JP2013189870A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2013189870A
JP2013189870A JP2012054563A JP2012054563A JP2013189870A JP 2013189870 A JP2013189870 A JP 2013189870A JP 2012054563 A JP2012054563 A JP 2012054563A JP 2012054563 A JP2012054563 A JP 2012054563A JP 2013189870 A JP2013189870 A JP 2013189870A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
reducing agent
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012054563A
Other languages
Japanese (ja)
Other versions
JP5983915B2 (en
Inventor
Kunimi Kanayama
訓己 金山
Satoshi Nakazawa
聡 中澤
Tokuyuki Koga
▲徳▼幸 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012054563A priority Critical patent/JP5983915B2/en
Publication of JP2013189870A publication Critical patent/JP2013189870A/en
Application granted granted Critical
Publication of JP5983915B2 publication Critical patent/JP5983915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of sufficiently raising a temperature of a NOx trap catalyst while restraining a temperature rise of an oxidation catalyst.SOLUTION: A fuel injection amount of in-cylinder combustion when HC is not added is made smaller than an injection amount corresponding to a theoretical air-fuel ratio so as to have a lean air-fuel ratio as an air-fuel ratio. A fuel injection amount of in-cylinder combustion when HC is added is set to the injection amount corresponding to the theoretical air-fuel ratio or more by increasing an injection amount for combustion post injection so as to have an air-fuel ratio same with or larger than the theoretical air-fuel ratio. Then, in-cylinder post injection is carried out so as to have an injection amount required at catalyst rich time which is required for achieving a desired air-fuel ratio with a NOx trap catalyst (25), thus achieving a rich air-fuel ratio as the air-fuel ratio.

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、NOxトラップ触媒のSパージ処理に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, to an S purge process for a NOx trap catalyst.

従来より、ディーゼルエンジン等では、排気通路に排気ガス中の窒素酸化物(NOx)の浄化を目的としたNOxトラップ触媒が設けられている。
このようなNOxトラップ触媒は、NOxトラップ触媒に流入する排気ガスがリーン空燃比であるときに排気ガス中のNOxを吸蔵し、排気ガスがリッチ空燃比であるときに吸蔵したNOxを還元し浄化している。
Conventionally, in a diesel engine or the like, a NOx trap catalyst for purifying nitrogen oxide (NOx) in exhaust gas is provided in an exhaust passage.
Such a NOx trap catalyst stores NOx in the exhaust gas when the exhaust gas flowing into the NOx trap catalyst has a lean air-fuel ratio, and reduces and purifies the stored NOx when the exhaust gas has a rich air-fuel ratio. doing.

また、ディーゼルエンジンの燃料中には硫黄分が含まれており、ディーゼルエンジンではNOxのみならず、SO2やSO3等の硫黄酸化物(SOx)も同時に生成される。
しかしながら、SOxは、NOxと同様にNOxトラップ触媒に流入する排気ガスがリーン空燃比である時にNOxトラップ触媒に吸蔵される。そして、このようなSOxのNOxトラップ触媒への吸蔵は、NOxトラップ触媒でのNOx浄化性能の低下に繋がる。
Further, the fuel of the diesel engine contains sulfur, and the diesel engine generates not only NOx but also sulfur oxides (SOx) such as SO 2 and SO 3 at the same time.
However, SOx is stored in the NOx trap catalyst when the exhaust gas flowing into the NOx trap catalyst has a lean air-fuel ratio, like NOx. And such occlusion of SOx in the NOx trap catalyst leads to a decrease in NOx purification performance in the NOx trap catalyst.

そこで、排気ガス中に燃料等の還元剤を添加(HC添加)し、NOxトラップ触媒に流入する排気ガスを高温でリッチ空燃比としてNOxトラップ触媒に吸蔵されたSOx等の硫黄(S)成分を脱離するための硫黄被毒回復処理(以下、Sパージ処理)が行われている。このようなSパージ制御では、通常の燃料噴射に加え、HC添加のためのポスト噴射を行って、NOxトラップ触媒を高温且つリッチ状態としている(特許文献1)。   Therefore, a reducing agent such as fuel is added to the exhaust gas (HC addition), and the exhaust gas flowing into the NOx trap catalyst is made a rich air-fuel ratio at a high temperature to contain sulfur (S) components such as SOx stored in the NOx trap catalyst. A sulfur poisoning recovery process (hereinafter referred to as S purge process) for desorption is performed. In such S purge control, post-injection for HC addition is performed in addition to normal fuel injection, and the NOx trap catalyst is brought to a high temperature and rich state (Patent Document 1).

特開2004−332743号公報JP 2004-332743 A

上記特許文献1の排気浄化装置では、Sパージ処理において、通常の燃料噴射に加え、HC添加のためのポスト噴射を行っており、HC添加の有無によらず通常の燃料噴射での筒内燃焼量は一定となっている。そして、ポスト噴射での燃料噴射量は、NOxトラップ触媒でSパージ処理に必要な温度となるように制御されている。
このように、HC添加の有無によらず通常の燃料噴射での筒内燃焼量を一定とし、ポスト噴射での燃料噴射量によって、NOxトラップ触媒の温度を制御するようにすると、酸化触媒の発熱を制御できず、酸化触媒の温度は成り行きの温度となる。
In the exhaust purification device of Patent Document 1 described above, in the S purge process, in addition to normal fuel injection, post injection for HC addition is performed, and in-cylinder combustion with normal fuel injection regardless of the presence or absence of HC addition The amount is constant. The fuel injection amount in the post injection is controlled so as to be a temperature required for the S purge process by the NOx trap catalyst.
Thus, if the in-cylinder combustion amount in normal fuel injection is made constant regardless of the presence or absence of HC addition and the temperature of the NOx trap catalyst is controlled by the fuel injection amount in post injection, the heat generation of the oxidation catalyst Therefore, the temperature of the oxidation catalyst becomes a desired temperature.

しかしながら、このように酸化触媒の発熱の制御を行わないと、例えば、通常の燃料噴射での筒内燃焼の空燃比がリーン空燃比となる低負荷域である場合には、HC添加のためのポスト噴射が行われ、リッチ空燃比の排気ガスが酸化触媒に導入されると、筒内燃焼での残存酸素により、リッチ空燃比排気ガス中のHCが酸化され酸化触媒の温度が上昇することとなる。   However, if the heat generation of the oxidation catalyst is not controlled in this way, for example, in the low load region where the air-fuel ratio of in-cylinder combustion in normal fuel injection is a lean air-fuel ratio, When the post-injection is performed and the rich air-fuel ratio exhaust gas is introduced into the oxidation catalyst, HC in the rich air-fuel ratio exhaust gas is oxidized by the residual oxygen in the in-cylinder combustion and the temperature of the oxidation catalyst rises. Become.

