION
Priority to JP2012059942A priority Critical patent/JP5943660B2/en
Publication of JP2013194367A publication Critical patent/JP2013194367A/en
Application granted granted Critical
Publication of JP5943660B2 publication Critical patent/JP5943660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an estimation method of an embedment depth from vibration characteristics of a rigid body simulation a boulder with which the boulder on a slope is simulated into the rigid body having an embedment in the foundation.SOLUTION: A boulder on a slope is simulated into a rigid body having an embedment in the foundation, a test piece 1 is created having the dimension and weight different from the rigid body and while changing a foundation strength, the dimension and weight of the test piece 1 and a condition of the embedment of the test piece 1, the number of vibration intrinsic for the test piece 1 is measured.

Description

本発明は、転石を模擬した剛体の振動特性による根入れ深さの推定方法に関するものである。   The present invention relates to a method for estimating a penetration depth based on vibration characteristics of a rigid body that simulates a boulder.

鉄道沿線斜面に存在する多数の転石の落石危険度を効率的、かつ定量的に判定し、危険度の高い転石に対して適切な措置を施すことが、落石災害に対する鉄道の安全・安定輸送の維持にとって重要である。
落石の発生形態には、転石型(転落型)とはく落型の2種類のタイプがある。前者のタイプは、鉄道関係では転落型、道路関係では抜け落ち型もしくは転石型という名称が用いられているが、本発明では、前者のタイプを転石型ということにする。
Efficient and quantitative judgment of the risk of falling rocks on the slopes along the railroads and taking appropriate measures against high-risk rocks are important for safe and stable transportation of railways against rockfall disasters. Important for maintenance.
There are two types of rock fall occurrence types: a roll type (fall type) and a fall type. As for the former type, the name of falling type is used for railways and the type of falling type or rolling type is used for roads. In the present invention, the former type is called a rolling type.

図17に示すように、転石型落石は、「岩塊より軟質な物質(マトリックス)中に岩塊が埋まっている地山で、マトリックス部が選択的に風化浸食されて、岩塊が浮き出し、落下するもの」である(下記非特許文献1,2参照)。   As shown in FIG. 17, the boulder-type rockfall is “a natural mountain in which the rock mass is buried in a softer material (matrix) than the rock mass, the matrix portion is selectively weathered and eroded, and the rock mass is raised, It falls ”(see Non-Patent Documents 1 and 2 below).

鉄道総合技術研究所:落石対策技術マニュアル,pp. 2−4,1999.3Railway Technical Research Institute: Falling Rock Countermeasure Technical Manual, pp. 2-4, 1999.3 日本道路協会:落石対策便覧,pp. 7−9,2000.6Japan Road Association: Ochiishi Countermeasure Handbook, pp. 7-9, 2000.6 緒方健治,松山裕幸,天野淨行:振動特性を利用した落石危険度の判定,土木学会論文集,No.749/VI−61,pp. 123−135,2003.12Kenji Ogata, Hiroyuki Matsuyama, Nobuyuki Amano: Judgment of rock fall risk using vibration characteristics, JSCE Proceedings, No. 749 / VI-61, pp. 123-135, 2003.12. 竹本将,藤原優,横田聖哉,三塚隆,甲斐国臣,岡本栄:落石危険度振動調査法を用いた現地調査および判定システムの開発−落石の危険度を現地で判定するシステムの開発−,土木学会第65回年次学術講演会,pp.75−76,2010.9Masaru Takemoto, Yu Fujiwara, Seiya Yokota, Takashi Mitsuka, Kuniomi Kai, Ei Okamoto: Development of a field survey and judgment system using the rock fall risk vibration survey method-Development of a system to judge the risk of rock fall on the field- Japan Society of Civil Engineers 65th Annual Academic Lecture, pp. 75-76, 2010.9 斉藤秀樹,大塚康範,上半文昭,小島謙一,村田修,馬貴臣,沢田和秀,八嶋厚,深田隆弘:遠隔非接触振動計測による岩盤斜面の安定性評価に関する基礎実験,土木学会第65回年次学術講演会,pp.47−48,2010.9Hideki Saito, Yasunori Otsuka, Fumiaki Kamihan, Kenichi Kojima, Osamu Murata, Takaomi Ma, Kazuhide Sawada, Atsushi Yashima, Takahiro Fukada: Fundamental experiment on stability evaluation of rock slopes by remote non-contact vibration measurement, Japan Society of Civil Engineers 65th Annual Scientific Lecture, pp. 47-48, 2010.9 斎藤秀樹,大塚康範,馬貴臣,沢田和秀,上半文昭,村田修,深田隆弘:遠隔非接触振動計測による岩塊の安定性評価法に関する検討,第46回地盤工学研究発表会,pp.1845−1846,2011.7Hideki Saito, Yasunori Otsuka, Takaomi Ma, Kazuhide Sawada, Fumiaki Kamihan, Osamu Murata, Takahiro Fukada: Examination of rock mass stability evaluation by remote non-contact vibration measurement, 46th Geotechnical Research Conference, pp. 1845-1846, 20111.7 深田隆弘,泉並良二,森泰樹:斜面上転石の振動計測を目的としたシステム構築と計測結果に関する考察,土木学会第65回年次学術講演会,pp.77−78,2010.9Takahiro Fukada, Ryoji Izuminami, Yasuki Mori: Consideration of system construction and measurement results for vibration measurement of rocks on slopes, Japan Society of Civil Engineers 65th Annual Lecture, pp. 77-78, 2010.9 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(基礎構造物・抗土圧構造物),pp.128−129,2000.6Railway Technical Research Institute: Design standards for railway structures, etc., explanation (foundation structure, anti-earth pressure structure), pp. 128-129,2000.6 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(基礎構造物・抗土圧構造物),pp.88−89,2000.6Railway Technical Research Institute: Design standards for railway structures, etc., explanation (foundation structure, anti-earth pressure structure), pp. 88-89,2000.6

上記した危険度の高い転石に対して種々の対策(上記非特許文献3〜6参照)が試みられているが、まだ、落石危険度に大きく関係する転石の根入れ深さの実用的な推定方法が提案されるまでには至っていない。
本発明は、上記状況に鑑みて、斜面における転石型落石を対象とし、この転石を地盤中に根入れを有する剛体に模擬し、その振動特性から落石危険度に関係する根入れ深さの推定を行うことができる、コンパクトで、しかも、実斜面においても十分使用可能な、転石を模擬した剛体の振動特性による根入れ深さの推定方法を提供することを目的とする。
Various countermeasures (see Non-Patent Documents 3 to 6 above) have been attempted for the above-mentioned high-risk boulders, but a practical estimation of the inset depth of the boulders greatly related to the rock-fall risk level. A method has not yet been proposed.
In view of the above situation, the present invention targets a boulder-type rock fall on a slope, simulates this boulder into a rigid body having a root in the ground, and estimates the depth of penetration related to the rock fall risk from its vibration characteristics. It is an object of the present invention to provide a method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder that is compact and can be used sufficiently even on an actual slope.

本発明は、上記目的を達成するために、
〔1〕転石を模擬した剛体の振動特性による根入れ深さの推定方法において、斜面における転石を地盤中に根入れがある剛体に模擬し、この剛体の形状と重量の異なる供試体を作製して、地盤強度、前記供試体の形状と重量、前記供試体の根入れ深さの条件を変えて前記供試体の固有振動数の測定を行うことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the method of estimating the depth of penetration based on the vibration characteristics of a rigid body simulating a boulder, the specimens with different shapes and weights of the rigid body were prepared by simulating a boulder on the slope as a rigid body with a root in the ground. Then, the natural frequency of the specimen is measured by changing the ground strength, the shape and weight of the specimen, and the depth of penetration of the specimen.

〔2〕上記〔1〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の固有振動数の測定は、前記供試体にゴムハンマーによる打撃を加えて行うことを特徴とする。
〔3〕上記〔2〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の上面に加速度計を配置し、この加速度計からの波形をAD変換器を介してパーソナルコンピュータで記録することを特徴とする。
[2] In the method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to [1] above, the natural frequency of the specimen is measured by hitting the specimen with a rubber hammer. It is characterized by that.
[3] In the method of estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to [2] above, an accelerometer is arranged on the upper surface of the specimen, and an AD converter is used to convert the waveform from the accelerometer to an AD converter. And recording with a personal computer.

〔4〕上記〔1〕又は〔2〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の寸法と重量が、第1の供試体Aは縦0.3m、横0.4m、高さ0.5m、第2の供試体Aは縦0.3m、横0.5m、高さ0.4m、それぞれ重量が1.38kNであり、第1の供試体Bは、縦0.3m、横0.4m、高さ0.8m、第2の供試体Bは縦0.3m、横0.8m、高さ0.4mで、それぞれ重量が2.21kNであることを特徴とする。   [4] In the method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to the above [1] or [2], the size and weight of the test specimen are 0. 3m, 0.4m in width, 0.5m in height, the second specimen A has a length of 0.3m, a width of 0.5m, a height of 0.4m, and a weight of 1.38kN, respectively. B is 0.3 m long, 0.4 m wide, 0.8 m high, and the second specimen B is 0.3 m long, 0.8 m wide, 0.4 m high, and has a weight of 2.21 kN, respectively. It is characterized by being.

〔5〕上記〔4〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、地盤反力係数kv30(MN/m3 )の目的強度が40〜50、構築地盤強度が47.6である地盤種別を「軟」、目的強度が70〜80、構築地盤強度が79.1である地盤種別を「中」、目的強度が100以上、構築地盤強度が146である地盤種別を「硬」とし、前記各供試体を前記「軟」、「中」、「硬」の各地盤に配置することを特徴とする。 [5] In the method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to [4] above, the target strength of the ground reaction force coefficient kv 30 (MN / m 3 ) is 40 to 50, and the built ground strength The ground type with a 47.6 is “soft”, the target strength is 70-80, the ground type with the built ground strength of 79.1 is “medium”, the ground strength with the target strength of 100 or more and the built ground strength is 146 The type is “hard”, and each of the specimens is arranged on each of the “soft”, “medium”, and “hard” boards.

