JP2013194320A - METHOD FOR PRODUCING AlN THIN FILM - Google Patents

METHOD FOR PRODUCING AlN THIN FILM Download PDF

Info

Publication number
JP2013194320A
JP2013194320A JP2012086869A JP2012086869A JP2013194320A JP 2013194320 A JP2013194320 A JP 2013194320A JP 2012086869 A JP2012086869 A JP 2012086869A JP 2012086869 A JP2012086869 A JP 2012086869A JP 2013194320 A JP2013194320 A JP 2013194320A
Authority
JP
Japan
Prior art keywords
thin film
aln
aln thin
polarity
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012086869A
Other languages
Japanese (ja)
Inventor
Takashi Harumoto
高志 春本
Yohei Matsukawa
洋平 松川
Takumi Sannomiya
工 三宮
Shinji Muraishi
信二 村石
Ji Shi
蹟 史
Yoshio Nakamura
吉男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012086869A priority Critical patent/JP2013194320A/en
Publication of JP2013194320A publication Critical patent/JP2013194320A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an AlN thin film with C-axis orientation properties, the AlN thin film having a polarity aligned in an Al polarity on a lower electrode, while suppressing surface oxidation of the lower electrode by depositing next AlN immediately after the deposition of the lower electrode, since a thin film formation technique by means of general sputtering methods is difficult to satisfy such requirements that, in order to obtain an AlN thin film having good piezoelectric properties, it is required not only that the AlN thin film is subjected to c-axis orientation but also that a polarity thereof is aligned in a fixed direction, and it is known that the polarity of AlN is significantly affected by oxidation at the outermost surface of a metal layer as the lower electrode, so that, in order to align the polarity of AlN, the deposition of AlN is to be started before the lower electrode is contaminated by oxygen.SOLUTION: In an AlN thin film formed on an Al layer as a lower electrode, the deposition of the AlN thin film is started without interrupting the deposition by starting introduction of nitrogen in a rectangular manner during deposition of the Al layer.

Description

本発明は、AlN薄膜の製造方法に関する。具体的には、圧電薄膜共振器や圧電素子として応用することが可能な、極性をAl極性に揃えているC軸配向性AlN薄膜の製造方法に関する。  The present invention relates to a method for producing an AlN thin film. Specifically, the present invention relates to a method for manufacturing a C-axis oriented AlN thin film that can be applied as a piezoelectric thin film resonator or a piezoelectric element and that has the same polarity as the Al polarity.

ウルツ鉱型物質であるAlNは、C軸方向に圧電性・焦電性を有している。そのため、C軸配向したAlN薄膜(C軸配向性AlN薄膜)は、その圧電性を活かして圧電薄膜共振器やMEMSの構成要素などとして、また、その焦電性を活かしてセンサなどとして応用されている。  AlN, which is a wurtzite material, has piezoelectricity and pyroelectricity in the C-axis direction. For this reason, C-axis oriented AlN thin films (C-axis oriented AlN thin films) are applied as piezoelectric thin film resonators and MEMS components by utilizing their piezoelectric properties, and as sensors by utilizing their pyroelectric properties. ing.

そこで、C軸配向性AlN薄膜を得るべく、多くの研究がなされてきた。スパッタリング法によりAlN薄膜を形成する場合、成膜を低いガス圧で行うとC軸配向する傾向にあると知られている。具体的には、ガス圧が0.5Pa程度であることが望ましいが、必ずしも容易に実現できるガス圧ではない。  Therefore, many studies have been made to obtain a C-axis oriented AlN thin film. When forming an AlN thin film by sputtering, it is known that if the film is formed at a low gas pressure, it tends to be C-axis oriented. Specifically, the gas pressure is preferably about 0.5 Pa, but it is not always a gas pressure that can be easily realized.