よって、通常の燃料噴射での筒内燃焼の空燃比がリーン空燃比となる低負荷域である場合には、NOxトラップ触媒をSパージ処理に適した温度とすると、NOxトラップ触媒よりも酸化触媒が先に昇温し酸化触媒の温度が許容値を上回る虞がある。
このように、酸化触媒の温度が許容値を上回ることを避けるために、HC添加を中断すると、NOxトラップ触媒をSパージ処理に適した温度に十分に昇温することができなくなり、NOxトラップ触媒の硫黄分の脱離を十分に行えなくなる虞がある。
Therefore, when the air-fuel ratio of in-cylinder combustion in normal fuel injection is in a low load region where the lean air-fuel ratio becomes a lean air-fuel ratio, if the NOx trap catalyst is set to a temperature suitable for the S purge process, the oxidation catalyst is more than the NOx trap catalyst. However, there is a risk that the temperature of the oxidation catalyst will rise first and the temperature of the oxidation catalyst will exceed the allowable value.
Thus, in order to avoid the temperature of the oxidation catalyst from exceeding the allowable value, if the HC addition is interrupted, the NOx trap catalyst cannot be sufficiently heated to a temperature suitable for the S purge process, and the NOx trap catalyst. There is a risk that it will not be possible to sufficiently desorb sulfur.

本発明は、この様な問題を解決するためになされたもので、その目的とするところは、酸化触媒の昇温を抑制しつつ、NOxトラップ触媒を十分に昇温することのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide an internal combustion engine capable of sufficiently raising the temperature of the NOx trap catalyst while suppressing the temperature rise of the oxidation catalyst. An object is to provide an exhaust emission control device.

上記の目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられた酸化機能を有する酸化触媒と、前記酸化触媒の下流に設けられ、少なくとも前記酸化触媒よりも大きな酸素吸蔵能を有する吸蔵還元型NOx触媒と、前記内燃機関の筒内に燃料を噴射する燃料噴射手段と、前記酸化触媒に還元剤を供給する還元剤供給手段と、前記吸蔵還元型NOx触媒内に吸蔵された排気成分を脱離処理するように、前記燃料噴射手段からの燃料噴射量と、前記還元剤供給手段からの還元剤供給量とを制御して、前記吸蔵還元型NOx触媒に流入する空燃比をリーン空燃比或いはリッチ空燃比に変調する脱離処理制御手段と、を備え、前記脱離処理制御手段は、前記還元剤の供給時に、前記筒内の空燃比が該還元剤の非供給時と比較してリッチ空燃比側となるように前記燃料噴射手段からの前記燃料噴射量を設定することを特徴とする。   In order to achieve the above object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, an oxidation catalyst having an oxidation function provided in an exhaust passage of the internal combustion engine, and provided downstream of the oxidation catalyst, at least the oxidation catalyst An NOx storage reduction catalyst having a larger oxygen storage capacity than the catalyst, a fuel injection means for injecting fuel into the cylinder of the internal combustion engine, a reducing agent supply means for supplying a reducing agent to the oxidation catalyst, and the storage reduction And controlling the fuel injection amount from the fuel injection means and the reducing agent supply amount from the reducing agent supply means so as to desorb the exhaust component stored in the NOx catalyst. Desorption processing control means for modulating the air-fuel ratio flowing into the NOx catalyst into a lean air-fuel ratio or a rich air-fuel ratio, and the desorption processing control means has an air-fuel ratio in the cylinder when supplying the reducing agent. Of the reducing agent Compared to the time supplied and sets the fuel injection quantity from said fuel injection means so that the rich air-fuel ratio side.

また、請求項2の内燃機関の排気浄化装置では、請求項1において、前記脱離処理制御手段は、前記還元剤の供給時に、前記筒内の空燃比が理論空燃比以上となるように前記燃料噴射手段からの前記燃料噴射量を設定することを特徴とする。
また、請求項3の内燃機関の排気浄化装置では、請求項1或いは2において、前記脱離処理制御手段は、前記還元剤供給手段から前記還元剤の非供給時には、前記筒内の空燃比がリーン空燃比となるように前記燃料噴射手段からの前記燃料噴射量を設定することを特徴とする。
Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 2, the desorption processing control means according to claim 1 is configured so that the air-fuel ratio in the cylinder becomes equal to or higher than the stoichiometric air-fuel ratio when the reducing agent is supplied. The fuel injection amount from the fuel injection means is set.
Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 3, in the claim 1 or 2, the desorption processing control means sets the air-fuel ratio in the cylinder when the reducing agent is not supplied from the reducing agent supply means. The fuel injection amount from the fuel injection means is set so as to obtain a lean air-fuel ratio.

また、請求項4の内燃機関の排気浄化装置では、請求項1から3のいずれか1項において、前記脱離処理制御手段は、前記吸蔵還元型NOx触媒の温度が所定値となるように、前記燃料噴射手段と、前記還元剤供給手段とを制御することを特徴とする。
また、請求項5の内燃機関の排気浄化装置では、請求項1から4のいずれか1項において、前記燃料噴射手段は、前記燃料が前記排気通路に流出せず前記筒内で燃焼するように、膨張行程で前記燃料を噴射する燃焼ポスト噴射を実施可能であって、前記脱離処理制御手段は、前記還元剤の供給時或いは非供給時の前記筒内の空燃比の制御を前記燃料噴射手段からの前記燃料噴射量の設定を燃焼ポスト噴射の増量或いは減量によって行うことを特徴とする。
Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 4, in any one of claims 1 to 3, the desorption processing control means is configured so that the temperature of the NOx storage reduction catalyst becomes a predetermined value. The fuel injection unit and the reducing agent supply unit are controlled.
Further, in the exhaust emission control device for an internal combustion engine according to claim 5, in any one of claims 1 to 4, the fuel injection means is configured so that the fuel does not flow into the exhaust passage but burns in the cylinder. Combustion post injection for injecting the fuel in an expansion stroke can be performed, and the desorption processing control means controls the air-fuel ratio in the cylinder at the time of supplying or not supplying the reducing agent. The fuel injection amount from the means is set by increasing or decreasing the combustion post injection.

また、請求項6の内燃機関の排気浄化装置では、請求項5において、前記還元剤供給手段は、前記燃料噴射手段であり、前記脱離処理制御手段は、前記還元剤の供給を前記燃焼ポスト噴射より後に実施する筒内ポスト噴射で行うことを特徴とする。   Further, in the exhaust emission control device for an internal combustion engine according to claim 6, in claim 5, the reducing agent supply means is the fuel injection means, and the desorption processing control means supplies the reducing agent to the combustion post. It is characterized by performing in-cylinder post injection performed after injection.

請求項1の発明によれば、例えば、吸蔵還元型NOx触媒に吸蔵された硫黄成分の脱離処理を行う硫黄被毒回復処理(Sパージ処理)において、吸蔵還元型NOx触媒に流入する排気ガスの空燃比をリッチ空燃比とするために還元剤供給手段から還元剤を供給する時に、筒内の空燃比が還元剤の非供給時と比較してリッチ空燃比側となるように、還元剤の供給時に燃料噴射手段より筒内に噴射される燃料噴射量を設定することで、還元剤の供給前に酸化触媒に流入する排気ガスに含まれる酸素量を減らすことが可能となる。   According to the first aspect of the present invention, for example, in the sulfur poisoning recovery process (S purge process) in which the sulfur component stored in the NOx storage reduction catalyst is desorbed, the exhaust gas flowing into the NOx storage reduction catalyst When the reducing agent is supplied from the reducing agent supply means in order to make the air-fuel ratio of the cylinder a rich air-fuel ratio, the reducing agent is set so that the air-fuel ratio in the cylinder is on the rich air-fuel ratio side compared to when the reducing agent is not supplied. By setting the fuel injection amount that is injected into the cylinder by the fuel injection means at the time of supply, the amount of oxygen contained in the exhaust gas flowing into the oxidation catalyst before the supply of the reducing agent can be reduced.