〔6〕上記〔1〕又は〔2〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体や地盤をモデル化して3次元有限要素法による固有値解析を行うことを特徴とする。
〔7〕上記〔6〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、地盤自体の振動の影響を排除するために地盤の密度は0とし、さらに静的に測定した平板載荷試験相当値に対して、地盤のひずみ効果を考慮した動的値としての2倍相当値を用いて地盤を評価することで実結果を解析的に再現することを特徴とする。
[6] In the estimation method of the penetration depth based on the vibration characteristics of a rigid body simulating a boulder according to [1] or [2] above, the specimen and the ground are modeled and eigenvalue analysis is performed by a three-dimensional finite element method. It is characterized by that.
[7] In the method of estimating the penetration depth based on the vibration characteristics of a rigid body simulating a boulder as described in [6] above, the ground density is set to 0 in order to eliminate the influence of the vibration of the ground itself, and further statically measured The actual result is analytically reproduced by evaluating the ground using a double equivalent value as a dynamic value considering the strain effect of the ground with respect to the flat plate loading test equivalent value.

〔8〕上記〔6〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記地盤強度や前記供試体の寸法に関して定義した無次元量Q1 やQ2 を変数とした下記推定式によって固有振動数を算定することを特徴とする。
d=0.3584(f/f0 * )−0.351
ただし、dは供試体の根入れ深さ、fは供試体の根入れがある状態での固有振動数、f0 * は供試体の露出部分の根入れがないとみなした時の固有振動数である。
[8] In the method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to [6] above, the dimensionless quantities Q 1 and Q 2 defined with respect to the ground strength and the dimensions of the specimen are variables. The natural frequency is calculated by the following estimation formula.
d = 0.3584 (f / f 0 * ) − 0.351
Where d is the depth of penetration of the specimen, f is the natural frequency in the presence of the specimen, and f 0 * is the natural frequency when the exposed part of the specimen is considered not to be incorporated. It is.

〔9〕上記〔8〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記無次元量Q1 は{E/(W/A)}1/2 であり、前記無次元量Q2 は√{(b/h0 2 /(b/h0 2 +1}であることを特徴とする。
ここで、Eは供試体の変形係数、Wは供試体の重量、およびAは供試体が地盤と接する底面積、bは供試体の打撃方向の幅、h0 は根入れなしの供試体の高さである。
[9] In the method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to [8] above, the dimensionless amount Q 1 is {E / (W / A)} 1/2 , The dimensionless quantity Q 2 is √ {(b / h 0 ) 2 / (b / h 0 ) 2 +1}.
Here, E is the modulus of deformation of the specimen, W is the weight of the specimen, and A is a bottom area of the specimen is in contact with the ground, b is specimen blow width, h 0 is the specimen without embedment It is height.

〔10〕上記〔8〕記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の根入れ比d/h0 と固有振動数には比例の関係があるので、前記供試体の根入れがある状態での固有振動数fと前記供試体の露出部分の根入れがないとみなした時の固有振動数f0 * の比を用いて、前記供試体の根入れ深さの推定長を前記推定式で近似し、この推定式の相関係数は、R2 =0.926としたことを特徴とする。 [10] In the method of estimating the penetration depth based on the vibration characteristics of a rigid body simulating a boulder according to [8] above, the penetration ratio d / h 0 of the specimen and the natural frequency have a proportional relationship. Using the ratio of the natural frequency f in the presence of the specimen to the specimen and the natural frequency f 0 * when the exposed portion of the specimen is considered to be not incorporated, the root of the specimen is used. The estimated length of the insertion depth is approximated by the estimation formula, and the correlation coefficient of this estimation formula is R 2 = 0.926.

本発明によれば、次のような効果を奏することができる。
(1)転石を地盤中に根入れがある剛体に模擬し、この剛体に代えて寸法と重量の異なる供試体を作成して地盤強度、根入れ深さなどの条件を変えて固有振動数の測定実験を行うことにより、落石危険度に関係が大きい転石の根入れ深さの実用的な推定方法を提供することができる。この実験で行った固有振動数の測定方法は、打撃に使用するゴムハンマーを用いたシステム構成がコンパクトであるために、実斜面においても十分使用可能である。
(2)剛体や地盤をモデル化して3次元有限要素法による固有値解析により、実験を再現することを提案した。その場合、地盤自体の振動の影響を排除するために地盤の密度を0とし、さらに静的に測定した平板載荷試験相当値に対して、地盤のひずみ効果を考慮した動的な2倍相当値を用いて地盤を評価することによって、実験と解析の結果の適合性が良いことを実証することができた。
(3)地盤中に根入れを有する剛体の振動特性は非線形性の高い挙動を示すと考えられるが、地盤強度や剛体の形状に関して定義した無次元量Q1 やQ2 などと相関が高いことを示し、これらを説明変数とした推定式によって固有振動数を算定することができた。
(4)また、本発明では根入れ深さの推定を目的としているので、露出部分を根入れなしとみなして算定した固有振動数と根入れがある状態での実測固有振動数を用いて、根入れ深さを推定する推定式を提供した。
According to the present invention, the following effects can be achieved.
(1) Simulate a boulder into a rigid body with a root in the ground, create a specimen with a different size and weight in place of this rigid body, change the conditions such as ground strength, depth of penetration, etc. By conducting a measurement experiment, it is possible to provide a practical method for estimating the depth of intrusion of a boulder that has a great relationship with the rock fall risk. The natural frequency measurement method performed in this experiment is sufficiently usable even on an actual slope because the system configuration using a rubber hammer used for striking is compact.
(2) It was proposed to reproduce the experiment by modeling the rigid body and the ground and performing eigenvalue analysis using the three-dimensional finite element method. In that case, in order to eliminate the influence of the vibration of the ground itself, the density of the ground is set to 0, and further, a value equivalent to a dynamic double considering the strain effect of the ground with respect to the value equivalent to the statically measured flat plate loading test. It was proved that the suitability of the results of the experiment and the analysis was good by evaluating the ground using
(3) The vibration characteristics of a rigid body with roots in the ground are considered to exhibit highly nonlinear behavior, but have a high correlation with the dimensionless quantities Q 1 and Q 2 defined for the ground strength and the shape of the rigid body. The natural frequency could be calculated by the estimation formula using these as explanatory variables.
(4) In addition, since the purpose of the present invention is to estimate the depth of penetration, the natural frequency calculated by assuming that the exposed portion is not rooted and the measured natural frequency in the state where the root is rooted are used. An estimation formula for estimating the penetration depth is provided.

本発明に係る剛体とみなす供試体の形状および重量を示す図である。It is a figure which shows the shape and weight of the test body considered as the rigid body which concerns on this invention. 本発明に係る地盤材料の粒径加積曲線を示す図である。It is a figure which shows the particle size accumulation curve of the ground material which concerns on this invention. 本発明に係る供試体の加振および振動計測の概要を示す図である。It is a figure which shows the outline | summary of the vibration and vibration measurement of the test body which concern on this invention. 本発明に係る供試体の振動を測定記録した加速度波形を示す図である。It is a figure which shows the acceleration waveform which measured and recorded the vibration of the test body which concerns on this invention. 本発明に係るFFT処理による固有振動数の算定例を示す図である。It is a figure which shows the example of calculation of the natural frequency by the FFT process which concerns on this invention. 本発明に係る供試体の形状と配置を示す図である。It is a figure which shows the shape and arrangement | positioning of the test body which concern on this invention. 本発明に係る供試体の根入れ比と固有振動数の関係(実験結果)を示す図である。It is a figure which shows the relationship (experimental result) of the penetration ratio of the test body which concerns on this invention, and a natural frequency. 本発明に係る供試体の根入れ比が0(固有値)の解析結果を示す図である。It is a figure which shows the analysis result of the penetration ratio of the test piece which concerns on this invention being 0 (eigenvalue). 本発明に係る供試体の根入れ比と固有振動数の関係(解析結果)を示す図である。It is a figure which shows the relationship (analysis result) of the penetration ratio and natural frequency of the test body which concerns on this invention. 本発明に係る固有振動数(解析値)と固有振動数(実験値)の相関を示す図である。It is a figure which shows the correlation of the natural frequency (analysis value) and natural frequency (experimental value) which concern on this invention. 本発明に係る地盤の変形係数と固有振動数の関係を示す図である。It is a figure which shows the relationship between the deformation coefficient of the ground based on this invention, and a natural frequency. 本発明に係る縦横比に関係する無次元量Q2 と固有振動数f0 の関係を示す図である。Is a diagram showing the relationship between dimensionless quantity Q 2 and natural frequency f 0 relating to the aspect ratio of the present invention. 本発明に係る地盤中に根入れのある剛体を示す図である。It is a figure which shows the rigid body which has roots in the ground which concerns on this invention. 本発明に係る剛体の露出部分を示す図である。It is a figure which shows the exposed part of the rigid body which concerns on this invention. 本発明に係る固有振動数の相関(解析値と推定式)を示す図である。It is a figure which shows the correlation (analysis value and estimation formula) of the natural frequency which concerns on this invention. 本発明に係る根入れ深さの相関(実長と推定長)を示す図である。It is a figure which shows the correlation (real length and estimated length) of the penetration depth which concerns on this invention. 転石型落石の例を示す模式図である。It is a schematic diagram which shows the example of a boulder type falling rock.

