JP2013193939A - Method of producing ferric nitrate aqueous solution and sodium nitrite - Google Patents

Method of producing ferric nitrate aqueous solution and sodium nitrite Download PDF

Info

Publication number
JP2013193939A
JP2013193939A JP2012064733A JP2012064733A JP2013193939A JP 2013193939 A JP2013193939 A JP 2013193939A JP 2012064733 A JP2012064733 A JP 2012064733A JP 2012064733 A JP2012064733 A JP 2012064733A JP 2013193939 A JP2013193939 A JP 2013193939A
Authority
JP
Japan
Prior art keywords
aqueous solution
nitric acid
iron
ferric nitrate
sodium nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012064733A
Other languages
Japanese (ja)
Other versions
JP5951303B2 (en
Inventor
Noriteru Ishii
典輝 石井
Yosuke Katsura
洋介 桂
Yosuke Kamioka
洋介 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2012064733A priority Critical patent/JP5951303B2/en
Publication of JP2013193939A publication Critical patent/JP2013193939A/en
Application granted granted Critical
Publication of JP5951303B2 publication Critical patent/JP5951303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a ferric nitrate aqueous solution and a sodium nitrite aqueous solution by wet waste gas treatment of a NOx-containing gas occurring when a nitric acid aqueous solution is prepared from a metal iron.SOLUTION: In a method of producing a ferric nitrate aqueous solution and a sodium nitrite aqueous solution, iron and nitric acid are reacted mutually to produce the ferric nitrate aqueous solution, generated NOx-containing gas is absorbed in water and nitric acid is collected while unabsorbed gas is reacted with a sodium hydroxide aqueous solution to collect a sodium nitrite aqueous solution, and the collected nitric acid is used for a reaction with the iron while the collected sodium nitrite aqueous solution is used as an oxidation catalyst producing polyferric sulfate.

Description

本発明は、硝酸第二鉄水溶液及びポリ硫酸第二鉄製造時の触媒となる亜硝酸ナトリウムの製造方法に関するものである。
より詳しくは、本発明は、金属鉄を硝酸で溶解して、脱臭剤として有益な硝酸第二鉄水溶液を製造すると共に、その際に発生するNOX排ガスからポリ硫酸第二鉄製造時の触媒となる亜硝酸ナトリウムを製造する方法に関するものである。また、副生する亜硝酸ナトリウムを触媒としてポリ硫酸第二鉄を合わせて製造する方法に関するものである。
The present invention relates to a method for producing sodium nitrite which serves as a catalyst for producing ferric nitrate aqueous solution and polyferric sulfate.
More specifically, the present invention relates to the production of ferric nitrate aqueous solution useful as a deodorant by dissolving metallic iron with nitric acid, and a catalyst for producing polyferric sulfate from NO x exhaust gas generated at that time. The present invention relates to a method for producing sodium nitrite. The present invention also relates to a method for producing ferric sulfate using sodium nitrite as a by-product as a catalyst.

硝酸第二鉄を製造する方法には、鉄原料として、酸化鉄、水酸化鉄等の鉄化合物を用いる方法と、金属鉄を用いる方法に大別することができる。そのうちの前者については、本発明者等は、鉄化合物含有酸性廃液を中和した際に発生する水酸化第二鉄含有含水スラッジを硝酸により溶解することにより、硝酸第二鉄と同様に硫化水素に対し発生抑制を有する鉄と硝酸根を含有する液体脱臭剤を開発し提案した(特許文献1、2)。   Methods for producing ferric nitrate can be broadly classified into methods using iron compounds such as iron oxide and iron hydroxide, and methods using metallic iron as iron raw materials. As for the former, the present inventors have dissolved the ferric hydroxide-containing water-containing sludge generated when neutralizing the iron compound-containing acidic waste liquid with nitric acid, so that hydrogen sulfide as well as ferric nitrate is dissolved. Developed and proposed a liquid deodorant containing iron and nitrate radicals that suppress the generation of the above (Patent Documents 1 and 2).

後者の金属鉄を鉄原料とする硝酸第二鉄水溶液を製造する方法については、金属鉄を高濃度の硝酸で溶解することにより硝酸第二鉄水溶液を製造するものである(非特許文献1参照)が、その製造方法の場合には、鉄溶解時に硝酸が還元されてNO、NO2等の多量のNOX含有ガスが発生(副生)する。 About the method of manufacturing the ferric nitrate aqueous solution which uses the latter metallic iron as an iron raw material, ferric nitrate aqueous solution is manufactured by melt | dissolving metallic iron with high concentration nitric acid (refer nonpatent literature 1). However, in the case of the production method, nitric acid is reduced when iron is dissolved, and a large amount of NO x -containing gas such as NO and NO 2 is generated (by-product).

この副生した大量のNOX含有ガスをそのまま放出した場合には、大気汚染を引き起こすことになるので、通常湿式排ガス処理を行う(非特許文献2及び3参照)。その排ガス処理は、通常水酸化ナトリウム水溶液あるいはチオ硫酸ナトリウム水溶液に副生したNOX含有ガスを接触させることにより、該ガス中のNOX含有ガスを前記した水溶液に吸収することにより浄化するものである(非特許文献3参照)。 If a large amount of the NO x -containing gas produced as a by-product is released as it is, it will cause air pollution, and therefore, usually wet exhaust gas treatment is performed (see Non-Patent Documents 2 and 3). Its exhaust gas treatment is by contacting the NO X containing gas normally-produced aqueous solution of sodium or sodium thiosulfate aqueous hydroxide, intended to purify by absorbing the NO X containing gas in said gas to an aqueous solution obtained by the Yes (see Non-Patent Document 3).