したがって、還元剤供給手段より酸化触媒に還元剤が供給されても、酸化触媒にて還元剤が酸化されることなく酸化触媒の昇温を抑制することができる。
よって、吸蔵還元型NOx触媒に吸蔵された硫黄成分の脱離処理を行うSパージ処理時に酸化触媒を過昇温させることなく、吸蔵還元型NOx触媒を十分に昇温させることができる。
Therefore, even if the reducing agent is supplied from the reducing agent supply means to the oxidation catalyst, the temperature increase of the oxidation catalyst can be suppressed without oxidizing the reducing agent in the oxidation catalyst.
Therefore, it is possible to sufficiently raise the temperature of the NOx storage reduction catalyst without excessively raising the temperature of the oxidation catalyst during the S purge process in which the sulfur component stored in the NOx storage reduction catalyst is desorbed.

また、請求項2の発明によれば、例えば、吸蔵還元型NOx触媒に吸蔵された硫黄成分の脱離処理を行う硫黄被毒回復処理(Sパージ処理)において、吸蔵還元型NOx触媒に流入する排気ガスの空燃比をリッチ空燃比とするために還元剤供給手段から還元剤を供給する時に、筒内の空燃比が理論空燃比以上となるように、還元剤の供給前に燃料噴射手段より筒内に噴射される燃料噴射量を設定することで、還元剤の供給前に酸化触媒に流入する排気ガスに含まれる酸素量を減らすことが可能となる。   According to the invention of claim 2, for example, in the sulfur poisoning recovery process (S purge process) in which the sulfur component stored in the NOx storage reduction catalyst is desorbed, the NOx catalyst flows into the NOx storage reduction catalyst. When supplying the reducing agent from the reducing agent supply means in order to make the air-fuel ratio of the exhaust gas rich, the fuel injection means before supplying the reducing agent so that the air-fuel ratio in the cylinder becomes equal to or higher than the theoretical air-fuel ratio. By setting the fuel injection amount to be injected into the cylinder, it is possible to reduce the amount of oxygen contained in the exhaust gas flowing into the oxidation catalyst before supplying the reducing agent.

したがって、請求項1と同様に、還元剤供給手段より酸化触媒に還元剤が供給されても、酸化触媒にて還元剤が酸化されることなく酸化触媒の昇温を抑制することができる。
よって、吸蔵還元型NOx触媒に吸蔵された硫黄成分の脱離処理を行うSパージ処理時に酸化触媒を過昇温させることなく、吸蔵還元型NOx触媒を十分に昇温させることができる。
Therefore, similarly to the first aspect, even if the reducing agent is supplied from the reducing agent supply means to the oxidation catalyst, the temperature increase of the oxidation catalyst can be suppressed without oxidizing the reducing agent by the oxidation catalyst.
Therefore, it is possible to sufficiently raise the temperature of the NOx storage reduction catalyst without excessively raising the temperature of the oxidation catalyst during the S purge process in which the sulfur component stored in the NOx storage reduction catalyst is desorbed.

請求項3の発明によれば、例えば、吸蔵還元型NOx触媒のSパージ処理において、還元剤供給手段からの還元剤の非供給時に、筒内の空燃比がリーン空燃比となるように燃料噴射手段より筒内に噴射される燃料噴射量を設定することで、吸蔵還元型NOx触媒に流入する酸素量を増やすことでき、吸蔵還元型NOx触媒に吸蔵する酸素量を増加させることが可能となる。   According to the invention of claim 3, for example, in the S purge process of the NOx storage reduction catalyst, the fuel injection is performed so that the air-fuel ratio in the cylinder becomes the lean air-fuel ratio when the reducing agent is not supplied from the reducing agent supply means. By setting the fuel injection amount injected into the cylinder from the means, the amount of oxygen flowing into the NOx storage reduction catalyst can be increased, and the amount of oxygen stored in the NOx storage reduction catalyst can be increased. .

したがって、吸蔵還元型NOx触媒にて多量の酸素を吸蔵することで、その後の還元剤の供給時に吸蔵還元型NOx触媒にて、還元剤と酸素とを反応させ、酸化触媒を過昇温させることなく、吸蔵還元型NOx触媒の温度を確実に昇温させることができる。
また、請求項4の発明によれば、吸蔵還元型NOx触媒の温度を硫黄成分の脱離に適切な所定値とすることで、吸蔵還元型NOx触媒から硫黄成分の脱離を確実に行うことができる。
Therefore, by storing a large amount of oxygen in the NOx storage reduction catalyst, when the reducing agent is supplied, the NOx storage reduction catalyst reacts with the reducing agent and oxygen to overheat the oxidation catalyst. In addition, the temperature of the NOx storage reduction catalyst can be reliably raised.
According to the invention of claim 4, the sulfur component is reliably desorbed from the NOx storage reduction catalyst by setting the temperature of the NOx storage reduction catalyst to a predetermined value suitable for the desorption of the sulfur component. Can do.

また、請求項5の発明によれば、還元剤の供給時或いは非供給時の筒内空燃比の制御を内燃機関の出力トルクに影響の少ない燃焼ポスト噴射の増量或いは減量で行っているので、内燃機関の出力トルクへの影響を抑制しつつ、筒内の空燃比を理論空燃比以上とすることができる。
また、請求項6の発明によれば、還元剤の供給を燃料噴射手段による燃焼ポスト噴射より後に実施する筒内ポスト噴射で行っているので、既存の燃料噴射手段を用いることでコストの増加を抑制することができる。
Further, according to the invention of claim 5, since the control of the in-cylinder air-fuel ratio at the time of supply or non-supply of the reducing agent is performed by increasing or decreasing the combustion post-injection that has little influence on the output torque of the internal combustion engine. The in-cylinder air-fuel ratio can be made equal to or higher than the theoretical air-fuel ratio while suppressing the influence on the output torque of the internal combustion engine.
According to the invention of claim 6, since the reducing agent is supplied by in-cylinder post injection performed after the combustion post injection by the fuel injection means, the cost can be increased by using the existing fuel injection means. Can be suppressed.

さらに、理論空燃比化補正を燃焼ポスト噴射の増量或いは減量で行い、還元剤の供給を筒内ポスト噴射で行うことで、例えば、理論空燃比化補正を行った場合と理論空燃比化補正を行わない場合とで、吸蔵還元型NOx触媒の温度及び空燃比を所定値とするために必要な吸蔵還元型NOx触媒に供給する還元剤の総供給量が同一である場合には、理論空燃比化補正を燃焼ポスト噴射の増量或いは減量で行うことで、筒内ポスト噴射にて吸蔵還元型NOx触媒に供給する還元剤の供給量を減らすことができる。よって、筒内ポスト噴射による筒内に付着する還元剤を低減することができるので、還元剤による潤滑油の希釈を低減することができる。   Further, the theoretical air-fuel ratio correction is performed by increasing or decreasing the combustion post-injection, and the reducing agent is supplied by in-cylinder post-injection, for example, when the theoretical air-fuel ratio correction is performed and when the theoretical air-fuel ratio correction is performed. When the total supply amount of the reducing agent supplied to the NOx storage reduction catalyst necessary for setting the temperature and the air fuel ratio of the NOx storage reduction catalyst to the predetermined values is the same as the case of not performing, the stoichiometric air fuel ratio By performing the commutation correction by increasing or decreasing the combustion post injection, it is possible to reduce the amount of reducing agent supplied to the NOx storage reduction catalyst by in-cylinder post injection. Therefore, since the reducing agent adhering to the cylinder by the in-cylinder post injection can be reduced, the dilution of the lubricating oil by the reducing agent can be reduced.

