JP2013193925A - Ta2O5 SPUTTERING TARGET AND METHOD OF PRODUCING THE SAME - Google Patents

Ta2O5 SPUTTERING TARGET AND METHOD OF PRODUCING THE SAME Download PDF

Info

Publication number
JP2013193925A
JP2013193925A JP2012063113A JP2012063113A JP2013193925A JP 2013193925 A JP2013193925 A JP 2013193925A JP 2012063113 A JP2012063113 A JP 2012063113A JP 2012063113 A JP2012063113 A JP 2012063113A JP 2013193925 A JP2013193925 A JP 2013193925A
Authority
JP
Japan
Prior art keywords
sintering
density
powder
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063113A
Other languages
Japanese (ja)
Other versions
JP5912710B2 (en
Inventor
Satoyasu Narita
里安 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012063113A priority Critical patent/JP5912710B2/en
Publication of JP2013193925A publication Critical patent/JP2013193925A/en
Application granted granted Critical
Publication of JP5912710B2 publication Critical patent/JP5912710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sintering method capable of solving problems of production of a TaOtarget by sintering based on a hot pressing method wherein low hot pressing temperature causes insufficient increase in density while high hot pressing temperature causes breakage of members and a crack of the TaOitself, and a TaOsintered body with a density of ≥8.5 g/cm.SOLUTION: Using a TaOpowder raw material having any one or more phases among a tetragonal phase, a monoclinic phase, and a triclinic phase prepared by annealing an orthorhombic TaOpowder with 99.99% purity at 1,500-1,750°C, sintering is carried out by hot pressing.

Description

本発明は、高密度Taスパッタリングターゲット及びその製造方法に関する。 The present invention relates to a high-density Ta 2 O 5 sputtering target and a manufacturing method thereof.

近年、ReRAM用のスパッタリング材料としてTaが注目されている。スパッタリング材料としてはスパッタ時のパーティクルが少ないことが重要であるが、これの手段として材料の密度を高めることが有効である。 In recent years, Ta 2 O 5 has attracted attention as a sputtering material for ReRAM. As a sputtering material, it is important that the number of particles during sputtering is small, but it is effective to increase the density of the material as a means for this.

Taターゲットの製造は、Ta粉を原料として、ホットプレス法による焼結で行う。一般的にホットプレス法で製造する場合、温度が高い方が、密度が上がり易い。
Taの場合は、プレス温度として1,000°C以上必要であるが、温度を上げるとTaとプレス部材であるカーボンの熱膨張係数が大きく異なる(Ta<カーボン)ため、プレス後の温度降下と共にTaがカーボンに食い込み、取り出しが困難になる。これにより、焼結体はもとより最悪プレス部材が割れることになる。
The Ta 2 O 5 target is produced by sintering using a hot press method using Ta 2 O 5 powder as a raw material. Generally, when manufacturing by a hot press method, the higher the temperature, the higher the density.
In the case of Ta 2 O 5 , a press temperature of 1,000 ° C. or more is necessary. However, when the temperature is increased, the thermal expansion coefficient of Ta 2 O 5 and the carbon that is the press member is greatly different (Ta 2 O 5 <carbon Therefore, Ta 2 O 5 bites into the carbon as the temperature drops after pressing, making it difficult to remove. Thereby, the worst press member as well as the sintered body is cracked.

また、プレス温度を上げることのできないもう一つの理由は、1400〜1500°Cの間でTaが相変態することにある。相変態すると、相変態前後で結晶格子長さが長くなることで急激な体積膨張が起きる。この体積膨張はプレス材に圧力をかけ、プレス材を破壊する。また同時にTa自体にも割れを生じさせる。
このように、ホットプレスの温度を低くすると密度が上がらず、逆に温度を高くすると部材の破壊、Ta自体の割れが起きてしまうという問題があった。
Another reason why the press temperature cannot be increased is that Ta 2 O 5 undergoes phase transformation between 1400 and 1500 ° C. When the phase transformation is performed, the crystal lattice length becomes long before and after the phase transformation, and a rapid volume expansion occurs. This volume expansion applies pressure to the press material and destroys the press material. At the same time, the Ta 2 O 5 itself is cracked.
Thus, when the temperature of the hot press is lowered, the density does not increase. Conversely, when the temperature is raised, there is a problem that the member is broken and the Ta 2 O 5 itself is cracked.