この排ガス処理時に副生した吸収液には、硝酸ナトリウムあるいは亜硝酸ナトリウムが生成することになるので、水質汚染防止上、このまま河川、海水等の公共用水域に放出することはできず、排水処理を行うことが必要となる。
この排水処理には、イオン交換、膜分離等の物理化学的処理、あるいは微生物処理等があるが、従来の処理技術は、複数成分が混在したまま行うことから、処理後分離された副生成分は複数成分が混在したままのものであり、そのまま利用するには価値のないものであった。そのため、分離された副生成分の廃棄処理には多額の費用が掛かるものであった。
The absorption liquid produced as a by-product during exhaust gas treatment will produce sodium nitrate or sodium nitrite, so it cannot be released into public waters such as rivers and seawater to prevent water pollution. It is necessary to do.
This wastewater treatment includes physicochemical treatments such as ion exchange, membrane separation, or microbial treatments, but conventional treatment techniques are performed with a mixture of multiple components. Was a mixture of multiple components and was not worth using as it was. Therefore, a large amount of cost is required for the disposal of the separated by-product.

特許第4098584号Patent No. 4098584 特許第4813609号Patent No. 4813609

「14705の化学商品」 2005年1月25日、化学工業日報社発行 第125頁“Chemical products of 14705” published on January 25, 2005, published by Chemical Industry Daily, page 125 「窒素酸化物による汚染実態と防止技術の現状」 昭和49年7月1日 (財)大阪科学技術センター発行 第230〜239頁“Current Status of Nitrogen Oxide Contamination and Prevention Technologies” July 1, 1974, Osaka Science and Technology Center, pages 230-239 「窒素酸化物防止技術」 昭和48年12月15日 株式会社化学工業社発行 第13〜14頁"Nitrogen oxide prevention technology" December 15, 1973, published by Chemical Industry Co., Ltd., pages 13-14

そこで、本発明者らは、排水処理後に分離された副生物を活用可能な価値の高いものにすべく鋭意検討し、その結果開発に成功したのが本発明である。
すなわち、本発明は、排水処理後に分離された副生物について、複数成分が混在したままのものではなく、単独成分として分離し、それを有効活用すべく鋭意研究開発に努め、その結果開発に成功したのが本発明である。
Therefore, the present inventors have intensively studied to make by-products separated after waste water treatment high in value that can be utilized, and as a result, the present invention has been successfully developed.
That is, the present invention is not a mixture of by-products separated after wastewater treatment, but separated as a single component, striving for earnest research and development to make effective use of it, and succeeded in development as a result. This is the present invention.

前記の通りであるから、本発明は、金属鉄を鉄原料として硝酸第二鉄水溶液を製造する際に、副生するNOX含有ガスを湿式排ガス処理し、処理後生成した副生物を単独の物質として回収し、それを前記湿式排ガス処理、あるいは他の製造工程に利用可能な成分として有効活用することができる方法、具体的には硝酸第二鉄水溶液及び亜硝酸ナトリウムを製造する方法を開発することを解決すべき課題、すなわち目的とするものである。また、合わせて副生する亜硝酸ナトリウムを触媒としてポリ硫酸第二鉄を製造する方法を開発することも解決すべき課題とするものである。
Because as above, the present invention, the metallic iron in making the ferric nitrate solution as an iron raw material, by-product NO X containing gas wet exhaust gas treatment, the resulting by-product alone after treatment Developed a method that can be recovered as a substance and can be effectively used as a component that can be used in the above-mentioned wet exhaust gas treatment or other manufacturing processes, specifically, a ferric nitrate aqueous solution and sodium nitrite. This is a problem to be solved, that is, a purpose. Another object to be solved is to develop a method for producing ferric sulfate using sodium nitrite produced as a by-product as a catalyst.

本願発明は、前記課題を解決したものであり、そのうちの硝酸第二鉄水溶液及び亜硝酸ナトリウム水溶液の製造方法は、鉄と濃硝酸とを反応させて硝酸第二鉄水溶液を生成させ、発生したNOX含有ガスを水に吸収して硝酸を回収し、かつ未吸収のガスを水酸化ナトリウム水溶液と反応させて亜硝酸ナトリウム水溶液を回収し、前記回収した硝酸を鉄との反応に利用し、かつ前記回収した亜硝酸ナトリウム水溶液をポリ硫酸第二鉄を製造する酸化触媒として利用することを特徴とするものである。 The invention of the present application has solved the above-mentioned problems, and a method for producing a ferric nitrate aqueous solution and a sodium nitrite aqueous solution is produced by reacting iron and concentrated nitric acid to produce a ferric nitrate aqueous solution. the NO X containing gas is absorbed by water to recover the nitric acid, and by the unabsorbed gas is reacted with aqueous sodium hydroxide to recover the sodium nitrite solution, the recovered nitric acid was utilized for reaction with the iron, The recovered sodium nitrite aqueous solution is used as an oxidation catalyst for producing ferric sulfate.

また、硝酸第二鉄水溶液及びポリ硫酸第二鉄の製造方法は、鉄と硝酸とを反応させて硝酸第二鉄水溶液を生成させ、発生したNOX含有ガスを水に吸収して硝酸を回収し、かつ未吸収のガスを水酸化ナトリウム水溶液と反応させて亜硝酸ナトリウム水溶液を回収し、前記回収した硝酸を鉄との反応に利用し、かつ前記回収した亜硝酸ナトリウム水溶液を酸化触媒として用いて、硫酸鉄と硫酸とを酸素存在下で反応させてポリ硫酸第二鉄を生成させることを特徴とするものである。 The manufacturing method of ferric nitrate aqueous solution and poly ferric sulfate is allowed to react with iron and nitric acid to produce a ferric nitrate aqueous solution, recovering the nitric acid generated NO X containing gas is absorbed by water The unabsorbed gas is reacted with an aqueous sodium hydroxide solution to recover the aqueous sodium nitrite solution, the recovered nitric acid is used for the reaction with iron, and the recovered aqueous sodium nitrite solution is used as an oxidation catalyst. Then, iron sulfate and sulfuric acid are reacted in the presence of oxygen to produce polyferric sulfate.