本発明に係る内燃機関の排気浄化装置が適用されたエンジンの概略構成図である。1 is a schematic configuration diagram of an engine to which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied. 本発明に係るECUが実行するSパージ処理における燃料噴射量と酸素量とを示す図である。It is a figure which shows the fuel injection quantity and oxygen amount in S purge process which ECU which concerns on this invention performs. 本発明に係るSパージ処理におけるHC添加時の噴射信号と筒内圧の変化を時系列で示す図である。It is a figure which shows the change of the injection signal at the time of HC addition in the S purge process which concerns on this invention, and the change of a cylinder pressure in time series.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明に係る内燃機関の排気浄化装置が適用されたエンジンの概略構成図である。また、図2は、ECUが実行するSパージ処理における燃料噴射量と酸素量とを示す図である。図2の上段は燃料噴射量を、下段は排気ガス中の酸素量を示す。そして、Sパージ処理時のHC添加時と非HC添加時のそれぞれについて燃料噴射量と酸素量とを示す。また、図中の破線は、HC添加での燃料噴射量を、実線が筒内燃焼での燃料噴射量をそれぞれ示す。そして、図2中の理論空燃比相当噴射量は、空燃比を理論空燃比とするために必要な燃料噴射量であり、触媒リッチ時必要噴射量は、予め実験或いは解析等で導かれた硫黄脱離処理(Sパージ処理)を行う上でNOxトラップ触媒の温度を所定温度(所定値)とするために必要な燃料噴射量をそれぞれ示す。また、図3は、Sパージ処理におけるHC添加時の噴射信号と筒内圧の変化を時系列で示す図である。詳しくは、噴射信号が発生し燃料を噴射した時の筒内圧の変化を示す図である。即ち、図3中の燃焼ポスト噴射或いは筒内ポスト噴射のように燃料噴射を行っても筒内圧の変化が無い場合には、当該燃料噴射は、エンジンの出力に寄与しないことをあらわす。このように、燃焼ポスト噴射は、燃料が排気管に流出せず燃焼室及びシリンダ内で燃焼するように膨張行程で噴射され、エンジン1の出力に寄与しない燃料噴射である。また、図2及び図3の筒内燃焼は、燃焼室及びシリンダ内で燃焼が完了する燃料噴射を示し、HC添加は、燃焼室及びシリンダ内で燃焼されず未燃燃料の状態で排気管に排出される燃料噴射、所謂筒内ポスト噴射を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine to which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied. FIG. 2 is a diagram showing the fuel injection amount and the oxygen amount in the S purge process executed by the ECU. The upper part of FIG. 2 shows the fuel injection amount, and the lower part shows the oxygen amount in the exhaust gas. The fuel injection amount and the oxygen amount are shown for each of the HC addition and non-HC addition during the S purge process. The broken line in the figure indicates the fuel injection amount when HC is added, and the solid line indicates the fuel injection amount during in-cylinder combustion. The stoichiometric air-fuel ratio equivalent injection amount in FIG. 2 is the fuel injection amount required to make the air-fuel ratio the stoichiometric air-fuel ratio, and the catalyst-rich required injection amount is the sulfur previously derived from experiments or analyzes. In the desorption process (S purge process), the fuel injection amount necessary for setting the temperature of the NOx trap catalyst to a predetermined temperature (predetermined value) is shown. FIG. 3 is a diagram showing, in time series, changes in the injection signal and the in-cylinder pressure when HC is added in the S purge process. Specifically, it is a diagram showing a change in in-cylinder pressure when an injection signal is generated and fuel is injected. That is, if there is no change in the in-cylinder pressure even if fuel injection is performed as in the combustion post injection or in-cylinder post injection in FIG. 3, this indicates that the fuel injection does not contribute to the output of the engine. Thus, the combustion post-injection is a fuel injection that does not contribute to the output of the engine 1 and is injected in the expansion stroke so that the fuel does not flow into the exhaust pipe but burns in the combustion chamber and the cylinder. The in-cylinder combustion in FIGS. 2 and 3 indicates fuel injection in which combustion is completed in the combustion chamber and the cylinder, and HC addition is not burned in the combustion chamber and the cylinder, but in the unburned fuel state in the exhaust pipe. The discharged fuel injection, so-called in-cylinder post injection is shown.

図1に示すように、エンジン(内燃機関)1は、多気筒の筒内直接噴射式内燃機関(例えば、コモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料(還元剤)を各気筒の燃料噴射ノズル(燃料噴射手段、還元剤供給手段)2に供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズル2から各気筒の燃焼室3内に噴射可能な構成を成している。   As shown in FIG. 1, an engine (internal combustion engine) 1 is a multi-cylinder direct injection internal combustion engine (for example, a common rail type diesel engine), and more specifically, high pressure fuel (reducing agent) accumulated in the common rail. Is supplied to the fuel injection nozzle (fuel injection means, reducing agent supply means) 2 of each cylinder, and can be injected from the fuel injection nozzle 2 into the combustion chamber 3 of each cylinder at an arbitrary injection timing and injection amount. doing.

エンジン1の各気筒には、上下摺動可能なピストン4が設けられている。そして、当該ピストン4は、コンロッド5を介してクランクシャフト6に連結されている。また、クランクシャフト6の一端部には図示しないフライホイールが設けられており、当該フライホイールにはクランクシャフト6の回転速度を検出するクランク角センサ7が設けられている。   Each cylinder of the engine 1 is provided with a piston 4 that can slide up and down. The piston 4 is connected to the crankshaft 6 via a connecting rod 5. Further, a flywheel (not shown) is provided at one end of the crankshaft 6, and a crank angle sensor 7 that detects the rotational speed of the crankshaft 6 is provided on the flywheel.

燃焼室3には、インテークポート8とエキゾーストポート9とが連通されている。
インテークポート8には、燃焼室3と当該インテークポート8との連通と遮断を行うインテークバルブ10が設けられている。また、エキゾーストポート9には、燃焼室3と当該エキゾーストポート9との連通と遮断とを行うエキゾーストバルブ11が設けられている。
An intake port 8 and an exhaust port 9 are communicated with the combustion chamber 3.
The intake port 8 is provided with an intake valve 10 for communicating and blocking between the combustion chamber 3 and the intake port 8. In addition, the exhaust port 9 is provided with an exhaust valve 11 for performing communication and blocking between the combustion chamber 3 and the exhaust port 9.

インテークポート8の上流には、吸入した新気中のゴミを取り除くエアークリーナ12、排気ガスのエネルギを利用し吸入された新気を圧縮するターボチャージャ13の図示しないコンプレッサハウジングと、圧縮され高温となった新気を冷却するインタークーラ14と、新気の流量を調整する電子制御スロットルバルブ15と、吸入した空気を各気筒に分配するインテークマニフォールド16とがそれぞれ連通するように設けられている。また、電子制御スロットルバルブ15には、スロットルバルブの開き度合を検出するスロットルポジションセンサ17が備えられている。   Upstream of the intake port 8, an air cleaner 12 that removes dust in the sucked fresh air, a compressor housing (not shown) of a turbocharger 13 that compresses the sucked fresh air using the energy of exhaust gas, and a compressed high temperature An intercooler 14 that cools the fresh air, an electronic control throttle valve 15 that adjusts the flow rate of the fresh air, and an intake manifold 16 that distributes the intake air to each cylinder are provided in communication with each other. The electronically controlled throttle valve 15 is provided with a throttle position sensor 17 for detecting the degree of opening of the throttle valve.