従来技術として、本出願人が提示した特許文献1がある。これは、Taを主成分とし、ガラス形成酸化物を添加した材料した材料であり、透過率90%以上(波長405nm)及び屈折率1.8〜2.4(波長405nm)を有する光情報記録媒体用保護膜を形成するためのスパッタリングターゲットである。 As a prior art, there is Patent Document 1 presented by the present applicant. This is a material made of Ta 2 O 5 as a main component and added with a glass-forming oxide, and has a transmittance of 90% or more (wavelength 405 nm) and a refractive index of 1.8 to 2.4 (wavelength 405 nm). A sputtering target for forming a protective film for an optical information recording medium.

これによって、膜の非晶質性が安定であり、記録層との密着性、機械特性に優れ、且つ透過率が高く、非硫化物系で構成することにより、隣接する反射層、記録層の劣化が生じ難い光情報記録媒体用薄膜(特に保護膜としての使用)及びその製造方法並びにこれらに適用できるパッタリングターゲットに関するものであり、これによって、光情報記録媒体の特性の向上及び生産性を大幅に改善することを目的とするものである。
このターゲットは相対密度が90%以上を達成したが、製造工程における上記の問題があり、また密度においても、狙いとする高密度には充分ではなかった。
As a result, the amorphousness of the film is stable, the adhesiveness with the recording layer, the mechanical properties are excellent, and the transmittance is high. The present invention relates to a thin film for optical information recording media that is unlikely to deteriorate (especially for use as a protective film), a manufacturing method thereof, and a patching target that can be applied thereto, thereby improving the characteristics and productivity of optical information recording media. The purpose is to improve significantly.
Although this target achieved a relative density of 90% or more, there were the above problems in the manufacturing process, and the density was not sufficient for the target high density.

また、特許文献2には、平均粒径が1μm以下の酸化タンタル粉末を700°C〜1400°Cの温度でホットプレス焼結して得られた酸化タンタル焼結体を、酸素を含む雰囲気で焼鈍して、焼結体の焼結粒径が1μm以下,相対密度が85%以上である酸化タンタル焼結体からなるスパッタリングターゲットを製造する方法が開示されている。  Patent Document 2 discloses a tantalum oxide sintered body obtained by hot press sintering a tantalum oxide powder having an average particle size of 1 μm or less at a temperature of 700 ° C. to 1400 ° C. in an atmosphere containing oxygen. A method for producing a sputtering target made of a tantalum oxide sintered body that is annealed to have a sintered grain size of 1 μm or less and a relative density of 85% or more is disclosed.

また、特許文献3には、平均粒径が1μm以下の酸化タンタル粉末を成形後、1200°C以上の焼結温度で焼結し、得られた酸化タンタル焼結体を600°C以上の温度で、酸素雰囲気で焼鈍して酸化タンタル焼結体の相対密度が85%以上、焼結粒径が1〜10μmであるターゲットを製造する技術が開示されている。  Patent Document 3 discloses that a tantalum oxide powder having an average particle size of 1 μm or less is molded and then sintered at a sintering temperature of 1200 ° C. or higher, and the obtained tantalum oxide sintered body is heated to a temperature of 600 ° C. or higher. Thus, a technique is disclosed in which a target having a relative density of a tantalum oxide sintered body of 85% or more and a sintered particle diameter of 1 to 10 μm is obtained by annealing in an oxygen atmosphere.

しかしながら、特許文献2と特許文献3については、高温での焼結を行っていないので、十分な密度が得られていないという問題がある。これは、高温での焼結では、上記の問題があるため、低温での焼結を実施しているものと推測される。  However, Patent Document 2 and Patent Document 3 have a problem that a sufficient density is not obtained because sintering is not performed at a high temperature. This is presumed that the sintering at a low temperature is performed because of the above-mentioned problem in the sintering at a high temperature.

特開2005−251236号公報JP 2005-251236 A 特許第2982295号公報Japanese Patent No. 2982295 特許第2982298号公報Japanese Patent No. 2982298

