JP2013191397A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2013191397A
JP2013191397A JP2012056613A JP2012056613A JP2013191397A JP 2013191397 A JP2013191397 A JP 2013191397A JP 2012056613 A JP2012056613 A JP 2012056613A JP 2012056613 A JP2012056613 A JP 2012056613A JP 2013191397 A JP2013191397 A JP 2013191397A
Authority
JP
Japan
Prior art keywords
unit cell
flow rate
battery module
expansion
cooling flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012056613A
Other languages
Japanese (ja)
Other versions
JP5589016B2 (en
Inventor
Tadashi Yoshida
正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012056613A priority Critical patent/JP5589016B2/en
Publication of JP2013191397A publication Critical patent/JP2013191397A/en
Application granted granted Critical
Publication of JP5589016B2 publication Critical patent/JP5589016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress temperature distribution inside a battery module from becoming uneven.SOLUTION: A battery module comprises a plurality of unit cells, a rod for controlling refrigerant flow rate being provided between the plurality of unit cells. The rod for controlling refrigerant flow rate comprises a unit cell contact part, a telescopic part, and a flow rate control valve, the unit cell contact part and the telescopic part being connected. The unit cell contact part is disposed between flat surfaces of the plurality of unit cells, the unit cell contact part contacting the flat surfaces of the plurality of unit cells. A liquid or a gas is encapsulated inside the unit cell contact part and the telescopic part, and the telescopic part becomes longer or shorter due to volume change of the liquid or the gas in response to the temperature change of the plurality of unit cells or the change of spaces between the plurality of cells. This telescopic change of the telescopic part moves the flow rate control valve, and thus the rod for controlling refrigerant flow rate is configured to work.

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

近年、各種の電池を用いた電池モジュールの大容量化が進み、電池の発熱による温度上昇を防ぐための開発が盛んに進められている。   In recent years, the capacity of battery modules using various types of batteries has been increased, and development for preventing temperature rise due to heat generation of batteries has been actively promoted.

特許文献1には、発電要素15を電池ケース11Dに収納した電池セル11を積層した蓄電モジュール12Aと、隣接する電池セル11の間に配置されるスペーサ部材13と、スペーサ部材13の内部に形成された収容部130Zに収容される冷却剤21とを有する蓄電装置であって、スペーサ部材13は、スペーサ本体部130と、電池ケース11Dの外面に沿って流れる空気の移動通路を形成する複数の突起部131〜135とを有し、収容部130Zは、スペーサ本体部130の内部に形成されることにより、優れた蓄電素子の冷却構造を備えた蓄電装置を提供する技術が開示されている。特許文献1以外に、特許文献2などが参考例として挙げられる。   In Patent Document 1, an electricity storage module 12A in which battery cells 11 in which a power generation element 15 is housed in a battery case 11D is stacked, a spacer member 13 disposed between adjacent battery cells 11, and a spacer member 13 are formed inside. The spacer member 13 is a power storage device having the coolant 21 housed in the housing portion 130Z, and the spacer member 13 includes a plurality of spacer main bodies 130 and a plurality of movement paths for air flowing along the outer surface of the battery case 11D. A technique for providing a power storage device having an excellent cooling structure for a power storage element by having protrusions 131 to 135 and housing part 130 </ b> Z formed inside spacer main body 130 is disclosed. In addition to Patent Document 1, Patent Document 2 is cited as a reference example.

特開2000−21453号公報JP 2000-21453 A 特開2008−97959号公報JP 2008-97959 A

特許文献1のスペーサ本体部は、電池モジュール中心部の放熱しにくい単電池の温度が周囲より上昇したり、個々の単電池の発熱量の違いにより電池モジュール内で温度差が生じたり、また、個々の単電池の厚さが充放電に伴って変化する度合が異なって冷却流量に差が生じて電池モジュール内に温度分布がついたり、更に、個々の単電池の発熱量や厚さ変化量が経時的に変化して電池モジュール内温度分布の分布状態が変化したりすることについて何ら考慮されていない。本発明は、電池モジュール内の温度分布の不均一化を抑制することを目的とする。   In the spacer main body of Patent Document 1, the temperature of the unit cell that is difficult to dissipate heat at the center of the battery module rises from the surroundings, or a temperature difference occurs in the battery module due to the difference in the amount of heat generated by each unit cell, The degree to which the thickness of each unit cell changes with charge and discharge is different, resulting in a difference in cooling flow rate, resulting in a temperature distribution in the battery module, and the amount of heat generated and the amount of thickness change of each unit cell Is not taken into consideration that the change in the temperature distribution in the battery module changes with time. An object of this invention is to suppress the nonuniformity of the temperature distribution in a battery module.

本発明の特徴は、例えば以下の通りである。   The features of the present invention are as follows, for example.

複数の単電池を備えた電池モジュールであって、複数の単電池の間に冷却流量制御棒が設けられ、冷却流量制御棒は、単電池接触部、伸縮部、流量制御弁を備え、単電池接触部および伸縮部は接合されており、単電池接触部は、複数の単電池の扁平面の間に設けられ、複数の単電池の扁平面において単電池と接しており、単電池接触部と伸縮部の内部には液体または気体が封入され、複数の単電池の温度変化または複数の単電池間の間隙の変化に応じた液体または気体の体積変化によって、伸縮部が伸縮し、流量制御弁が動くように冷却流量制御棒が構成されている電池モジュール。   A battery module including a plurality of single cells, wherein a cooling flow rate control rod is provided between the plurality of single cells, and the cooling flow rate control rod includes a single cell contact portion, a telescopic portion, and a flow rate control valve. The contact portion and the expansion / contraction portion are joined, and the single cell contact portion is provided between the flat surfaces of the plurality of single cells, and is in contact with the single cells on the flat surfaces of the plurality of single cells. A liquid or gas is sealed inside the expansion / contraction part, and the expansion / contraction part expands / contracts due to a change in the volume of the liquid or gas in accordance with a change in temperature of the plurality of single cells or a change in the gap between the plurality of single cells. A battery module in which the cooling flow rate control rod is configured to move.

上記において、伸縮部をベローズ構造とした電池モジュール。   In the above, the battery module having the bellows structure as the expansion / contraction part.

上記において、伸縮部および流量制御弁の間に接続棒が設けられ、電池モジュールは、伸縮ガイド板を有し、伸縮ガイド板に穴が形成され、伸縮ガイド板の穴に接続棒が挿入されている電池モジュール。   In the above, a connecting rod is provided between the expansion / contraction part and the flow control valve, the battery module has an expansion / contraction guide plate, a hole is formed in the expansion / contraction guide plate, and a connection rod is inserted into the hole of the expansion / contraction guide plate. Battery module.

上記において、伸縮ガイド板は、半割れ構造になっている電池モジュール。   In the above, the extendable guide plate is a battery module having a half crack structure.

上記において、伸縮部および流量制御弁の間に接続棒が設けられ、冷却流量制御棒の内部に伸縮ガイド棒が設けれ、単電池接触部の内部において、伸縮ガイド棒には伸縮ガイド棒支持座が取り付けられ、伸縮ガイド棒支持座は単電池接触部と接しており、接続棒の端部に伸縮ガイド棒が取り付けられている電池モジュール。   In the above, a connecting rod is provided between the expansion / contraction section and the flow control valve, an expansion / contraction guide rod is provided inside the cooling flow control rod, and the expansion / contraction guide rod supports the expansion / contraction guide rod support seat inside the single cell contact portion. A battery module in which the telescopic guide rod support seat is in contact with the cell contact portion, and the telescopic guide rod is attached to the end of the connecting rod.

上記において、伸縮ガイド棒支持座には液体または気体を通過させるための穴が設けられている電池モジュール。   In the above, the expansion / contraction guide rod support seat is provided with a hole for allowing liquid or gas to pass therethrough.