本発明の転石を模擬した剛体の振動特性による根入れ深さの推定方法は、斜面における転石を地盤中に根入れがある剛体に模擬し、この剛体の寸法と重量の異なる供試体を作製して、地盤強度、前記供試体の寸法と重量、前記供試体の根入れ深さの条件を変えて前記供試体の固有振動数の測定を行う。   The method of estimating the depth of penetration based on the vibration characteristics of a rigid body simulating a boulder according to the present invention simulates a boulder on a slope as a rigid body with a root in the ground, and produces specimens with different sizes and weights of this rigid body. Then, the natural frequency of the specimen is measured by changing the ground strength, the size and weight of the specimen, and the depth of penetration of the specimen.

以下、本発明の実施の形態について詳細に説明する。
本発明では、転石型落石を対象とし、落石危険度に大きく関係する転石の根入れ深さを推定する方法を提案する。本方法では、まず転石を「地盤中に根入れを有する剛体」として模擬する。この剛体として、重量や寸法の異なる供試体を準備して、これら供試体を異なる地盤強度や異なる根入れ深さで埋設し、ハンマーで打撃して測定した加速度波形から固有振動数を算定する(実験)。次に、この実験結果を3次元有限要素法による固有値解析で再現する(解析)。次いでこの実験および解析で得られた、地盤中に根入れを有する剛体の振動特性を利用して、転石の根入れ深さを推定する。以下に、段階を追って、その方法を説明する。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention proposes a method for estimating the depth of intrusion of a boulder that is greatly related to the risk of falling rock, targeting a boulder type rock fall. In this method, first, the stone is simulated as a “rigid body having a root in the ground”. As this rigid body, specimens with different weights and dimensions are prepared, and these specimens are embedded at different ground strengths and different penetration depths, and the natural frequency is calculated from the acceleration waveform measured by hitting with a hammer ( Experiment). Next, this experimental result is reproduced by eigenvalue analysis by a three-dimensional finite element method (analysis). Next, by using the vibration characteristics of the rigid body that has rooting in the ground, obtained by this experiment and analysis, the depth of rooting of the boulder is estimated. The method will be described below step by step.

図1は本発明に係る剛体とみなす供試体の形状および重量を示す図である。図1(a)は供試体A、図1(b)は供試体Bを示しており、供試体Aは0.3m(縦)×0.4m(横)×0.5m(高さ)で重量1.38kN、供試体Bは0.3m(縦)×0.4m(横)×0.8m(高さ)で重量2.21kNの2種類である。実験で用いる供試体は、コンクリート(呼び強度24,W/C=60%)で製作した。供試体の寸法や重量は、鉄道における落石災害の実態から、重量が2kN程度までの発生件数が多いこと、さらに形状の影響を調べるために寸法を変えて多くのケースの実験が行えることから直方体で上記した寸法と重量とした。   FIG. 1 is a diagram showing the shape and weight of a specimen considered as a rigid body according to the present invention. 1A shows a specimen A, and FIG. 1B shows a specimen B. The specimen A is 0.3 m (vertical) × 0.4 m (horizontal) × 0.5 m (height). The weight is 1.38 kN, and there are two types of specimen B: 0.3 m (length) × 0.4 m (width) × 0.8 m (height) and weight 2.21 kN. The specimen used in the experiment was made of concrete (nominal strength 24, W / C = 60%). The dimensions and weight of the specimen are rectangular parallelepiped because of the fact that there are many occurrences of up to 2kN weight due to the actual situation of rockfall disasters in railways, and that many cases can be tested by changing the dimensions in order to investigate the influence of the shape. And the above dimensions and weight.

一方、供試体を埋設するための土槽は、2つの供試体A,Bを同時に並べて実験ができるとともに境界の影響を受けない十分な大きさとし、縦2m×横3m×深さ2mとした。これに基礎地盤を高さ1m構築した後に、供試体を水平に設置し、順次根入れ部の地盤を構築しながら振動計測を行う。
なお、土槽本体は、鋼製山留め材と合板によって強固に作製するようにしている。
On the other hand, the earth basin for embedding the specimen was set to a size that is 2 m long × 3 m wide × 2 m deep enough to allow the two specimens A and B to be placed side by side and to be tested without being affected by the boundary. After constructing the foundation ground to a height of 1 m, the specimen is installed horizontally, and the vibration is measured while constructing the ground of the base part in sequence.
In addition, the earth tub main body is made to produce strongly with the steel mountain stopper and the plywood.

次に、地盤材料の特性について説明する。
基礎地盤および根入れ地盤として使用した材料の特性および粒径加積曲線は、表1と図2に示される通りで、工学的分類は礫まじり細粒分質砂(SF−G)である。なお、図2において、横軸は粒径(mm)、縦軸は通過質量百分率(%)を示している。
Next, the characteristics of the ground material will be described.
The characteristics and particle size accumulation curves of the materials used as the foundation ground and the basement ground are as shown in Table 1 and FIG. 2, and the engineering classification is gravel-mixed fine-grained sand (SF-G). In FIG. 2, the horizontal axis indicates the particle size (mm), and the vertical axis indicates the passing mass percentage (%).

以下、実験例について説明する。
実験で用いる地盤強度は小型FWD試験機による平板載荷試験相当値の地盤反力係数で管理することとし、目標とした地盤反力係数の値は、軟:40〜50MN/m3 ,中:70〜80MN/m3 ,硬:100MN/m3 以上の3種類の強度である。
これら所定の強度をもつ地盤を製作するために予め予備的な締固め試験を行い、地盤材料の撤き出し厚100〜150mmや振動プレート60kg級による転圧回数などの締固め条件を定めた。地盤構築後、実際に測定した地盤反力係数の値は、表2に示すように、軟:47.6MN/m3 ,中:79.1MN/m3 , 硬:146MN/m3 である。
Hereinafter, experimental examples will be described.
The ground strength used in the experiment is managed by the ground reaction force coefficient corresponding to the flat plate loading test using a small FWD tester. The target ground reaction force coefficient is soft: 40-50MN / m 3 , medium: 70 ˜80 MN / m 3 , Hard: Three strengths of 100 MN / m 3 or more.
Preliminary compaction tests were conducted in advance to manufacture the ground having these predetermined strengths, and compaction conditions such as the ground material removal thickness of 100 to 150 mm and the number of rollings by the vibration plate 60 kg class were determined. As shown in Table 2, the actually measured ground reaction force coefficients after the construction of the ground are as follows: soft: 47.6 MN / m 3 , medium: 79.1 MN / m 3 , hard: 146 MN / m 3 .

実験における根入れの条件は、根入れ比d/h0 (d:根入れ長, h0 :露出高さ)が0, 1/3, 1となる3種類とした。供試体を縦に置いたり横に置いたりすることによって、根入れ比を変えずに根入れ長や露出長が異なるケースの実験を行うことができる。
実験は地盤種別の軟から順次行い、撒き出し各層ごとに地盤反力係数を測定管理しながら根入れ地盤を構築していく。そして根入れ比を変化させたひとシリーズの実験が終了すると根入れ地盤を撤去し、基礎地盤を0.1mすきとり、地盤反力係数が大きく変化していないことを確認して、次の締固め条件で異なる地盤種別の根入れ地盤を構築する。また地盤強度が異なる実験ケースの場合には、所定強度となるよう基礎地盤からすべて作り直した。
In the experiment, there were three types of conditions for setting the rooting ratio d / h 0 (d: rooting length, h 0 : exposure height) to be 0, 1/3, and 1. By placing the specimen vertically or horizontally, it is possible to conduct experiments in cases where the penetration depth and exposure length are different without changing the penetration ratio.
The experiment will be conducted in order from the softness of the ground type, and the ground will be constructed while measuring and managing the ground reaction force coefficient for each stratum. Then, when the experiment of the human series with different rooting ratio was completed, the basement ground was removed, the base ground was removed by 0.1 m, and it was confirmed that the ground reaction force coefficient did not change significantly. Constructing ground for different ground types under consolidation conditions. In the case of experimental cases with different ground strengths, all of them were remade from the basic ground so as to have a predetermined strength.

この繰り返し手順により実施した実験ケースは、表2に示すように、供試体A,Bの2種類、地盤種別の軟、中、硬の3種類、根入れ比0,1/3,1の3種類の組み合わせである。
次に、実験における計測方法(加振および振動計測)について説明する。
図3は本発明に係る供試体の加振および振動計測の概要を示す図であり、図3(a)は実験方法の模式図、図3(b)は加速度計の設置状況を示す図面代用写真、図3(c)は加振および振動計測のシステム構成図である。
As shown in Table 2, the experiment cases carried out by this repetitive procedure are 2 types of specimens A and B, 3 types of soft, medium, and hard types of ground, and 3 of the penetration ratio 0, 1/3, and 1 It is a combination of types.
Next, a measurement method (excitation and vibration measurement) in the experiment will be described.
FIG. 3 is a diagram showing an outline of vibration and vibration measurement of a specimen according to the present invention, FIG. 3 (a) is a schematic diagram of an experimental method, and FIG. 3 (b) is a drawing substitute showing an installation state of an accelerometer. FIG. 3C is a system configuration diagram of vibration and vibration measurement.

図3に示すように、供試体1の上面に2個の加速度計2を取り付け、座標は常に供試体1底面の短辺方向がx方向、長辺方向がy方向、鉛直方向がz方向となるように決め、x, yの各方向にゴムハンマー3で10回程度ずつ打撃した時の加速度波形をAD変換器4に通してパーソナルコンピュータ(PC)5に記録する。なお、6は根入れ地盤、7は基礎地盤である。   As shown in FIG. 3, two accelerometers 2 are attached to the upper surface of the specimen 1, and the coordinates are always such that the short side direction of the bottom face of the specimen 1 is the x direction, the long side direction is the y direction, and the vertical direction is the z direction. The acceleration waveform when the rubber hammer 3 is hit about 10 times in each of the x and y directions is passed through the AD converter 4 and recorded in the personal computer (PC) 5. In addition, 6 is a laying ground and 7 is a foundation ground.