一般に、Taターゲットの製造は、Ta粉を原料としてホットプレス法による焼結で行うが、ホットプレスの際に、温度が高いと密度が上がるが、高温で焼結を行うとTaとプレス部材であるカーボンの熱膨張係数が大きく異なるため、プレス後の温度降下時に、Taがカーボンに食い込み、取り出しが困難になるという問題がある。また、高温で焼結するとTaが相変態し、相変態前後で結晶格子長さが長くなり、急激な体積膨張が起き、プレス材を破壊すると共に、Ta自体も割れるという問題がある。このように、ホットプレスの温度を低くすると密度が上がらず、逆に温度を高くすると部材の破壊、Ta自体の割れが起きるということを解消できる焼結方法と提供すると共に、Taの焼結体密度を向上させることを課題とする。 In general, the Ta 2 O 5 target is produced by sintering by hot pressing using Ta 2 O 5 powder as a raw material. In hot pressing, if the temperature is high, the density increases, but the sintering is performed at a high temperature. And Ta 2 O 5 and carbon, which is a press member, have greatly different coefficients of thermal expansion, so that there is a problem that Ta 2 O 5 bites into the carbon at the time of temperature drop after pressing, making it difficult to take out. In addition, when sintered at a high temperature, Ta 2 O 5 undergoes phase transformation, the crystal lattice length increases before and after the phase transformation, abrupt volume expansion occurs, the press material is destroyed, and Ta 2 O 5 itself is also cracked. There's a problem. Thus, lowering the temperature of the hot press not increase density, reverse breakdown of Higher temperature member in addition to providing a sintered methods can be eliminated that Ta 2 O 5 crack itself occurs, Ta 2 It is an object to improve the density of the sintered body of O 5 .

上記課題の解決のため、本発明は、次の発明を提供する。
1)密度が8.5g/cm以上であることを特徴とするTa焼結体。
2)純度が99.99%以上であることを特徴とする上記1)記載のTa焼結体。
3)純度99.99%の斜方晶のTa粉末を1500〜1750°Cでアニールすることにより、正方晶相、単斜晶相又は三斜晶相のいずれか一種以上の相にしたTa粉末原料を使用してホットプレスにより焼結することを特徴とする焼結体の製造方法。
4)純度99.99%の斜方晶のTa粉を1500〜1750°Cでアニールすることで、正方晶相、単斜晶相又は三斜晶相のいずれか一種以上の相にしたTa粉末原料を1100〜1300°Cの温度範囲でホットプレスにより焼結することを特徴とするTa焼結体の製造方法。
5)密度を8.5g/cm以上とすることを特徴とする上記3)又は4)記載のTa焼結体の製造方法。
In order to solve the above problems, the present invention provides the following inventions.
1) A Ta 2 O 5 sintered body having a density of 8.5 g / cm 3 or more.
2) The Ta 2 O 5 sintered body according to 1) above, wherein the purity is 99.99% or more.
3) Annealing the orthorhombic Ta 2 O 5 powder with a purity of 99.99% at 1500 to 1750 ° C. to form one or more of the tetragonal, monoclinic and triclinic phases A method for producing a sintered body, wherein the Ta 2 O 5 powder raw material is sintered by hot pressing.
4) Annealing the orthorhombic Ta 2 O 5 powder with a purity of 99.99% at 1500 to 1750 ° C. to form one or more of the tetragonal phase, monoclinic phase and triclinic phase method of manufacturing a Ta 2 O 5 sintered body characterized by sintering by hot pressing a the Ta 2 O 5 powder material in a temperature range of 1100 to 1300 ° C.
5) The method for producing a Ta 2 O 5 sintered body according to 3) or 4) above, wherein the density is 8.5 g / cm 3 or more.

本発明は、純度99.99%の斜方晶のTa粉末を1500〜1750°Cでアニールして、正方晶相、単斜晶相又は三斜晶相のいずれか一種以上の相にしたTa粉末を焼結原料とすることにより、高温での焼結を可能として密度を向上することができ、また高温での焼結の際のTaの相変態による急激な体積膨張を防止して、プレス機の破壊又はTa自体の割れを抑制することができるという優れた効果を有する。 In the present invention, an orthorhombic Ta 2 O 5 powder having a purity of 99.99% is annealed at 1500 to 1750 ° C., and one or more phases of a tetragonal phase, a monoclinic phase, and a triclinic phase are obtained. By using the Ta 2 O 5 powder made as a sintering raw material, it is possible to increase the density by enabling sintering at a high temperature, and abrupt due to the phase transformation of Ta 2 O 5 during the sintering at a high temperature. Therefore, it has an excellent effect of preventing the volume expansion and suppressing the breakage of the press machine or the cracking of Ta 2 O 5 itself.