他方、AlN薄膜を堆積させるときの下地層を配向させることによりC軸配向性AlN薄膜を得る試みもなされてきた。下地層は、一般的には、金属薄膜である。なぜなら、下地層は、AlN薄膜の圧電特性を利用する際の下部電極としても機能する必要があるからである。そして、下地層としての金属薄膜が、たとえば、面心立方構造を有する金属から構成され(111)配向している場合、AlN薄膜はC軸配向する傾向にある。  On the other hand, an attempt has been made to obtain a C-axis oriented AlN thin film by orienting the underlying layer when depositing the AlN thin film. The underlayer is generally a metal thin film. This is because the underlayer needs to function as a lower electrode when using the piezoelectric characteristics of the AlN thin film. When the metal thin film as the underlayer is made of, for example, a metal having a face-centered cubic structure and is (111) oriented, the AlN thin film tends to be C-axis oriented.

ところで、良好な圧電特性を有するAlN薄膜を得るには、薄膜中のAlN結晶粒が、C軸配向している事に加え、極性も一定方向に揃えている事が求められる。しかし、AlN薄膜の極性を揃える事は困難であることが知られている。  By the way, in order to obtain an AlN thin film having good piezoelectric characteristics, it is required that the AlN crystal grains in the thin film have C-axis orientation and that the polarity is aligned in a certain direction. However, it is known that it is difficult to align the polarity of the AlN thin film.

例えば、清浄なRu(ルテニウム)上にAlNを堆積させた場合と、酸素に汚染されたRu上にAlNを堆積させた場合とでは、成長するAlN結晶の極性が異なると指摘されている(非特許文献1)。  For example, it is pointed out that when AlN is deposited on clean Ru (ruthenium), and when AlN is deposited on Ru contaminated with oxygen, the polarity of the growing AlN crystal is different (non-non). Patent Document 1).

J.A.Ruffner,P.G.Clem,B.A.Tuttle,D.Dimos,D.M.Gonzales、“Effect of substrate composition on the piezoelectric response of reactively puttered AlN thin films”、Thin Solid Films、オランダ、Elsevier B.V.社、1999年11月10日、354巻、1−2号、256−261ページ  J. et al. A. Ruffner, P.A. G. Clem, B.M. A. Tuttle, D.C. Dimos, D.D. M.M. Gonzales, “Effect of Substrate composition on the piezoelectric response of reactively putted AlN thin films”, Thin Solid Films, Netherlands, Elsevier B. V. , November 10, 1999, 354, 1-2, pages 256-261

したがって、極性の揃ったC軸配向性AlN薄膜を作製するためには、下部電極堆積後、表面が酸素に汚染される前に、AlN薄膜を堆積させる必要がある。  Therefore, in order to produce a C-axis oriented AlN thin film with uniform polarity, it is necessary to deposit the AlN thin film after the lower electrode is deposited and before the surface is contaminated with oxygen.

しかし、下部電極の最表面を酸素汚染から防ぐのは、一般的な多層薄膜作製技術では困難である。なぜならば、下部電極形成後、次のAlN薄膜を堆積させるまでの間には、成膜を中断している時間(以下、成膜中断時間と記す)が存在し、その間に下部電極の最表面が酸化する方向にあるからである。これは、一般に、下部電極である金属薄膜を形成する際はArガス、AlN薄膜を形成する際はArと窒素の混合ガスを用いるため、形成しようとする薄膜を替えるごとに、真空容器に導入されているガスを入れ替えることが必要であり、更には、ガス入れ替え後はターゲット表面を安定させるためのプレスパッタリングが必要になることに起因する。したがって、酸化し難い金属を下地層として用いると良いと考えられるが、そのような金属は高価である。  However, it is difficult to prevent the outermost surface of the lower electrode from oxygen contamination by a general multilayer thin film manufacturing technique. This is because there is a time during which the film formation is interrupted (hereinafter referred to as a film formation interruption time) between the formation of the lower electrode and the deposition of the next AlN thin film, and the outermost surface of the lower electrode in the meantime. This is because is in the direction of oxidation. In general, Ar gas is used when forming the metal thin film as the lower electrode, and a mixed gas of Ar and nitrogen is used when forming the AlN thin film. Therefore, each time the thin film to be formed is changed, it is introduced into the vacuum vessel. This is because it is necessary to replace the gas used, and further, after the gas replacement, pre-sputtering is required to stabilize the target surface. Therefore, it is considered good to use a metal that is difficult to oxidize as the underlayer, but such a metal is expensive.