そして、前記した両本願発明は、以下のことが好ましい。
(1)硝酸の濃度が20〜60質量%であること。
(2)水酸化ナトリウム水溶液の濃度が10〜40質量%であること。
(3)硝酸第二鉄水溶液の濃度が25〜45質量%であること。
(4)回収した硝酸の濃度が2〜20質量%であること。
(5)回収した亜硝酸ナトリウム水溶液の濃度が10〜40質量%であること。
And as for both above-mentioned invention of this application, the following is preferable.
(1) The concentration of nitric acid is 20 to 60% by mass.
(2) The concentration of the sodium hydroxide aqueous solution is 10 to 40% by mass.
(3) The concentration of the ferric nitrate aqueous solution is 25 to 45% by mass.
(4) The concentration of the collected nitric acid is 2 to 20% by mass.
(5) The concentration of the recovered sodium nitrite aqueous solution is 10 to 40% by mass.

本願発明では、鉄と硝酸とを反応させて硝酸第二鉄水溶液を生成させる際に発生したNOX含有ガスを水に吸収して硝酸を回収し、回収した硝酸を鉄溶解の際に再利用するので、鉄溶解時に用いる硝酸の使用量を低減させることができる。
また、鉄の溶解反応の際に発生したNOX含有ガスを水により吸収する際に、未吸収となっていたガスを更に水酸化ナトリウム水溶液と反応させ生成した亜硝酸ナトリウム水溶液を回収して硫酸鉄と硫酸とを酸素存在下で反応させてポリ硫酸第二鉄を製造する際に酸化触媒として活用するものである。
In the present invention, reuse NO X containing gas generated during reacted iron and nitric acid to produce a ferric nitrate aqueous solution of nitric acid was recovered by absorption in water, the recovered nitric acid during the iron dissolution Therefore, the amount of nitric acid used when iron is dissolved can be reduced.
In addition, when the NO x -containing gas generated during the iron dissolution reaction is absorbed by water, the unabsorbed gas is further reacted with an aqueous sodium hydroxide solution to recover the aqueous sodium nitrite solution to recover sulfuric acid. It is used as an oxidation catalyst when producing ferric sulfate by reacting iron and sulfuric acid in the presence of oxygen.

鉄の溶解反応の際に発生するNOX含有ガスについては、従来は大気汚染を回避するために、前記した通り、水、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液あるいはチオ硫酸ナトリウム水溶液等の各種洗浄液を用いて湿式排ガス処理を行うが、汚染した洗浄液は各種副生物が混在することから活用することはできず、廃棄処理するのが通常であり、その処理に多くの経費が必要であった。 As for the NO x -containing gas generated during the iron dissolution reaction, conventionally, various cleaning liquids such as water, sodium hydroxide aqueous solution, sodium carbonate aqueous solution or sodium thiosulfate aqueous solution are used as described above in order to avoid air pollution. Wet exhaust gas treatment is used, but the contaminated cleaning liquid cannot be used because various by-products are mixed, and is usually disposed of, which requires a lot of expenses for the treatment.

それに対して、本願発明では、排ガス中の窒素酸化物を有価物として回収することができるので、鉄の溶解反応の際に発生したNOX含有ガスを極めて有益に処理することが可能となった。なお、鉄の溶解反応の際に発生したNOX含有ガスは、水と水酸化ナトリウム溶液との2段処理で完全に浄化できるわけではなく、一部未処理のものがあるが、その量は発生ガス量より相当少ないものとなっており、従来法に比し極めて優れていることはいうまでもない。
On the other hand, in the present invention, since nitrogen oxides in exhaust gas can be recovered as valuables, it has become possible to treat the NO x -containing gas generated during the dissolution reaction of iron extremely beneficially. . Note that the NO x -containing gas generated during the iron dissolution reaction cannot be completely purified by two-stage treatment with water and sodium hydroxide solution, and some of them are untreated, but the amount is Needless to say, the amount of gas generated is considerably smaller than the amount of gas generated, which is extremely superior to the conventional method.

図1は、鉄を硝酸で溶解する際に発生したNOX含有ガスから硝酸及び亜硝酸ナトリウムを回収し、それを有効活用するプロセスを図示するものである。Figure 1 is a iron was recovered nitric acid and sodium nitrite from NO X containing gas generated during the dissolution in nitric acid, illustrating a process to make effective use of it. 図2は、鉄を硝酸で溶解する際に発生したNOX含有ガスから硝酸及び亜硝酸ナトリウムを回収し、それを有効活用して硝酸第二鉄溶液及びポリ硫酸第二鉄を製造するプロセスを図示するものである。Fig. 2 shows a process for recovering nitric acid and sodium nitrite from NO x- containing gas generated when iron is dissolved with nitric acid, and effectively using it to produce a ferric nitrate solution and polyferric sulfate. It is illustrated.