エアークリーナ12の下流でありターボチャージャ13のコンプレッサハウジングの上流には、燃焼室3に吸入される新気の量を検出するエアーフローセンサ18が通路内に突出するように設けられている。また、燃焼室3に吸入される吸入空気の圧力を検出するブーストセンサ19と、該吸入空気の温度を検出する吸気温度センサ20とがインテークマニフォールド16内に突出するように設けられている。   An air flow sensor 18 for detecting the amount of fresh air sucked into the combustion chamber 3 is provided so as to protrude into the passage downstream of the air cleaner 12 and upstream of the compressor housing of the turbocharger 13. Further, a boost sensor 19 for detecting the pressure of intake air sucked into the combustion chamber 3 and an intake temperature sensor 20 for detecting the temperature of the intake air are provided so as to protrude into the intake manifold 16.

エキゾーストポート9の下流には、各気筒から排出される排気ガスをまとめるエキゾーストマニフォールド21と、ターボチャージャ13に排気ガスを導入する図示しないタービンハウジングと、排気管22とが連通するように設けられている。
排気管22には、上流から順番に排気ガス中の被酸化成分を酸化する酸化触媒23と、排気ガス中の黒鉛を主成分とする微粒子状物資を捕集し燃焼させるディーゼルパティキュレートフィルタ24と、酸素吸蔵能を有し、排気ガス中のNOxを吸蔵還元するNOxトラップ触媒(吸蔵還元型NOx触媒)25とが設けられている。
Downstream of the exhaust port 9, an exhaust manifold 21 that collects exhaust gas discharged from each cylinder, a turbine housing (not shown) that introduces exhaust gas into the turbocharger 13, and an exhaust pipe 22 are provided so as to communicate with each other. Yes.
The exhaust pipe 22 includes an oxidation catalyst 23 that sequentially oxidizes components to be oxidized in the exhaust gas from the upstream side, a diesel particulate filter 24 that collects and burns particulate matter mainly composed of graphite in the exhaust gas, and A NOx trap catalyst (occlusion reduction type NOx catalyst) 25 having an oxygen storage capacity and storing and reducing NOx in the exhaust gas is provided.

排気管22のターボチャージャ13の下流であり酸化触媒23の上流には、排気ガスの温度を検出する排気温度センサ26が排気管22内に突出するように設けられている。
排気管22のディーゼルパティキュレートフィルタ24とNOxトラップ触媒25との間には、NOxトラップ触媒25に流入する排気ガスの酸素比率である酸素濃度を検出するA/Fセンサ27が排気管22内に突出するように設けられている。
An exhaust temperature sensor 26 for detecting the temperature of the exhaust gas is provided so as to protrude into the exhaust pipe 22 downstream of the turbocharger 13 of the exhaust pipe 22 and upstream of the oxidation catalyst 23.
Between the diesel particulate filter 24 and the NOx trap catalyst 25 in the exhaust pipe 22, an A / F sensor 27 that detects an oxygen concentration that is an oxygen ratio of the exhaust gas flowing into the NOx trap catalyst 25 is provided in the exhaust pipe 22. It is provided to protrude.

また、排気管22のNOxトラップ触媒25の下流には、NOxトラップ触媒25から流出する排気ガスの酸素比率である酸素濃度を検出するA/Fセンサ29が排気管22内に突出するように設けられている。
インテークマニフォールド16とエキゾーストマニフォールド21には、それぞれが連通するように排気ガスの一部を吸気へ戻すEGR通路30が設けられている。また、EGR通路30には、排気ガスが吸気に戻る量、即ちEGR量を調整するEGRバルブ31と、吸気へ戻す排気ガスを冷やすEGRクーラ32とが設けられている。
Further, an A / F sensor 29 that detects an oxygen concentration that is an oxygen ratio of exhaust gas flowing out from the NOx trap catalyst 25 is provided downstream of the NOx trap catalyst 25 in the exhaust pipe 22 so as to protrude into the exhaust pipe 22. It has been.
The intake manifold 16 and the exhaust manifold 21 are provided with an EGR passage 30 for returning a part of the exhaust gas to the intake air so as to communicate with each other. The EGR passage 30 is provided with an EGR valve 31 that adjusts the amount of exhaust gas returning to the intake air, that is, an EGR amount, and an EGR cooler 32 that cools the exhaust gas returning to the intake air.

そして、燃料噴射ノズル2、クランク角センサ7、電子制御スロットルバルブ15、スロットルポジションセンサ17、エアーフローセンサ18、ブーストセンサ19、吸気温度センサ20、排気温度センサ26、A/Fセンサ27,29及びEGRバルブ31等の各種装置や各種センサ類は、エンジン1の総合的な制御を行うための制御装置であって入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成される電子コントロールユニット(ECU)(脱離処理制御手段)40と電気的に接続されており、当該ECU40は各種センサ類からの各情報に基づき各種装置を作動制御する。   The fuel injection nozzle 2, the crank angle sensor 7, the electronic control throttle valve 15, the throttle position sensor 17, the air flow sensor 18, the boost sensor 19, the intake air temperature sensor 20, the exhaust gas temperature sensor 26, the A / F sensors 27 and 29, and Various devices such as the EGR valve 31 and various sensors are control devices for performing overall control of the engine 1, and are input / output devices, storage devices (ROM, RAM, nonvolatile RAM, etc.), timers, and central processing units. It is electrically connected to an electronic control unit (ECU) (detachment processing control means) 40 that includes a processing device (CPU) and the like, and the ECU 40 controls various devices based on information from various sensors. Control the operation.

ECU40の入力側には、クランク角センサ7、スロットルポジションセンサ17、エアーフローセンサ18、ブーストセンサ19、吸気温度センサ20、排気温度センサ26及び、A/Fセンサ27,29等のセンサ類が電気的に接続されており、これら各種装置及び各種センサ類からの検出情報が入力される。
一方、ECU40の出力側には、燃料噴射ノズル2、電子制御スロットルバルブ15、及びEGRバルブ31が電気的に接続されている。
Sensors such as a crank angle sensor 7, a throttle position sensor 17, an air flow sensor 18, a boost sensor 19, an intake air temperature sensor 20, an exhaust gas temperature sensor 26, and A / F sensors 27 and 29 are electrically connected to the input side of the ECU 40. The detection information from these various devices and various sensors is inputted.
On the other hand, the fuel injection nozzle 2, the electronic control throttle valve 15, and the EGR valve 31 are electrically connected to the output side of the ECU 40.