従来の焼結工程の概略と本発明の焼結方法の概略説明図である。It is a schematic explanatory drawing of the outline of the conventional sintering process and the sintering method of this invention. 従来のホットプレス温度と密度との関係を示す図である。It is a figure which shows the relationship between the conventional hot press temperature and density. Ta粉にTa粉を混ぜて焼結原料とし、1400°C、300kg/cm、4時間、従来法によるホットプレスによる焼結を行った場合に、カーボン製の焼結機の部材が真っ二つに割れた例を示す図である。When Ta 2 O 5 powder is mixed with Ta powder to form a sintering raw material, when sintered by hot pressing according to a conventional method at 1400 ° C., 300 kg / cm 2 for 4 hours, a member of a carbon sintering machine It is a figure which shows the example which was broken into two. 1100°Cでホットプレスした場合と1400°Cでホットプレスした場合(割れた例)の焼結材のXRD(X線回折)による解析の結果を示す図である。It is a figure which shows the result of the analysis by XRD (X-ray diffraction) of the sintered compact when it hot-presses at 1100 degreeC, and when hot-pressing at 1400 degreeC (cracked example). Ta粉を、1500°C及び1750°Cで真空中アニールした時のXRD回折結果を示す図である。The ta 2 O 5 powder, shows the XRD diffraction results when annealed in vacuum at 1500 ° C and 1750 ° C. ホットプレス温度と密度の関係を示す図である。It is a figure which shows the relationship between a hot press temperature and a density. ホットプレスの保持時間とプレス変位量の関係を示す図である。It is a figure which shows the relationship between the holding time of a hot press, and a press displacement amount. 1750°CでアニールしたTa粉末を、1100〜1400°C、300kg/cmでホットプレスし、XRD解析を行った結果を示す図である。The Ta 2 O 5 powder was annealed at 1750 ° C, and hot pressed at 1100~1400 ° C, 300kg / cm 2 , a diagram showing the results of XRD analysis.

この相変態を避けるために、発明者らは検討を重ねた結果、原料粉を事前に相変態温度よりも十分余裕を持った温度、即ち1500°C以上融点(1872°C)以下でアニールし相変態が既になされた状態にすることが有効であると分かった。従来の焼結工程の概略と本発明の焼結方法の概略説明図を、図1に示す。
相変態がなされたかどうかは、X線回折を測定することで確認でき、回折信号が斜方晶から、正方晶(又は単斜晶、三斜晶)になっていれば相変態がなされている。
In order to avoid this phase transformation, as a result of repeated studies, the inventors annealed the raw material powder in advance at a temperature with a sufficient margin above the phase transformation temperature, that is, 1500 ° C. or higher and a melting point (1872 ° C.) or lower. It turned out to be effective to make the phase transformation already done. An outline of the conventional sintering process and a schematic explanatory diagram of the sintering method of the present invention are shown in FIG.
Whether or not the phase transformation has been made can be confirmed by measuring X-ray diffraction. If the diffraction signal is changed from orthorhombic to tetragonal (or monoclinic or triclinic), the phase transformation is made. .

これにより、高温のホットプレスでの急激な体積膨張が無くなり、かつカーボンとの熱膨張係数差が若干小さくすることで、プレス後の取り出しが容易になり、プレス部材へのダメージ、焼結体の割れが生じなくなった。この結果、従来よりも高い温度でのプレスが可能になった。この結果、ホットプレス時の焼結体の密度を向上させることができた。従来の製法では密度が8.0〜8.47g/cmであり、それ以上の密度では製造できなかったのに対して、8.5g/cm以上、下記実施例に示すように、8.5〜8.73g/cm程度(これは相対密度で94.2〜96.26%になる)までアップした。 As a result, rapid volume expansion in high-temperature hot press is eliminated, and the difference in coefficient of thermal expansion from carbon is slightly reduced, which facilitates removal after pressing, damages to the press members, No more cracks. As a result, pressing at a higher temperature than before has become possible. As a result, it was possible to improve the density of the sintered body during hot pressing. In the conventional manufacturing method, the density was 8.0 to 8.47 g / cm 3 , and it could not be manufactured at a density higher than that, but 8.5 g / cm 3 or more, as shown in the following examples. Increased to about 0.5 to 8.73 g / cm 3 (this is 94.2 to 96.26% in relative density).