また、真空容器内の酸素分圧を変化させると、成長するAlN結晶の極性が変化し、さらに、酸素が過剰に導入された場合では、極性はばらばらとなってしまうとの報告もある(非特許文献2)。  In addition, there is a report that when the oxygen partial pressure in the vacuum vessel is changed, the polarity of the growing AlN crystal is changed, and when the oxygen is introduced excessively, the polarity is dispersed (non-native). Patent Document 2).

Morito Akiyama,Toshihiro Kamohara,Kazuhiko Kano,Akihiko Teshigahara,and Nobuaki Kawahara、“Influence of oxygen concentration in sputtering gas on piezoelectricresponse of aluminum nitride thin films”、APPLIED PHYSICS LETTERS、アメリカ、American Institute of Physics社、2008年7月14日、93巻、1号、021903ページ  Morito Akiyama, Toshihiro Kamohara, Kazuhiko Kano, Akihiko Teshigahara, and Nobuaki Kawahara, "Influence of oxygen concentration in sputtering gas on piezoelectricresponse of aluminum nitride thin films", APPLIED PHYSICS LETTERS, the United States, American Institute of Physics, Inc., 2008 July 14 Sun, Volume 93, No. 1, 021903

特に、AlNの堆積を開始した時の酸素分圧が重要と知られており、酸素分圧が高い場合は、結晶を形成できずにアモルファスとして堆積を開始したりすることも報告されている(非特許文献3)。  In particular, it is known that the oxygen partial pressure at the start of AlN deposition is important, and it is reported that when the oxygen partial pressure is high, crystals cannot be formed and deposition is started as amorphous ( Non-patent document 3).

V.Brien,P.Pigeat、“Microstructures diagram of magnetron sputtered AlN deposits:Amorphous and nanostructured films”、Journal of Crystal Growth、オランダ、Elsevier B.V.社、2007年1月5日、299巻、1号、189−194ページ  V. Brien, P.M. Pigeat, “Microstructures diagram of magnetron sputtered AlN deposits: Amorphous and nanostructured films”, Journal of Crystal Growth, Netherlands, Else. V. , January 5, 2007, 299, 1, 1, 189-194

ところで、極性の揃ったC軸配向性AlN薄膜には、Al極性のC軸配向性AlN薄膜とN極性のC軸配向性AlN薄膜の二通り存在する。一般には、N極性成長のC軸配向性AlN薄膜は比較的容易に得られるのに対し、Al極性のC軸配向性AlN薄膜を得るのは困難であると知られている(非特許文献4)。  By the way, there are two types of C-axis oriented AlN thin films having the same polarity: an Al-polar C-axis oriented AlN thin film and an N-polar C-axis oriented AlN thin film. In general, a C-axis oriented AlN thin film grown in N polarity is relatively easily obtained, whereas it is known that it is difficult to obtain an Al polar C-axis oriented AlN thin film (Non-patent Document 4). ).

E.Milyutin,S.Harada,D.Martin,J.F.Carlin,N.Grandjean,V.Savu,O.Vaszquez−Mena,J.Brugger,P.Muralt、“Sputtering of (001)AlN thin films:Control of polarity by a seed layer”、Journal of Vacuum Science and Technology B、アメリカ、American VacuumSociety、2010年11月30日、28巻、6号、L61−L63ページ  E. Mileutin, S.M. Harada, D .; Martin, J.M. F. Carlin, N .; Grandjean, V.M. Savu, O .; Vaszquez-Mena, J.A. Brugger, P.A. Multalt, “Sputtering of (001) AlN thin films: Control of polarity by a seed layer,” Journal of Vacuum Science and Technology B, June, L page