以下において、本願発明である硝酸第二鉄水溶液及び亜硝酸ナトリウム水溶液の製造方法について更に詳細に説明する。
本願発明の硝酸第二鉄水溶液及び亜硝酸ナトリウム水溶液の製造方法は、鉄と硝酸とを反応させて硝酸第二鉄水溶液を生成させ、発生したNOX含有ガスを水に吸収して硝酸を回収し、かつ未吸収のガスを水酸化ナトリウム水溶液と反応させて亜硝酸ナトリウム水溶液を回収し、前記回収した硝酸を鉄との反応に利用し、かつ前記回収した亜硝酸ナトリウム水溶液をポリ硫酸第二鉄を製造する酸化触媒として利用することを特徴とするものである。
Below, the manufacturing method of the ferric nitrate aqueous solution and sodium nitrite aqueous solution which are this invention is demonstrated in detail.
The manufacturing method of the ferric nitrate aqueous solution and the sodium nitrite aqueous solution of the present invention is a method of reacting iron and nitric acid to produce a ferric nitrate aqueous solution, and the generated NO x -containing gas is absorbed into water to recover nitric acid. And the unabsorbed gas is reacted with an aqueous sodium hydroxide solution to recover an aqueous sodium nitrite solution, the recovered nitric acid is used for the reaction with iron, and the recovered sodium nitrite aqueous solution is recovered from the polysulfuric acid solution. It is used as an oxidation catalyst for producing iron.

本願発明においては、鉄原料は金属鉄であれば特に制限されることなく各種のものが使用可能であり、それには、各種鉄工場において鉄製品の製造時に排出される鉄加工屑、例えば鉄板打ち抜き後の破断片、鉄棒あるいは鉄線等の切削屑、更には建材、橋梁、車輌、船等の各種用途で使用された後に廃棄処理された屑鉄等が例示できる。
その金属鉄は大型のままでは硝酸による溶解に長時間を要するから、20×50×120cm以下のサイズに切断するのがよく、その点鉄加工屑はサイズが小さいので簡便に溶解できるので好ましい。なお、金属鉄中の鉄以外の成分については、その含有量が少ないことが必要であり、合金鉄でも鉄以外の成分の含有量が5質量%以下であれば使用可能である。
In the present invention, if the iron raw material is metallic iron, various types of materials can be used without any particular limitation. For example, iron processing scraps discharged at the time of manufacture of iron products in various iron factories, for example, punching of iron plates Examples thereof include broken pieces, cutting scraps such as iron bars or iron wires, and scrap iron discarded after being used in various applications such as building materials, bridges, vehicles, and ships.
Since the metal iron takes a long time to dissolve with nitric acid in a large size, it is preferable to cut it to a size of 20 × 50 × 120 cm or less, and the spot iron processing waste is preferable because it can be easily dissolved because of its small size. In addition, about components other than iron in metallic iron, it is necessary for the content to be small, and even if it is content of components other than iron even if it is alloy iron, it can be used.

金属鉄を硝酸により溶解することで製造される硝酸第二鉄水溶液については、その濃度が25〜40質量%となるように鉄の溶解反応を行うのがよい。
金属鉄の溶解に使用する硝酸については、硝酸であれば特に制限されることなく、各種濃度のものが使用可能であるが、30〜70質量%のものが好適である。
その反応式を示すと以下の反応式1−1及び反応式1−2に示す通りであり、2つの反応が同時に進行する。
About ferric nitrate aqueous solution manufactured by melt | dissolving metallic iron with nitric acid, it is good to perform the melt | dissolution reaction of iron so that the density | concentration may be 25-40 mass%.
The nitric acid used for dissolving metallic iron is not particularly limited as long as it is nitric acid, and various concentrations can be used, but those of 30 to 70% by mass are preferable.
The reaction formula is as shown in the following reaction formula 1-1 and reaction formula 1-2, and two reactions proceed simultaneously.

その際には、鉄の溶解に使用する硝酸濃度が低い場合には反応式1−1が支配的であり、高い場合には反応式1−2が支配的となる。
Fe + 4HNO3 → Fe(NO3)3 + NO↑ + NO2 + 2H2
(反応式1−1)
Fe + 6HNO3 → Fe(NO3)3 + 3NO↑ + NO2 + 3H2
(反応式1−2)
In this case, the reaction formula 1-1 is dominant when the concentration of nitric acid used for dissolving iron is low, and the reaction formula 1-2 is dominant when the concentration is high.
Fe + 4HNO 3 → Fe (NO 3 ) 3 + NO ↑ + NO 2 + 2H 2 O
(Reaction Formula 1-1)
Fe + 6HNO 3 → Fe (NO 3 ) 3 + 3NO ↑ + NO 2 + 3H 2 O
(Reaction Formula 1-2)

市販の硝酸は濃硝酸で、その濃度については3種あり、それぞれ62、67、72質量%であるから、好適な濃度にするには必要に応じ水等で希釈することになる。
その際には、回収した硝酸の濃度が後記する通り2〜20質量%であるのがよいから、これを希釈に使用することにより市販硝酸の使用量を低減することができ、それを使用するのが好適である。その溶解時における液温は80℃以下がよい。
Commercially available nitric acid is concentrated nitric acid, and there are three types of concentrations, which are 62, 67, and 72% by mass, respectively. Therefore, in order to obtain a suitable concentration, it is diluted with water or the like as necessary.
In that case, since the concentration of the collected nitric acid should be 2 to 20% by mass as described later, the amount of commercially available nitric acid can be reduced by using it for dilution, and it is used. Is preferred. The liquid temperature at the time of dissolution is preferably 80 ° C. or less.