振動計測に使用する機器の仕様は、加速度計2は圧電式、プリアンプ内蔵型、3軸型であり、振動数範囲が3−5,000Hz、AD変換器4は16チャンネル同時サンプリング型であり、その周波数は88.2kHz/ch(MAX)、増幅度は1−100倍である。
振動計測のシステム化については、接道条件や作業条件が必ずしも良好でない鉄道沿線斜面で使用することを考慮し、プリアンプ内蔵のICT(情報通信技術:Information and communication technology)タイプの機器を採用し、チャージアンプを不要とするなどしたシンプル、かつ、コンパクトなシステム構成としている。
The specifications of the equipment used for vibration measurement are the accelerometer 2 is a piezoelectric type, a preamplifier built-in type, a 3-axis type, the frequency range is 3-5,000 Hz, and the AD converter 4 is a 16-channel simultaneous sampling type. The frequency is 88.2 kHz / ch (MAX), and the amplification degree is 1 to 100 times.
As for the systematization of vibration measurement, ICT (Information and Communication Technology) type equipment with built-in preamplifier is adopted in consideration of use on railway slopes where the roadway conditions and work conditions are not always good. It has a simple and compact system configuration that eliminates the need for a charge amplifier.

図4は本発明に係る供試体の振動を測定記録した加速度波形を示す図であり、図4(a)はその測定した加速度波形であり、横軸は計測時間(分:秒)を、縦軸は加速度(m/s2 )を示しており、図4(b)は加速度波形を1波形毎に切り取ったものである。また、図5は本発明に係るFFT処理後の固有振動数を示す図であり、図4(b)に示した1波形毎に切り取られた加速度波形をFFT処理した結果を示している。なお、図5において、横軸は固有振動数(Hz)、縦軸はフーリエ振幅を示している。 FIG. 4 is a diagram showing an acceleration waveform obtained by measuring and recording the vibration of the specimen according to the present invention, FIG. 4 (a) is the measured acceleration waveform, the horizontal axis represents the measurement time (minute: second), and the vertical axis. The axis indicates acceleration (m / s 2 ), and FIG. 4B shows the acceleration waveform cut out for each waveform. FIG. 5 is a diagram showing the natural frequency after the FFT processing according to the present invention, and shows the result of the FFT processing of the acceleration waveform cut out for each waveform shown in FIG. 4B. In FIG. 5, the horizontal axis indicates the natural frequency (Hz), and the vertical axis indicates the Fourier amplitude.

上記した図4および図5に示すように、記録した加速度波形を、1波ずつ高速フーリエ変換(FFT)し、そのときのフーリエスペクトルの最大値となる卓越振動数を供試体1の固有振動数とする。
加振にゴムハンマー3を用いたのは、鋼製ハンマーと比べて打撃時に岩塊との接触時間が長く、小型のものでも比較的大きな衝撃力が得られることと、測定対象となる10〜80Hz程度の振動数領域において安定した衝撃力を岩塊に加えることができるためである。
As shown in FIG. 4 and FIG. 5 described above, the recorded acceleration waveform is subjected to fast Fourier transform (FFT) one wave at a time, and the dominant frequency that becomes the maximum value of the Fourier spectrum at that time is determined as the natural frequency of the specimen 1. And
The rubber hammer 3 was used for the vibration because the contact time with the rock mass was long when hitting compared to a steel hammer, and a relatively large impact force was obtained even with a small one, and the measurement target 10 This is because a stable impact force can be applied to the rock mass in a frequency range of about 80 Hz.

次に、上記のようにして得られた実験結果について説明する。
地盤中に根入れを有する剛体の固有振動数は、剛体の形状、周辺の地盤強度、根入れ深さなどに関係がある。そこで、まず供試体および地盤強度別に根入れ比の違いによる固有振動数について説明する。
図6は本発明に係る実験に用いた供試体の形状と配置を示す図であり、図6(a)は第1の供試体A(A−H500)であり、0.3m(縦)x、0.4m(横)y、0.5m(高さ)、図6(b)は第1の供試体B(B−H800)であり、縦0.3m、横0.4m、高さ0.8m、図6(c)は第2の供試体A(A−H400)であり、縦0.3m、横0.5m、高さ0.4m、図6(d)は第2の供試体B(B−H400)であり、縦0.3m、横0.8m、高さ0.4mである。すなわち、第1の供試体Aは図1で示した供試体Aであり、第1の供試体Bは図1で示した供試体Bであり、第2の供試体Aは第1の供試体Aの設置方向を変えたもの、第2の供試体Bは第1の供試体Bの設置方向を変えたものである。これらの供試体について表2で示した地盤種別3種類、根入れ比3種類に加えて、さらに打撃方向をx,yの2方向で実験を行うので、全体で72個の固有振動数データが得られる。
Next, the experimental results obtained as described above will be described.
The natural frequency of a rigid body having a root in the ground is related to the shape of the rigid body, the strength of the surrounding ground, the depth of root penetration, and the like. First, the natural frequency due to the difference in the penetration ratio according to the specimen and ground strength will be described.
FIG. 6 is a view showing the shape and arrangement of the specimen used in the experiment according to the present invention, and FIG. 6A is the first specimen A (A-H500), which is 0.3 m (longitudinal) × , 0.4 m (horizontal) y, 0.5 m (height), FIG. 6B is the first specimen B (B-H800), 0.3 m long, 0.4 m wide, 0 height .8m, FIG. 6 (c) is the second specimen A (A-H400), 0.3 m in length, 0.5 m in width, 0.4 m in height, and FIG. 6 (d) is the second specimen. B (B-H400), which is 0.3 m in length, 0.8 m in width, and 0.4 m in height. That is, the first specimen A is the specimen A shown in FIG. 1, the first specimen B is the specimen B shown in FIG. 1, and the second specimen A is the first specimen. The one in which the installation direction of A and the second specimen B are changed are those in which the installation direction of the first specimen B is changed. In addition to the three types of ground types and the three types of penetration ratios shown in Table 2, these specimens are further tested in two directions, x and y, so that 72 natural frequency data are obtained in total. can get.

図6(a)に示す第1の供試体Aを高さ0.5mとなるように設置(図中「A−H500」と表記)し、0.3mの短辺方向(縦)に打撃した時をx方向の固有振動数fx、0.4mの長辺方向(横)に打撃した時をy方向の固有振動数fyとする。同様に、図6(b)に示す第1の供試体Bを高さ0.8mとなるように設置(「B−H800」と表記)した時の打撃方向x,yの固有振動数もfxとfyとし、図7にその実験結果を示す。   The first specimen A shown in FIG. 6 (a) was installed so as to have a height of 0.5 m (indicated as “A-H500” in the figure), and was hit in the short side direction (vertical) of 0.3 m. Time is assumed to be the natural frequency fx in the x direction, and the time when it is hit in the long side direction (horizontal) of 0.4 m is the natural frequency fy in the y direction. Similarly, the natural frequencies of the striking directions x and y when the first specimen B shown in FIG. 6B is set to a height of 0.8 m (denoted as “B-H800”) are also fx. And fy, and the experimental results are shown in FIG.

図7は本発明に係る供試体の根入れ比と固有振動数の関係を示す図であり、図7(a)は第1の供試体A、高さ0.5m(A−H500),地盤は「軟」の場合、図7(b)は第1の供試体A、高さ0.5m(A−H500),地盤は「中」の場合、図7(c)は第1の供試体B、高さ0.8m(B−H800),地盤は「軟」の場合、図7(d)は第1の供試体B、高さ0.8m(B−H800),地盤は「中」の場合の実験結果を示す図である。なお、地盤種別は表2に示した通りである。   FIG. 7 is a diagram showing the relationship between the penetration ratio and the natural frequency of the specimen according to the present invention. FIG. 7 (a) shows the first specimen A, height 0.5m (A-H500), ground. 7 is “soft”, FIG. 7B is the first specimen A, height 0.5 m (A-H500), and the ground is “medium”, FIG. 7C is the first specimen. B, height 0.8m (B-H800), if the ground is "soft", Fig. 7 (d) is the first specimen B, height 0.8m (B-H800), the ground is "medium" It is a figure which shows the experimental result in the case of. The ground types are as shown in Table 2.

いずれも地盤「軟」と「中」のケースについての結果であるが、この結果より固有振動数は根入れ比d/h0 に比例して大きくなるとともに、地盤強度によっても増大していくことが分かる。
また、供試体AとBの違いは重量と高さであるが、地盤強度が同条件の場合、供試体Aの固有振動数の方が全体的に大きくなっている。
Both are the results for the ground “soft” and “medium” cases. From this result, the natural frequency increases in proportion to the penetration ratio d / h 0 and also increases with the ground strength. I understand.
Further, the difference between the specimens A and B is the weight and the height, but when the ground strength is the same, the natural frequency of the specimen A is larger overall.

いずれの結果も、根入れ比が大きくなると、固有振動数が大きくなり、両者は直線で近似することができる。
なお、地盤「硬」のケースや第2の供試体A,Bのケースの実験結果も図7と同様の傾向を示していたのでここでは省略した。
次に、上記実験で得られた固有振動数を3次元有限要素法による固有解析で再現する。そこで、3次元有限要素法による固有解析について説明する。
In any result, when the penetration ratio increases, the natural frequency increases, and both can be approximated by a straight line.
The experimental results of the ground “hard” case and the cases of the second specimens A and B also showed the same tendency as in FIG.
Next, the natural frequency obtained in the above experiment is reproduced by eigenanalysis using a three-dimensional finite element method. Therefore, eigenanalysis by the three-dimensional finite element method will be described.