これを満たすには、上記の通り、原料粉を真空雰囲気で1500〜1750°Cで、2時間以上アニールし、X線回折で正方晶又は単斜晶若しくは三斜晶になっていることを確認した後、かつホットプレス条件として1100〜1300°Cで3時間以上とすることが有効である。ホットプレスの時間は、焼結温度に応じて適宜設定できる。焼結温度が低い場合には、時間を長くする(例えば5時間程度にする)ことが必要である。また、焼結の雰囲気は真空中又はAr雰囲気(常圧)とすることができる。  In order to satisfy this, as described above, the raw material powder is annealed in a vacuum atmosphere at 1500 to 1750 ° C. for 2 hours or more, and confirmed to be tetragonal, monoclinic or triclinic by X-ray diffraction. After that, it is effective to set the hot pressing conditions at 1100 to 1300 ° C. for 3 hours or more. The hot pressing time can be appropriately set according to the sintering temperature. When the sintering temperature is low, it is necessary to lengthen the time (for example, about 5 hours). The sintering atmosphere can be a vacuum or an Ar atmosphere (normal pressure).

このように、原料粉を真空中1500〜1750°Cでアニールし、1100〜1300°C、3時間以上の条件でのホットプレスを実施することで、密度を8.56〜8.73g/cmとすることができ、割れが生じない焼結体を得ることができた。プレス荷重は200〜400kg/cm程度とするのが良いが、要求される密度に応じて任意に設定できる。
これらの焼結体は、いずれもスパッタリングターゲットとして適用できるものであり、本願発明はこれらを含むものである。
In this way, the raw material powder is annealed in a vacuum at 1500 to 1750 ° C., and hot pressing is performed at 1100 to 1300 ° C. for 3 hours or more, so that the density is 8.56 to 8.73 g / cm. 3 and a sintered body free from cracks could be obtained. The press load is preferably about 200 to 400 kg / cm 2 , but can be arbitrarily set according to the required density.
Any of these sintered bodies can be applied as a sputtering target, and the present invention includes them.

次に、本発明の実施例及び比較例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、明細書全体から把握できる発明及び実施例以外の態様あるいは変形を全て包含するものである。   Next, examples and comparative examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. In other words, all aspects or modifications other than the invention and examples that can be grasped from the entire specification are included within the scope of the technical idea of the present invention.

(比較例1)
従来のTaの製造方法、すなわちTa粉を原料として、ホットプレス法による焼結を行った場合のホットプレス温度と密度の関係を図2に示す。この図2に示すように、ホットプレスの温度を上げていくと密度は上がるが、1100°Cをピークに、それ以上焼結温度を上げても密度が低下した。
(Comparative Example 1)
FIG. 2 shows the relationship between hot press temperature and density when a conventional Ta 2 O 5 manufacturing method, ie, Ta 2 O 5 powder is used as a raw material and sintering is performed by a hot press method. As shown in FIG. 2, the density increases as the temperature of the hot press is increased, but the density decreases even when the sintering temperature is further increased with a peak at 1100 ° C.

(比較例2)
次に、従来のTaの製造方法でTaとTaの合成物、すなわちTa粉にTa粉を33.3at%の割合で混ぜて焼結原料とし、1400°C、300kg/cm、4時間ホットプレス法(カーボン製焼結機を使用)による焼結を行った場合、焼結材料の膨張に耐え切れず、カーボン製の焼結機の部材は、真っ二つに割れた。またこのカーボン製部材が割れたことにより、横方向の抑えが効かなくなったため、材料自体潰れて割れた。Ta粉を混ぜていることで純粋なTaとは異なるが、純粋なTaでも同様なことが起こる。この様子を図3に示す。
(Comparative Example 2)
Next, a Ta 2 O 5 and Ta composite, that is, Ta 2 O 5 powder, is mixed with Ta powder at a rate of 33.3 at% in a conventional Ta 2 O 5 manufacturing method to obtain a sintering raw material at 1400 ° C. , 300 kg / cm 2 , when sintered by a hot press method (using a carbon sintering machine) for 4 hours, the sintered material could not withstand the expansion of the sintered material. Cracked. Further, since the carbon member was cracked, the lateral restraint was not effective, so the material itself was crushed and cracked. Different from pure Ta 2 O 5 that is mixed with Ta powder, it happens same even pure Ta 2 O 5. This is shown in FIG.

Ta粉にTa粉を混ぜて焼結原料とし、1100°Cでホットプレスした場合と1400°Cでホットプレスした場合(割れた例)の焼結材のXRD(X線回折)による解析の結果を図4示す。図4から明らかなように、1100°Cでホットプレスしただけでは原料粉と同じ信号が計測されている。 According to XRD (X-ray diffraction) of sintered materials when Ta powder is mixed with Ta 2 O 5 powder to form a sintering raw material and hot pressed at 1100 ° C. and hot pressed at 1400 ° C. (cracked example) The result of the analysis is shown in FIG. As is clear from FIG. 4, the same signal as the raw material powder is measured only by hot pressing at 1100 ° C.