上記において、前記複数の単電池は、リチウムイオン二次電池である電池モジュール。   In the above, the plurality of single cells are battery modules which are lithium ion secondary batteries.

本発明により、電池モジュール内の温度分布の不均一化を抑制できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   According to the present invention, non-uniform temperature distribution in the battery module can be suppressed. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第一の実施形態の基本構成図。The basic block diagram of 1st embodiment of this invention. 本発明の第一の実施形態に用いる冷却流量制御棒の外観図。The external view of the cooling flow control rod used for 1st embodiment of this invention. 本発明の第一の実施形態における電池モジュールの外観図。The external view of the battery module in 1st embodiment of this invention. 本発明の第一の実施形態における電池モジュールの分解図。The exploded view of the battery module in a first embodiment of the present invention. 本発明の第一の実施形態に用いる冷却流量制御棒の温度変化応答動作図。The temperature change response operation | movement figure of the cooling flow control rod used for 1st embodiment of this invention. 本発明の第一の実施形態に用いる冷却流量制御棒の体積変化応答動作図。The volume change response operation | movement figure of the cooling flow control rod used for 1st embodiment of this invention. 本発明の第二の実施形態の基本構成図。The basic block diagram of 2nd embodiment of this invention. 本発明の第三の実施形態に用いる冷却流量自動制御棒の内部構造図。The internal structure figure of the cooling flow rate automatic control rod used for 3rd embodiment of this invention. 従来技術の基本構成図。The basic block diagram of a prior art. 従来技術の電池モジュール外観図。The battery module external view of a prior art.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

本発明の第一の実施例の基本構成を図1に示す。図1において、単電池1には、正極端子1aおよび負極端子1bが形成されている、正極端子1aは、アルミニウムまたはアルミニウム合金で製作され、負極端子1bは、銅または銅合金で製作されている。正極端子1a、負極端子1bには、バスバーを締結するためのボルトが突設されている。図1の基本構成を組み込んだ冷却流量自動制御型電池モジュール3aの外観図を図3に、その部品構成を図4に示す。また、これと対比するための従来型電池モジュール3bの基本構成を図9に、その部品構成を図10に示す。   The basic configuration of the first embodiment of the present invention is shown in FIG. In FIG. 1, a single cell 1 is formed with a positive electrode terminal 1a and a negative electrode terminal 1b. The positive electrode terminal 1a is made of aluminum or an aluminum alloy, and the negative electrode terminal 1b is made of copper or a copper alloy. . Bolts for fastening the bus bar are projected from the positive terminal 1a and the negative terminal 1b. An external view of a cooling flow rate automatic control type battery module 3a incorporating the basic configuration of FIG. 1 is shown in FIG. 3, and its component configuration is shown in FIG. Further, FIG. 9 shows a basic configuration of a conventional battery module 3b for comparison with this, and FIG. 10 shows its component configuration.

従来型電池モジュール3bの外観と、本発明の第一の実施例の冷却流量自動制御型電池モジュール3aの外観とは同様であり、図3に示すとおりである。その部品構成について、従来型電池モジュール3bは図10に、本発明の第一の実施例の冷却流量自動制御型電池モジュール3aは図4に示している。本発明の第一の実施例の冷却流量自動制御型電池モジュール3aは従来型電池モジュール3bに対して冷却流量制御棒2を追加しており、その他の部品構成は同様である。   The appearance of the conventional battery module 3b and the appearance of the cooling flow rate automatic control battery module 3a of the first embodiment of the present invention are the same as shown in FIG. As for the component configuration, the conventional battery module 3b is shown in FIG. 10, and the cooling flow rate automatic control type battery module 3a of the first embodiment of the present invention is shown in FIG. The cooling flow rate automatic control type battery module 3a of the first embodiment of the present invention has a cooling flow rate control rod 2 added to the conventional type battery module 3b, and the other components are the same.

まず、従来型電池モジュール3bの構成について図10により説明する。
単電池1は単電池ホルダー4と交互に重ねて配置されている。単電池1の形状は角型であり、単電池ホルダー4が形成されている方向に扁平面を有している。本発明において、扁平面を有している角型の単電池1とは、図9、図10のような直方体以外に、特開2008−97959号公報で示されるような断面形状が長軸と短軸を有する長円筒形の単電池も含まれる。単電池1としてリチウムイオン二次電池等が挙げられる。単電池ホルダー4は各単電池1の間の間隙が略同一になるよう支持すると同時に、各単電池1の間に冷却媒体13の流れる流路を形成する。単電池ホルダー4は、ガラスエポキシ樹脂、ポリプロピレン、ポリブチレンテレフタレート樹脂などの樹脂材料や、アルミニウム、銅、ステンレスなどの金属材料によって構成される。
First, the configuration of the conventional battery module 3b will be described with reference to FIG.
The unit cells 1 are alternately stacked with the unit cell holders 4. The shape of the unit cell 1 is rectangular, and has a flat surface in the direction in which the unit cell holder 4 is formed. In the present invention, the rectangular unit cell 1 having a flat surface has a long axis having a cross-sectional shape as shown in JP-A-2008-97959, in addition to a rectangular parallelepiped as shown in FIGS. A long cylindrical unit cell having a short axis is also included. Examples of the unit cell 1 include a lithium ion secondary battery. The unit cell holder 4 supports the gaps between the unit cells 1 so as to be substantially the same, and at the same time forms a flow path through which the cooling medium 13 flows between the unit cells 1. The unit cell holder 4 is made of a resin material such as glass epoxy resin, polypropylene, or polybutylene terephthalate resin, or a metal material such as aluminum, copper, or stainless steel.

単電池1と単電池ホルダー4を交互に配置した積層体の左右両端にはそれぞれ端板7を配置する。端板7によって、積層した単電池1と単電池ホルダー4が分離しないように固定されている。この積層体に、各単電池1の端子側を押さえる単電池端子側押え板5と各単電池1の底板側を押さえる単電池底面側押え板6を取り付けて全体を固定する。この状態では、積層体の下側に各単電池1の間に形成された冷却流路の入口が開口しており、また、積層体の上側には各単電池1の間に形成された冷却流路の出口が開口している。この積層体の下側に入口側ガスヘッダ8を取り付け、上側に出口側ガスヘッダ9を取り付けて、従来型電池モジュール3bが構成される。入口側ガスヘッダ8に流入された冷却媒体13が単電池1間の間隙を通って出口側ガスヘッダ9から従来型電池モジュール3b外へ排出されることにより単電池1が冷却される。   End plates 7 are arranged on the left and right ends of the laminate in which the unit cells 1 and the unit cell holders 4 are alternately arranged. The stacked unit cells 1 and the unit cell holder 4 are fixed by end plates 7 so as not to be separated. A unit cell terminal side presser plate 5 that holds the terminal side of each unit cell 1 and a unit cell bottom side presser plate 6 that holds the bottom plate side of each unit cell 1 are attached to the laminated body, and the whole is fixed. In this state, the inlet of the cooling channel formed between the single cells 1 is opened below the stacked body, and the cooling formed between the single cells 1 is formed above the stacked body. The outlet of the channel is open. An inlet side gas header 8 is attached to the lower side of the laminate, and an outlet side gas header 9 is attached to the upper side to constitute a conventional battery module 3b. The cooling medium 13 that has flowed into the inlet-side gas header 8 passes through the gap between the single cells 1 and is discharged from the outlet-side gas header 9 to the outside of the conventional battery module 3b, whereby the single cell 1 is cooled.

この従来型電池モジュール3bの冷却方式は、各単電池1の間に形成された冷却流路に冷却媒体13を流す方式である。図9は、各単電池1とその間隙に流れる冷却媒体13の流れ方向を示している。各単電池1の間の冷却流路の寸法が同一であれば、その圧力損失も同一であり、冷却媒体13の流量も同一となる。   The cooling method of the conventional battery module 3 b is a method in which the cooling medium 13 is caused to flow through the cooling flow path formed between the single cells 1. FIG. 9 shows the flow direction of each of the single cells 1 and the cooling medium 13 flowing through the gaps. If the dimensions of the cooling channel between the single cells 1 are the same, the pressure loss is also the same, and the flow rate of the cooling medium 13 is also the same.