(1)解析モデルと計算条件
まず、地盤中に根入れを有する剛体の固有振動数を解析的に求めるため、実験を行った供試体と地盤とをモデル化して、3次元有限要素法による固有値解析を行う。
供試体と地盤のモデルの大きさについては、実大とし、地盤は等方弾性体としている。また解析にあたっての境界条件は、底面および側面について水平鉛直とも固定支持としている。さらに供試体と地盤とのはく離は無視し、完全密着を仮定した。
(1) Analytical model and calculation conditions First, in order to analytically determine the natural frequency of a rigid body with a root in the ground, the experimental specimen and the ground were modeled, and the eigenvalue obtained by the three-dimensional finite element method. Analyze.
The size of the specimen and ground model is assumed to be actual, and the ground is an isotropic elastic body. The boundary conditions in the analysis are fixed support for both the horizontal and vertical directions on the bottom and side surfaces. Further, the separation between the specimen and the ground was ignored, and perfect adhesion was assumed.

その他の解析上の工夫として、地盤の密度を0としている。これは地盤自体の振動が供試体の振動に影響を及ぼし、供試体の固有振動数を低次モードの順に特定することが困難となったからである。すなわち、地盤の振動の影響を排除するために地盤の密度は0とした。
地盤強度については、次のように評価している。すなわち、実験では地盤強度の管理を小型FWDで行い、平板載荷試験相当値としてのkV30 を測定している。任意の幅を持つ剛体の底面に対する地盤反力係数、およびその地盤反力係数と地盤の変形係数の関係はそれぞれ次式(1)、(2)で表わされる(上記非特許文献7参照)。
As another analysis device, the density of the ground is set to zero. This is because the vibration of the ground itself affects the vibration of the specimen, and it is difficult to specify the natural frequency of the specimen in order of the lower order modes. That is, the density of the ground was set to 0 in order to eliminate the influence of ground vibration.
The ground strength is evaluated as follows. That is, in the experiment, ground strength is managed by a small FWD, and k V30 as a value corresponding to a flat plate loading test is measured. The ground reaction force coefficient with respect to the bottom surface of the rigid body having an arbitrary width, and the relationship between the ground reaction force coefficient and the ground deformation coefficient are expressed by the following equations (1) and (2), respectively (see Non-Patent Document 7).

V =kV30 (BV /0.3)-3/4 …(1)
0 =B(1−v2 )kV ・IP …(2)
ここで、kV :地盤反力係数(MN/m3
V30 :載荷板直径30cmの地盤反力係数(MN/m3 ) BV :剛体の換算幅〔BV =√(a×b),m〕
0 :地盤の変形係数(MPa)
B:載荷幅(MPa) v:ポアソン比(0.3)
P :形状係数
である。さらに、平板載荷試験などの比較的大きなひずみ領域から算定された静的な変形係数に対して、微小なひずみ領域の場合の動的な値は2倍程度の値で評価することが行われている(上記非特許文献8参照)。
k V = k V30 (B V /0.3) -3/4 (1)
E 0 = B (1−v 2 ) k V · I P (2)
Where k V : ground reaction force coefficient (MN / m 3 )
k V30 : Ground reaction force coefficient with a loading plate diameter of 30 cm (MN / m 3 ) B V : Rigid body conversion width [B V = √ (a × b), m]
E 0 : Ground deformation coefficient (MPa)
B: Loading width (MPa) v: Poisson's ratio (0.3)
I P : Shape factor. Furthermore, the dynamic value in the case of a small strain region is evaluated by a value about twice the static deformation coefficient calculated from a relatively large strain region such as a flat plate loading test. (See Non-Patent Document 8 above).

E=2E0 …(3)
上記式(1)〜(3)から、実験条件での地盤強度を変形係数に換算すると、ポアソン比v=0.3として、地盤種別の「軟」、「中」、「硬」はそれぞれ、E0 (軟)=7.5MPa、E0 (中)=12.5MPa、E0 (硬)=23.1MPaとなる。また2倍相当値は、E(軟)=15.0MPa、E(中)=25.0MPa、E(硬)=46.2MPaとなる。
E = 2E 0 (3)
From the above formulas (1) to (3), when the ground strength under the experimental conditions is converted into the deformation coefficient, the “Poisson” ratio, “Medium”, and “Hard” of the ground type are respectively set as Poisson's ratio v = 0.3. E 0 (soft) = 7.5 MPa, E 0 (medium) = 12.5 MPa, and E 0 (hard) = 23.1 MPa. Also, the double equivalent values are E (soft) = 15.0 MPa, E (medium) = 25.0 MPa, E (hard) = 46.2 MPa.

以上の計算条件で各ケースの固有値解析を行うこととし、その一例として図8に図6の第1供試体A(A−H500)、根入れ比dh0 =0の解析結果を示す。なお、図8において、11は地盤、12は供試体(A−H500)である。
(2)解析結果
図7で示した実験結果の整理と同様に、解析結果についても根入れ比と固有振動数の関係を図9に示す。図7の実験結果と同様に、根入れ比と固有振動数は比例関係にあることが分かる。
(3)実験と解析の適合性
図10に固有値解析の結果得られた固有振動数と実験で測定された固有振動数の相関を示す。図10において、白丸は第1の供試体A(A−−H500)、白四角は第1の供試体B(B−−H800)、白菱形は第2の供試体A(A−H400、白三角は第2の供試体B(B−H400)であり、プロットはそれぞれの凡例が示す実験ケース(表記は図6参照)において、地盤強度を2倍相当の2E0 とした場合である。そして、この時の結果は、近似線(太線)で表わすことができる。同様に図が煩雑となることを避けるためにプロットはしていないが、地盤強度をE0 とした場合には、近似線(一点鎖線)となる。このように地盤強度を2倍相当値の2E0 で評価することにより、固有値解析結果と実験結果との適合が良いことが分かる。
The eigenvalue analysis of each case is performed under the above calculation conditions. As an example, FIG. 8 shows the analysis result of the first specimen A (A-H500) and the penetration ratio dh 0 = 0 in FIG. In FIG. 8, 11 is the ground, and 12 is a specimen (A-H500).
(2) Analysis Results Similar to the arrangement of the experimental results shown in FIG. 7, the relationship between the penetration ratio and the natural frequency is also shown in FIG. Similar to the experimental results of FIG. 7, it can be seen that the penetration ratio and the natural frequency are in a proportional relationship.
(3) Suitability between experiment and analysis FIG. 10 shows the correlation between the natural frequency obtained as a result of the eigenvalue analysis and the natural frequency measured in the experiment. In FIG. 10, the white circle is the first specimen A (A--H500), the white square is the first specimen B (B--H800), and the white rhombus is the second specimen A (A-H400, white). The triangle is the second specimen B (B-H400), and the plot is the case where the ground strength is 2E 0 corresponding to double in the experimental case indicated by each legend (see FIG. 6 for the notation). The result at this time can be represented by an approximate line (thick line), but is not plotted in order to avoid the figure becoming complicated, but when the ground strength is E 0 , the approximate line In this way, by evaluating the ground strength with 2E 0 which is a double equivalent value, it can be seen that the eigenvalue analysis result and the experimental result are well matched.

以上の通り、供試体と地盤を実験条件と同等の寸法でモデル化し、地盤自体の振動の影響を排除するために密度は0とすること、加えて地盤強度を微小なひずみ領域の場合の動的な値として静的な値の2倍相当で評価することにより、実際の現象を解析的に再現することができる。
ただし、実験結果には多少のばらつきが見られるため、以後の検討は解析結果に基づいて行うこととする。
(4)地盤強度と固有振動数の関係
図11は本発明に係る地盤の変形係数と剛体の固有振動数の関係を示す図である。横軸に地盤強度に関係する特性値として、変形係数(E)と剛体の重量(W)、および剛体が地盤と接する底面積(A=a×b)から成る無次元量{E/(W/A)}1/2 を、そして縦軸に固有振動数を示しており、図6の第1の供試体A(A−H500)の根入れ比0,1/3,1のケースの解析結果の例である。図11において、黒丸はA−H500−0−x,白丸はA−H500−0−y,黒三角はA−H500−1/3−x,白三角はA−H500−1/3−y,黒四角はA−H500−1−x,白四角はA−H500−1−yである。(なお、A−500の後の数字が根入れ比、その後のx,yが打撃方向を示す)
この特性値と固有振動数の関係が直線となることから、比例定数αを用いて、両者の関係を下記の式(4)のように表すことができる。
As described above, the specimen and the ground are modeled with the same dimensions as the experimental conditions, and the density is set to 0 in order to eliminate the influence of the vibration of the ground itself. The actual phenomenon can be analytically reproduced by evaluating as a typical value equivalent to twice the static value.
However, some variation is seen in the experimental results, so the subsequent examination will be based on the analysis results.
(4) Relationship between Ground Strength and Natural Frequency FIG. 11 is a diagram showing the relationship between the deformation coefficient of the ground and the natural frequency of the rigid body according to the present invention. As a characteristic value related to the ground strength on the horizontal axis, a dimensionless amount {E / (W) composed of a deformation coefficient (E), a weight of the rigid body (W), and a bottom area (A = a × b) where the rigid body is in contact with the ground. / A)} 1/2 and the vertical axis represents the natural frequency, and the analysis of the case of the first specimen A (A-H500) in FIG. It is an example of a result. In FIG. 11, the black circle is A-H500-0-x, the white circle is A-H500-0-y, the black triangle is A-H500-1 / 3-x, the white triangle is A-H500-1 / 3-y, The black square is A-H500-1-x, and the white square is A-H500-1-y. (The number after A-500 is the penetration ratio, and the subsequent x and y indicate the striking direction.)
Since the relationship between the characteristic value and the natural frequency is a straight line, the relationship between the characteristic value and the natural frequency can be expressed by the following equation (4) using the proportionality constant α.

f=α{√(E/(W/A)}=αQ1 …(4)
なお、ここに示した無次元量をQ1 ={E/(W/A)}1/2 と定義しておく。
A−H500以外の解析ケースについても、同様の関係が得られ、その時の各ケースにおける比例定数αは、表3に示す値となる。
f = α {√ (E / (W / A)} = αQ 1 (4)
The dimensionless amount shown here is defined as Q 1 = {E / (W / A)} 1/2 .
The same relationship is obtained for analysis cases other than A-H500, and the proportionality constant α in each case at that time is a value shown in Table 3.