しかし、1400°Cでは信号が明らかに変わっていた。この違いは結晶系が変わったことによる。原料及び1100°Cプレス材料が斜方晶であるのに対して、1400°Cプレス材料では正方晶に相変態している。また、1100°Cプレス材料も1750°Cの真空中アニールを行うことで、1400°C品と同様に相変態することがわかった。  However, the signal clearly changed at 1400 ° C. This difference is due to changes in the crystal system. The raw material and the 1100 ° C. press material are orthorhombic, whereas the 1400 ° C. press material is transformed into a tetragonal crystal. It was also found that the 1100 ° C. press material undergoes phase transformation in the same manner as the 1400 ° C. product by annealing in vacuum at 1750 ° C.

(実施例1)
Ta粉のアニール温度と結晶系を図5に示す。すなわち、図5はTa粉を1500°C及び1750°Cで真空中アニールした時のXRD回折結果である。
1500°C及び1750°C共に斜方晶から正方晶に相変態している。相変態を確実にさせるには、1500°C以上あればよいことが分かる。上限は融点である1872°C以下である。なお、正方晶と単斜晶、三斜晶の回折信号は非常に似ている。そのため、上記で正方晶としたが、単斜晶、三斜晶の場合も含むものとする。
斜方晶(相変態していないTa)と、上記の系の一番の相違点は、斜方晶の主ピークである(001)面からの回折(22.9°)が、他の系だと無くなり23.15°近辺にピークが現れることである。
Example 1
The annealing temperature and crystal system of Ta 2 O 5 powder are shown in FIG. That is, FIG. 5 shows XRD diffraction results when Ta 2 O 5 powder is annealed in vacuum at 1500 ° C. and 1750 ° C.
Both 1500 ° C and 1750 ° C are phase-transformed from orthorhombic to tetragonal. It can be seen that 1500 ° C. or higher is required to ensure the phase transformation. The upper limit is 1872 ° C. or lower, which is the melting point. The diffraction signals of tetragonal, monoclinic and triclinic crystals are very similar. For this reason, tetragonal crystal is used above, but monoclinic crystal and triclinic crystal are included.
The main difference between orthorhombic crystal (Ta 2 O 5 that has not undergone phase transformation) and the above system is the diffraction (22.9 °) from the (001) plane, which is the main peak of orthorhombic crystal, In other systems it disappears and a peak appears around 23.15 °.

(実施例2)
次に、上記実施例1において製造したアニール粉を用いてホットプレスした場合の温度と密度の関係を、図6に示す。比較のために図6には、従来のアニール粉末を使用しなかった場合も示す。
アニール粉末を使用しなかった場合(比較)では、8.47g/cmが上限であったが、この図6に示すように、1500°Cアニール粉では8.68g/cm、1750°Cアニール粉では8.56g/cm、8.68g/cm、8.68g/cm、8.63g/cm、8.73g/cm、8.50g/cmとなった。
(Example 2)
Next, FIG. 6 shows the relationship between temperature and density when hot pressing is performed using the annealed powder produced in Example 1 above. For comparison, FIG. 6 also shows a case where the conventional annealing powder is not used.
In the case where the annealed powder was not used (comparative), the upper limit was 8.47 g / cm 3, but as shown in FIG. 6, the annealed powder at 1500 ° C. was 8.68 g / cm 3 and 1750 ° C. annealing powder in 8.56g / cm 3, 8.68g / cm 3, 8.68g / cm 3, 8.63g / cm 3, 8.73g / cm 3, became 8.50 g / cm 3.

このように、本願発明の実施例では、8.5g/cm以上、さらには8.56〜8.73g/cmまで、密度がアップした。
図示していないが、この密度は、アニール粉の温度条件(温度と時間)、H/P温度とプレス条件を、適宜選定することにより、さらに8.73g/cmを超える密度向上が可能であった。また、このように密度の高い焼結体を製造できるので、1100°C、1200°C、1300°C、1400°Cという高温でも部材の割れ及び材料の割れはなくなった。
Thus, in the embodiment of the present invention, 8.5 g / cm 3 or more, and even 8.56~8.73g / cm 3, the density is up.
Although not shown, this density can be further improved by exceeding 8.73 g / cm 3 by appropriately selecting the temperature condition (temperature and time) of the annealing powder, the H / P temperature and the pressing condition. there were. In addition, since a sintered body having a high density can be produced in this way, cracking of the member and material are eliminated even at high temperatures of 1100 ° C, 1200 ° C, 1300 ° C, and 1400 ° C.