この冷却方式では、各単電池1の発熱量が異なる場合、また、各単電池1の体積変化量が異なる場合、および、その発熱量と体積変化量が経時的に変化する場合に、各単電池1の温度に差が生じる。また、電池モジュールの冷却は、冷却媒体13によるものが主ではあるが、周囲への自然放熱による冷却効果もある。この冷却の場合、電池モジュール中心付近は放熱しにくいので、その中心付近の温度が周囲付近の温度より高くなる。   In this cooling method, each unit cell 1 has a different heat generation amount, each unit cell 1 has a different volume change amount, and each unit cell 1 has its heat generation amount and volume change amount changed over time. A difference occurs in the temperature of the battery 1. In addition, the cooling of the battery module is mainly performed by the cooling medium 13, but also has a cooling effect by natural heat radiation to the surroundings. In the case of this cooling, since the vicinity of the center of the battery module is difficult to dissipate, the temperature near the center becomes higher than the temperature near the periphery.

電池の発熱と体積変化の課題について更に詳しく説明する。
一般に、電池は、一次電池、二次電池を問わず、放電(一次電池、二次電池とも)または充電(二次電池のみ)により発熱する。発熱の原因は、電子の移動に伴う抵抗熱、即ち、ジュール熱が大きく、その他として、電池反応、即ち、電池内活物質の化学変化による熱やエントロピー変化による熱がある。
The problem of battery heat generation and volume change will be described in more detail.
Generally, a battery generates heat by discharging (both primary battery and secondary battery) or charging (only secondary battery) regardless of whether the battery is a primary battery or a secondary battery. The cause of heat generation is large resistance heat accompanying the movement of electrons, that is, Joule heat, and other causes include battery reaction, that is, heat due to chemical change of the active material in the battery and heat due to entropy change.

電池の発熱量は、電流量が多くなるほど増大する。小型の電池では電流量が少ないため、発熱による温度上昇が問題となる場合は少ない。しかし、大型の電池では電流量が多いため、発熱量が多く、電池温度が電池内活物質の特性に悪影響を与えるほど上昇する場合がある。   The amount of heat generated by the battery increases as the amount of current increases. Since a small battery has a small amount of current, there are few cases where temperature rise due to heat generation becomes a problem. However, since a large battery has a large amount of current, a large amount of heat is generated, and the battery temperature may increase so as to adversely affect the characteristics of the active material in the battery.

例えば、携帯電話やデジカメ用の二次電池は電池容量が数Ah程度であり、電気量を大量に消費する作業をしても、やや暖かくなる程度である。これに対して、車載用や電力貯蔵用等の二次電池は、単電池を組み合わせた電池モジュールとしての電池容量が数百Ah〜数千Ah程度(具体的には、100Ah以上−10000Ah以下程度)と桁違いに大きく、何らかの冷却手段を講じないと、電池温度が高くなり過ぎて電池性能を急速に劣化させることになる。   For example, a secondary battery for a mobile phone or a digital camera has a battery capacity of about several Ah, and even a work that consumes a large amount of electricity is somewhat warm. On the other hand, secondary batteries for in-vehicle use and power storage use have a battery capacity of several hundred Ah to several thousand Ah as a battery module in which single cells are combined (specifically, about 100 Ah to about 10000 Ah or less). If the cooling method is not taken, the battery temperature becomes too high and the battery performance is rapidly deteriorated.

また、大容量の電池モジュールは、電池モジュール自体の寸法が大きいため、各単電池からの放熱量を均一にすることが難しく、温度分布がつきやすい。電池モジュールを単に空間に放置して自然冷却により冷却する場合、電池モジュールの外周付近の単電池の温度はある程度低く抑えられるが、電池モジュールの中心付近の単電池は相当な高温になる可能性がある。近年、小型軽量で電池容量の大きいリチウムイオン二次電池が各産業分野で用いられるようになってきているが、リチウムイオン二次電池は50℃〜60℃以上で急速に電池性能が劣化する。車載用や電力貯蔵用等に用いられる大容量のリチウムイオン二次電池モジュールは、寸法が各辺1m前後であり、単なる自然冷却では、容易に電池モジュール中心付近の温度が50℃〜60℃以上となる。   Moreover, since the battery module of a large capacity has a large size, the heat dissipation from each single battery is difficult to make uniform, and the temperature distribution tends to be attached. When the battery module is simply left in the space and cooled by natural cooling, the temperature of the unit cells near the outer periphery of the battery module can be suppressed to a certain extent, but the unit cells near the center of the battery module can be considerably hot. is there. In recent years, lithium ion secondary batteries that are small and light and have a large battery capacity have been used in various industrial fields. However, battery performance of lithium ion secondary batteries deteriorates rapidly at 50 ° C. to 60 ° C. or higher. Large-capacity lithium-ion secondary battery modules used for in-vehicle use and power storage have dimensions of around 1m on each side, and the temperature near the center of the battery module is easily 50 ° C to 60 ° C or more with simple natural cooling. It becomes.

このように、大容量の電池モジュールは、発熱量が大きいために温度が高くなり、また、電池モジュールの寸法自体が大きいために内部で温度分布がついて、更に高温となる箇所が発生する。高温となった箇所に位置する単電池は、その温度が特性劣化の激しくなる境界値以上になると急速に電池性能が劣化する。   Thus, a battery module with a large capacity has a high temperature due to a large amount of heat generation, and a large size of the battery module itself causes a temperature distribution inside, resulting in a location where the temperature is further increased. The cell performance of a single cell located at a location where the temperature has become high rapidly deteriorates when the temperature exceeds a boundary value at which the characteristic deterioration becomes severe.

また、単電池の発熱量は、個々の単電池毎に若干の差があり、均一ではない。これが電池モジュールの温度に分布を与える原因ともなる。   Further, the calorific value of the unit cell is not uniform because there is a slight difference for each unit cell. This also causes a distribution in the temperature of the battery module.

更に、単電池の膨張収縮が電池の冷却へ与える影響がある。単電池は、内部に用いている電極活物質によっては、充放電に伴い電極自体が膨張収縮を繰り返し、単電池の外形寸法を変化させる。これにより単電池間の冷却媒体流路の寸法が変わり、冷却流量が単電池間毎に異なってくる。例えば、膨張量が他より大きい単電池の周囲の冷却流路は狭くなり、流路の圧損が増加して、冷却流量が少なくなる。これによりその単電池の温度が他の単電池より上昇する。たとえば、リチウムイオン二次電池の場合、充放電に伴う膨張収縮量の大きい活物質として、負極に用いる黒鉛系の活物質がある。その寸法変化割合は、満充電から完全放電の間で、約1割と大きい。黒鉛系の負極は電池容量が大きいため、車載用や電力貯蔵用等の電池に適しており、これを用いた電池モジュールは単電池の膨張収縮に対応できる冷却機構が必要である。   Further, the expansion and contraction of the unit cell has an effect on the cooling of the battery. Depending on the electrode active material used inside the unit cell, the electrode itself repeatedly expands and contracts with charge and discharge, thereby changing the outer dimensions of the unit cell. As a result, the size of the cooling medium flow path between the cells changes, and the cooling flow rate varies between the cells. For example, the cooling flow path around the unit cell having a larger expansion amount becomes narrower, the pressure loss of the flow path increases, and the cooling flow rate decreases. Thereby, the temperature of the unit cell rises from other unit cells. For example, in the case of a lithium ion secondary battery, there is a graphite-based active material used for the negative electrode as an active material having a large expansion / contraction amount due to charge / discharge. The dimensional change rate is as large as about 10% between full charge and complete discharge. Since the graphite negative electrode has a large battery capacity, it is suitable for batteries for in-vehicle use and power storage. A battery module using the graphite negative electrode needs a cooling mechanism that can cope with the expansion and contraction of the unit cell.

また、単電池の体積変化は、前記のように充放電のサイクルに合わせて膨張収縮を繰り返す場合の他に、経時的に徐々に変化することもある。前記のリチウムイオン二次電池用の黒鉛負極は充電時にリチウムイオンLi+を吸収して膨張し、放電時にリチウムイオンLi+を放出して収縮する。初期においては、充電した時に吸収したリチウムイオンLi+を放電時に全て放出することができるが、経時劣化により、徐々に放出量が減ってくる。すると収縮量が減り、初期の最小寸法まで戻らなくなる。この度合いが単電池毎に異なるので、経時的に各単電池間の冷却流路の圧力損失に差が生じてくる。 Further, the change in volume of the unit cell may gradually change over time in addition to the case where the expansion and contraction is repeated in accordance with the charge / discharge cycle as described above. The graphite negative electrode for a lithium ion secondary battery absorbs lithium ion Li + during charging and expands, and releases lithium ion Li + during discharging and contracts. In the initial stage, all of the lithium ions Li + absorbed during charging can be released during discharging, but the amount of release gradually decreases due to deterioration over time. Then, the amount of shrinkage decreases, and the initial minimum dimension cannot be restored. Since this degree differs for each unit cell, a difference occurs in the pressure loss of the cooling channel between the unit cells over time.

本発明の一実施形態ではこれらの課題を解決するものであり、その第一の実施例の冷却流量自動制御型電池モジュール3aの構成を図4に示す。図4において、単電池1の積層方向をX軸とし、単電池1の扁平面において単電池端子側押え板5および単電池底面側押え板6が形成されている方向をY軸とし、単電池1の扁平面において出口側ガスヘッダ9および入口側ガスヘッダ8が形成されている方向をZ軸とする。   One embodiment of the present invention solves these problems, and FIG. 4 shows the configuration of a cooling flow rate automatic control type battery module 3a of the first embodiment. In FIG. 4, the stacking direction of the unit cells 1 is taken as the X axis, and the direction in which the unit cell terminal side presser plate 5 and the unit cell bottom side presser plate 6 are formed on the flat surface of the unit cell 1 is taken as the Y axis. The direction in which the outlet side gas header 9 and the inlet side gas header 8 are formed in the flat surface of 1 is defined as the Z axis.

冷却流量自動制御型電池モジュール3aは、図10に示す従来型電池モジュール3bに対して、各単電池1の間に形成される冷却流路に冷却流量制御棒2を設置した構成となっている。Y軸方向において、冷却流量制御棒2は、単電池ホルダー4のスペーサ部分の間に形成されている。各単電池1と冷却流量制御棒2の配置の関係を図1に示す。冷却流量制御棒2の外観は図2に示すとおりであり、単電池接触部2a、伸縮部2b、流量制御弁2c、接続棒2dから構成されている。本実施例では、接続棒2dをなくして伸縮部2bと流量制御弁2cの間を直接接続してもよい。単電池接触部2aと伸縮部2bは接合されており、伸縮部2bと流量制御弁2cの間を接続する円筒形の接続棒2dによって伸縮部2bと流量制御弁2cは接合されている。図2においては、各単電池1の間に冷却流量制御棒2が3個ずつ配置されているが、冷却流量制御棒2の数に制限はなく、冷却流量自動制御型電池モジュール3aの温度分布に応じて適宜変更すればよい。   The cooling flow rate automatic control type battery module 3a has a configuration in which the cooling flow rate control rod 2 is installed in the cooling flow path formed between the single cells 1 with respect to the conventional battery module 3b shown in FIG. . In the Y-axis direction, the cooling flow rate control rod 2 is formed between the spacer portions of the unit cell holder 4. The relationship between the arrangement of each single cell 1 and the cooling flow rate control rod 2 is shown in FIG. The appearance of the cooling flow rate control rod 2 is as shown in FIG. 2, and is composed of a cell contact portion 2a, an expansion / contraction portion 2b, a flow rate control valve 2c, and a connecting rod 2d. In the present embodiment, the connecting rod 2d may be eliminated, and the expansion / contraction part 2b and the flow control valve 2c may be directly connected. The unit cell contact portion 2a and the expansion / contraction portion 2b are joined, and the expansion / contraction portion 2b and the flow control valve 2c are joined by a cylindrical connecting rod 2d that connects between the expansion / contraction portion 2b and the flow control valve 2c. In FIG. 2, three cooling flow rate control rods 2 are arranged between each unit cell 1, but the number of cooling flow rate control rods 2 is not limited, and the temperature distribution of the cooling flow rate automatic control type battery module 3a. It may be changed as appropriate according to the situation.

この冷却流量制御棒2の内部、具体的には単電池接触部2a、伸縮部2bの内部には液体または気体が封入されている。   Liquid or gas is sealed inside the cooling flow rate control rod 2, specifically, the single cell contact portion 2a and the expansion / contraction portion 2b.

単電池接触部2aの外皮は柔らかい材質で形成されている。単電池接触部2aのX軸方向の厚みは、単電池ホルダー4のスペーサ部分の厚みと略同じになっている。単電池接触部2aのZ軸方向の高さは、各単電池1のZ軸方向の高さより小さく設定されている。単電池接触部2aはその外皮が単電池1の壁面(扁平面)に接着されており、複数の単電池1の扁平面の間に設けられ、単電池1の体積が変化して壁面の凹凸形状が変わるとその形状変化に追随して単電池接触部2aの外皮が変形する。冷却流量制御棒2の内部に封入する液体としては水等が挙げられる。気体としては、空気、窒素、二酸化炭素等の不活性ガスが挙げられる。   The outer skin of the unit cell contact portion 2a is formed of a soft material. The thickness of the unit cell contact portion 2 a in the X-axis direction is substantially the same as the thickness of the spacer portion of the unit cell holder 4. The height of the unit cell contact portion 2a in the Z-axis direction is set to be smaller than the height of each unit cell 1 in the Z-axis direction. The unit cell contact portion 2a has an outer skin adhered to the wall surface (flat surface) of the unit cell 1, and is provided between the flat surfaces of the plurality of unit cells 1, and the volume of the unit cell 1 changes to cause irregularities on the wall surface. When the shape changes, the outer skin of the unit cell contact portion 2a is deformed following the shape change. Examples of the liquid sealed in the cooling flow rate control rod 2 include water. Examples of the gas include inert gases such as air, nitrogen, and carbon dioxide.

Z軸方向における流量制御弁2cと単電池ホルダー4との間には冷却媒体13が流れるための間隙(冷却流路)が形成されており、Z軸方向において流量制御弁2cと単電池ホルダー4は接していない。各単電池1間に流れる冷却媒体の量を制御するため、X軸方向における流量制御弁2cの幅は、各単電池1間の間隙よりも大きく設定されている。流量制御弁2cが出口側ガスヘッダ9にぶつからないように、ガスヘッダの厚さを10mm程度にすることが望ましい。   A gap (cooling flow path) for the cooling medium 13 to flow is formed between the flow control valve 2c and the single cell holder 4 in the Z-axis direction, and the flow control valve 2c and the single cell holder 4 in the Z-axis direction. Is not touching. In order to control the amount of the cooling medium flowing between the single cells 1, the width of the flow control valve 2 c in the X-axis direction is set larger than the gap between the single cells 1. It is desirable that the thickness of the gas header is about 10 mm so that the flow control valve 2c does not collide with the outlet side gas header 9.

冷却流量制御棒2では、単電池1の温度変化や体積変化に追随して伸縮部2bが伸縮し、それに連動して流量制御弁2cが動き、その部分の冷却流路の圧損を変え、冷却流量を変化させる機能を有する。換言すれば、複数の単電池の温度変化または複数の単電池間の間隙の変化に応じた液体または気体の体積変化によって、伸縮部2bが伸縮し、流量制御弁2cが動いている。以下、その動作について説明する。   In the cooling flow rate control rod 2, the expansion / contraction part 2 b expands and contracts following the temperature change and volume change of the unit cell 1, and the flow control valve 2 c moves in conjunction with the expansion and contraction part 2 b to change the pressure loss of the cooling flow path in that part. Has the function of changing the flow rate. In other words, the expansion / contraction part 2b expands / contracts and the flow rate control valve 2c moves due to the volume change of the liquid or gas corresponding to the temperature change of the plurality of single cells or the change of the gap between the plurality of single cells. The operation will be described below.

図5は、単電池1の温度が変化した場合に追随して流量制御弁2cが動作する仕組みを示す。2個の単電池1の間に挟まれた冷却流量制御棒2は単電池接触部2aの外皮が単電池1の壁面に接触しており、単電池1の温度が変化すると熱伝導により冷却流量制御棒2内部の液体または気体の温度が変化し、その体積も変化する。この体積変化により伸縮部2bが伸縮し、流量制御弁2cを動かす。図5において、14は単電池の発生熱を表している。   FIG. 5 shows a mechanism in which the flow control valve 2c operates following the change in the temperature of the unit cell 1. The cooling flow rate control rod 2 sandwiched between the two unit cells 1 has the outer surface of the unit cell contact portion 2a in contact with the wall surface of the unit cell 1, and when the temperature of the unit cell 1 changes, the cooling flow rate is caused by heat conduction. The temperature of the liquid or gas inside the control rod 2 changes, and its volume also changes. The expansion / contraction part 2b expands / contracts by this volume change, and moves the flow control valve 2c. In FIG. 5, 14 represents the heat generated by the unit cell.

流量制御弁2cに要求される動作は、単電池1の温度が高くなると冷却流量を増加させ、低くなると冷却流量を減少させる動作である。冷却流量制御棒2の内部の液体または気体は、単電池1の温度が高くなると、その熱を吸収して熱膨張し、伸縮部2bを伸ばして流量制御弁2cを押し上げ、冷却流路出口部の開口度を大きくするため、冷却流量が増加する。一方、単電池1の温度が低くなると、内部の液体または気体が収縮して伸縮部2bを縮めて流量制御弁2cを下げ、冷却流路出口部の開口度を小さくするため、冷却流量が減少する。このように、冷却流量制御棒2は、単電池1の温度が高くなると冷却流量を増加させて単電池1の温度を下げ、単電池1の温度が低くなると冷却流量を減少させて単電池1の温度低下を防ぐ。これにより、電池モジュール内の温度分布の不均一化を抑制できる。   The operation required for the flow rate control valve 2c is an operation for increasing the cooling flow rate when the temperature of the unit cell 1 becomes higher and decreasing the cooling flow rate when the temperature becomes lower. When the temperature of the unit cell 1 becomes high, the liquid or gas inside the cooling flow rate control rod 2 absorbs the heat and expands, expands the expansion / contraction part 2b, pushes up the flow control valve 2c, and exits the cooling channel. In order to increase the opening degree, the cooling flow rate increases. On the other hand, when the temperature of the unit cell 1 is lowered, the liquid or gas inside contracts, the expansion / contraction part 2b is contracted to lower the flow rate control valve 2c, and the opening degree of the cooling channel outlet part is reduced, so that the cooling flow rate is reduced. To do. As described above, the cooling flow rate control rod 2 increases the cooling flow rate to decrease the temperature of the unit cell 1 when the temperature of the unit cell 1 increases, and decreases the cooling flow rate to decrease the unit cell 1 when the temperature of the unit cell 1 decreases. Prevents temperature drop. Thereby, the nonuniformity of the temperature distribution in a battery module can be suppressed.

次に、単電池1が体積変化する際の冷却流量制御棒2の動作を説明する。
単電池1が膨張して体積が増加する場合、単電池1の間の冷却流路が狭くなって圧損が大きくなり、冷却流量が減少し、単電池の温度が上がる。その反対に、単電池1が収縮して体積が減少する場合、単電池1の間の冷却流路が広くなって圧損が小さくなり、冷却流量が増加し、単電池の温度が下がる。従って、単電池1が膨張して体積が増加する場合は、冷却流量制御棒2の流量制御弁2cの開度が大きくなって冷却流量の減少を防ぐ動作が必要であり、また、単電池1が収縮して体積が減少する場合、冷却流量制御棒2の流量制御弁2cの開度が小さくなって冷却流量の増加を防ぐ動作が必要である。
Next, the operation of the cooling flow rate control rod 2 when the volume of the unit cell 1 changes will be described.
When the unit cell 1 expands and its volume increases, the cooling flow path between the unit cells 1 becomes narrow, pressure loss increases, the cooling flow rate decreases, and the unit cell temperature rises. On the other hand, when the unit cell 1 contracts and the volume decreases, the cooling flow path between the unit cells 1 widens, the pressure loss decreases, the cooling flow rate increases, and the unit cell temperature decreases. Therefore, when the unit cell 1 expands and its volume increases, the opening of the flow rate control valve 2c of the cooling flow rate control rod 2 needs to be increased to prevent the cooling flow rate from decreasing. When the volume of the cooling flow control rod 2 decreases due to contraction, the opening of the flow control valve 2c of the cooling flow control rod 2 needs to be reduced to prevent the cooling flow from increasing.

図6は、単電池1の体積が変化した場合に追随して流量制御弁2cが動作する仕組みを示す。2個の単電池1の間に挟まれた冷却流量制御棒2は単電池接触部2aの外皮が単電池1の壁面に接着されており、単電池1の体積が変化してその壁面の凹凸形状が変わると、その形状に追随して、冷却流量制御棒2の単電池接触部2aの外皮も変形する。この外皮の変形により、冷却流量制御棒2の内部の液体または気体が流動し、伸縮部2bが伸縮して、流量制御弁2cが動く。図6において、15は単電池の体積膨張を表している。   FIG. 6 shows a mechanism in which the flow control valve 2c operates following the change in the volume of the unit cell 1. The cooling flow rate control rod 2 sandwiched between the two unit cells 1 has the outer surface of the unit cell contact portion 2a bonded to the wall surface of the unit cell 1, and the volume of the unit cell 1 changes to cause unevenness on the wall surface. When the shape changes, the outer skin of the unit cell contact portion 2a of the cooling flow rate control rod 2 is also deformed following the shape. Due to the deformation of the outer skin, the liquid or gas inside the cooling flow control rod 2 flows, the expansion / contraction part 2b expands / contracts, and the flow control valve 2c moves. In FIG. 6, 15 represents the volume expansion of the unit cell.

単電池1が膨張すると、その壁面が冷却流路側に凸になるように変形する。これにより、冷却流量制御棒2の単電池接触部2aが細くなり、内部の液体または気体が伸縮部2bの方へ押し出され、伸縮部2bが伸び、流量制御弁2cが持ち上がって弁開度が大きくなり、冷却流量の減少を防ぐ。一方、単電池1が収縮する場合は、その壁面が冷却流路側に凹になるように変形する。これにより、冷却流量制御棒2の単電池接触部2aが太くなり、内部の液体または気体が伸縮部2bから単電池接触部2aへ引き込まれる方向に移動し、伸縮部2bが縮み、流量制御弁2cが下がって弁開度が小さくなり、冷却流量の増加を防ぐ。これにより、電池モジュール内の温度分布の不均一化を抑制できる。   When the unit cell 1 expands, its wall surface is deformed so as to protrude toward the cooling channel. As a result, the unit cell contact portion 2a of the cooling flow rate control rod 2 becomes thinner, the liquid or gas inside is pushed out toward the expansion / contraction portion 2b, the expansion / contraction portion 2b extends, the flow control valve 2c is lifted, and the valve opening degree is increased. Increases to prevent a decrease in cooling flow rate. On the other hand, when the cell 1 contracts, the wall surface is deformed so as to be recessed toward the cooling flow path. As a result, the unit cell contact portion 2a of the cooling flow rate control rod 2 becomes thicker, the internal liquid or gas moves in the direction of being drawn into the unit cell contact unit 2a from the expansion / contraction unit 2b, the expansion / contraction unit 2b contracts, and the flow control valve 2c decreases, the valve opening decreases, and an increase in the cooling flow rate is prevented. Thereby, the nonuniformity of the temperature distribution in a battery module can be suppressed.

冷却流量制御棒2の伸縮部2bは、その内部にも液体または気体があり、これが単電池接触部2a内部との間で移動できるようになっている必要がある。従って、伸縮部2bの伸縮構造として、ベローズを採用することが可能である。ベローズ構造とは、板状の部材で作られる山折りと谷折りの繰り返し構造をいう。ベローズ構造以外にとして注射器のようなピストン/シリンダー構造も挙げられるが、温度変化や往復運動の繰り返しによる緩み(外筒管と内筒管の間の隙間発生)によって、内部の液体または気体が漏れる可能性を考慮すると、ベローズ構造であることが望ましい。図2では、XY平面における伸縮部2bの断面は略円形となっているが、矩形でも良い。設計、製造面を考慮すれば、XY平面における伸縮部2bの断面は略円形であることが望ましい。図5、図6に示すとおり、冷却流量制御棒2の伸縮動作が妨げられないように伸縮部2bは各単電池1の側面と接触していない。図5、図6では、Z軸方向において伸縮部2bの上端部は単電池1内に収まっているが、伸縮部2bの上端部が単電池1の上端部より上部に形成されていてもよい。   The expansion / contraction part 2b of the cooling flow rate control rod 2 also has liquid or gas inside, and needs to be able to move between the inside of the unit cell contact part 2a. Therefore, it is possible to employ a bellows as the stretchable structure of the stretchable portion 2b. The bellows structure refers to a repeated structure of mountain folds and valley folds made of a plate-like member. In addition to the bellows structure, a piston / cylinder structure such as a syringe can also be mentioned, but internal liquid or gas leaks due to looseness due to temperature change and repeated reciprocating motion (gap generation between the outer tube and the inner tube). Considering the possibility, a bellows structure is desirable. In FIG. 2, the cross section of the stretchable part 2b in the XY plane is substantially circular, but may be rectangular. Considering the design and manufacturing aspects, it is desirable that the cross section of the stretchable part 2b in the XY plane is substantially circular. As shown in FIGS. 5 and 6, the expansion / contraction part 2 b is not in contact with the side surface of each unit cell 1 so that the expansion / contraction operation of the cooling flow rate control rod 2 is not hindered. 5 and 6, the upper end of the extendable part 2 b is accommodated in the unit cell 1 in the Z-axis direction, but the upper end of the extendable part 2 b may be formed above the upper end of the unit cell 1. .

冷却流量制御棒2の単電池接触部2a、伸縮部2bは単電池1の壁面形状の変化に追随して変形する必要があるので、その外皮として、形状は保つが変形しやすい樹脂系の材料、たとえば、ポリ塩化ビニル、ポリエチレンテレフタレート(PET)、ポリウレタン等を用いることが可能である。冷却流量制御棒2の流量制御弁2c、接続棒2dは、冷却流量制御棒2の単電池接触部2a、伸縮部2bとは異なり、単電池1の壁面形状の変化に追随しにくい堅い材質とする必要があるので、ポリカーボネイト(PC)、ポリブチレンテレフタレート(PBT)等を用いることが望ましい。   Since the cell contact portion 2a and the expansion / contraction portion 2b of the cooling flow rate control rod 2 need to be deformed following the change in the wall shape of the cell 1, a resin-based material that maintains its shape but is easily deformed as its outer skin. For example, polyvinyl chloride, polyethylene terephthalate (PET), polyurethane or the like can be used. The flow rate control valve 2c and the connecting rod 2d of the cooling flow rate control rod 2 are different from the single cell contact portion 2a and the expansion / contraction portion 2b of the cooling flow rate control rod 2 and are made of a hard material that does not easily follow changes in the wall shape of the single cell 1 Therefore, it is desirable to use polycarbonate (PC), polybutylene terephthalate (PBT) or the like.

本発明の第二の実施例は、第一の実施例の冷却流量制御棒2の流量制御弁2cの開閉動作を安定させるために、伸縮部2bが冷却流量制御棒2の軸芯(冷却流量制御棒2の長手方向、図4のZ軸方向)に沿ってまっすぐに伸縮するようなガイドを設ける構造である。これを図7に示す。   In the second embodiment of the present invention, in order to stabilize the opening / closing operation of the flow rate control valve 2c of the cooling flow rate control rod 2 of the first embodiment, the expansion / contraction part 2b has an axis (cooling flow rate) of the cooling flow rate control rod 2. This is a structure in which a guide that extends and contracts straight along the longitudinal direction of the control rod 2 (Z-axis direction in FIG. 4) is provided. This is shown in FIG.

第一の実施例では、冷却流量制御棒2の伸縮部2bが冷却流量制御棒2の軸芯に沿ってまっすぐに伸縮する保証が少ない。もし、伸縮の過程で若干の曲がりが生じると、流量制御弁2cが傾くことになる。伸縮量自体が同じであってもこの傾きが異なると、冷却流路に与える圧損が異なってくる。即ち、見掛け上、弁の開度が異なることになる。これを防ぐための伸縮ガイド板10を、冷却流量制御棒2の長手方向(Z軸方向)において伸縮部2bと流量制御弁2cの間に設置する。図7では、全ての冷却流量制御棒2に対して複数の伸縮ガイド板10が設けられているが、X軸方向において一列に配置された冷却流量制御棒2をガイドするための伸縮ガイド板10が少なくとも一つあっても良い。   In the first embodiment, there is little guarantee that the expansion / contraction part 2b of the cooling flow rate control rod 2 extends or contracts straight along the axis of the cooling flow rate control rod 2. If a slight bend occurs during the expansion / contraction process, the flow control valve 2c is inclined. Even if the amount of expansion and contraction itself is the same, if this inclination is different, the pressure loss applied to the cooling channel will be different. That is, apparently the opening of the valve is different. An expansion / contraction guide plate 10 for preventing this is installed between the expansion / contraction part 2b and the flow control valve 2c in the longitudinal direction (Z-axis direction) of the cooling flow control rod 2. In FIG. 7, a plurality of expansion / contraction guide plates 10 are provided for all the cooling flow control rods 2, but the expansion / contraction guide plates 10 for guiding the cooling flow control rods 2 arranged in a line in the X-axis direction. There may be at least one.

伸縮ガイド板10は、単電池1、単電池ホルダー4、冷却流量制御棒2を交互に重ねて積層体を一体化した後から取り付けられるように、反割構造としてあり、冷却流量制御棒2の伸縮部2bと流量制御弁2cの間を接続する円筒形の接続棒2dをガイドするように円形の穴が開いた構造となっている。伸縮ガイド板10は単電池ホルダー4に固定されている。   The telescopic guide plate 10 has a split structure so that the cell 1, the cell holder 4, and the cooling flow rate control rod 2 are alternately stacked to be attached after the laminated body is integrated. It has a structure in which a circular hole is opened so as to guide a cylindrical connecting rod 2d that connects between the expansion / contraction part 2b and the flow control valve 2c. The telescopic guide plate 10 is fixed to the unit cell holder 4.

本発明の第三の実施例は、第二の実施例における伸縮ガイド板10を設けずに冷却流量制御棒2の伸縮部2bが軸芯に沿ってまっすぐに伸縮するように、冷却流量制御棒2の内部にガイド構造を設けるものである。その構造を図8に示す。本実施例のようなガイド構造が設けられた冷却流量制御棒2を伸縮ガイド内蔵型冷却流量制御棒16とし、図8に示す。本実施例の構造を前提としてさらに伸縮ガイド板10を設けても良いが、コスト面を考慮すると伸縮ガイド板10を設けないことが望ましい。   In the third embodiment of the present invention, the cooling flow rate control rod is arranged so that the expansion / contraction portion 2b of the cooling flow rate control rod 2 extends / contracts straight along the axis without providing the expansion / contraction guide plate 10 in the second embodiment. 2 is provided with a guide structure. The structure is shown in FIG. The cooling flow rate control rod 2 provided with the guide structure as in this embodiment is referred to as a telescopic guide built-in type cooling flow rate control rod 16 and is shown in FIG. Although the extension guide plate 10 may be further provided on the premise of the structure of the present embodiment, it is desirable not to provide the extension guide plate 10 in consideration of cost.

冷却流量制御棒2の単電池接触部2aと伸縮部2bは、その内部に液体または気体を封入する必要があるため、空洞であるが、流量制御弁2cと伸縮部2bを接続する箇所(接続棒2d)は空洞である必要がない。この箇所を稠密構造とし、接続棒2dの端部に伸縮ガイド棒11の端部を取り付ける。この伸縮ガイド棒11は伸縮部2bの内部と単電池接触部2aの内部を冷却流量制御棒2の軸芯に沿ってまっすぐに伸び、単電池接触部2aの底部の少し手前まで伸びており、冷却流量制御棒2の軸芯に沿ってまっすぐに上下するように伸縮ガイド棒支持座12が、単電池接触部2aの内部に取り付けられている。伸縮部2bが縮んだ時に、伸縮ガイド棒11がつっかえて縮めないようになるのを防ぐために、伸縮ガイド棒11は単電池接触部2aの底部と接触していないことが望ましい。伸縮ガイド棒11の材質は、冷却流量制御棒2の流量制御弁2c、接続棒2dと同様に、堅い材質とすることが望ましい。   The cell contact portion 2a and the expansion / contraction portion 2b of the cooling flow rate control rod 2 are hollow because it is necessary to enclose a liquid or gas therein, but are connected to the flow control valve 2c and the expansion / contraction portion 2b (connections). The rod 2d) need not be hollow. This part is made into a dense structure, and the end of the telescopic guide rod 11 is attached to the end of the connecting rod 2d. This extendable guide rod 11 extends straight inside the extendable portion 2b and the inside of the single cell contact portion 2a along the axis of the cooling flow rate control rod 2, and extends slightly before the bottom of the single cell contact portion 2a. An extendable guide rod support seat 12 is attached to the inside of the unit cell contact portion 2a so as to move straight up and down along the axis of the cooling flow rate control rod 2. In order to prevent the expansion / contraction guide rod 11 from being retracted when the expansion / contraction portion 2b contracts, it is desirable that the expansion / contraction guide rod 11 is not in contact with the bottom of the unit cell contact portion 2a. The material of the telescopic guide rod 11 is desirably a hard material, like the flow rate control valve 2c and the connecting rod 2d of the cooling flow rate control rod 2.

この伸縮ガイド棒支持座12には、内部の液体または気体が、伸縮ガイド棒支持座12を自由に通過できるような穴と伸縮ガイド棒支持座12を貫通させるための貫通穴を設けている。Z軸方向において、伸縮ガイド棒支持座12は伸縮ガイド棒11の上下に二つ設けられているが、伸縮ガイド棒11の傾きを抑制できるほど伸縮ガイド棒支持座12のZ軸方向の長さが大きければ、伸縮ガイド棒支持座12を伸縮ガイド棒11の上下一方にのみ設けることもできる。   The telescopic guide rod support seat 12 is provided with a hole through which the internal liquid or gas can freely pass through the telescopic guide rod support seat 12 and a through hole for allowing the telescopic guide rod support seat 12 to penetrate. In the Z-axis direction, two telescopic guide rod support seats 12 are provided above and below the telescopic guide rod 11, but the length of the telescopic guide rod support seat 12 in the Z-axis direction is such that the tilt of the telescopic guide rod 11 can be suppressed. Can be provided only on the upper and lower sides of the telescopic guide bar 11.

このような構成を取ると、伸縮部2bが伸縮する際に軸芯に沿ってまっすぐに伸縮することができ、流量制御弁2cもまっすぐに移動する。よって、伸縮量が同じであれば、流量制御弁の開度も同じとなる。   If such a structure is taken, when the expansion-contraction part 2b expands-contracts, it can expand-contract straight along an axial center, and the flow control valve 2c will also move straightly. Therefore, if the expansion / contraction amount is the same, the opening degree of the flow control valve is also the same.

実施例3は、モジュールとしての部品点数が少なくなるが、単電池1の体積変化量が大きい場合には、伸縮ガイド棒支持座12の位置がずれ、伸縮ガイド棒11が軸芯に対して若干傾く恐れがある。従って、主に、体積変化量の小さい単電池に対して用いることが望ましい。   In Example 3, the number of parts as a module is reduced, but when the volume change of the unit cell 1 is large, the position of the expansion / contraction guide rod support seat 12 is shifted, and the expansion / contraction guide rod 11 slightly differs from the shaft core. There is a risk of tilting. Therefore, it is desirable to use it mainly for single cells with a small volume change.

1 単電池
1a 正極端子
1b 負極端子
2 冷却流量制御棒
2a 単電池接触部
2b 伸縮部
2c 流量制御弁
2d 接続棒
3a 冷却流量自動制御型電池モジュール
3b 従来型電池モジュール
4 単電池ホルダー
5 単電池端子側押え板
6 単電池底面側押え板
7 端板
8 入口側ガスヘッダ
9 出口側ガスヘッダ
10 伸縮ガイド板
11 伸縮ガイド棒
12 伸縮ガイド棒支持座
13 冷却媒体
16 伸縮ガイド内蔵型冷却流量制御棒
DESCRIPTION OF SYMBOLS 1 Single cell 1a Positive electrode terminal 1b Negative electrode terminal 2 Cooling flow rate control rod 2a Single cell contact part 2b Expansion / contraction part 2c Flow rate control valve 2d Connection rod 3a Cooling flow automatic control type battery module 3b Conventional battery module 4 Single cell holder 5 Single cell terminal Side holding plate 6 Single cell bottom side holding plate 7 End plate 8 Inlet side gas header 9 Outlet side gas header 10 Extendable guide plate 11 Extendable guide rod 12 Extendable guide rod support seat 13 Cooling medium 16 Built-in extension guide built-in cooling flow control rod

Claims (7)

複数の単電池を備えた電池モジュールであって、
前記複数の単電池の間に冷却流量制御棒が設けられ、
前記冷却流量制御棒は、単電池接触部、伸縮部、流量制御弁を備え、
前記単電池接触部および前記伸縮部は接合されており、
前記単電池接触部は、前記複数の単電池の扁平面の間に設けられ、前記複数の単電池の扁平面において前記複数の単電池と接しており、
前記単電池接触部と前記伸縮部の内部には液体または気体が封入され、
前記複数の単電池の温度変化または前記複数の単電池間の間隙の変化に応じた前記液体または気体の体積変化によって、前記伸縮部が伸縮し、前記流量制御弁が動くように前記冷却流量制御棒が構成されている電池モジュール。
A battery module comprising a plurality of single cells,
A cooling flow rate control rod is provided between the plurality of single cells,
The cooling flow rate control rod includes a unit cell contact portion, an expansion / contraction portion, a flow rate control valve,
The unit cell contact part and the stretchable part are joined,
The unit cell contact portion is provided between the flat surfaces of the plurality of unit cells, and is in contact with the plurality of unit cells in the flat surface of the plurality of unit cells,
Liquid or gas is sealed inside the unit cell contact portion and the stretchable portion,
The cooling flow rate control so that the expansion / contraction part expands / contracts and the flow control valve moves due to a change in volume of the liquid or gas according to a change in temperature of the plurality of single cells or a change in gaps between the plurality of single cells. A battery module that consists of a rod.
請求項1において、
前記伸縮部をベローズ構造とした電池モジュール。
In claim 1,
A battery module having a bellows structure as the expansion / contraction part.
請求項1または2において、
前記伸縮部および前記流量制御弁の間に接続棒が設けられ、
前記電池モジュールは、伸縮ガイド板を有し、
前記伸縮ガイド板に穴が形成され、
前記伸縮ガイド板の穴に前記接続棒が挿入されている電池モジュール。
In claim 1 or 2,
A connecting rod is provided between the telescopic part and the flow control valve,
The battery module has a telescopic guide plate,
A hole is formed in the telescopic guide plate,
A battery module in which the connecting rod is inserted into a hole of the telescopic guide plate.
請求項3において、
前記伸縮ガイド板は、半割れ構造になっている電池モジュール。
In claim 3,
The expansion / contraction guide plate is a battery module having a half crack structure.
請求項1乃至4のいずれかにおいて、
前記伸縮部および前記流量制御弁の間に接続棒が設けられ、
前記冷却流量制御棒の内部に伸縮ガイド棒が設けれ、
前記単電池接触部の内部において、前記伸縮ガイド棒には伸縮ガイド棒支持座が取り付けられ、
前記伸縮ガイド棒支持座は前記単電池接触部と接しており、
前記接続棒の端部に前記伸縮ガイド棒が取り付けられている電池モジュール。
In any one of Claims 1 thru | or 4,
A connecting rod is provided between the telescopic part and the flow control valve,
An extendable guide rod is provided inside the cooling flow rate control rod,
Inside the unit cell contact portion, an extension guide rod support seat is attached to the extension guide rod,
The telescopic guide rod support seat is in contact with the unit cell contact portion,
A battery module in which the telescopic guide rod is attached to an end portion of the connecting rod.
請求項5において、
前記伸縮ガイド棒支持座には前記液体または気体を通過させるための穴が設けられている電池モジュール。
In claim 5,
The expansion / contraction guide rod support seat is provided with a hole for allowing the liquid or gas to pass therethrough.
請求項1乃至6のいずれかにおいて、
前記複数の単電池は、リチウムイオン二次電池である電池モジュール。
In any one of Claims 1 thru | or 6.
The plurality of single cells are battery modules which are lithium ion secondary batteries.
JP2012056613A 2012-03-14 2012-03-14 Battery module Expired - Fee Related JP5589016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056613A JP5589016B2 (en) 2012-03-14 2012-03-14 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056613A JP5589016B2 (en) 2012-03-14 2012-03-14 Battery module

Publications (2)

Publication Number Publication Date
JP2013191397A true JP2013191397A (en) 2013-09-26
JP5589016B2 JP5589016B2 (en) 2014-09-10

Family

ID=49391445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056613A Expired - Fee Related JP5589016B2 (en) 2012-03-14 2012-03-14 Battery module

Country Status (1)

Country Link
JP (1) JP5589016B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742752A (en) * 2016-03-01 2016-07-06 河南科技大学 Thermal management system for lithium-ion batteries
WO2017057207A1 (en) * 2015-10-02 2017-04-06 日立オートモティブシステムズ株式会社 Battery pack
CN111960127A (en) * 2020-08-27 2020-11-20 华霆(合肥)动力技术有限公司 Material regulation and control device, temperature regulation and control system and vehicle
JP2021026841A (en) * 2019-08-01 2021-02-22 トヨタ自動車株式会社 Battery pack
CN112740472A (en) * 2018-09-28 2021-04-30 松下知识产权经营株式会社 Power storage device and power storage module
CN116759719A (en) * 2023-08-10 2023-09-15 山东小蚁电动科技有限公司 Protection device for electric tricycle battery
WO2024000086A1 (en) * 2022-06-27 2024-01-04 宁德时代新能源科技股份有限公司 Battery and electric apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259378B1 (en) 2017-12-15 2021-07-16 주식회사 엘지에너지솔루션 Battery pack with improved safety

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018754A (en) * 2005-07-05 2007-01-25 Gs Yuasa Corporation:Kk Battery pack
JP2008066207A (en) * 2006-09-11 2008-03-21 Gs Yuasa Corporation:Kk Battery
JP2010015951A (en) * 2008-07-07 2010-01-21 Toyota Motor Corp Energy storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018754A (en) * 2005-07-05 2007-01-25 Gs Yuasa Corporation:Kk Battery pack
JP2008066207A (en) * 2006-09-11 2008-03-21 Gs Yuasa Corporation:Kk Battery
JP2010015951A (en) * 2008-07-07 2010-01-21 Toyota Motor Corp Energy storage device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057207A1 (en) * 2015-10-02 2017-04-06 日立オートモティブシステムズ株式会社 Battery pack
JPWO2017057207A1 (en) * 2015-10-02 2018-06-07 日立オートモティブシステムズ株式会社 Assembled battery
CN105742752A (en) * 2016-03-01 2016-07-06 河南科技大学 Thermal management system for lithium-ion batteries
CN112740472A (en) * 2018-09-28 2021-04-30 松下知识产权经营株式会社 Power storage device and power storage module
CN112740472B (en) * 2018-09-28 2023-10-24 松下知识产权经营株式会社 Power storage device and power storage module
JP2021026841A (en) * 2019-08-01 2021-02-22 トヨタ自動車株式会社 Battery pack
JP7127624B2 (en) 2019-08-01 2022-08-30 トヨタ自動車株式会社 battery pack
CN111960127A (en) * 2020-08-27 2020-11-20 华霆(合肥)动力技术有限公司 Material regulation and control device, temperature regulation and control system and vehicle
WO2024000086A1 (en) * 2022-06-27 2024-01-04 宁德时代新能源科技股份有限公司 Battery and electric apparatus
CN116759719A (en) * 2023-08-10 2023-09-15 山东小蚁电动科技有限公司 Protection device for electric tricycle battery
CN116759719B (en) * 2023-08-10 2023-11-21 山东小蚁电动科技有限公司 Protection device for electric tricycle battery

Also Published As

Publication number Publication date
JP5589016B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5589016B2 (en) Battery module
JP7027641B2 (en) A cooling jacket with a non-uniform flow path for cooling the surface of the battery cell and a battery module containing it.
US10381694B2 (en) Cooling device for battery cell and battery module comprising the same
US10026937B2 (en) Frame for secondary battery and battery module comprising the same
JP5255817B2 (en) Battery module
JP5537497B2 (en) Battery module
US11024897B2 (en) Battery-cooling heat sink provided with PCM capsule
JP5540114B2 (en) Medium or large battery pack with improved cooling efficiency
US8835036B2 (en) Battery pack
US10312560B2 (en) Battery pack
JP5270725B2 (en) Battery pack
US9105901B2 (en) Battery pack
JP2018531492A (en) Battery module, battery pack including the battery module, and automobile including the battery pack
JP2018531492A6 (en) Battery module, battery pack including the battery module, and automobile including the battery pack
US11777157B2 (en) Battery module
KR20130080144A (en) Battery module
JP2013016301A (en) Power storage module
CN210123771U (en) Battery module and battery pack
KR102026386B1 (en) Battery module
JP2013222603A (en) Secondary battery, secondary battery module incorporating secondary battery and battery pack system incorporating secondary battery module
KR20220036518A (en) Battery Pack and Battery Module Provided therein
KR102202417B1 (en) The cartridge, Battery module including the cartridge, Battery pack
JP2022529795A (en) Battery module including cell frame
KR101761825B1 (en) Battery module, and battery pack including the same
US10957955B2 (en) Battery module and battery pack including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

LAPS Cancellation because of no payment of annual fees