これより、ECU40は、各センサの検出値に基づき、燃料噴射ノズル2からの燃料噴射量及び噴射時期と、電子制御スロットルバルブ15及びEGRバルブ30の開度を最適に制御する。
また、ECU40は、エンジン1を所定期間運転する毎に、NOxトラップ触媒25に吸蔵された硫黄分の脱離処理、所謂Sパージ処理(硫黄脱離処理)を行う機能を有している。Sパージ処理は、図2のような、HC添加(本発明の還元剤の供給に相当)と非HC添加(本発明の還元剤の非供給に相当)とを繰り返し行い、NOxトラップ触媒25の温度がNOxトラップ触媒25に吸蔵された硫黄分の脱離可能な所定温度(所定値)となるようにしている。詳しくは、図2の非HC添加時には、図3に示す燃焼ポスト噴射での燃料噴射量を減量して、筒内燃焼における燃料噴射量を理論空燃比相当噴射量より少なくする。これにより、筒内の空燃比は、リーン空燃比となる。即ち、図2のように非HC添加時の筒内の酸素量は、多くなる。そして、非HC添加時の筒内燃焼では、リーン空燃比の排気ガス、即ち酸素量の多い排気ガスが酸化触媒23及びNOxトラップ触媒25に供給される。NOxトラップ触媒25では、排気ガス中の酸素を触媒内に吸蔵する。その後、図2のHC添加時には、図3に示す燃焼ポスト噴射での燃料噴射量を増量し、筒内燃焼での燃料噴射量を理論空燃比相当噴射量以上とする。これにより、筒内の空燃比は、理論空燃比以上となる。そして、HC添加時の筒内燃焼では、理論空燃比以上で酸素量の少ない排気ガスが酸化触媒23及びNOxトラップ触媒25に供給される。その後、NOxトラップ触媒25の温度をNOxトラップ触媒25に吸蔵された硫黄分の脱離可能な所定温度(所定値)とするために、HC添加時の筒内燃焼の燃料噴射量とHC添加での燃料噴射量とを合わせた総燃料噴射量が図2の触媒リッチ時必要噴射量となるように燃料噴射量が設定された図3に示す筒内ポスト噴射(HC添加)を行う。これにより、筒内の空燃比は、リッチ空燃比となる。そして、リッチ空燃比の排気ガスが酸化触媒23及びNOxトラップ触媒25に供給される。NOxトラップ触媒25では、触媒内に吸蔵された酸素とリッチ空燃の排気ガスとが反応し、所定温度となる。そして、NOxトラップ触媒25に吸蔵された硫黄分は、燃焼・除去される。
Thus, the ECU 40 optimally controls the fuel injection amount and injection timing from the fuel injection nozzle 2 and the opening degrees of the electronic control throttle valve 15 and the EGR valve 30 based on the detection values of the sensors.
The ECU 40 has a function of performing a desorption process of sulfur stored in the NOx trap catalyst 25, that is, a so-called S purge process (sulfur desorption process) every time the engine 1 is operated for a predetermined period. In the S purge process, as shown in FIG. 2, HC addition (corresponding to the supply of the reducing agent of the present invention) and non-HC addition (corresponding to the non-supplying of the reducing agent of the present invention) are repeated, and the NOx trap catalyst 25 The temperature is set to a predetermined temperature (predetermined value) at which the sulfur content stored in the NOx trap catalyst 25 can be desorbed. Specifically, at the time of non-HC addition in FIG. 2, the fuel injection amount in the combustion post injection shown in FIG. 3 is reduced to make the fuel injection amount in the in-cylinder combustion smaller than the theoretical air-fuel ratio equivalent injection amount. Thereby, the air-fuel ratio in the cylinder becomes a lean air-fuel ratio. That is, as shown in FIG. 2, the amount of oxygen in the cylinder when non-HC is added increases. In the in-cylinder combustion at the time of non-HC addition, a lean air-fuel ratio exhaust gas, that is, an exhaust gas with a large amount of oxygen is supplied to the oxidation catalyst 23 and the NOx trap catalyst 25. In the NOx trap catalyst 25, oxygen in the exhaust gas is occluded in the catalyst. Thereafter, at the time of addition of HC in FIG. 2, the fuel injection amount in the combustion post injection shown in FIG. 3 is increased so that the fuel injection amount in the in-cylinder combustion becomes equal to or greater than the theoretical air-fuel ratio equivalent injection amount. Thereby, the air-fuel ratio in the cylinder becomes equal to or higher than the theoretical air-fuel ratio. In the in-cylinder combustion at the time of HC addition, the exhaust gas with the oxygen amount equal to or higher than the theoretical air-fuel ratio is supplied to the oxidation catalyst 23 and the NOx trap catalyst 25. Thereafter, in order to set the temperature of the NOx trap catalyst 25 to a predetermined temperature (predetermined value) at which the sulfur content stored in the NOx trap catalyst 25 can be desorbed, the fuel injection amount of in-cylinder combustion at the time of HC addition and HC addition The in-cylinder post injection (HC addition) shown in FIG. 3 is performed in which the fuel injection amount is set so that the total fuel injection amount combined with the fuel injection amount becomes the required injection amount when the catalyst is rich in FIG. As a result, the air-fuel ratio in the cylinder becomes a rich air-fuel ratio. Then, the rich air-fuel ratio exhaust gas is supplied to the oxidation catalyst 23 and the NOx trap catalyst 25. In the NOx trap catalyst 25, the oxygen stored in the catalyst reacts with the rich air-fuel exhaust gas to reach a predetermined temperature. Then, the sulfur content stored in the NOx trap catalyst 25 is combusted and removed.

このように本発明の内燃機関の排気浄化装置では、Sパージ処理の非HC添加時には、筒内燃焼の燃料噴射量を理論空燃比相当噴射量より少なくして、筒内燃焼における空燃比を理論空燃比未満のリーン空燃比としている。そして、HC添加時には、燃焼ポスト噴射を増量して、筒内燃焼における燃料噴射量を理論空燃比相当噴射量以上とし、筒内燃焼における空燃比を理論空燃比或いはリッチ空燃比としている。そして、HC添加時の筒内燃焼の燃料噴射量とHC添加での燃料噴射量とを合わせた総燃料噴射量が触媒リッチ時必要噴射量となる燃料噴射量の筒内ポスト噴射を行って、NOxトラップ触媒25の温度が所定温度としている。   Thus, in the exhaust gas purification apparatus for an internal combustion engine of the present invention, when non-HC is added in the S purge process, the fuel injection amount for in-cylinder combustion is made smaller than the stoichiometric air-fuel ratio equivalent injection amount to theoretically calculate the air-fuel ratio in in-cylinder combustion. The lean air-fuel ratio is less than the air-fuel ratio. When HC is added, the combustion post injection is increased so that the fuel injection amount in the in-cylinder combustion is greater than or equal to the theoretical air-fuel ratio equivalent injection amount, and the air-fuel ratio in the in-cylinder combustion is the stoichiometric air-fuel ratio or rich air-fuel ratio. Then, in-cylinder post-injection of the fuel injection amount in which the total fuel injection amount that combines the fuel injection amount of in-cylinder combustion at the time of HC addition and the fuel injection amount by the addition of HC becomes the required injection amount at the time of catalyst rich is performed, The temperature of the NOx trap catalyst 25 is set to a predetermined temperature.