よって、極性の揃ったC軸配向性AlN薄膜を作製するためには、下部電極堆積後、成膜中断時間を限りなく短くすることにより、電極の最表面が酸素に汚染される前に、次のAlN薄膜を堆積させる必要がある。更に望ましくは、低い酸素分圧においてAlNの堆積を開始する方法が求められている。また、Al極性のC軸配向性AlN薄膜を成長させる方法が求められている。  Therefore, in order to produce a C-axis oriented AlN thin film with uniform polarity, the deposition interruption time should be shortened as much as possible after the deposition of the lower electrode, before the outermost surface of the electrode is contaminated with oxygen. It is necessary to deposit a thin AlN film. More desirably, there is a need for a method that initiates the deposition of AlN at a low oxygen partial pressure. There is also a need for a method of growing an Al-polar C-axis oriented AlN thin film.

それゆえ、本発明の主たる目的は、下部電極堆積後、即座に、次のAlNを堆積させることにより、下部電極上に極性の揃ったC軸配向性AlN薄膜を製造する方法を提供することである。
本発明の従たる目的は、低い酸素分圧においてAlNの堆積を開始することにより、下部電極上に結晶性が良く、かつ、極性の揃ったC軸配向性AlN薄膜を製造する方法を提供することである。
本研究のさらに別の従たる目的は、Al極性のC軸配向性AlN薄膜を成長させる方法を提供することである。
本発明のさらに他の目的は、下部電極上に極性の揃ったC軸配向性AlN薄膜を、短時間かつ容易に、更に安価な下部電極を用いて製造する方法を提供することである。
Therefore, the main object of the present invention is to provide a method for manufacturing a C-axis oriented AlN thin film with uniform polarity on the lower electrode by immediately depositing the next AlN immediately after the lower electrode is deposited. is there.
A subordinate object of the present invention is to provide a method for producing a C-axis oriented AlN thin film having good crystallinity and uniform polarity on the lower electrode by starting the deposition of AlN at a low oxygen partial pressure. That is.
Yet another secondary objective of this study is to provide a method for growing Al polar C-axis oriented AlN thin films.
Still another object of the present invention is to provide a method for producing a C-axis oriented AlN thin film having a uniform polarity on a lower electrode in a short time and easily using a lower cost lower electrode.

本発明にかかる極性の揃ったC軸配向性AlN薄膜の製造方法は、下部電極としてのAl層上に形成されるAlN薄膜において、Al層を堆積中に、矩形的に窒素の導入を始めることにより成膜を中断することなく、AlN薄膜の堆積を開始させることを特徴としている。  In the method for producing a C-axis oriented AlN thin film with uniform polarity according to the present invention, in the AlN thin film formed on the Al layer as the lower electrode, nitrogen is introduced in a rectangular manner during the deposition of the Al layer. Thus, the deposition of the AlN thin film is started without interrupting the film formation.

本発明によれば、下部電極であるAl層上に、極性の揃ったC軸配向性AlN薄膜を安定的に製造できる。また、極性の揃ったC軸配向性AlN薄膜を、短時間かつ容易に製造できる。更には、Al極性のC軸配向性AlN薄膜を、成長させることができる。加えて、Alという安価な下部電極であっても、極性の揃ったC軸配向性AlN薄膜を製造できる。  According to the present invention, a C-axis-oriented AlN thin film with uniform polarity can be stably produced on an Al layer as a lower electrode. In addition, a C-axis oriented AlN thin film having the same polarity can be easily produced in a short time. Furthermore, an Al-polar C-axis oriented AlN thin film can be grown. In addition, even an inexpensive lower electrode of Al can produce a C-axis oriented AlN thin film with uniform polarity.

本発明の上述の目的、その他の目的、特徴および効果は、以降に示す実施例から具体的に明らかになろう。  The above-described object, other objects, features, and effects of the present invention will be specifically clarified from the following examples.