硝酸による鉄溶解時に発生するガスについては、一酸化窒素(NO)、二酸化窒素(NO2)等の各種窒素酸化物(NOX)が含有されているが、そのガスをまず水と接触させて排ガス処理することにより硝酸を回収することができる。その吸収反応を示すと以下の通りである。
3NO2 + H2O → 2HNO3 + NO↑ (反応式2)
その反応時には各種気液接触装置が使用可能であるが、それにはスクラバー、充填塔、あるいは棚板塔等が例示できる。
The gas generated when iron is dissolved by nitric acid contains various nitrogen oxides (NO x ) such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ). The gas is first brought into contact with water. Nitric acid can be recovered by exhaust gas treatment. The absorption reaction is as follows.
3NO 2 + H 2 O → 2HNO 3 + NO ↑ (Reaction Formula 2)
Various gas-liquid contact devices can be used during the reaction, and examples thereof include a scrubber, a packed tower, a shelf tower, and the like.

その際に使用する水については、特に純度の低いものでない限り各種のものが使用可能であり、それには上水、工業用水、浄化処理水、脱塩水等が例示できる。
その水の温度についても特に制限されることはないが、好ましくは0〜40℃がよい。
この水処理により回収される硝酸については、その濃度が2〜20質量%となるように吸収反応を行うのがよい。
Various waters can be used as long as they are not particularly low in purity, and examples thereof include clean water, industrial water, purified water, and desalted water.
Although there is no restriction | limiting in particular also about the temperature of the water, Preferably 0-40 degreeC is good.
About the nitric acid collect | recovered by this water treatment, it is good to perform an absorption reaction so that the density | concentration may be 2-20 mass%.

鉄溶解時に発生したNOX含有ガスについては、前記水処理によりNOXガスが全て水に吸収されるのではなく、一部が未吸収のままガス状で残留することになるので、前記した通り水酸化ナトリウム水溶液と反応させることにより亜硝酸ナトリウム水溶液を回収することになる。その際に使用する水酸化ナトリウム水溶液の濃度については特に制限されるものではないが、10〜40質量%のものがよい。
その反応式を示すと以下の通りである。
8NO2 + 4NaOH → 4NaNO2 + 4NO↑ + 3O2 + 2H2O (反応式3)
The NO X containing gas generated during the iron dissolution, the water instead of NO X gas is absorbed all water in the process, since a part is to remain while gaseous unabsorbed, as described above By reacting with the aqueous sodium hydroxide solution, the aqueous sodium nitrite solution is recovered. The concentration of the aqueous sodium hydroxide solution used at that time is not particularly limited, but is preferably 10 to 40% by mass.
The reaction formula is as follows.
8NO 2 + 4NaOH → 4NaNO 2 + 4NO ↑ + 3O 2 + 2H 2 O ( Reaction Scheme 3)

その反応については回収する亜硝酸ナトリウム水溶液の濃度が10〜40質量%になるように行うのがよい。
また、その反応に使用する装置については、水による処理の場合と同様に各種気液接触装置が使用可能である。また、その際の水酸化ナトリウム水溶液の温度についても特に制限されることはないが0〜40℃がよい。
About the reaction, it is good to carry out so that the density | concentration of the collect | recovered sodium nitrite aqueous solution may be 10-40 mass%.
Moreover, about the apparatus used for the reaction, various gas-liquid contact apparatuses can be used similarly to the case of the process by water. Moreover, although it does not restrict | limit especially also about the temperature of the sodium hydroxide aqueous solution in that case, 0-40 degreeC is good.

鉄溶解時に発生したNOX含有ガスから回収した亜硝酸ナトリウム水溶液については、鉄化合物と硫酸とを酸素の存在下で酸化反応を行うことによりポリ硫酸第二鉄を製造する際に酸化触媒として使用する。その亜硝酸ナトリウム水溶液を酸化触媒として使用するポリ硫酸第二鉄の製造反応を行う際の鉄化合物については、前記反応によりポリ硫酸第二鉄を製造可能であれば特に制限されることなく、各種鉄化合物が使用可能であるが、硫酸鉄が特に好ましく、多くの実用化実績がある。 The sodium nitrite aqueous solution recovered from the NO x- containing gas generated during iron dissolution is used as an oxidation catalyst in the production of polyferric sulfate by oxidizing iron compound and sulfuric acid in the presence of oxygen. To do. The iron compound used in the production reaction of polyferric sulfate using the sodium nitrite aqueous solution as an oxidation catalyst is not particularly limited as long as polyferric sulfate can be produced by the reaction. Although iron compounds can be used, iron sulfate is particularly preferred and has many practical achievements.

その硫酸鉄を使用して製造するポリ硫酸第二鉄及びその製造プロセスに関し、以下において概要を示す。
そのポリ硫酸第二鉄は、[Fe2(OH)n(SO43-n/2m という化学式で表される液状の物質である。但し、その式中においてnはn<2、mはm>10である。また、その塩基度はn/6×100%で表される。
An outline is shown below about the ferric sulfate manufactured using the iron sulfate, and its manufacturing process.
The polyferric sulfate is a liquid substance represented by the chemical formula [Fe 2 (OH) n (SO 4 ) 3 -n / 2 ] m . However, in the formula, n is n <2, and m is m> 10. The basicity is represented by n / 6 × 100%.