したがって、筒内の空燃比が理論空燃比以上となるように、HC添加時に行われる筒内燃焼の燃料噴射量を設定することで、HC添加(筒内ポスト噴射)が行われる前に酸化触媒23に流入する排気ガスの酸素量を減らすことが可能となる。
このため、HC添加(筒内ポスト噴射)が行われても、酸化触媒23にて添加した燃料が酸化されることなく酸化触媒23の昇温を抑制することができる。
Therefore, by setting the fuel injection amount of in-cylinder combustion performed at the time of HC addition so that the in-cylinder air-fuel ratio becomes equal to or higher than the stoichiometric air-fuel ratio, the oxidation catalyst before HC addition (in-cylinder post injection) is performed. It is possible to reduce the amount of oxygen in the exhaust gas flowing into the air outlet 23.
For this reason, even if HC addition (in-cylinder post injection) is performed, the temperature increase of the oxidation catalyst 23 can be suppressed without oxidizing the fuel added by the oxidation catalyst 23.

よって、Sパージ処理時に酸化触媒を昇温させることなく、NOxトラップ触媒25を十分に昇温させることができる。
また、Sパージ処理における非HC添加時に、筒内の空燃比が理論空燃比未満、即ちリーン空燃比となるように筒内燃焼の燃料噴射量を設定することで、NOxトラップ触媒25に流入する酸素量を増やすことでき、NOxトラップ触媒25に吸蔵する酸素量を増加することが可能となる。
Therefore, the NOx trap catalyst 25 can be sufficiently heated without increasing the temperature of the oxidation catalyst during the S purge process.
Further, when non-HC is added in the S purge process, the fuel injection amount for in-cylinder combustion is set so that the in-cylinder air-fuel ratio is less than the stoichiometric air-fuel ratio, that is, the lean air-fuel ratio, thereby flowing into the NOx trap catalyst 25. The amount of oxygen can be increased, and the amount of oxygen stored in the NOx trap catalyst 25 can be increased.

したがって、NOxトラップ触媒25にて多量の酸素を吸蔵することで、次回のHC添加時にNOxトラップ触媒25にて、添加されたHCと酸素とを反応させ、酸化触媒23を昇温させることなく、NOxトラップ触媒25の温度を確実に昇温させることができる。
また、Sパージ処理におけるHC添加時の筒内燃焼の燃料噴射量とHC添加(筒内ポスト噴射)での燃料噴射量とを合わせた総燃料噴射量を触媒リッチ時必要噴射量とし、NOxトラップ触媒25の温度を所定温度となるようにしている。
Therefore, by storing a large amount of oxygen in the NOx trap catalyst 25, the NOx trap catalyst 25 reacts with the added HC and oxygen at the next HC addition, and without raising the temperature of the oxidation catalyst 23, The temperature of the NOx trap catalyst 25 can be reliably raised.
Further, the total fuel injection amount, which is the sum of the fuel injection amount of in-cylinder combustion at the time of HC addition in the S purge process and the fuel injection amount of HC addition (in-cylinder post injection), is set as the required injection amount at the time of catalyst rich, and NOx trap The temperature of the catalyst 25 is set to a predetermined temperature.

したがって、NOxトラップ触媒25を硫黄成分の脱離に適切な温度にすることができるので、NOxトラップ触媒25から硫黄成分の脱離を確実に行うことができる。
また、Sパージ処理におけるHC添加時に、燃焼ポスト噴射の追加で筒内燃焼の空燃比を理論空燃比以上としているので、エンジン1の発生トルクへの影響を抑制しつつ、筒内燃焼の空燃比を理論空燃比以上とすることができる。
Therefore, the NOx trap catalyst 25 can be brought to a temperature suitable for desorption of the sulfur component, so that the desorption of the sulfur component from the NOx trap catalyst 25 can be performed reliably.
In addition, when HC is added in the S purge process, the air-fuel ratio of in-cylinder combustion is set to be equal to or higher than the theoretical air-fuel ratio by adding combustion post-injection. Can be greater than or equal to the theoretical air-fuel ratio.

また、Sパージ処理におけるHC添加時に、燃焼ポスト噴射の追加で筒内燃焼における空燃比を理論空燃比以上としており、その後のNOxトラップ触媒25のリッチ時必要噴射量となるように行われる筒内ポスト噴射での噴射量を少なくすることができるので、筒内に付着する燃料を低減することができるので、燃料による潤滑油の希釈を低減することができる。   Further, when HC is added in the S purge process, the in-cylinder operation is performed so that the air-fuel ratio in the in-cylinder combustion is equal to or higher than the stoichiometric air-fuel ratio by adding combustion post-injection, and then becomes the required injection amount when the NOx trap catalyst 25 is rich. Since the injection amount in the post injection can be reduced, the amount of fuel adhering to the cylinder can be reduced, so that the dilution of the lubricating oil by the fuel can be reduced.

また、Sパージ処理におけるHC添加時の筒内燃焼の空燃比の理論空燃比化、及び非HC添加時の筒内燃焼の空燃比のリーン空燃比化を、燃焼ポスト噴射の増量或いは減量で行っているので、エンジン1の既存の燃料噴射ノズル2を用いることで新たに装置を追加する必要がなくコストの増加を抑制することができる。
以上で本発明の実施形態の説明を終えるが、本発明の実施形態は上記実施形態に限定されるものではない。
In addition, the stoichiometric air-fuel ratio of the in-cylinder combustion at the time of HC addition in the S purge process and the lean air-fuel ratio of the in-cylinder combustion at the time of non-HC addition are made by increasing or decreasing the combustion post injection. Therefore, by using the existing fuel injection nozzle 2 of the engine 1, it is not necessary to newly add a device, and an increase in cost can be suppressed.
This is the end of the description of the embodiment of the present invention. However, the embodiment of the present invention is not limited to the above embodiment.

上記実施形態では、エンジン1をコモンレール式ディーゼルエンジンとしているが、これに限定されるものではなく、NOxトラップ触媒25を装着する排気系を有する希薄燃焼ガソリンエンジンにも適用可能であることはいうまでもない。
また、Sパージ処理におけるHC添加時の筒内燃焼の空燃比の理論空燃比化及び、非HC添加時の筒内燃焼の空燃比のリーン空燃比化を、燃焼ポスト噴射の増量或いは減量で行うようにしているが、これに限定されるものではなく、燃料ポスト噴射の追加或いは削減で行ってもよい。
In the above embodiment, the engine 1 is a common rail diesel engine. However, the present invention is not limited to this, and it can be applied to a lean combustion gasoline engine having an exhaust system to which the NOx trap catalyst 25 is attached. Nor.
Further, the theoretical air-fuel ratio of the in-cylinder combustion at the time of HC addition in the S purge process and the lean air-fuel ratio of the in-cylinder combustion at the time of non-HC addition are made by increasing or decreasing the combustion post injection. However, the present invention is not limited to this, and the fuel post injection may be added or reduced.

また、Sパージ処理におけるHC添加を筒内ポスト噴射で行うようにしているが、これに限定されるものではなく、排気管22に燃料添加ノズルを設けてHC添加を行うようにしてもよい。   Further, HC addition in the S purge process is performed by in-cylinder post injection, but the present invention is not limited to this, and a fuel addition nozzle may be provided in the exhaust pipe 22 to perform HC addition.