本発明と本発明の応用形態とにより、基板上に、AlN層と、Al層と、AlN層とを順に堆積させた時の成膜手順である。This is a film forming procedure when an AlN layer, an Al layer, and an AlN layer are sequentially deposited on a substrate according to the present invention and an application form of the present invention. 図1の成膜手順により製造された試料について、透過型電子顕微鏡により断面を観察した結果である。It is the result of having observed the cross section with the transmission electron microscope about the sample manufactured by the film-forming procedure of FIG. 図1の成膜手順により製造された試料中のAl層上に形成されたAlN薄膜について、STEM−HAADFにより断面を観察した結果である。It is the result of having observed the cross section by STEM-HAADF about the AlN thin film formed on the Al layer in the sample manufactured by the film-forming procedure of FIG. 図1の成膜手順により製造された試料の断面模式図である。矢印は、AlN結晶粒の+c方向を指している。It is a cross-sectional schematic diagram of the sample manufactured by the film-forming procedure of FIG. The arrow points to the + c direction of the AlN crystal grains. 本発明と本発明の応用形態と特許文献1に記載の成膜法を用い、同一多層薄膜中に、Al極性のC軸配向性AlN薄膜とN極性のC軸配向性AlN薄膜とを成長させたときの試料模式図である。矢印は、AlN結晶粒の+c方向を指している。Using the present invention, an application form of the present invention, and a film forming method described in Patent Document 1, an Al polar C-axis oriented AlN thin film and an N polar C-axis oriented AlN thin film are grown in the same multilayer thin film. FIG. The arrow points to the + c direction of the AlN crystal grains. 図5の多層薄膜を用いることにより、従来の1/2の電圧であっても同じ変形量を得ることができることを示している回路図である。FIG. 6 is a circuit diagram showing that the same amount of deformation can be obtained even with a conventional half voltage by using the multilayer thin film of FIG. 5.

本発明と本発明の応用形態とにより、基板上にバッファー層としてのAlN薄膜を形成し、前記AlN薄膜上に下部電極としてのAl層を形成し、更に、前記Al層上に圧電薄膜としての極性の揃ったC軸配向性AlN薄膜を形成した時の成膜手順を図1に示す。図中のt2において、本発明が適用されている。また、図中のt1では、本発明の応用形態として、AlN堆積中に、窒素の導入を矩形的に取りやめることにより、成膜を中断することなく、次のAl層の堆積を開始している。  According to the present invention and the application form of the present invention, an AlN thin film as a buffer layer is formed on a substrate, an Al layer as a lower electrode is formed on the AlN thin film, and a piezoelectric thin film is formed on the Al layer. FIG. 1 shows a film forming procedure when a C-axis oriented AlN thin film having a uniform polarity is formed. The present invention is applied at t2 in the figure. Further, at t1 in the figure, as an application form of the present invention, the deposition of the next Al layer is started without interrupting film formation by canceling the introduction of nitrogen in a rectangular manner during the deposition of AlN. .

そのようにして製造した多層薄膜の断面を、透過型電子顕微鏡により観察した結果を図2に示す。また、Al層上のAlN薄膜におけるSTEM−HAADF観察結果を図3に示す。  The result of observing the cross section of the multilayer thin film thus produced with a transmission electron microscope is shown in FIG. Moreover, the STEM-HAADF observation result in the AlN thin film on the Al layer is shown in FIG.

図2からわかるように、窒素の導入を矩形的に開始したり、取りやめたりするだけであっても、それに対応した構造の多層薄膜が作製できているとわかる。そして、図3より、Al層上のAlN薄膜は、C軸配向性を示し、かつ、極性をAl極性に揃えていると判明した。なお、製造した薄膜のどの面内位置であっても、同じ配向性、並びに、同じ極性であった。また、Al層は(111)配向していた。更に、Al層上のAlNは、アモルファスを形成することなく堆積していた。これらをまとめると、図4の通りであり、AlN結晶の+c方向を矢印により記している。  As can be seen from FIG. 2, even if the introduction of nitrogen is started or canceled in a rectangular manner, it can be understood that a multilayer thin film having a structure corresponding to that is produced. From FIG. 3, it was found that the AlN thin film on the Al layer exhibited C-axis orientation and had the same polarity as the Al polarity. In addition, it was the same orientation and the same polarity irrespective of the in-plane position of the manufactured thin film. The Al layer was (111) oriented. Furthermore, AlN on the Al layer was deposited without forming an amorphous phase. These are summarized as shown in FIG. 4, and the + c direction of the AlN crystal is indicated by an arrow.