このポリ硫酸第二鉄の製造方法を示すと以下の通りである。
反応槽に、所定量の市水、硫酸第一鉄及び硫酸を供給し、反応槽の上部気相空間に酸素を満たす。次いで、反応槽を密閉し、その反応槽内に酸化触媒の亜硝酸ナトリウムを添加する。この添加により酸化反応が開始され、気相空間の酸素が液相に吸収され、反応槽の内圧が低下する。この内圧の低下に応じて、それを補充する量の酸素を供給し続け、それによりFe2+が酸化されて行き、全てがFe3+に酸化される。その時点で酸化反応は終了し、硫酸第一鉄の全量がポリ硫酸第二鉄に転化されたことになる。
A method for producing this polyferric sulfate is as follows.
A predetermined amount of city water, ferrous sulfate and sulfuric acid are supplied to the reaction tank, and oxygen is filled in the upper gas phase space of the reaction tank. Next, the reaction vessel is sealed, and the oxidation catalyst sodium nitrite is added to the reaction vessel. By this addition, an oxidation reaction is started, oxygen in the gas phase space is absorbed into the liquid phase, and the internal pressure of the reaction vessel is lowered. In response to this decrease in internal pressure, it continues to supply oxygen to replenish it, whereby Fe 2+ is oxidized and all is oxidized to Fe 3+ . At that time, the oxidation reaction was completed, and the entire amount of ferrous sulfate was converted to polyferric sulfate.

このようにして製造されるポリ硫酸第二鉄については以下の品質(性状)のものが好ましい。
外観 赤褐色
比重(20℃) 1.45〜1.49
粘度(20℃) 10〜30cps
pH(1w/v%) 2以上
全鉄(T-Fe) 11%(160g/l)以上
第一鉄(Fe(II)) 0.07%以下
硫酸イオン(SO4 2-) 24〜29%(348〜421g/l)
塩素イオン(Cl-) 0.05%以下
凍結性 −12℃±1℃
The polyferric sulfate produced in this way is preferably of the following quality (properties).
Appearance Reddish brown Specific gravity (20 ° C) 1.45 to 1.49
Viscosity (20 ° C) 10-30 cps
pH (1w / v%) 2 or more Total iron (T-Fe) 11% (160g / l) or more Ferrous iron (Fe (II)) 0.07% or less Sulfate ion (SO 4 2- ) 24-29% (348-421 g / l)
Chloride ion (Cl -) fixability -12 ℃ ± 1 ℃ 0.05% or less

以下において、本発明について実施例を用いて説明するが、本発明はこの実施例によって何等限定されるものではなく、特許請求の範囲の記載によって特定されるものであることはいうまでもない。
金属鉄について、鉄板をプレス成形した際に排出される破断片を0.3×0.3×5cmのサイズ裁断したもの、硝酸については市販されている62質量%の濃硝酸を希釈して使用する。
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples, and it is needless to say that the present invention is specified by the description of the scope of claims.
For metallic iron, broken pieces discharged when press-molding an iron plate are cut into a size of 0.3 × 0.3 × 5 cm. For nitric acid, 62% by mass of concentrated nitric acid is diluted and used. To do.

前記した鉄片720kg全量を蓋の付いた溶解槽に投入し、その後市販濃硝酸(62質量%)4765kgを市水(上水)4848kgで希釈した硝酸水溶液571kg(濃度32質量%)を、前記反応槽に付設された供給管から反応槽に少量ずつ添加し溶解反応を行う。その溶解反応は硝酸を供給する同時に進行するから、多量の硝酸を一度に供給すると反応が急激に進行する。そのため、硝酸は徐々に添加することが肝要であり、この実施例では供給終了までに120分を要した。   The total amount of 720 kg of iron pieces described above was put into a dissolution tank with a lid, and then 571 kg (concentration 32 mass%) of an aqueous nitric acid solution obtained by diluting 4765 kg of commercial concentrated nitric acid (62 mass%) with 4848 kg of city water (clean water), From the supply pipe attached to the tank, a small amount is added to the reaction tank to carry out a dissolution reaction. Since the dissolution reaction proceeds simultaneously with the supply of nitric acid, the reaction proceeds rapidly when a large amount of nitric acid is supplied at once. Therefore, it is important to gradually add nitric acid. In this example, 120 minutes were required until the supply was completed.

溶解反応終了後、硝酸第二鉄水溶液(31質量%)が10000kg得られた。また、それの反応時に発生したNOX含有ガスは約920kgであり、これを吸収液の水を循環使用する構造となっている第1のスクラバに導き、そこに市水(上水)5072kgを導入してNOXを吸収した。その結果、硝酸(6.5質量%)5448kgが得られた。
そして、この得られた硝酸を市販濃硝酸(62質量%)と混合して希釈し、32質量%の硝酸を調製することにより市販濃硝酸の使用量を節約することができる。
After the dissolution reaction, 10,000 kg of ferric nitrate aqueous solution (31% by mass) was obtained. In addition, the NO x -containing gas generated during the reaction is about 920 kg, which is led to the first scrubber that is structured to circulate and use the water of the absorption liquid, and 5072 kg of city water (clean water) is supplied there. has absorbed NO X was introduced. As a result, 5448 kg of nitric acid (6.5% by mass) was obtained.
The obtained nitric acid is mixed with commercial concentrated nitric acid (62% by mass) and diluted to prepare 32% by mass nitric acid, thereby saving the amount of commercial concentrated nitric acid used.

その第1のスクラバで吸収されなかったNOX556kgを、反応液の水酸化ナトリウム溶液を循環する構造となっている第2のスクラバに更に導き、ここで水酸化ナトリウム溶液(10質量%)869kgと反応させ亜硝酸ナトリウム(15.5質量%)969kgを得た。
この亜硝酸ナトリウム(NaNO2)969kgを、硫酸鉄と硫酸とを酸素存在下で反応させる際の酸化触媒として用いることによりポリ硫酸第二鉄を製造した。
556 kg of NO x not absorbed by the first scrubber is further guided to a second scrubber having a structure in which the sodium hydroxide solution of the reaction solution is circulated, where 869 kg of sodium hydroxide solution (10% by mass) is obtained. And 969 kg of sodium nitrite (15.5% by mass) was obtained.
By using 969 kg of this sodium nitrite (NaNO 2 ) as an oxidation catalyst when reacting iron sulfate and sulfuric acid in the presence of oxygen, polyferric sulfate was produced.