1 エンジン(内燃機関)
2 燃料噴射ノズル(燃料噴射手段、還元剤供給手段)
23 酸化触媒
25 NOxトラップ触媒(吸蔵還元型NOx触媒)
28 排気温度センサ(温度検出手段)
40 ECU(脱離処理制御手段)
1 engine (internal combustion engine)
2 Fuel injection nozzle (fuel injection means, reducing agent supply means)
23 Oxidation catalyst 25 NOx trap catalyst (NOx storage reduction catalyst)
28 Exhaust temperature sensor (temperature detection means)
40 ECU (detachment control means)

Claims (6)

内燃機関の排気通路に設けられた酸化機能を有する酸化触媒と、
前記酸化触媒の下流に設けられ、少なくとも前記酸化触媒よりも大きな酸素吸蔵能を有する吸蔵還元型NOx触媒と、
前記内燃機関の筒内に燃料を噴射する燃料噴射手段と、
前記酸化触媒に還元剤を供給する還元剤供給手段と、
前記吸蔵還元型NOx触媒内に吸蔵された排気成分を脱離処理するように、前記燃料噴射手段からの燃料噴射量と、前記還元剤供給手段からの還元剤供給量とを制御して、前記吸蔵還元型NOx触媒に流入する空燃比をリーン空燃比或いはリッチ空燃比に変調する脱離処理制御手段と、を備え、
前記脱離処理制御手段は、前記還元剤の供給時に、前記筒内の空燃比が該還元剤の非供給時と比較してリッチ空燃比側となるように前記燃料噴射手段からの前記燃料噴射量を設定することを特徴とする内燃機関の排気浄化装置。
An oxidation catalyst having an oxidation function provided in an exhaust passage of the internal combustion engine;
An NOx storage reduction catalyst that is provided downstream of the oxidation catalyst and has at least a larger oxygen storage capacity than the oxidation catalyst;
Fuel injection means for injecting fuel into the cylinder of the internal combustion engine;
Reducing agent supply means for supplying a reducing agent to the oxidation catalyst;
Controlling the fuel injection amount from the fuel injection means and the reducing agent supply amount from the reducing agent supply means so as to desorb the exhaust components stored in the NOx storage reduction catalyst, and Desorption treatment control means for modulating the air-fuel ratio flowing into the NOx storage reduction catalyst into a lean air-fuel ratio or a rich air-fuel ratio,
The desorption processing control means is configured to inject the fuel from the fuel injection means so that when the reducing agent is supplied, the air-fuel ratio in the cylinder is on the rich air-fuel ratio side compared to when the reducing agent is not supplied. An exhaust emission control device for an internal combustion engine, wherein the amount is set.
前記脱離処理制御手段は、前記還元剤の供給時に、前記筒内の空燃比が理論空燃比以上となるように前記燃料噴射手段からの前記燃料噴射量を設定することを特徴とする、請求項1に記載の内燃機関の排気浄化装置。   The desorption processing control means sets the fuel injection amount from the fuel injection means so that an air-fuel ratio in the cylinder is equal to or higher than a theoretical air-fuel ratio when the reducing agent is supplied. Item 6. An exhaust emission control device for an internal combustion engine according to Item 1. 前記脱離処理制御手段は、前記還元剤供給手段から前記還元剤の非供給時には、前記筒内の空燃比がリーン空燃比となるように前記燃料噴射手段からの前記燃料噴射量を設定することを特徴とする、請求項1或いは2に記載の内燃機関の排気浄化装置。   The desorption processing control means sets the fuel injection amount from the fuel injection means so that the air-fuel ratio in the cylinder becomes a lean air-fuel ratio when the reducing agent is not supplied from the reducing agent supply means. The exhaust emission control device for an internal combustion engine according to claim 1 or 2, characterized by the above. 前記脱離処理制御手段は、前記吸蔵還元型NOx触媒の温度が所定値となるように、前記燃料噴射手段と、前記還元剤供給手段とを制御することを特徴とする、請求項1から3のいずれか1項に記載の内燃機関の排気浄化装置。   The desorption processing control means controls the fuel injection means and the reducing agent supply means so that the temperature of the NOx storage reduction catalyst becomes a predetermined value. The exhaust gas purification apparatus for an internal combustion engine according to any one of the above. 前記燃料噴射手段は、前記燃料が前記排気通路に流出せず前記筒内で燃焼するように、膨張行程で前記燃料を噴射する燃焼ポスト噴射を実施可能であって、
前記脱離処理制御手段は、前記還元剤の供給時或いは非供給時の前記筒内の空燃比の制御を前記燃料噴射手段からの前記燃料噴射量の設定を燃焼ポスト噴射の増量或いは減量によって行うことを特徴とする、請求項1から4のいずれか1項に記載の内燃機関の排気浄化装置。
The fuel injection means can perform a combustion post injection for injecting the fuel in an expansion stroke so that the fuel does not flow into the exhaust passage and burns in the cylinder;
The desorption processing control means controls the air-fuel ratio in the cylinder when the reducing agent is supplied or not, and sets the fuel injection amount from the fuel injection means by increasing or decreasing the combustion post injection. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust gas purification device is an internal combustion engine.
前記還元剤供給手段は、前記燃料噴射手段であり、
前記脱離処理制御手段は、前記還元剤の供給を前記燃焼ポスト噴射より後に実施する筒内ポスト噴射で行うことを特徴とする、請求項5に記載の内燃機関の排気浄化装置。
The reducing agent supply means is the fuel injection means;
6. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein the desorption processing control means performs in-cylinder post injection that supplies the reducing agent after the combustion post injection.
JP2012054563A 2012-03-12 2012-03-12 Exhaust gas purification device for internal combustion engine Active JP5983915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012054563A JP5983915B2 (en) 2012-03-12 2012-03-12 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012054563A JP5983915B2 (en) 2012-03-12 2012-03-12 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013189870A true JP2013189870A (en) 2013-09-26
JP5983915B2 JP5983915B2 (en) 2016-09-06

Family

ID=49390385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012054563A Active JP5983915B2 (en) 2012-03-12 2012-03-12 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5983915B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161781A (en) * 2000-11-29 2002-06-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009257243A (en) * 2008-04-18 2009-11-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161781A (en) * 2000-11-29 2002-06-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009257243A (en) * 2008-04-18 2009-11-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP5983915B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP2004176663A (en) Exhaust emission control device for internal combustion engine
JP2008038812A (en) Control device for internal combustion engine
US9212585B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4738364B2 (en) Exhaust gas purification device for internal combustion engine
JP4645585B2 (en) Engine torque control device
JP5332575B2 (en) Exhaust gas purification device for internal combustion engine
JP5920368B2 (en) Control device for internal combustion engine
US20080092529A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4591403B2 (en) Control device for internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
JP4482848B2 (en) Exhaust gas purification device for turbocharged engine
JP6108078B2 (en) Engine exhaust purification system
JP5983915B2 (en) Exhaust gas purification device for internal combustion engine
JP2014173558A (en) Exhaust emission control device for internal combustion engine
JP2017115632A (en) Fuel injection control device for internal combustion engine
JP5083398B2 (en) Engine torque control device
JP6606931B2 (en) Exhaust aftertreatment device for internal combustion engine
JP6270248B1 (en) Engine exhaust purification system
JP6020790B2 (en) Exhaust gas purification device for internal combustion engine
JP5626532B2 (en) Exhaust gas purification device for internal combustion engine
JP5854203B2 (en) Fuel injection control device for internal combustion engine
JP6519297B2 (en) Internal combustion engine
JP5464059B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP5854204B2 (en) Fuel injection control device for internal combustion engine
JP2019173741A (en) Exhaust gas purifying and regenerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R151 Written notification of patent or utility model registration

Ref document number: 5983915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350