(5)剛体の形状と固有振動数の関係
次に、剛体の形状と固有振動数の関係について考える。
地震時に墓石のような根入れのない剛体が転倒した事例から、その時の地動加速度を推定するための考察や研究が報告されている(上記非特許文献9参照)。これは剛体の高さh0 と地震動の卓越方向幅bにより得られる縦横比b/h0 が剛体の静的な転倒条件に関係していることに基づいている。すなわち、剛体の形状を代表する縦横比と安定度との間には高い相関があることが推測されるため、この縦横比と剛体の固有振動数の関係について検討した。
(5) Relationship between rigid body shape and natural frequency Next, the relationship between the rigid body shape and the natural frequency will be considered.
Consideration and research for estimating the ground motion acceleration from a case where a rigid body such as a tombstone falls down during an earthquake has been reported (see Non-Patent Document 9 above). This is based on the fact that the aspect ratio b / h 0 obtained from the height h 0 of the rigid body and the width b in the dominant direction of the ground motion is related to the static overturning condition of the rigid body. That is, since it is presumed that there is a high correlation between the aspect ratio representing the shape of the rigid body and the stability, the relationship between the aspect ratio and the natural frequency of the rigid body was examined.

b/h0 ,(b/h0 1/2 ,(b/h0 2 など、縦横比を基本とした特性値を検討した結果、下記の式(5)に示した無次元量Q2 が、根入れのない剛体の固有振動数と高い相関を有することが分かった。
2 =√{(b/h0 2 /(b/h0 2 +1} …(5)
ここで、b:剛体の打撃方向の幅(m)
0 :根入れなしの剛体の高さ(m)
である。
As a result of examining characteristic values based on the aspect ratio such as b / h 0 , (b / h 0 ) 1/2 , and (b / h 0 ) 2 , the dimensionless quantity Q shown in the following equation (5) is obtained. 2 has a high correlation with the natural frequency of the rigid body without root.
Q 2 = √ {(b / h 0 ) 2 / (b / h 0 ) 2 +1} (5)
Where b: width of the rigid body in the striking direction (m)
h 0 : height of rigid body without root (m)
It is.

図12は本発明に係る縦横比に関係する無次元量Q2 と固有振動数f0 の関係を示す図である。
ここで、この縦横比に関係する無次元量Q2 の物理的な意味を考える必要がある。今、半無限弾性地盤上にある剛体のロッキング振動について、根入れがない場合の振動数方程式は、下記の式(6)に示すYおよびΘについての同次方程式の係数の行列式を0に等置した式として得られる(上記非特許文献9参照)(ただし文献中の記号は本明細書におけるものに置き換え、その他の新たに出てくるものとして、M:質量, n:固有円振動数, ks :水平地盤係数, kv :鉛直地盤係数, J:重心まわりの質量の慣性モーメントである)。
FIG. 12 is a diagram showing the relationship between the dimensionless quantity Q 2 related to the aspect ratio and the natural frequency f 0 according to the present invention.
Here, it is necessary to consider the physical meaning of the dimensionless quantity Q 2 related to the aspect ratio. Now, with respect to the rocking vibration of a rigid body on a semi-infinite elastic ground, the frequency equation in the case where there is no rooting is that the determinant of the coefficient of the homogeneous equation for Y and Θ shown in the following equation (6) is 0. Obtained as an equal expression (see Non-Patent Document 9 above) (however, symbols in the document are replaced with those in this specification, and other newly appearing items are M: mass, n: natural circular frequency) , k s : horizontal ground coefficient, k v : vertical ground coefficient, J: mass moment of inertia around the center of gravity).

(abks −Mn2 )Y−(abh0 2 s /4)Θ=0−(abh0 s /2)Y+{(ab3 v /12)+(abh0 2 s /4 )−Jn2 }Θ=0 …(6)
上記式(6)において、簡略のために水平地盤係数ks =0とすると、振動数方程式は次式となる。
(Abk s −Mn 2 ) Y− (abh 0 2 k s / 4) Θ = 0− (abh 0 k s / 2) Y + {(ab 3 k v / 12) + (abh 0 2 k s / 4) −Jn 2 } Θ = 0 (6)
In the above equation (6), if the horizontal ground coefficient k s = 0 for simplification, the frequency equation is as follows.

MJn4 −(Mab3 v /12)n2 =0 …(7)
上記の式(7)をnについて解くと、ロッキング振動の第一次の固有振動数はn=2πfの関係を用いて書き直して、下記の式(8)となり、上記式(5)で定義した値が係数として出てくる。
f=√{(b/h0 2 /(b/h0 2 +1}・1/2π√(kv ab/M) …(8)
f=1/2π√(K/M) …(9)
ここで、ばね定数がKで質量Mの質点系の単振動の固有振動数が上記式(9)で表せることと合わせて考えれば、基本となる固有振動数に係数として係る縦横比b/h0 に関係する無次元量Q2 には意味がある。
MJn 4 - (Mab 3 k v / 12) n 2 = 0 ... (7)
When the above equation (7) is solved for n, the first natural frequency of the rocking vibration is rewritten using the relationship of n = 2πf to obtain the following equation (8), which is defined by the above equation (5). The value comes out as a coefficient.
f = √ {(b / h 0 ) 2 / (b / h 0 ) 2 +1} · 1 / 2π√ (k v ab / M) (8)
f = 1 / 2π√ (K / M) (9)
Here, considering the fact that the natural frequency of the simple vibration of the mass system with the spring constant K and mass M can be expressed by the above equation (9), the aspect ratio b / h relating to the basic natural frequency as a coefficient The dimensionless quantity Q 2 related to 0 is meaningful.

上記したように、地盤の振動の影響を排除するために密度を0とすることにより、根入れを有する剛体の固有値解析が可能となり、さらに地盤のひずみを考慮して変形係数を静的値の2倍相当で評価することにより、実験結果と解析の適合性が良いことを示した。
また、根入れを有する剛体の固有振動数は、根入れ比、地盤強度、剛体の形状を代表する縦横比などと関係があることがわかった。
As described above, by setting the density to 0 in order to eliminate the influence of ground vibration, it becomes possible to analyze the eigenvalue of a rigid body having a penetration, and further, considering the strain of the ground, the deformation coefficient is set to a static value. By evaluating at a 2-fold equivalent, it was shown that the suitability of the experimental results and analysis was good.
It was also found that the natural frequency of a rigid body with a root has a relationship with the root ratio, the ground strength, the aspect ratio representing the shape of the rigid body, and the like.

すなわち、地盤中に根入れを有する剛体の挙動は複雑な非線形現象であるが、いくつかの説明変数により固有振動数を目的変数とする推定式を作成することができる。
そこで、以下のようにして、重回帰分析による根入れ深さの推定式を作成する。
(1)根入れ深さの推定式
図13は本発明に係る地盤中に根入れのある剛体を示す図、図14は本発明に係る剛体の露出部分を示す図である。
In other words, although the behavior of a rigid body having a root in the ground is a complex nonlinear phenomenon, an estimation formula having a natural frequency as an objective variable can be created from several explanatory variables.
Therefore, an estimation formula for the penetration depth by multiple regression analysis is created as follows.
(1) Estimating Formula for Rooting Depth FIG. 13 is a diagram showing a rigid body having a root in the ground according to the present invention, and FIG. 14 is a diagram showing an exposed portion of the rigid body according to the present invention.

図13に示すように、地盤21中に根入れを有する剛体22の固有振動数を算定してきた。この時の固有振動数の測定結果を利用して根入れ深さdを推定する手順を提案する。
まず、図14に示すように、地盤21中に根入れを有する剛体22の地表の露出部分に着目して考える。この露出部分については、寸法a,b,h0 〔奥行き(縦)、幅(横)、露出部分の高さ〕や重量W,そして地盤21の強度(変形係数)などを把握することは可能である。
As shown in FIG. 13, the natural frequency of the rigid body 22 having a root in the ground 21 has been calculated. A procedure for estimating the penetration depth d using the measurement result of the natural frequency at this time is proposed.
First, as shown in FIG. 14, consideration is given to an exposed portion of the ground surface of the rigid body 22 having a root in the ground 21. About this exposed part, it is possible to grasp dimensions a, b, h 0 [depth (vertical), width (horizontal), height of exposed part], weight W, strength of the ground 21 (deformation coefficient), etc. It is.

そして、露出部分を根入れがないとみなし、これまでの実験および解析結果の考察から、その時の剛体22の固有振動数f0 * を地盤強度に関係した無次元量Q1 や剛体22の形状に関係した無次元量Q2 を用いて、上記した解析結果を重回帰分析することにより、固有振動数を目的変数として次式で近似する。
0 * =0.745Q1 ・Q2 +2.537 …(10)
ここでf0 * は根入れ0の剛体の固有振動数、Q1 およびQ2 は上記式(4)および式(9)で表される無次元量である。なお、上記式(10)の重回帰分析の相関係数はR2 =0.980である。
Then, it is considered that the exposed part is not embedded, and from the examination of the experiment and analysis results so far, the natural frequency f 0 * of the rigid body 22 at that time is the dimensionless quantity Q 1 related to the ground strength and the shape of the rigid body 22 Using the dimensionless quantity Q 2 related to, the above-described analysis result is subjected to multiple regression analysis, and the natural frequency is approximated as an objective variable by the following equation.
f 0 * = 0.745Q 1 · Q 2 +2.537 (10)
Here, f 0 * is a natural frequency of a rigid body with zero root, and Q 1 and Q 2 are dimensionless quantities represented by the above formulas (4) and (9). The correlation coefficient of the multiple regression analysis of the above formula (10) is R 2 = 0.980.