(実施例3)
ホットプレスの保持時間とプレス変位量の関係を図7に示す。焼結が完了すると、変位量は飽和若しくはマイナス側(焼結体としての膨張)になる。図7から明らかなように、1100°Cでは5時間経っても変位が飽和しておらず、焼結完了には5時間以上必要であることが分かる。
また、1200°Cでは、4時間以降変化なく、最大5時間プレスすればよいことが分かる。さらに1300°C以上では、それまでの昇温中に焼結が完了していると思われ、2時間以内でよいことが分かる。
(Example 3)
The relationship between the hot press holding time and the press displacement is shown in FIG. When the sintering is completed, the displacement amount is saturated or on the negative side (expansion as a sintered body). As can be seen from FIG. 7, at 1100 ° C., the displacement is not saturated even after 5 hours, and it can be seen that 5 hours or more are required for the completion of sintering.
In addition, at 1200 ° C., it can be seen that it is sufficient to press for up to 5 hours without change after 4 hours. Further, at 1300 ° C. or higher, it can be understood that the sintering is completed during the temperature rise up to that point, and that it may be within 2 hours.

(実施例4)
1750°CでアニールしたTa粉末を、1100〜1400°C、300kg/cmでホットプレスし、XRD解析を行った結果を図8に示す。
プレスする前は、相変態していたが、1300°C以下のプレスではアニールする前の系に戻っている。系が再変態するが、その場合の変態は体積が縮小する方向であり、プレス材への負荷を低減する方向に働くためここでは問題とならない。
Example 4
FIG. 8 shows the result of XRD analysis performed by hot pressing Ta 2 O 5 powder annealed at 1750 ° C. at 1100 to 1400 ° C. and 300 kg / cm 2 .
Before the press, the phase was transformed, but in the press at 1300 ° C. or lower, the system returned to the system before annealing. Although the system is retransformed, the transformation in that case is a direction in which the volume is reduced, and this is not a problem here because it works in a direction to reduce the load on the pressed material.

本発明によれば、純度99.99%の斜方晶のTa粉末を1500〜1750°Cでアニールして、正方晶相、単斜晶相又は三斜晶相のいずれか一種以上の相にしたTa粉末を焼結原料とすることにより、高温での焼結を可能として密度を向上することができ、また高温での焼結の際のTaの相変態による急激な体積膨張を防止して、プレス機の破壊又はTa自体の割れを抑制することができるという優れた効果を有するので、ReRAM用のスパッタリング材料として有用である。 According to the present invention, an orthorhombic Ta 2 O 5 powder having a purity of 99.99% is annealed at 1500 to 1750 ° C., and one or more of a tetragonal phase, a monoclinic phase, and a triclinic phase are used. By using Ta 2 O 5 powder in the phase as a sintering raw material, it is possible to improve the density by enabling sintering at high temperature, and the phase transformation of Ta 2 O 5 during sintering at high temperature It has an excellent effect of preventing the rapid volume expansion caused by, and suppressing the breakage of the press machine or the cracking of Ta 2 O 5 itself, so that it is useful as a sputtering material for ReRAM.

Claims (5)

密度が8.5g/cm以上であることを特徴とするTa焼結体。 A Ta 2 O 5 sintered body having a density of 8.5 g / cm 3 or more. 純度が99.99%以上であることを特徴とする請求項1記載のTa焼結体。 Ta 2 O 5 sintered body according to claim 1, wherein the purity is characterized in that at least 99.99%. 純度99.99%の斜方晶のTa粉末を1500〜1750°Cでアニールすることにより、正方晶相、単斜晶相又は三斜晶相のいずれか一種以上の相にしたTa粉末原料を使用してホットプレスにより焼結することを特徴とする焼結体の製造方法。 An annealing process of orthorhombic Ta 2 O 5 powder with a purity of 99.99% at 1500 to 1750 ° C., thereby converting Ta tetragonal phase, monoclinic phase or triclinic phase into one or more phases. A method for producing a sintered body, which comprises sintering by hot pressing using 2 O 5 powder raw material. 純度99.99%の斜方晶のTa粉を1500〜1750°Cでアニールすることにより、正方晶相、単斜晶相又は三斜晶相のいずれか一種以上の相にしたTa粉末原料を1100〜1300°Cの温度範囲でホットプレスにより焼結することを特徴とするTa焼結体の製造方法。 An annealing process of orthorhombic Ta 2 O 5 powder with a purity of 99.99% at 1500 to 1750 ° C. to make one or more phases of tetragonal phase, monoclinic phase or triclinic phase A method for producing a Ta 2 O 5 sintered body, comprising sintering a 2 O 5 powder raw material by hot pressing in a temperature range of 1100 to 1300 ° C. 密度を8.5g/cm以上とすることを特徴とする請求項3又は4記載のTa焼結体の製造方法。 The method for producing a Ta 2 O 5 sintered body according to claim 3 or 4, wherein the density is 8.5 g / cm 3 or more.
JP2012063113A 2012-03-21 2012-03-21 Ta2O5 sputtering target and manufacturing method thereof Active JP5912710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063113A JP5912710B2 (en) 2012-03-21 2012-03-21 Ta2O5 sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063113A JP5912710B2 (en) 2012-03-21 2012-03-21 Ta2O5 sputtering target and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016018582A Division JP6173499B2 (en) 2016-02-03 2016-02-03 Method for producing Ta2O5 sintered body