よって、図1のように、窒素ガスの導入を矩形的に開始することにより、成膜を中断することなく、Al層上にAlNの堆積を開始させることが可能であり、そのようにして製造したAlN薄膜は、極性をAl極性に揃えているC軸配向性AlN薄膜である。なお、本実施例では、窒素ガス導入量と共に、Arガス導入量も変化させているが、これは、スパッタリングガス圧を一定に保つためであって、本発明の本質ではない。  Therefore, as shown in FIG. 1, it is possible to start the deposition of AlN on the Al layer without interrupting the film formation by starting the introduction of nitrogen gas in a rectangular manner. The AlN thin film is a C-axis oriented AlN thin film having the same polarity as the Al polarity. In this embodiment, the amount of Ar gas introduced is changed along with the amount of nitrogen gas introduced, but this is for keeping the sputtering gas pressure constant and is not the essence of the present invention.

本発明と本発明の応用形態と特許文献1に記載の製造方法とを組み合わせることにより、図5のように、同一多層薄膜中に、Al極性のC軸配向性AlN薄膜とN極性のC軸配向性AlN薄膜とを形成することができる。このことは、実際に、STEM−HAADF像からも確認されている。そして、そのような薄膜は、図6のように電場をかけることにより、従来の1/2の電圧であっても、同じ変形量を得ることができる。なお、本実施例では、特許文献1に記載の製造方法を用いたが、N極性のC軸配向性AlN薄膜は比較的容易に得られることが知られているので、必ずしも、特許文献1に記載の製造方法を用いる必要はない。
By combining the present invention and the application form of the present invention and the manufacturing method described in Patent Document 1, as shown in FIG. 5, in the same multilayer thin film, an Al polar C-axis oriented AlN thin film and an N polar C axis An oriented AlN thin film can be formed. This is actually confirmed from the STEM-HAADF image. And such a thin film can obtain the same deformation amount even if it is a conventional 1/2 voltage by applying an electric field as shown in FIG. In this example, although the manufacturing method described in Patent Document 1 was used, it is known that an N-polar C-axis oriented AlN thin film can be obtained relatively easily. It is not necessary to use the described production method.

特開2011−117059号広報  JP 2011-117059

本発明によれば、金属電極上に、極性の揃ったC軸配向性AlN薄膜を、アモルファス層を経ずに形成できるので、数100GHz帯の圧電薄膜共振器(その際、AlN層厚みは数10nmとなる)も作製可能である。  According to the present invention, since a C-axis oriented AlN thin film having a uniform polarity can be formed on a metal electrode without passing through an amorphous layer, a piezoelectric thin film resonator of several hundred GHz band (in this case, the thickness of the AlN layer is several Can be 10 nm).

10 極性をAl極性に揃えているC軸配向性AlN薄膜
21 基板
22 バッファー層としてのAlN薄膜
23 下部電極としての(111)配向したAl層
24 (111)配向したPt層
25 極性をN極性に揃えているC軸配向性AlN薄膜
26 上部電極
31 電源
10 C-axis oriented AlN thin film 21 whose polarity is aligned with Al polarity 21 Substrate 22 AlN thin film 23 as buffer layer (111) oriented Al layer 24 as lower electrode (111) oriented Pt layer 25 Polarity to N polarity C-axis oriented AlN thin film 26 aligned Upper electrode 31 Power supply

Claims (9)