根入れがないケースでの固有振動数f0 の解析結果と上記式(10)から算定できる固有振動数f0 * の関係を図15に示す。このように解析結果と式(10)で得られる推定値には高い相関があることが分かる。
次に、図7や図9に示したように、根入れ比d/h0 と固有振動数には比例の関係があることが分かっているので、根入れがある状態での固有振動数fと露出部分の根入れがないとみなした時の固有振動数f0 * の比を用いて、根入れ深さの推定長を下記の式(11)で近似した。なお、推定式(11)の相関係数は、R2 =0.926である。
FIG. 15 shows the relationship between the analysis result of the natural frequency f 0 in the case where there is no rooting and the natural frequency f 0 * that can be calculated from the above equation (10). Thus, it can be seen that there is a high correlation between the analysis result and the estimated value obtained by Equation (10).
Next, as shown in FIG. 7 and FIG. 9, since it is known that there is a proportional relationship between the rooting ratio d / h 0 and the natural frequency, the natural frequency f in a state where there is rooting. And the estimated length of the penetration depth was approximated by the following equation (11) using the ratio of the natural frequency f 0 * when it was assumed that the exposed portion was not embedded. Note that the correlation coefficient of the estimation formula (11) is R 2 = 0.926.

d=0.358(f/f0 * )−0.351 …(11)
このように、転石まわりの地盤強度や露出部分の寸法を把握することにより、上記式(5)により、露出部分の固有振動数f0 * を算定し、上記式(11)における固有振動数fを実測により求めることで、根入れ深さdを推定することができる。
(2)推定式の検証
根入れ深さ推定の具体的な計算例として、図6の第2の供試体A(A−H400)の根入れ比1/3、地盤「中」:E=25MPa,x方向打撃のケースを考える。このケースでは、根入れ長d=0.1m,露出長h0 =0.3m,W=1.38kNとなり、各方向の長さはa=0.5m,b=0.3mとなるので、A=a×b=0.15m2 ,b/h0 =0.3/0.3=1である。
d = 0.358 (f / f 0 * ) − 0.351 (11)
Thus, by grasping the ground strength around the boulder and the dimensions of the exposed portion, the natural frequency f 0 * of the exposed portion is calculated by the above equation (5), and the natural frequency f in the above equation (11) is calculated. Is obtained by actual measurement, and the penetration depth d can be estimated.
(2) Verification of estimation formula As a specific calculation example of the penetration depth estimation, the penetration ratio of the second specimen A (A-H400) in FIG. 6 is 1/3, the ground “middle”: E = 25 MPa. Consider the case of an x-direction strike. In this case, the penetration length d = 0.1 m, the exposure length h 0 = 0.3 m, W = 1.38 kN, and the length in each direction is a = 0.5 m and b = 0.3 m. A = a × b = 0.15 m 2 , b / h 0 = 0.3 / 0.3 = 1.

したがって、上記式(4)および式(5)から、Q1 =52.129、Q2 =0.707が求まり、露出部分の根入れがないとみなした剛体の固有振動数がf0 * =30.0Hzと算定される。
この剛体の固有振動数f0 * の値と根入れがある状態での固有振動数f=40.9Hzを上記式(11)に代入すれば、根入れ長の推定長がd=0.137mと得られる。この時根入れ深さの実長0.1mとの差は0.037mである。
Therefore, from the above formulas (4) and (5), Q 1 = 52.129, Q 2 = 0.707 is obtained, and the natural frequency of the rigid body that is considered to have no exposure portion is f 0 * = Calculated as 30.0 Hz.
By substituting the natural frequency f 0 * of the rigid body and the natural frequency f = 40.9 Hz in a state where there is a root into the above equation (11), the estimated length of the root is d = 0.137 m. And obtained. At this time, the difference between the depth of penetration and the actual length of 0.1 m is 0.037 m.

このようにして計算した根入れ深さの実長と上記式(11)による推定長の相関を図16に示す。
相関係数は0.926と高く、実長に対して最大でも±0.1m以内の誤差で精度よく根入れ深さを推定できることが示された。
上記したように、本発明によれば、
(1)転石を地盤中に根入れがある剛体に模擬し、形状や重量の異なる供試体を作成して地盤強度、根入れ深さなどの条件を変えて固有振動数の測定実験を行った。実験で行った固有振動数の測定方法は、打撃に使用するゴムハンマーやシステム構成がコンパクトであるために、実斜面においても十分使用可能である。
(2)剛体や地盤をモデル化して3次元有限要素法による固有値解析により、実験を再現することを試みた。地盤自体の振動の影響を排除するために地盤の密度を0としたこと、さらに静的に測定した平板載荷試験相当値に対して、地盤のひずみ効果を考慮した動的な2倍相当値を用いて地盤を評価することによって、実験と解析の結果の適合性が良いことを示した。
(3)地盤中に根入れを有する剛体の振動特性は非線形性の高い挙動を示すと考えられるが、地盤強度や剛体の形状に関して定義した無次元量Q1 やQ2 などと相関が高いことを示し、これらを説明変数とした推定式によって固有振動数を算定できることを示した。
(4)また、本発明では根入れ深さの推定を目的としているので、露出部分を根入れなしとみなして算定した固有振動数と根入れがある状態での実測固有振動数を用いて、根入れ深さを推定する推定式を提案した。
FIG. 16 shows the correlation between the actual length of the penetration depth calculated in this way and the estimated length according to the above equation (11).
The correlation coefficient is as high as 0.926, and it was shown that the depth of rooting can be accurately estimated with an error within ± 0.1 m at maximum with respect to the actual length.
As mentioned above, according to the present invention,
(1) Simulating a boulder into a rigid body with a root in the ground, creating specimens with different shapes and weights, and changing the conditions such as ground strength and depth of penetration, and measuring natural frequencies. . The natural frequency measurement method performed in the experiment is sufficiently usable even on an actual slope because the rubber hammer used for impact and the system configuration are compact.
(2) We tried to reproduce the experiment by modeling the rigid body and the ground and performing eigenvalue analysis using the three-dimensional finite element method. In order to eliminate the influence of the vibration of the ground itself, the density of the ground was set to 0, and the value equivalent to the static load of the plate loading test was set to a dynamic double equivalent value considering the strain effect of the ground. By using it to evaluate the ground, it was shown that the compatibility of the results of the experiment and analysis is good.
(3) The vibration characteristics of a rigid body with roots in the ground are considered to exhibit highly nonlinear behavior, but have a high correlation with the dimensionless quantities Q 1 and Q 2 defined for the ground strength and the shape of the rigid body. It was shown that the natural frequency can be calculated by an estimation formula using these as explanatory variables.
(4) In addition, since the purpose of the present invention is to estimate the depth of penetration, the natural frequency calculated by assuming that the exposed portion is not rooted and the measured natural frequency in the state where the root is rooted are used. An estimation formula for estimating the penetration depth was proposed.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の転石を模擬した剛体の振動特性による根入れ深さの推定方法は、斜面における転石を地盤中に根入れがある剛体に模擬し、転石を模擬した剛体の振動特性による根入れ深さの推定方法として利用可能である。   The method of estimating the depth of penetration based on the vibration characteristics of a rigid body simulating a boulder according to the present invention simulates a boulder on a slope as a rigid body with a root in the ground, and a depth of penetration based on the vibration characteristics of a rigid body simulating a boulder. It can be used as an estimation method.

1,A,B 供試体
2 加速度計
3 ゴムハンマー
4 AD変換器
5 パーソナルコンピュータ(PC)
6 根入れ地盤
7 基礎地盤
11,21 地盤
12 供試体(A−H500)
22 剛体
1, A, B Specimen 2 Accelerometer 3 Rubber hammer 4 AD converter 5 Personal computer (PC)
6 Nesting ground 7 Foundation ground 11,21 Ground 12 Specimen (A-H500)
22 Rigid body

Claims (10)