Publications (2)

Publication Number Publication Date
JP2013193925A true JP2013193925A (en) 2013-09-30
JP5912710B2 JP5912710B2 (en) 2016-04-27

Family

ID=49393316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063113A Active JP5912710B2 (en) 2012-03-21 2012-03-21 Ta2O5 sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5912710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135740A (en) * 2016-02-03 2016-07-28 Jx金属株式会社 Ta2O5 SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021851A (en) * 1983-07-14 1985-02-04 松下電器産業株式会社 Manufacture of oxide sputter target
JPH04187556A (en) * 1990-11-21 1992-07-06 Tosoh Corp Sintered tantalum oxide, its production and use
JPH04331759A (en) * 1990-11-26 1992-11-19 Tosoh Corp Sintered tantalum oxide, its production and use
JP2005251236A (en) * 2004-03-01 2005-09-15 Nikko Materials Co Ltd Sputtering target, protective film for optical information recording medium, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021851A (en) * 1983-07-14 1985-02-04 松下電器産業株式会社 Manufacture of oxide sputter target
JPH04187556A (en) * 1990-11-21 1992-07-06 Tosoh Corp Sintered tantalum oxide, its production and use
JPH04331759A (en) * 1990-11-26 1992-11-19 Tosoh Corp Sintered tantalum oxide, its production and use
JP2005251236A (en) * 2004-03-01 2005-09-15 Nikko Materials Co Ltd Sputtering target, protective film for optical information recording medium, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135740A (en) * 2016-02-03 2016-07-28 Jx金属株式会社 Ta2O5 SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP5912710B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP6173499B2 (en) Method for producing Ta2O5 sintered body
JP5301751B1 (en) Fe-Pt-C sputtering target
KR20050106473A (en) Sputtering target, thin film for optical information recording medium and process for producing the same
WO2006129410A1 (en) Sputtering target and process for producing the same
CN101357843A (en) Alumina titanate ceramica lift tube preparation method
TW201237004A (en) Large xenotime ceramic block and process for making same
JP4685023B2 (en) High purity ZrB2 powder and method for producing the same
JP5912710B2 (en) Ta2O5 sputtering target and manufacturing method thereof
JP2004263273A (en) Method for manufacturing sputtering target
KR100799074B1 (en) Sputtering target, optical information recording medium and process for producing the same
JP5265710B2 (en) Bi-Ge-O-based sintered sputtering target, method for producing the same, and optical recording medium
KR100805638B1 (en) Sputtering target, optical information recording medium and process for producing the same
CN110741106A (en) Oxide sintered body and sputtering target
JP5295421B1 (en) Inorganic materials for optical elements
JP7056625B2 (en) Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body
JP5259741B2 (en) Bi-Ge-O-based sintered sputtering target, method for producing the same, and optical recording medium
JP6258040B2 (en) Crucible for growing sapphire single crystal, method for growing sapphire single crystal, and method for producing crucible for growing sapphire single crystal
TW201505739A (en) Sputtering target for thin film formation and method of producing the same
KR100799073B1 (en) Sputtering target, optical information recording medium and process for producing the same
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JP6012537B2 (en) Method for producing inorganic material for optical element
TWI273141B (en) Sputtering target, optical information recording medium and method for producing same
JP5156181B2 (en) Method for producing indium oxide / zinc oxide sintered body
JP5751482B2 (en) Method for producing oxide sputtering target and buffer powder used therefor
JP2010116628A (en) Sputtering target, and optical information recording medium and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250