その際のポリ硫酸第二鉄製造反応を具体的に示すと以下の通りである。
前記した亜硝酸ナトリウム(NaNO2)969kgを酸化触媒として用い、硫酸鉄21639kgと、硫酸(98質量%)2707kgと、市水8465kgと、酸素689kgとを酸化反応させることにより、ポリ硫酸第二鉄34469kgを製造した。
The polyferric sulfate production reaction at that time is specifically shown as follows.
By using 969 kg of the above sodium nitrite (NaNO 2 ) as an oxidation catalyst, an oxidation reaction is carried out between 21639 kg of iron sulfate, 2707 kg of sulfuric acid (98% by mass), 8465 kg of city water, and 689 kg of oxygen. 34469 kg was produced.

Claims (7)

鉄と硝酸とを反応させて硝酸第二鉄水溶液を生成させ、発生したNOX含有ガスを水に吸収して硝酸を回収し、かつ未吸収のガスを水酸化ナトリウム水溶液と反応させて亜硝酸ナトリウム水溶液を回収し、前記回収した硝酸を鉄との反応に利用し、かつ前記回収した亜硝酸ナトリウム水溶液をポリ硫酸第二鉄を製造する酸化触媒として利用することを特徴とする硝酸第二鉄水溶液の製造方法。 Iron and nitric acid are reacted to form a ferric nitrate aqueous solution, the generated NO x -containing gas is absorbed into water to recover nitric acid, and the unabsorbed gas is reacted with an aqueous sodium hydroxide solution to react with nitrous acid A ferric nitrate characterized in that an aqueous sodium solution is recovered, the recovered nitric acid is used for a reaction with iron, and the recovered sodium nitrite aqueous solution is used as an oxidation catalyst for producing polyferric sulfate. A method for producing an aqueous solution. 硝酸の濃度が10〜60質量%である請求項1に記載の硝酸第二鉄水溶液の製造方法。   The manufacturing method of the ferric nitrate aqueous solution of Claim 1 whose density | concentration of nitric acid is 10-60 mass%. 水酸化ナトリウム水溶液の濃度が10〜40質量%である請求項1又は2に記載の硝酸第二鉄水溶液の製造方法。   The manufacturing method of the ferric nitrate aqueous solution of Claim 1 or 2 whose density | concentration of sodium hydroxide aqueous solution is 10-40 mass%. 硝酸第二鉄水溶液の濃度が25〜45質量%である請求項1ないし3のいずれか1項に記載の第二鉄水溶液の製造方法。   The manufacturing method of the ferric aqueous solution of any one of Claims 1 thru | or 3 whose density | concentration of ferric nitrate aqueous solution is 25-45 mass%. 回収した硝酸の濃度が2〜20質量%である請求項1ないし4のいずれか1項に記載の硝酸第二鉄水溶液の製造方法。   The method for producing a ferric nitrate aqueous solution according to any one of claims 1 to 4, wherein the concentration of the collected nitric acid is 2 to 20% by mass. 回収した亜硝酸ナトリウム水溶液の濃度が10〜40質量%である請求項1ないし5のいずれか1項に記載の硝酸第二鉄水溶液の製造方法。   The method for producing a ferric nitrate aqueous solution according to any one of claims 1 to 5, wherein the concentration of the collected sodium nitrite aqueous solution is 10 to 40% by mass. 鉄と硝酸とを反応させて硝酸第二鉄水溶液を生成させ、発生したNOX含有ガスを水に吸収して硝酸を回収し、かつ未吸収のガスを水酸化ナトリウム水溶液と反応させて亜硝酸ナトリウム水溶液を回収し、前記回収した硝酸を鉄との反応に利用し、かつ前記回収した亜硝酸ナトリウム水溶液を酸化触媒として用いて、硫酸鉄と硫酸とを酸素存在下で反応させてポリ硫酸第二鉄を生成させることを特徴とする硝酸第二鉄水溶液及びポリ硫酸第二鉄の製造方法。 Iron and nitric acid are reacted to form a ferric nitrate aqueous solution, the generated NO x -containing gas is absorbed into water to recover nitric acid, and the unabsorbed gas is reacted with an aqueous sodium hydroxide solution to react with nitrous acid An aqueous sodium solution is recovered, the recovered nitric acid is used for the reaction with iron, and the recovered sodium nitrite aqueous solution is used as an oxidation catalyst to react iron sulfate and sulfuric acid in the presence of oxygen to form polysulfuric acid. A method for producing ferric nitrate aqueous solution and polyferric sulfate, wherein ferric nitrate is produced.
JP2012064733A 2012-03-22 2012-03-22 Method for producing ferric nitrate aqueous solution and sodium nitrite Active JP5951303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064733A JP5951303B2 (en) 2012-03-22 2012-03-22 Method for producing ferric nitrate aqueous solution and sodium nitrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064733A JP5951303B2 (en) 2012-03-22 2012-03-22 Method for producing ferric nitrate aqueous solution and sodium nitrite

Publications (2)

Publication Number Publication Date
JP2013193939A true JP2013193939A (en) 2013-09-30
JP5951303B2 JP5951303B2 (en) 2016-07-13

Family

ID=49393328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064733A Active JP5951303B2 (en) 2012-03-22 2012-03-22 Method for producing ferric nitrate aqueous solution and sodium nitrite

Country Status (1)