斜面における転石を地盤中に根入れがある剛体に模擬し、該剛体の寸法と重量の異なる供試体を作製して、地盤強度、前記供試体の寸法と重量、前記供試体の根入れ深さの条件を変えて前記供試体の固有振動数の測定を行うことを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。   Simulating a boulder on a slope into a rigid body with a root in the ground, preparing specimens with different sizes and weights of the rigid body, ground strength, dimensions and weight of the specimen, and depth of penetration of the specimen A method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder, wherein the natural frequency of the specimen is measured under different conditions. 請求項1記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の固有振動数の測定は、前記供試体にゴムハンマーによる打撃を加えて行うことを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。   The method of estimating a penetration depth by vibration characteristics of a rigid body simulating a boulder according to claim 1, wherein the measurement of the natural frequency of the specimen is performed by hitting the specimen with a rubber hammer. Of the depth of penetration by the vibration characteristics of a rigid body simulating a rolling stone. 請求項2記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の上面に加速度計を配置し、該加速度計からの波形をAD変換器を介してパーソナルコンピュータで記録することを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。   3. A method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to claim 2, wherein an accelerometer is arranged on the upper surface of the specimen, and a waveform from the accelerometer is converted into a personal computer via an AD converter. A method for estimating the depth of penetration based on the vibration characteristics of a rigid body simulating a boulder, which is recorded by 請求項1又は2記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の寸法と重量が、第1の供試体Aは縦0.3m、横0.4m、高さ0.5m、第2の供試体Aは縦0.3m、横0.5m、高さ0.4m、それぞれ重量が1.38kNであり、第1の供試体Bは、縦0.3m、横0.4m、高さ0.8m、第2の供試体Bは縦0.3m、横0.8m、高さ0.4mで、それぞれ重量が2.21kNであることを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。   3. The method of estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to claim 1 or 2, wherein the dimension and weight of the specimen are 0.3 m in length and 0.4 m in width for the first specimen A. The second specimen A has a height of 0.3 m, a width of 0.5 m, a height of 0.4 m, and a weight of 1.38 kN. The first specimen B has a height of 0. 3 m, 0.4 m in width, 0.8 m in height, the second specimen B is 0.3 m in length, 0.8 m in width, 0.4 m in height, and each has a weight of 2.21 kN. A method for estimating the depth of penetration based on the vibration characteristics of a rigid body simulating a boulder. 請求項4記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、地盤反力係数kv30(MN/m3 )の目的強度が40〜50、構築地盤強度が47.6である地盤種別を「軟」、目的強度が70〜80、構築地盤強度が79.1である地盤種別を「中」、目的強度が100以上、構築地盤強度が146である地盤種別を「硬」とし、前記各供試体を前記「軟」「中」「硬」の各地盤に配置することを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。 5. The method for estimating a penetration depth by vibration characteristics of a rigid body simulating a boulder according to claim 4, wherein the target strength of the ground reaction force coefficient kv 30 (MN / m 3 ) is 40-50 and the constructed ground strength is 47.6. The ground type is “soft”, the target strength is 70-80, the ground type with a built ground strength of 79.1 is “medium”, the ground strength with a target strength of 100 or more and the built ground strength is 146 is “hard”. , And placing each of the test specimens on the “soft”, “medium”, and “hard” local boards, and a method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder. 請求項1又は2記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体や地盤をモデル化して3次元有限要素法による固有値解析を行うことを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。   3. A method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to claim 1 or 2, wherein said specimen and ground are modeled and eigenvalue analysis is performed by a three-dimensional finite element method. Of the depth of penetration by the vibration characteristics of a rigid body simulating 請求項6記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、地盤自体の振動の影響を排除するために地盤の密度は0とし、さらに静的に測定した平板載荷試験相当値に対して、地盤のひずみ効果を考慮した動的値としての2倍相当値を用いて地盤を評価することで、実結果を解析的に再現することを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。   7. A method for estimating a penetration depth by vibration characteristics of a rigid body simulating a boulder according to claim 6, wherein the ground density is 0 in order to eliminate the influence of the vibration of the ground itself, and further a statically measured flat plate loading test A rigid body simulating a boulder characterized by analytically reproducing the actual result by evaluating the ground using a value equivalent to twice the dynamic value considering the strain effect of the ground with respect to the equivalent value. Of estimating depth of penetration by vibration characteristics of 請求項6記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記地盤強度や前記供試体の寸法に関して定義した無次元量Q1 やQ2 を変数とした下記推定式によって固有振動数を算定することを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。
d=0.358(f/f0 * )−0.351
ただし、dは供試体の根入れ深さ、fは供試体の根入れがある状態での固有振動数、f0 * は供試体の露出部分の根入れがないとみなした時の固有振動数である。
In the method of estimating the embedment depth due to vibration characteristics of rigid simulating the boulder of claim 6, wherein, following the estimated equation the ground strength and the specimen dimensionless quantity Q 1 defined for dimensions and Q 2 as a variable A method for estimating the penetration depth based on the vibration characteristics of a rigid body simulating a boulder, characterized by calculating the natural frequency using
d = 0.358 (f / f 0 * ) − 0.351
Where d is the depth of penetration of the specimen, f is the natural frequency in the presence of the specimen, and f 0 * is the natural frequency when the exposed part of the specimen is considered not to be incorporated. It is.
請求項8記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記無次元量Q1 は{E/(W/A)}1/2 であり、前記無次元量Q2 は√{(b/h0 2 /(b/h0 2 +1}であることを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。
ここで、Eは供試体の変形係数、Wは供試体の重量、およびAは供試体が地盤と接する底面積、bは供試体の打撃方向の幅、h0 は根入れなしの供試体の高さである。
9. The method of estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to claim 8, wherein the dimensionless quantity Q 1 is {E / (W / A)} 1/2 and the dimensionless quantity Q 2 is √ {(b / h 0 ) 2 / (b / h 0 ) 2 +1}. A method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder.
Here, E is the modulus of deformation of the specimen, W is the weight of the specimen, and A is a bottom area of the specimen is in contact with the ground, b is specimen blow width, h 0 is the specimen without embedment It is height.
請求項8記載の転石を模擬した剛体の振動特性による根入れ深さの推定方法において、前記供試体の根入れ比d/h0 と固有振動数には比例の関係があるので、前記供試体の根入れがある状態での固有振動数fと前記供試体の露出部分の根入れがないとみなした時の固有振動数f0 * の比を用いて、前記供試体の根入れ深さの推定長を前記推定式で近似し、該推定式の相関係数は、R2 =0.926としたことを特徴とする転石を模擬した剛体の振動特性による根入れ深さの推定方法。 9. The method of estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder according to claim 8, wherein the specimen has a proportional relationship between the penetration ratio d / h 0 and the natural frequency. Using the ratio of the natural frequency f in the presence of the natural frequency and the natural frequency f 0 * when the exposed portion of the specimen is considered not to be embedded, A method for estimating a penetration depth based on vibration characteristics of a rigid body simulating a boulder, characterized in that an estimated length is approximated by the estimation formula, and a correlation coefficient of the estimation formula is R 2 = 0.926.
JP2012059942A 2012-03-16 2012-03-16 Estimating depth of penetration by vibration characteristics of a rigid body simulating a boulder Expired - Fee Related JP5943660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059942A JP5943660B2 (en) 2012-03-16 2012-03-16 Estimating depth of penetration by vibration characteristics of a rigid body simulating a boulder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059942A JP5943660B2 (en) 2012-03-16 2012-03-16 Estimating depth of penetration by vibration characteristics of a rigid body simulating a boulder

Publications (2)

Publication Number Publication Date
JP2013194367A true JP2013194367A (en) 2013-09-30
JP5943660B2 JP5943660B2 (en) 2016-07-05

Family

ID=49393667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059942A Expired - Fee Related JP5943660B2 (en) 2012-03-16 2012-03-16 Estimating depth of penetration by vibration characteristics of a rigid body simulating a boulder

Country Status (1)

Country Link
JP (1) JP5943660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040144A (en) * 2015-08-21 2017-02-23 公益財団法人鉄道総合技術研究所 Rock lumb stability evaluation method and program used for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555517B2 (en) * 1992-09-16 1996-11-20 禧夫 盛合 Method and device for measuring the shape of a buried structure
JP2944515B2 (en) * 1996-06-26 1999-09-06 株式会社青木建設 Shape diagnosis method for natural structures
WO2009107104A1 (en) * 2008-02-27 2009-09-03 Officine Maccaferri S.P.A. A structure for preventing rockfall, a rockfall prevention method, and a method for designing said structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555517B2 (en) * 1992-09-16 1996-11-20 禧夫 盛合 Method and device for measuring the shape of a buried structure
JP2944515B2 (en) * 1996-06-26 1999-09-06 株式会社青木建設 Shape diagnosis method for natural structures
WO2009107104A1 (en) * 2008-02-27 2009-09-03 Officine Maccaferri S.P.A. A structure for preventing rockfall, a rockfall prevention method, and a method for designing said structure
JP2009203681A (en) * 2008-02-27 2009-09-10 Purotekku Engineering:Kk Rock fall preventing structure and rock fall preventing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN7015002447; '遠隔非接触振動計測による岩盤の安定性評価法に関する検討' 第41回岩盤力学に関するシンポジウム講演集 , 201201, P.247-251, 公益社団法人土木学会 *
JPN7015002448; '斜面上転石の振動計測を目的としたシステム構築と計測結果に関する考察' 土木学会第65回年次学術講演会 , 201009, P.77-78, 土木学会 *
JPN7015002449; '遠隔非接触振動計測による岩盤斜面の安定性評価に関する基礎実験' 土木学会第65回年次学術講演会 , 201009, p.47-48, 土木学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040144A (en) * 2015-08-21 2017-02-23 公益財団法人鉄道総合技術研究所 Rock lumb stability evaluation method and program used for the same

Also Published As

Publication number Publication date
JP5943660B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
Hokmabadi et al. Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations
Lam et al. The Bayesian methodology for the detection of railway ballast damage under a concrete sleeper
Jafarzadeh et al. On the role of topographic amplification in seismic slope instabilities
CN101545841A (en) Method and device for falling-sphere spot testing of mechanics characteristics of rock and soil materials
Yang et al. The effect of cross-sectional shape on the dynamic response of tunnels under train induced vibration loads
Tavasoli et al. Wave propagation and ground vibrations due to non-uniform cross-sections piles driving
Chatterjee1a et al. Dynamic analyses and field observations on piles in Kolkata city
Yang et al. A large-scale shaking table model test for acceleration and deformation response of geosynthetic encased stone column composite ground
Zhou et al. Dynamic failure mode and dynamic response of high slope using shaking table test
Kostadinov et al. Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon
Yun et al. Evaluation of virtual fixed points in the response spectrum analysis of a pile-supported wharf
Ghazavi et al. Characteristics of non-uniform cross-section piles in drivability
Merrifield et al. A study of low-energy dynamic compaction: field trials and centrifuge modelling
Araei et al. Impact and cyclic shaking on loose sand properties in laminar box using gap sensors
Singh et al. Seismic behaviour of damaged tunnel during aftershock
Azizkandi et al. Response of batter-piled raft foundations with different superstructures during seismic events: outcomes from shaking table tests
Tawfik et al. Application of the finite element method for investigating the dynamic plate loading test
Grasmick et al. Comparison of multiple sensor deflection data from lightweight and falling weight deflectometer tests on layered soil
Zarrin et al. A review on factors affecting seismic pile response analysis: a parametric study
JP5943660B2 (en) Estimating depth of penetration by vibration characteristics of a rigid body simulating a boulder
Roesset Nondestructive dynamic testing of soils and pavements
Yi Procedure to evaluate liquefaction-induced settlement based on shear wave velocity
Yu et al. Theoretical basis and numerical simulation of impedance log test for evaluating the integrity of columns and piles
Kumar et al. Site-specific seismic ground response to different earthquake motions
Park et al. Evaluation of resilient moduli for recycled crushed-rock-soil-mixtures using in-situ seismic techniques and large-scale resonant column tests

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5943660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees