JP2013190796A - Semiconductive rubber belt, and manufacturing method of the same - Google Patents

Semiconductive rubber belt, and manufacturing method of the same Download PDF

Info

Publication number
JP2013190796A
JP2013190796A JP2013086779A JP2013086779A JP2013190796A JP 2013190796 A JP2013190796 A JP 2013190796A JP 2013086779 A JP2013086779 A JP 2013086779A JP 2013086779 A JP2013086779 A JP 2013086779A JP 2013190796 A JP2013190796 A JP 2013190796A
Authority
JP
Japan
Prior art keywords
belt
rubber belt
rubber
semiconductive
semiconductive rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013086779A
Other languages
Japanese (ja)
Inventor
Takahiro Nakagawa
隆弘 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013086779A priority Critical patent/JP2013190796A/en
Publication of JP2013190796A publication Critical patent/JP2013190796A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductive rubber belt capable of reducing a variation in resistance in a circumferential direction and forming images with high image quality, and a manufacturing method of a semiconductive rubber belt.SOLUTION: Provided is a semiconductive rubber belt having the volume specific resistance of 10to 10Ω cm, and made of an unvulcanized rubber composition having a scorch time tof 10 to 18 minutes. On the single straight line in the circumferential direction of the belt, when a is the maximum value of the molecular orientation degree of the belt MOR-C represented by the following formula (1), where tis a correction thickness (mm), and tis a belt thickness (mm); b is the minimum value; and c is the average value, the following formulas (2) and (3) are satisfied.

Description

本発明は複写機、プリンター、ファクシミリなどの静電写真プロセスによる画像形成装置において転写部などに使用される半導電性ゴムベルト、およびその製造方法に関するものである。   The present invention relates to a semiconductive rubber belt used for a transfer portion or the like in an image forming apparatus using an electrophotographic process such as a copying machine, a printer, and a facsimile, and a method for manufacturing the same.

画像形成装置において転写部などに使用される半導電性ゴムベルトは、一般にグラファイトやカーボンブラックなどの導電性の充填剤を添加し、体積固有抵抗が10〜1012Ω・cmの範囲に調整されたものが使用される。ここで、上記の体積固有抵抗の範囲は、一般的に半導電性領域といわれ、この領域では充填剤の添加量のわずかな差によって、半導電性ゴムベルトの電気抵抗がばらつく傾向がある。ゴムベルトの電気抵抗がばらつくと、形成画像にムラが発生することから、半導電性ゴムベルトの電気抵抗を全体的に均一なものとすることは極めて重要である。この半導電性ゴムベルトの製造方法として、充填剤を配合した未加硫ゴム組成物をチューブ押出成形することで、チューブ状の未加硫ゴムベルト成形体を作成し、これを金型に被覆して加熱加硫することによってベルトを製造する「チューブ押出成形法」が知られている。 A semiconductive rubber belt used for a transfer portion or the like in an image forming apparatus is generally adjusted to have a volume resistivity of 10 4 to 10 12 Ω · cm by adding a conductive filler such as graphite or carbon black. Is used. Here, the range of the volume resistivity is generally referred to as a semiconductive region, and in this region, the electric resistance of the semiconductive rubber belt tends to vary due to a slight difference in the amount of filler added. If the electric resistance of the rubber belt varies, unevenness occurs in the formed image. Therefore, it is very important to make the electric resistance of the semiconductive rubber belt uniform. As a method for producing this semiconductive rubber belt, a tube-shaped unvulcanized rubber belt molded body is prepared by tube extrusion molding of an unvulcanized rubber composition containing a filler, and this is coated on a mold. A “tube extrusion method” in which a belt is manufactured by heat vulcanization is known.

上記チューブ押出成形法では、充填剤を配合した未加硫ゴム組成物の流動速度(押出速度)を低く設定することも可能であることから、未加硫ゴム組成物が押出口金などを通過する際に受けるせん断力を比較的小さくすることができる。しかし、電気抵抗を半導電性領域にて均一なものとする場合、押出成形時のわずかなせん断履歴によっても、半導電性ゴムベルトの電気抵抗が局所的にばらつくことがある。特に、未加硫ゴム組成物をチューブ状に押し出す際に必要なダイス(口金)に、通常3本以上設けられるブリッジ部において、未加硫ゴム自体のウェルドラインがベルト幅方向(ベルトの押出方向)に発生し、この部分においてベルトの肉厚が薄くなり、かつ電気抵抗のばらつきが発生する場合がある。したがって、通常のチューブ押出成形法では、ベルト幅方向と直交する「ベルト周方向」に間隔を置いてウェルドラインが形成されることから、ベルト周方向において、半導電性ゴムベルトの電気抵抗がばらつくという問題があった。   In the above tube extrusion method, the flow rate (extrusion speed) of the unvulcanized rubber composition containing the filler can be set low, so that the unvulcanized rubber composition passes through the extrusion die. The shearing force that is received during the process can be made relatively small. However, when the electrical resistance is made uniform in the semiconductive region, the electrical resistance of the semiconductive rubber belt may vary locally even by a slight shear history during extrusion molding. In particular, the weld line of the unvulcanized rubber itself is in the belt width direction (belt extrusion direction) at the bridge portion that is usually provided with three or more dies (die) required when extruding the unvulcanized rubber composition into a tube shape. ), The thickness of the belt is reduced at this portion, and variations in electrical resistance may occur. Therefore, in a normal tube extrusion molding method, a weld line is formed at an interval in the “belt circumferential direction” orthogonal to the belt width direction, so that the electrical resistance of the semiconductive rubber belt varies in the belt circumferential direction. There was a problem.

下記特許文献1では、転写バイアスの強度を制御することにより、半導電性ゴムベルトのベルト周方向における電気抵抗が変化しても(つまり、ベルト周方向にて、半導電性ゴムベルトの電気抵抗がばらつく場合であっても)、半導電性ゴムベルトの電荷量を一定に保つことのできる画像形成装置が開示されている。しかしながら、かかる文献に記載の装置は、転写バイアスの強度を制御するための設備が別途必要となる。さらに、画像形成装置の画像形成処理速度を高めるために、半導電性ベルトの回転速度を高速化する場合には、転写バイアスの強度を制御することが困難となる。したがって、市場においては、半導電性ゴムベルトの電気抵抗を高いレベルで均一化すべきとの要望は非常に大きい。   In Patent Document 1 below, even if the electric resistance in the belt circumferential direction of the semiconductive rubber belt changes by controlling the strength of the transfer bias (that is, the electric resistance of the semiconductive rubber belt varies in the belt circumferential direction). Even in this case, an image forming apparatus capable of keeping the charge amount of the semiconductive rubber belt constant is disclosed. However, the apparatus described in this document requires additional equipment for controlling the intensity of the transfer bias. Further, when the rotational speed of the semiconductive belt is increased in order to increase the image forming processing speed of the image forming apparatus, it is difficult to control the strength of the transfer bias. Therefore, there is a great demand in the market that the electrical resistance of the semiconductive rubber belt should be made uniform at a high level.

下記特許文献2では、ベルト幅方向に沿った同一線上において、ベルトの幅方向に対する分子配向角θの平均値を−15°〜+15°の範囲とし、かつ導電層の分子配向度MOR−Cの平均値、最大値および最小値の関係を、(最大値−最小値)/平均値<0.4とすることで、ベルト幅方向における電気抵抗のばらつきを低減し、形成画像にムラが発生するのを防止できる半導電性ベルトが記載されている。しかしながら、かかる半導電性ベルトは、通常のチューブ押出成形法により製造されるため、上述したベルト周方向における電気抵抗がばらつくという問題を解決できるものではない。   In the following Patent Document 2, on the same line along the belt width direction, the average value of the molecular orientation angle θ with respect to the belt width direction is in the range of −15 ° to + 15 °, and the molecular orientation degree MOR-C of the conductive layer is By setting the relationship between the average value, the maximum value and the minimum value to be (maximum value−minimum value) / average value <0.4, variation in electric resistance in the belt width direction is reduced, and unevenness occurs in the formed image. A semiconductive belt that can prevent this is described. However, since the semiconductive belt is manufactured by a normal tube extrusion method, the above-described problem that the electric resistance in the belt circumferential direction varies cannot be solved.

一方、下記特許文献3では、スパイラルフロー型の溝が形成された内筒部を有するクロスヘッドを備えた押出機を使用した、半導電性ゴムベルトの製造方法により、電気抵抗のバラツキの発生を低減した半導電性ゴムベルトが製造できる点を開示している。しかしながら、本発明者らの鋭意検討の結果、かかる製造方法により製造した半導電性ゴムベルトでは、特にベルト周方向における電気抵抗のバラツキの点で、さらなる改良の余地があることが判明した。   On the other hand, in Patent Document 3 below, the production of a semiconductive rubber belt using an extruder equipped with a crosshead having an inner cylinder part formed with a spiral flow type groove reduces the occurrence of variations in electrical resistance. It is disclosed that a semiconductive rubber belt can be manufactured. However, as a result of intensive studies by the present inventors, it has been found that there is room for further improvement in the semiconductive rubber belt manufactured by such a manufacturing method, particularly in terms of variation in electric resistance in the belt circumferential direction.

特許第3414514号公報Japanese Patent No. 3414514 特許第3056413号公報Japanese Patent No. 3056413 特許第3998344号公報Japanese Patent No. 3998344

本発明は上記実情に鑑みてなされたものであり、その目的は、特にベルト周方向での電気抵抗のばらつきが低減され、高画質な画像形成が可能な半導電性ゴムベルト、およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductive rubber belt capable of forming a high-quality image with reduced variation in electrical resistance, particularly in the belt circumferential direction, and a method for manufacturing the same. It is to provide.

本発明者らは上記課題を解決するために、ベルト周方向における半導電性ゴムベルトの分子配向度MOR−Cと、画像形成時の画質との関係について鋭意検討した。その結果、ベルト周方向に延びる同一直線上において、半導電性ゴムベルトの分子配向度MOR−Cの最大値、最小値、および平均値を特定の関係とすることで、上記課題を解決し得ることを見出した。   In order to solve the above-mentioned problems, the present inventors diligently studied the relationship between the molecular orientation degree MOR-C of the semiconductive rubber belt in the belt circumferential direction and the image quality at the time of image formation. As a result, the above problem can be solved by making the maximum value, the minimum value, and the average value of the molecular orientation degree MOR-C of the semiconductive rubber belt have a specific relationship on the same straight line extending in the belt circumferential direction. I found.

即ち、本発明に係る半導電性ゴムベルトは、体積固有抵抗が10〜1012Ω・cmであるシームレスの半導電性ゴムベルトであって、このベルト幅方向と直交するベルト周方向に延びる同一直線上において、次式(1):

Figure 2013190796
(式中、tは補正厚み(mm)、tはベルト厚み(mm)を示す。)で表される、前記半導電性ゴムベルトの分子配向度MOR−Cの最大値をa、最小値をb、および平均値をcとしたとき、次式(2)および(3):
Figure 2013190796
を満たすことを特徴とする。 That is, the semiconductive rubber belt according to the present invention is a seamless semiconductive rubber belt having a volume specific resistance of 10 4 to 10 12 Ω · cm, and is the same straight line extending in the belt circumferential direction perpendicular to the belt width direction. On the line, the following formula (1):
Figure 2013190796
(Wherein, t c is corrected Thickness (mm), t s indicates a belt thickness (mm).) Represented by the maximum value of the orientation ratio MOR-C of semiconductive rubber belt a, the minimum value Where b is the average value and c is the average value, the following formulas (2) and (3):
Figure 2013190796
It is characterized by satisfying.

上記半導電性ゴムベルトにおいては、ベルト周方向における分子配向度のムラが低減されていることから、特にベルト周方向における電気抵抗のばらつきが低減されている。このため、画像形成時の画質を高画質なものとすることができ、しかも半導電性ゴムベルトの電気抵抗が高いレベルで均一化されているため、特に新たな設備などを要することなく、半導電性ベルトの回転速度を高速化することができる。その結果、上記半導電性ゴムベルトを備えた高速複写機やプリンターなどにおいては、新たに特別な設備を装備しなくても、高画質・搬送安定性を確保することができる。   In the semiconductive rubber belt, since the unevenness of the degree of molecular orientation in the belt circumferential direction is reduced, variation in electrical resistance particularly in the belt circumferential direction is reduced. For this reason, the image quality at the time of image formation can be improved, and the semiconductive rubber belt has a uniform electrical resistance at a high level. The rotational speed of the conductive belt can be increased. As a result, high-speed copying machines and printers equipped with the above-described semiconductive rubber belt can ensure high image quality and conveyance stability without newly installing special equipment.

また、本発明に係る半導電性ゴムベルトの製造方法は、体積固有抵抗が10〜1012Ω・cmであるシームレスの半導電性ゴムベルトの製造方法であって、スパイラルフロー型の溝が形成された内筒部を有するクロスヘッドを備えた押出機を使用し、スコーチ時間tが10〜18分である未加硫ゴム組成物を可塑化して、前記押出機より押し出す押出工程、前記押出機における前記未加硫ゴム組成物の押し出し方向と略直交方向に、前記内筒部の内部にて筒状金型を移動させつつ、前記未加硫ゴム組成物を前記筒状金型外面に層状に被覆して未加硫ゴムベルト成形体とする未加硫ゴムベルト成形工程、および前記未加硫ゴムベルト成形体を加硫して半導電性ゴムベルトとする加硫工程を備えることを特徴とする。 The method for producing a semiconductive rubber belt according to the present invention is a method for producing a seamless semiconductive rubber belt having a volume resistivity of 10 4 to 10 12 Ω · cm, wherein a spiral flow type groove is formed. using an extruder equipped with a crosshead having a cylindrical portion in the, and plasticize the unvulcanized rubber composition scorch time t 5 is 10 to 18 minutes, step extrusion extruding from the extruder, the extruder The unvulcanized rubber composition is layered on the outer surface of the cylindrical mold while moving the cylindrical mold inside the inner cylindrical portion in a direction substantially orthogonal to the extrusion direction of the unvulcanized rubber composition in And an unvulcanized rubber belt molding step for forming an unvulcanized rubber belt molded body, and a vulcanization step for vulcanizing the unvulcanized rubber belt molded body to obtain a semiconductive rubber belt.

スパイラルフロー型の溝が形成された内筒部を有するクロスヘッドを備えた押出機を使用し、スコーチ時間tが10〜18分である未加硫ゴム組成物を、特定の成形方法で押し出すことにより、ベルト周方向における分子配向度のムラが低減された半導電性ゴムベルトを製造することができる。より具体的には、上記半導電性ゴムベルトの製造方法によれば、上記式(2)および(3)を満たす半導電性ゴムベルトを製造することができる。 Using an extruder equipped with a crosshead having a cylindrical portion in which the groove of the spiral flow type is formed, the unvulcanized rubber composition scorch time t 5 is 10 to 18 minutes, extruded in a specific molding method Thus, it is possible to manufacture a semiconductive rubber belt in which unevenness in the degree of molecular orientation in the belt circumferential direction is reduced. More specifically, according to the method for producing a semiconductive rubber belt, a semiconductive rubber belt satisfying the above formulas (2) and (3) can be produced.

上記半導電性ゴムベルトの製造方法において、前記内筒部の最大外径dと吐出口外径eとの比(ダイス絞り率)が、0.2≦e/d≦0.8であり、かつ前記未加硫ゴムベルト成形工程における前記筒状金型の移動速度が1m/分以下であることが好ましい。かかる製造方法によれば、ベルト周方向における分子配向度のムラがより確実に低減され、電気抵抗が高いレベルで均一化された半導電性ゴムベルトを製造することができる。   In the method of manufacturing a semiconductive rubber belt, a ratio (die drawing ratio) between the maximum outer diameter d of the inner cylinder portion and the outer diameter e of the discharge port is 0.2 ≦ e / d ≦ 0.8, and It is preferable that the moving speed of the cylindrical mold in the unvulcanized rubber belt molding step is 1 m / min or less. According to such a manufacturing method, it is possible to manufacture a semiconductive rubber belt in which unevenness in the degree of molecular orientation in the belt circumferential direction is more reliably reduced and the electric resistance is made uniform at a high level.

クロスヘッドの構造の例を示した図Diagram showing an example of the crosshead structure 半導電性ゴムベルトの製造装置の例をモデル的に示した図Diagram showing an example of semi-conductive rubber belt manufacturing equipment

本発明に使用する押出機は公知のゴム押出機を使用することが可能であるが、加硫工程などにおいて発生するベルト中の気泡を除去するために、真空装置を備えた押出機の使用が好適である。   As the extruder used in the present invention, a known rubber extruder can be used. However, in order to remove bubbles in the belt generated in the vulcanization process or the like, it is possible to use an extruder equipped with a vacuum device. Is preferred.

本発明の半導電性ゴムベルトのゴム基材層を構成するゴム材料としては、公知のゴム材料を特に限定なく使用することが可能であり、天然ゴム(NR)のほか、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ニトリルゴム(アクリロニトリル−ブタジエンゴム;NBR)などのジエン系ゴム、エチレン−プロピレンゴム(EPM、EPDM)、ブチルゴム(IIR)、アクリルゴム(ACM,ANM)、エピクロルヒドリンゴム(CO,ECO)などの非ジエン系合成ゴム、その他ウレタンゴム(U)、フッ素ゴム(FKM)、シリコーンゴム(Q)、多硫化ゴム(T)などが例示され、単独での使用、2種以上の併用が可能である。上記ゴム材料の中でも、CR、EPDM、NBR、CO(ECO)の少なくとも一つ以上を含むゴム材料を使用することが好ましい。   As the rubber material constituting the rubber base layer of the semiconductive rubber belt of the present invention, a known rubber material can be used without particular limitation, and in addition to natural rubber (NR), styrene butadiene rubber (SBR) Diene rubbers such as isoprene rubber (IR), butadiene rubber (BR), chloroprene rubber (CR), nitrile rubber (acrylonitrile-butadiene rubber; NBR), ethylene-propylene rubber (EPM, EPDM), butyl rubber (IIR), Non-diene synthetic rubber such as acrylic rubber (ACM, ANM), epichlorohydrin rubber (CO, ECO), other urethane rubber (U), fluorine rubber (FKM), silicone rubber (Q), polysulfide rubber (T), etc. It is exemplified and can be used alone or in combination of two or more. Among the rubber materials, it is preferable to use a rubber material containing at least one of CR, EPDM, NBR, and CO (ECO).

本発明において半導電性を付与するために使用される充填剤としては、カーボンブラックの使用が好適である。具体的には、EC(Extra Conductive)カーボン、ECF(Extra Conductive Furnance )カーボン、SCF(Super Conductive Furnance )カーボン、CF(Conductive Furnance )カーボン、アセチレンブラック、SAF、ISAF、HAF、FEF、GPF、SRF、FT、MTなどのカーボンブラックが例示される。これらは単独で使用してもよく、2種以上を併用してもかまわない。   As the filler used for imparting semiconductivity in the present invention, it is preferable to use carbon black. Specifically, EC (Extra Conductive) carbon, ECF (Extra Conductive France) carbon, SCF (Super Conductive France) carbon, CF (Conductive Furnace), AF F, S, F, S Carbon blacks such as FT and MT are exemplified. These may be used alone or in combination of two or more.

カーボンブラック以外に、必要に応じて他の導電性付与材料、例えば銀粉、銅粉、ニッケル粉などの金属材料、酸化錫、酸化インジウムなどの金属酸化物、金属をコーティングしたマイカなどの無機材料、グラファイトや炭素繊維などの炭素化合物を併用することも好適な態様である。   In addition to carbon black, other conductivity imparting materials as required, for example, metal materials such as silver powder, copper powder and nickel powder, metal oxides such as tin oxide and indium oxide, inorganic materials such as mica coated with metal, It is also a preferred embodiment to use a carbon compound such as graphite or carbon fiber in combination.

上述のゴム材料は、導電性付与のための充填剤のほかに、プロセスオイルないしは可塑剤、安定剤、分散改良剤などの周知のゴム用添加剤を加えて混練し、さらに加硫剤、加硫促進剤、架橋密度調整剤などの添加剤を加えて未加硫ゴム組成物を調製して押出機に供給される。架橋は過酸化物架橋であってもよく、硫黄加硫であってもよく、周知の加硫方法が使用可能である。   In addition to fillers for imparting electrical conductivity, the above rubber materials are kneaded by adding known rubber additives such as process oils or plasticizers, stabilizers, dispersion modifiers, etc. An unvulcanized rubber composition is prepared by adding additives such as a vulcanization accelerator and a crosslinking density adjusting agent, and supplied to an extruder. The crosslinking may be peroxide crosslinking or sulfur vulcanization, and well-known vulcanization methods can be used.

本発明に係る半導電性ゴムベルトの製造方法においては、上記ゴム材料と、充填剤と、各種添加剤とを配合することで得られる、スコーチ時間tが10〜18分である未加硫ゴム組成物を使用することが肝要である。スパイラルフロー型の溝が形成された内筒部を有するクロスヘッドを備えた押出機を使用し、この未加硫ゴム組成物を特定の成形方法で押し出すことにより、ベルト周方向における分子配向度のムラを低減することができる。スコーチ時間tが10〜18分である未加硫ゴム組成物は、上記添加剤の中でも、特にゴム材料に対する加硫剤および加硫促進剤の配合比を適宜調整することや、ゴム混練時の排出温度や未加硫ゴム組成物の保管温度を適宜調整することで得られる。 In the method for producing a semiconductive rubber belt according to the present invention, and the rubber material, and a filler, obtained by blending with various additives, unvulcanized rubber scorch time t 5 is 10 to 18 minutes It is essential to use the composition. By using an extruder equipped with a crosshead having an inner cylinder part in which spiral flow type grooves are formed and extruding this unvulcanized rubber composition by a specific molding method, the degree of molecular orientation in the belt circumferential direction can be improved. Unevenness can be reduced. Unvulcanized rubber composition scorch time t 5 is 10 to 18 minutes, among the above additives, and be especially properly adjusting the blending ratio of the vulcanizing agent and the vulcanization accelerator for rubber materials, during rubber compounding It can be obtained by appropriately adjusting the discharge temperature and the storage temperature of the unvulcanized rubber composition.

以下、本発明に係る半導電性ゴムベルトの製造方法について説明する。本発明の実施に使用される装置の例を図1に示した。本発明に係る半導電性ゴムベルトの製造方法に使用される未加硫ゴムベルト成形体の製造装置は、押出機1と、その押し出し先端部に装着されたクロスヘッド3と、筒状金型5とにより構成され、ホッパー(不図示)より供給された未加硫ゴム組成物は、スクリュー17により先端部に装着されたクロスヘッド3に加熱・可塑化されて送られる。筒状金型5は、クロスヘッド3の一端からゴム押し出し方向と略直行方向に駆動手段13により一定速度で送られる。未加硫ゴムベルト成形工程における筒状金型5の移動速度は1m/分以下であることが好ましい。筒状金型5の移動速度をかかる範囲内とすることで、ベルト周方向における分子配向度のムラがより確実に低減され、電気抵抗が高いレベルで均一化された半導電性ゴムベルトを製造することができる。   Hereinafter, the manufacturing method of the semiconductive rubber belt which concerns on this invention is demonstrated. An example of an apparatus used in the practice of the present invention is shown in FIG. An apparatus for producing an unvulcanized rubber belt molded body used in a method for producing a semiconductive rubber belt according to the present invention includes an extruder 1, a crosshead 3 attached to an extruded tip, a cylindrical mold 5, The unvulcanized rubber composition supplied from a hopper (not shown) is heated and plasticized by the screw 17 and sent to the crosshead 3 attached to the tip. The cylindrical mold 5 is fed from one end of the crosshead 3 at a constant speed by the driving means 13 in the rubber pushing direction and the substantially perpendicular direction. The moving speed of the cylindrical mold 5 in the unvulcanized rubber belt molding step is preferably 1 m / min or less. By setting the moving speed of the cylindrical mold 5 within such a range, the unevenness of the molecular orientation degree in the belt circumferential direction is more reliably reduced, and a semiconductive rubber belt that is made uniform at a high electric resistance level is manufactured. be able to.

押出機1から押し出された未加硫ゴム組成物は、クロスヘッド3の内部において筒状金型5の移動方向に流れ方向を変更され、かつ筒状金型5を覆うように筒状に流動させられ、厚み調整手段11により所定厚みにて筒状金型5の外面に被覆される。   The unvulcanized rubber composition extruded from the extruder 1 flows in a cylindrical shape so that the flow direction is changed in the moving direction of the cylindrical mold 5 inside the crosshead 3 and the cylindrical mold 5 is covered. The outer surface of the cylindrical mold 5 is covered with a predetermined thickness by the thickness adjusting means 11.

筒状金型5は、図1に示すとおり、連続的に移動することが好ましく、被覆された未加硫ゴム組成物の層は連続的である。連続した筒状金型5の継ぎ目を適宜の手段により検出し、カッター9により未加硫ゴム組成物層を切断し、金型を未加硫ゴム成形体層を備えた状態で分離し、加硫工程に供給する。   As shown in FIG. 1, the cylindrical mold 5 is preferably moved continuously, and the coated layer of the unvulcanized rubber composition is continuous. The joint of the continuous cylindrical mold 5 is detected by an appropriate means, the unvulcanized rubber composition layer is cut by the cutter 9, the mold is separated with the unvulcanized rubber molded body layer, Supply to the sulfur process.

筒状金型5を移動させる駆動手段13は、図1において示した例では2本のローラーを使用した例を示したが、これに限定されるものではない。   The drive means 13 for moving the cylindrical mold 5 is an example in which two rollers are used in the example shown in FIG. 1, but is not limited thereto.

加硫工程において使用する加硫方法は、公知の加硫方法を限定なく使用することができ、具体的には、加硫缶を使用する方法、金型を蒸気もしくは電気ヒーターなどにより加熱する方法、常圧下、加熱オーブン中にて加熱するオーブン加硫法、過熱水蒸気などの熱媒体を送り込んでゴム膜(ブラダ)を膨張させることにより未加硫ゴムベルト成形体を加圧して加硫する方法(ブラダ加硫法)、電子線などの高エネルギー放射線を使用する加硫方法などが例示され、これらの2つ以上を併用した加硫方法を使用してもよい。   As the vulcanization method used in the vulcanization step, a known vulcanization method can be used without limitation. Specifically, a method using a vulcanization can, a method of heating a mold with steam or an electric heater, etc. , An oven vulcanization method in which heating is performed in a heating oven under normal pressure, and a method in which a heat medium such as superheated steam is fed to expand a rubber film (bladder) to pressurize and vulcanize an unvulcanized rubber belt molded body ( (Bladder vulcanization method), vulcanization methods using high energy radiation such as electron beams, etc. are exemplified, and a vulcanization method using two or more of these may be used.

次に、クロスヘッド3の構造の具体例を、図2に示す。クロスヘッド3は、未加硫ゴム組成物6が押出機1から押し出される方向と略直交する方向を軸芯として、外筒部21と内筒部23を有し、フランジ29によって押出機の先端部に装着される。外筒部21と内筒部23の間には筒状空間が形成されており、押出機1から押し出された未加硫ゴム組成物6は、この空間において筒状に成形され、先端部に押し出される。外筒部21は、中央付近に流れ調整リング17と先端部に厚み調整手段11を備えており、また内筒部23はその内部を筒状金型5が移動可能であり、流れを調整し、均一化するためのエッジリング19とスパイラルフロー型の溝25を備えている。筒状金型5はクロスヘッドの一端より内筒部23に挿入され、一定速度で移動し、内筒部23の他端にて筒状の未加硫ゴム組成物が厚み調整手段11により所定の厚みにて筒状金型5外面に被覆され、未加硫ゴムベルト成形体7が形成される。厚み調整手段11は、異なった厚みのベルトを製作するために交換することができるように、着脱可能に構成されていることが好適である。   Next, a specific example of the structure of the crosshead 3 is shown in FIG. The crosshead 3 has an outer cylinder portion 21 and an inner cylinder portion 23 with a direction substantially orthogonal to the direction in which the unvulcanized rubber composition 6 is extruded from the extruder 1 as an axis, and a front end of the extruder by a flange 29. It is attached to the part. A cylindrical space is formed between the outer cylindrical portion 21 and the inner cylindrical portion 23, and the unvulcanized rubber composition 6 extruded from the extruder 1 is molded into a cylindrical shape in this space, and is formed at the tip portion. Extruded. The outer cylinder part 21 is provided with a flow adjusting ring 17 near the center and a thickness adjusting means 11 at the tip part, and the inner cylinder part 23 is capable of moving the cylindrical mold 5 within the inner cylinder part 23 to adjust the flow. , An edge ring 19 for uniforming and a spiral flow type groove 25 are provided. The cylindrical mold 5 is inserted into the inner cylindrical portion 23 from one end of the crosshead and moves at a constant speed. At the other end of the inner cylindrical portion 23, the cylindrical unvulcanized rubber composition is predetermined by the thickness adjusting means 11. The outer surface of the cylindrical mold 5 is coated with a thickness of 5 to form an unvulcanized rubber belt molded body 7. The thickness adjusting means 11 is preferably configured to be detachable so that it can be exchanged to produce belts of different thicknesses.

本実施形態のクロスヘッド3の内筒部23は、スパイラルフロー型の溝25よりも上流側(押出機側)で外径が最大となり、最先端部(吐出口23E側)で外径が最小となる。本実施形態では、内筒部23の最大外径dと吐出口外径との比(ダイス絞り率)を、0.2≦e/d≦0.8に設定している。このダイス絞り率を上記範囲内に設定すると、ベルト周方向における分子配向度のムラがより確実に低減され、電気抵抗が高いレベルで均一化された半導電性ゴムベルトを製造することができる。   The inner cylinder portion 23 of the crosshead 3 of the present embodiment has the largest outer diameter on the upstream side (extruder side) of the spiral flow type groove 25 and the smallest outer diameter on the most distal portion (discharge port 23E side). It becomes. In the present embodiment, the ratio (die drawing ratio) between the maximum outer diameter d of the inner cylinder portion 23 and the discharge port outer diameter is set to 0.2 ≦ e / d ≦ 0.8. When this die drawing ratio is set within the above range, the unevenness of the degree of molecular orientation in the belt circumferential direction can be more reliably reduced, and a semiconductive rubber belt having a uniform electrical resistance can be produced.

本発明に係る半導電性ゴムベルトの製造方法は、加硫工程にて得られた半導電性ゴムベルトのゴム基材層を所定厚みまで研磨する研磨工程を備えるものであってもよい。研磨工程において使用可能な研磨装置としては、公知のベルト研磨手段は限定なく使用可能であり、ベルトをマンドレルもしくは複数のローラーを使用して伸張状態にて回転させつつ回転砥石などの研削手段で研磨する方法が例示される。研磨後のゴム基材層の厚みは特に限定されるものではないが、例えば400〜700μmのものが挙げられる。   The method for producing a semiconductive rubber belt according to the present invention may include a polishing step of polishing the rubber base layer of the semiconductive rubber belt obtained in the vulcanization step to a predetermined thickness. As a polishing apparatus that can be used in the polishing process, known belt polishing means can be used without limitation, and polishing is performed with a grinding means such as a rotating grindstone while rotating the belt in a stretched state using a mandrel or a plurality of rollers. The method of doing is illustrated. The thickness of the rubber base material layer after polishing is not particularly limited, and examples thereof include 400 to 700 μm.

本発明に係る半導電性ゴムベルトは、特にゴム材料および充填剤の配合比を適宜調整することで、体積固有抵抗が10〜1012Ω・cmのゴムベルトとすることができる。さらに、ベルト周方向における分子配向度のムラを低減し、ベルト周方向における電気抵抗のばらつきを低減するためには、このベルト幅方向と直交するベルト周方向に延びる同一直線上において、次式(1):

Figure 2013190796
(式中、tは補正厚み(mm)、tはベルト厚み(mm)を示す。)で表される、半導電性ゴムベルトの分子配向度MOR−Cの最大値をa、最小値をb、および平均値をcとしたとき、次式(2)および(3):
Figure 2013190796
を満たすことが肝要である。上述した本発明に係る半導電性ゴムベルトの製造方法によれば、上記式(2)および(3)を満たす半導電性ゴムベルトを製造することができる。 The semiconductive rubber belt according to the present invention can be a rubber belt having a volume resistivity of 10 4 to 10 12 Ω · cm, particularly by appropriately adjusting the blending ratio of the rubber material and the filler. Furthermore, in order to reduce the unevenness of the degree of molecular orientation in the belt circumferential direction and reduce the variation in electrical resistance in the belt circumferential direction, the following equation (on the same straight line extending in the belt circumferential direction orthogonal to the belt width direction: 1):
Figure 2013190796
(Wherein, t c is corrected Thickness (mm), t s is the belt thickness (mm) are shown.) Represented by the maximum value of the orientation ratio MOR-C of semiconductive rubber belt a, the minimum value When b and the average value are c, the following formulas (2) and (3):
Figure 2013190796
It is important to satisfy. According to the above-described method for producing a semiconductive rubber belt according to the present invention, a semiconductive rubber belt satisfying the above formulas (2) and (3) can be produced.

本発明に係る半導電性ゴムベルトにおいては、ベルト周方向における分子配向度のムラをさらに低減し、ベルト周方向における電気抵抗のばらつきを特に低減するためには、ベルト幅方向と直交するベルト周方向に延びる同一直線上において、次式(2)’および(3)’を満たすことが好ましい。

Figure 2013190796
In the semiconductive rubber belt according to the present invention, in order to further reduce unevenness in the degree of molecular orientation in the belt circumferential direction and particularly reduce variation in electrical resistance in the belt circumferential direction, the belt circumferential direction orthogonal to the belt width direction It is preferable to satisfy the following expressions (2) ′ and (3) ′ on the same straight line extending to
Figure 2013190796

本発明の半導電性ゴムベルトにおいては、所望によりゴム基材層からなるベルト表面に適宜、離型層を形成しても良い。この離型層はベルト表面の片面に形成しても良く、両面に形成しても良い。この離型層の厚みは特に限定されるものではないが、例えば3〜20μmのものが挙げられる。   In the semiconductive rubber belt of the present invention, a release layer may be appropriately formed on the belt surface made of the rubber base layer as desired. This release layer may be formed on one side of the belt surface or on both sides. The thickness of the release layer is not particularly limited, and examples thereof include 3 to 20 μm.

離型層を形成する材料としては、トナーの剥落が容易な材料が好ましく、塗装により得られる塗膜層が好ましい。使用する塗料は、ベルト基材層との接着性、トナーの剥落性、電気特性などを考慮して選択することができるが、塗膜層の耐摩耗性と、ゴム基材層への密着性、柔軟性とを考慮すると、ポリウレタン系塗料の使用が好ましく、特にポリ四フッ化エチレンの微粉末を添加した塗料の使用が好ましい。   As a material for forming the release layer, a material from which toner can be easily peeled is preferable, and a coating layer obtained by painting is preferable. The paint to be used can be selected in consideration of the adhesion to the belt base material layer, the toner peeling property, the electrical characteristics, etc., but the abrasion resistance of the coating layer and the adhesion to the rubber base material layer In view of flexibility, use of a polyurethane-based paint is preferable, and use of a paint added with a fine powder of polytetrafluoroethylene is particularly preferable.

以下、本発明の構成と効果を具体的に示す実施例などについて説明する。なお、半導電性ゴムベルトの分子配向度MOR−Cは、王子計測機器社製の分子配向計(型番:MOA−6015)を使用して測定し、測定した配向度測定値MORを上記式(1)に代入して算出した。分子配向度MOR−Cの厚み補正を行う際、上記式(1)の補正厚みは、t=1.08mmとした。分子配向度MOR−Cの測定に際しては、半導電性ゴムベルトのベルト周方向に延びる同一直線上にて、第1列から第n列(n=2〜5)にて各3〜6点測定し、その平均値を算出した。 Hereinafter, examples and the like specifically showing the configuration and effects of the present invention will be described. The molecular orientation degree MOR-C of the semiconductive rubber belt was measured using a molecular orientation meter (model number: MOA-6015) manufactured by Oji Scientific Instruments, and the measured orientation degree measurement value MOR was expressed by the above formula (1 ) And calculated. When correcting the thickness of the molecular orientation degree MOR-C, the corrected thickness of the above formula (1) was t c = 1.08 mm. When measuring the degree of molecular orientation MOR-C, three to six points were measured from the first column to the nth column (n = 2 to 5) on the same straight line extending in the belt circumferential direction of the semiconductive rubber belt. The average value was calculated.

本実施例において使用した材料、商品名と供給メーカーを表1に示す。   Table 1 shows the materials, brand names, and suppliers used in this example.

(ゴム組成物の調製)
ゴム成分100重量部に対して、表1の配合処方の中で、硫黄、加硫促進剤を除く成分をそれぞれニーダーにて混練し、冷却後、再度ニーダーにて硫黄、加硫促進剤を混練し、リボン状の未加硫ゴム組成物にして押出機に供した。使用した未加硫ゴム組成物のスコーチ時間t分を表1に示す。
(Preparation of rubber composition)
In 100 parts by weight of the rubber component, the components other than sulfur and the vulcanization accelerator are kneaded in the kneader in the blended formulation of Table 1, and after cooling, the sulfur and the vulcanization accelerator are kneaded again in the kneader. Then, a ribbon-like unvulcanized rubber composition was used for the extruder. Table 1 shows the scorch time t 5 minutes of the unvulcanized rubber composition used.

押出機はスクリュー径が50mmのベント型押出機を使用し、これに外径30〜150mm、長さ400mmの円筒状金型を連続的に送ることが可能なクロスヘッドを装着した(使用したクロスヘッド内筒部の最大外径d、吐出口外径e、およびその比e/d(ダイス絞り率)を表1に示す)。押出機は、スクリューおよびシリンダー温度を50〜60℃、クロスヘッド温度を70〜90℃に調節し、筒状金型をスクリューと直角方向に、表1に記載の移動速度にて供給し、厚みが0.9mmの未加硫ゴムベルト成形体を金型周囲に被覆した。未加硫ゴムベルト層が被覆された筒状金型は、ゴムの押し出し・流動圧力により、自動的にクロスヘッドより排出された。   The extruder used was a vent type extruder having a screw diameter of 50 mm, and a cross head capable of continuously feeding a cylindrical mold having an outer diameter of 30 to 150 mm and a length of 400 mm was attached thereto (the used cross Table 1 shows the maximum outer diameter d of the inner cylinder portion of the head, the outer diameter e of the discharge port, and the ratio e / d (die drawing ratio). The extruder adjusts the screw and cylinder temperature to 50 to 60 ° C. and the crosshead temperature to 70 to 90 ° C., and supplies the cylindrical mold in the direction perpendicular to the screw at the moving speed shown in Table 1. An unvulcanized rubber belt molding having a thickness of 0.9 mm was coated around the mold. The cylindrical mold coated with the unvulcanized rubber belt layer was automatically discharged from the crosshead by the rubber extrusion / flow pressure.

上記の押出工程にて得られた未加硫ゴムベルト成形体が被覆された筒状金型を、175℃に設定した加硫蒸気缶中に収容し、15分加熱して加硫を行った。加硫後、筒状金型から脱型したベルトの表面と裏面をそれぞれ0.2mm、合計0.4mm研磨し、厚さ0.5mmのゴムベルト(ゴム基材層)を得、さらに両端を切断して幅350mmのベルトとした。得られた半導電性ゴムベルトの分子配向度MOR−C、その最大値をa、最小値をb、および平均値をcとしたときの[(a−b)/c]、[a/b]の値を表2に示す。また、得られた半導電性ゴムベルトの体積固有抵抗値を、印加電圧500Vにて、ベルト周方向に3〜6箇所測定し、その平均値を算出した。結果を表2に示す。   The cylindrical mold coated with the unvulcanized rubber belt molded body obtained in the above extrusion process was accommodated in a vulcanized steam can set at 175 ° C., and vulcanized by heating for 15 minutes. After vulcanization, the front and back surfaces of the belt removed from the cylindrical mold are each polished by 0.2 mm, for a total of 0.4 mm, to obtain a rubber belt (rubber base material layer) with a thickness of 0.5 mm, and both ends are cut. Thus, a belt having a width of 350 mm was obtained. [(Ab) / c], [a / b] when the molecular orientation degree MOR-C of the obtained semiconductive rubber belt, the maximum value is a, the minimum value is b, and the average value is c The values are shown in Table 2. Moreover, the volume specific resistance value of the obtained semiconductive rubber belt was measured at 3 to 6 locations in the belt circumferential direction at an applied voltage of 500 V, and the average value was calculated. The results are shown in Table 2.

実施例1〜4、比較例1
表1に示す配合および条件で製造した半導電性ゴムベルトを、画像形成装置に装着して実機評価を行い、形成された画像の画質を目視にて観察することで評価した。表2において、○は高画質であって、全く問題がないレベル、△は一部転写ムラがあるが、問題がないレベル、×は転写ムラがかなりあり、実用不可能なレベルを示す。
Examples 1-4, Comparative Example 1
A semiconductive rubber belt manufactured with the composition and conditions shown in Table 1 was mounted on an image forming apparatus, and an actual machine evaluation was performed. The image quality of the formed image was visually observed and evaluated. In Table 2, ◯ indicates a high image quality level at which there is no problem, Δ indicates a level where there is some transfer unevenness but no problem, and x indicates a level where transfer unevenness is considerable and impractical.

Figure 2013190796
Figure 2013190796

Figure 2013190796
Figure 2013190796

表2の結果から、実施例1〜4に係る半導電性ゴムベルトの実機評価では、高画質な画像形成が可能なことがわかる。一方、比較例1に係る半導電性ゴムベルトの実機評価では、転写ムラが多く、実用不可能であることがわかる。   From the results in Table 2, it can be seen that high-quality image formation is possible in the actual machine evaluation of the semiconductive rubber belts according to Examples 1 to 4. On the other hand, in the actual machine evaluation of the semiconductive rubber belt according to Comparative Example 1, it can be seen that there is much transfer unevenness and impractical.

1:押出機
3:クロスヘッド
5:筒状金型
6:未加硫ゴム組成物
7:未加硫ゴムベルト成形体
21:外筒部
23:内筒部
25:スパイラルフロー型の溝
1: Extruder 3: Crosshead 5: Cylindrical mold 6: Unvulcanized rubber composition 7: Unvulcanized rubber belt molding 21: Outer cylinder part 23: Inner cylinder part 25: Spiral flow type groove

Claims (1)

体積固有抵抗が10〜1012Ω・cmであるシームレスの半導電性ゴムベルトであって、
スコーチ時間tが10〜18分である未加硫ゴム組成物を原料として得られ、
このベルト幅方向と直交するベルト周方向に延びる同一直線上において、次式(1):
Figure 2013190796
(式中、tは補正厚み(mm)、tはベルト厚み(mm)を示す。)で表される、前記半導電性ゴムベルトの分子配向度MOR−Cの最大値をa、最小値をb、および平均値をcとしたとき、次式(2)および(3):
Figure 2013190796
を満たすことを特徴とする半導電性ゴムベルト。
A seamless semiconductive rubber belt having a volume resistivity of 10 4 to 10 12 Ω · cm,
Obtained unvulcanized rubber composition scorch time t 5 is 10 to 18 minutes as a raw material,
On the same straight line extending in the belt circumferential direction orthogonal to the belt width direction, the following formula (1):
Figure 2013190796
(Wherein, t c is corrected Thickness (mm), t s indicates a belt thickness (mm).) Represented by the maximum value of the orientation ratio MOR-C of semiconductive rubber belt a, the minimum value Where b is the average value and c is the average value, the following equations (2) and (3):
Figure 2013190796
A semiconductive rubber belt characterized by satisfying
JP2013086779A 2013-04-17 2013-04-17 Semiconductive rubber belt, and manufacturing method of the same Pending JP2013190796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086779A JP2013190796A (en) 2013-04-17 2013-04-17 Semiconductive rubber belt, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086779A JP2013190796A (en) 2013-04-17 2013-04-17 Semiconductive rubber belt, and manufacturing method of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009059908A Division JP5281932B2 (en) 2009-03-12 2009-03-12 Semiconductive rubber belt and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013190796A true JP2013190796A (en) 2013-09-26

Family

ID=49391031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086779A Pending JP2013190796A (en) 2013-04-17 2013-04-17 Semiconductive rubber belt, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013190796A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236991A (en) * 1996-02-28 1997-09-09 Sumitomo Rubber Ind Ltd Conductive transfer belt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236991A (en) * 1996-02-28 1997-09-09 Sumitomo Rubber Ind Ltd Conductive transfer belt

Similar Documents

Publication Publication Date Title
JP5281932B2 (en) Semiconductive rubber belt and method for manufacturing the same
JP4002403B2 (en) Conductive roller and manufacturing method thereof
JP5962791B1 (en) Rubber roll manufacturing method and rubber roll manufacturing apparatus
JP2009066808A (en) Method for producing rubber roller, and rubber roller production device
JP2013190796A (en) Semiconductive rubber belt, and manufacturing method of the same
JP2012155263A (en) Conductive sponge rubber roller and transfer roller
JP2010058278A (en) Extruder and method for manufacturing rubber roller
JP3900082B2 (en) Foam rubber sponge roller manufacturing method and foam extrusion molding apparatus used therefor
JP3998344B2 (en) Method for manufacturing semiconductive rubber belt
JP5962792B1 (en) Rubber roll manufacturing method and rubber roll manufacturing apparatus
US20130249139A1 (en) Method for manufacturing tubular body
JP5339836B2 (en) Electrophotographic belt and method for producing the same
JP5713068B2 (en) Rubber roll manufacturing method
JP4257765B2 (en) Method for producing semiconductive rubber raw material composition and method for producing semiconductive seamless belt
JP2016141136A (en) Method and apparatus for producing rubber roll
JP4775890B2 (en) Seamless belt manufacturing method
JP2009275082A (en) Conductive rubber composition, production method of conductive rubber composition and conductive rubber roller
JP3178787B2 (en) Manufacturing method of conductive belt
JP2017219696A (en) Manufacturing method of conductive rubber roller
JP2005008323A (en) Conductive belt and its manufacturing method
JP2007007942A (en) Method for producing conductive rubber roller
JP2009096110A (en) Apparatus for manufacturing electroconductive rubber roller
JP2007237451A (en) Manufacturing method of rubber roll
JP2007038475A (en) Method for producing rubber roller
JP2008094050A (en) Rubber roll manufacturing process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150212