Al層上に形成されるAlN薄膜であって、Al層を堆積している時に矩形的に窒素の導入を開始することにより、成膜を中断することなくAlN薄膜の堆積を開始させることを特徴とする、AlN薄膜の製造方法。An AlN thin film formed on an Al layer, wherein the deposition of the AlN thin film is started without interruption by starting the introduction of nitrogen in a rectangular manner when the Al layer is being deposited. A method for producing an AlN thin film. AlN薄膜上に形成されるAl層であって、Alターゲットを用いてAlN薄膜を堆積している時に矩形的に窒素の導入を取りやめることにより、成膜を中断することなくAl薄膜の堆積を開始させることを特徴とする、AlN薄膜の製造方法。Al film is formed on the AlN thin film, and when the AlN thin film is deposited using the Al target, deposition of the Al thin film is started without interruption by stopping the introduction of nitrogen in a rectangular manner. A method for producing an AlN thin film, characterized by comprising: 前記のAlN薄膜が、ガス圧が0.5Pa〜1.0Paの範囲のArと窒素との混合ガスを用いるスパッタリング法で形成される、請求項1ないし請求項2のいずれかに記載のAlN薄膜の製造方法。3. The AlN thin film according to claim 1, wherein the AlN thin film is formed by a sputtering method using a mixed gas of Ar and nitrogen having a gas pressure in a range of 0.5 Pa to 1.0 Pa. 4. Manufacturing method. 前記のAlN薄膜が、窒素ガスの流量比が20%〜40%の範囲のArと窒素との混合ガスを用いるスパッタリング法で形成される、請求項1ないし請求項2のいずれかに記載のAlN薄膜の製造方法。3. The AlN film according to claim 1, wherein the AlN thin film is formed by a sputtering method using a mixed gas of Ar and nitrogen with a flow rate ratio of nitrogen gas in the range of 20% to 40%. Thin film manufacturing method. 前記のAlN薄膜が、C軸配向していることを特徴とする、請求項1ないし請求項2のいずれかに記載のAlN薄膜の製造方法。The method for producing an AlN thin film according to any one of claims 1 to 2, wherein the AlN thin film is C-axis oriented. 前記のAlN薄膜が、極性が揃っていることを特徴とする、請求項5に記載のAlN薄膜の製造方法。The method for producing an AlN thin film according to claim 5, wherein the AlN thin film has a uniform polarity. 前記のAlN薄膜が、Al極性にて成長していることを特徴とする、請求項6に記載のAlN薄膜の製造方法。The method for producing an AlN thin film according to claim 6, wherein the AlN thin film is grown with Al polarity. 前記のAlN薄膜の厚みが、1nm以上であることを特徴とする、請求項5から7のいずれかに記載のAlN薄膜の製造方法。The method of manufacturing an AlN thin film according to any one of claims 5 to 7, wherein the thickness of the AlN thin film is 1 nm or more. 請求項1から8のいずれかに記載のAlN薄膜の製造方法と一般的なAlN薄膜の製造法を組み合わせることにより、同一多層薄膜内で、Al極性のC軸配向性AlN薄膜とN極性のC軸配向性AlN薄膜とが金属層を介して積層されていることを特徴とする、AlNと金属からなる多層薄膜。By combining the method for producing an AlN thin film according to any one of claims 1 to 8 and a method for producing a general AlN thin film, an Al polar C-axis oriented AlN thin film and an N polar C A multilayer thin film made of AlN and a metal, characterized in that an axially oriented AlN thin film is laminated via a metal layer.
JP2012086869A 2012-03-19 2012-03-19 METHOD FOR PRODUCING AlN THIN FILM Pending JP2013194320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086869A JP2013194320A (en) 2012-03-19 2012-03-19 METHOD FOR PRODUCING AlN THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086869A JP2013194320A (en) 2012-03-19 2012-03-19 METHOD FOR PRODUCING AlN THIN FILM

Publications (1)

Publication Number Publication Date
JP2013194320A true JP2013194320A (en) 2013-09-30

Family

ID=49393625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086869A Pending JP2013194320A (en) 2012-03-19 2012-03-19 METHOD FOR PRODUCING AlN THIN FILM

Country Status (1)