Country Link
JP (1) JP5951303B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3066158A4 (en) * 2013-11-08 2017-05-31 Lanxess Deutschland GmbH Production of red iron oxide pigment
US10479893B2 (en) 2014-09-05 2019-11-19 Lanxess Deutschland Gmbh Preparation of iron (III) oxide pigment
US10563066B2 (en) 2014-09-11 2020-02-18 Lanxess Deutschland Gmbh Red iron-oxide pigments with improved colour values
US11104807B2 (en) 2016-03-09 2021-08-31 Lanxess Deutschland Gmbh Preparation of red iron oxide pigment
CN116374979A (en) * 2023-04-26 2023-07-04 四川大学 Preparation method of ferric phosphate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279570A (en) * 1975-12-25 1977-07-04 Hitachi Chem Co Ltd Process for treating nox scrubber drain water
JPS5394271A (en) * 1977-01-31 1978-08-18 Ube Ind Ltd Absorbing and removing method of nox in exhaust gas
JPS55130823A (en) * 1979-03-27 1980-10-11 Ici Ltd Preparation of solution containing nitrate of iron and chrome
JPH1171116A (en) * 1997-06-17 1999-03-16 Nittetsu Mining Co Ltd Production of ferric polysulfate solution
JP2006182618A (en) * 2004-12-28 2006-07-13 Nittetsu Mining Co Ltd Method of efficiently manufacturing poly ferric sulfate
JP2008055272A (en) * 2006-08-30 2008-03-13 Mitsubishi Materials Corp System for absorbing nitrogen oxide in nitric acid-dissolved exhaust gas
KR20090104327A (en) * 2008-03-31 2009-10-06 (주) 휴브글로벌 Process for preparing ferric nitrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279570A (en) * 1975-12-25 1977-07-04 Hitachi Chem Co Ltd Process for treating nox scrubber drain water
JPS5394271A (en) * 1977-01-31 1978-08-18 Ube Ind Ltd Absorbing and removing method of nox in exhaust gas
JPS55130823A (en) * 1979-03-27 1980-10-11 Ici Ltd Preparation of solution containing nitrate of iron and chrome
JPH1171116A (en) * 1997-06-17 1999-03-16 Nittetsu Mining Co Ltd Production of ferric polysulfate solution
JP2006182618A (en) * 2004-12-28 2006-07-13 Nittetsu Mining Co Ltd Method of efficiently manufacturing poly ferric sulfate
JP2008055272A (en) * 2006-08-30 2008-03-13 Mitsubishi Materials Corp System for absorbing nitrogen oxide in nitric acid-dissolved exhaust gas
KR20090104327A (en) * 2008-03-31 2009-10-06 (주) 휴브글로벌 Process for preparing ferric nitrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3066158A4 (en) * 2013-11-08 2017-05-31 Lanxess Deutschland GmbH Production of red iron oxide pigment
US10221326B2 (en) 2013-11-08 2019-03-05 Lanxess Deutschland Gmbh Production of red iron oxide pigment
US10479893B2 (en) 2014-09-05 2019-11-19 Lanxess Deutschland Gmbh Preparation of iron (III) oxide pigment
US10563066B2 (en) 2014-09-11 2020-02-18 Lanxess Deutschland Gmbh Red iron-oxide pigments with improved colour values
US11104807B2 (en) 2016-03-09 2021-08-31 Lanxess Deutschland Gmbh Preparation of red iron oxide pigment
CN116374979A (en) * 2023-04-26 2023-07-04 四川大学 Preparation method of ferric phosphate

Also Published As

Publication number Publication date
JP5951303B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
Ike et al. Critical review of the science and sustainability of persulphate advanced oxidation processes
CN104355443B (en) A kind for the treatment of process of the waste water containing unsymmetrical dimethyl hydrazine
JP5951303B2 (en) Method for producing ferric nitrate aqueous solution and sodium nitrite
ElShafei et al. Metal oxychlorides as robust heterogeneous Fenton catalysts for the sonophotocatalytic degradation of 2-nitrophenol
EP2808074B1 (en) Hydrogen chloride removal process with ferrous compounds
KR102045160B1 (en) Apparatus and method for producing liquid ferrate
CN104548904A (en) Technology for liquid-phase complexing absorption of NO with iron-based chelate
CN101602536A (en) A kind of preparation method who is used for the compound oxidant of catalytic oxidation treatment of high concentration waste water
CN103861564B (en) Preparation based on the graphene oxide adsorbing material that dendrimer is modified
WO2014200771A1 (en) Frozen ferrate and methods and devices for forming thereof
RU2389695C1 (en) Method of purifying waste water from thiocyanates
CN107973323A (en) A kind of method for oxidation of desulphurization denitration waste liquid Nitrite ion
CN102515314A (en) Method for removing cyanide by alkali-type Fenton reaction
JP2741137B2 (en) Production method of iron-based flocculant
JPS58224135A (en) Method for recovering mercury from waste water
JP4639309B2 (en) Treatment method of wastewater containing cyanide
WO2017056518A1 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP2004275795A (en) Method for removing sulfurous acid ion
Liu et al. Conjunction of ferric ion with chloride ion facilitated zero-valent copper/air system to eliminate paracetamol: Mechanistic insights and performance evaluation
TWI646055B (en) Method and apparatus for decomposition of hydrogen peroxide in waste acid solution by liquid catalyst coupled with photocatalytic reaction
CN105174583B (en) A kind of recycling processing method of diluted alkaline waste water
CN109453615B (en) Treatment method of tail gas in production of methanesulfonyl chloride
JPS60132695A (en) Treatment of waste water containing sulfur compound
TWI696489B (en) Exhaust gas treatment method
CN103007733A (en) Method for processing sulphur dioxide exhaust gas generated in industry of roasting and electrolyzing manganese dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R150 Certificate of patent or registration of utility model

Ref document number: 5951303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250