Country Link
JP (1) JP2013194320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765751A (en) * 2013-11-29 2016-07-13 株式会社村田制作所 Piezoelectric thin film, manufacturing method therefor, and piezoelectric element
US20170317267A1 (en) * 2016-04-28 2017-11-02 Sae Magnetics (H.K.) Ltd. Thin film piezoelectric element and manufacturing method thereof
CN113539791A (en) * 2021-06-25 2021-10-22 中国科学院半导体研究所 Preparation method of polarity-alternating AlN template

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765751A (en) * 2013-11-29 2016-07-13 株式会社村田制作所 Piezoelectric thin film, manufacturing method therefor, and piezoelectric element
US20170317267A1 (en) * 2016-04-28 2017-11-02 Sae Magnetics (H.K.) Ltd. Thin film piezoelectric element and manufacturing method thereof
CN107342357A (en) * 2016-04-28 2017-11-10 新科实业有限公司 Membrane piezoelectric element and its manufacture method
US10181557B2 (en) * 2016-04-28 2019-01-15 Sae Magnetics (H.K.) Ltd. Thin film piezoelectric element and manufacturing method thereof
CN107342357B (en) * 2016-04-28 2022-08-16 新科实业有限公司 Thin film piezoelectric element and method for manufacturing the same
CN113539791A (en) * 2021-06-25 2021-10-22 中国科学院半导体研究所 Preparation method of polarity-alternating AlN template
CN113539791B (en) * 2021-06-25 2024-02-27 中国科学院半导体研究所 Preparation method of polarity-alternating AlN template

Similar Documents

Publication Publication Date Title
JP4328853B2 (en) Piezoelectric element and manufacturing method thereof
JP7075180B2 (en) Sedimentation method
KR101511349B1 (en) Manufacturing method of piezoelectric-body film, and piezoelectric-body film manufactured by the manufacturing method
US10965270B2 (en) Piezoelectric thin film and piezoelectric vibrator
KR102386800B1 (en) Ti-Al-Ta-BASED COATING EXHIBITING ENHANCED THERMAL STABILITY
JP2011030195A (en) Piezoelectric thin film element and manufacturing method thereof, and piezoelectric thin film device
WO2015033791A1 (en) Piezoelectric thin film element and method for manufacturing same
CN111244263A (en) Piezoelectric thin film element
Yang et al. Influence of sputtering power on crystal quality and electrical properties of Sc-doped AlN film prepared by DC magnetron sputtering
Wang et al. Growth of preferentially-oriented AlN films on amorphous substrate by pulsed laser deposition
JP2012181908A5 (en)
Iriarte et al. Effect of substrate–target distance and sputtering pressure in the synthesis of AlN thin films
JP2013194320A (en) METHOD FOR PRODUCING AlN THIN FILM
Schlögl et al. Piezoelectricity in Y0. 09Al0. 91N thin films
Tanaka et al. High electromechanical strain and enhanced temperature characteristics in lead-free (Na, Bi) TiO3–BaTiO3 thin films on Si substrates
CN104064670B (en) Piezoelectric film-type element, piezoelectric transducer and vibrating electricity generator
Sultan et al. Structural morphology and electrical transitions of V2O3 thin films grown on SiO2/Si by high power impulse magnetron sputtering
WO2017002341A1 (en) Method for producing multilayer thin film structure, multilayer thin film structure and piezoelectric element provided with same
JP4328854B2 (en) Piezoelectric element and manufacturing method thereof
JP6850870B2 (en) Piezoelectric membranes, piezoelectric elements, and methods for manufacturing piezoelectric elements
WO2019059051A1 (en) Piezoelectric thin film element
Park et al. Enhanced piezoelectric properties of lead-free 0.935 (Bi 0.5 Na 0.5) TiO 3-0.065 BaTiO 3 thin films fabricated by using pulsed laser deposition
Zhu et al. Study on the growth and interfacial strain of CoFe2O4/BaTiO3 bilayer films
Jiang et al. Microstructural and electrical properties of 0.65 Pb (Mg1/3Nb2/3) O3–0.35 PbTiO3 (PMN–PT) epitaxial films grown on Si substrates
Kim et al. Strong (110) Texturing and Heteroepitaxial Growth of Thin Mo Films on MoS2 Monolayer