JP2013188674A - Particle structure and manufacturing method thereof - Google Patents
Particle structure and manufacturing method thereof Download PDFInfo
- Publication number
- JP2013188674A JP2013188674A JP2012056117A JP2012056117A JP2013188674A JP 2013188674 A JP2013188674 A JP 2013188674A JP 2012056117 A JP2012056117 A JP 2012056117A JP 2012056117 A JP2012056117 A JP 2012056117A JP 2013188674 A JP2013188674 A JP 2013188674A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- coated
- particle
- coated particles
- aggregate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
本発明は、粒子構造物およびその製造方法に関する。 The present invention relates to a particle structure and a manufacturing method thereof.
一般に、大きさの揃った球状の微粒子は、簡単に集積して細密充填構造(hcpまたはfcc構造)を有する集積体を形成することができ、その規則的な構造は様々な用途に応用可能である。例えば、細密充填構造を有する二次元的な粒子集積体は、光学的な干渉効果を利用した反射膜、反射防止膜、またはエッチングマスクに応用可能であり、三次元的な粒子集積体は、分光素子、パルスレーザー素子等に応用可能である。ここで二次元的とは、集積体の一辺が他の二辺に比べ十分小さいことをいい、三次元的とは、集積体の三辺の特徴的な長さが同程度であることをいう。現在注目を集めているコロイドフォトニック結晶を形成するための粒子は、粒子径のCV値で数%〜10%以下の高い形状均一性が要求されており、その基礎研究や応用研究は実質的に1947年に単分散ラテックス粒子が合成されて以降に始まったといってよい。今日では、cmスケールの大きな結晶を得るために微小重力下での結晶作製も行われている。 In general, spherical fine particles having a uniform size can be easily collected to form a densely packed structure (hcp or fcc structure), and the regular structure can be applied to various applications. is there. For example, a two-dimensional particle aggregate having a closely packed structure can be applied to a reflection film, an antireflection film, or an etching mask using an optical interference effect. It can be applied to devices, pulse laser devices, and the like. Here, two-dimensional means that one side of the aggregate is sufficiently smaller than the other two sides, and three-dimensional means that the characteristic lengths of the three sides of the aggregate are comparable. . Particles for forming colloid photonic crystals that are currently attracting attention are required to have high shape uniformity of several to 10% or less in terms of the CV value of the particle diameter. In 1947, it can be said that it started after the synthesis of monodisperse latex particles. Today, crystals are produced under microgravity in order to obtain large crystals on the cm scale.
コロイド結晶は、球形シリカ粒子、ポリスチレン粒子、ポリメタクリル酸メチル樹脂粒子、およびそれらの表面に化学物質が吸着した粒子、の懸濁液からの溶媒乾燥過程(特許文献1、2)、あるいは狭空間への濃厚懸濁液の閉じ込め(特許文献3)により容易に製造することができる。これらのコロイド結晶は、粒子が集合しただけの壊れやすいソフトマターであり、実際に利用するには粒子および基板または粒子間を固定し、あるいは粒子間隙を固体で埋める必要がある。例えば、間隙をゲルで充填し結晶を固定することにより(特許文献4)素子化することが公知である。また、粒子配列を鋳型として高分子や酸化物による反転規則構造も作ることができる。特にイソプロピルアクリアミドを主成分とする反転規則構造は、変形による体積変化のみならず温度やpHの変化による体積変化によっても干渉波長を変えることができ、物理化学センサーへの応用が可能である(特許文献5)。 The colloidal crystal is a solvent drying process from a suspension of spherical silica particles, polystyrene particles, polymethyl methacrylate resin particles, and particles having a chemical substance adsorbed on the surfaces (Patent Documents 1 and 2), or a narrow space. It can be easily manufactured by confinement of the concentrated suspension in (Patent Document 3). These colloidal crystals are fragile soft matter in which particles are aggregated, and in actual use, it is necessary to fix the particles and the substrate or between the particles, or to fill the particle gaps with a solid. For example, it is known to form an element by filling a gap with a gel and fixing a crystal (Patent Document 4). In addition, an inversion ordered structure made of a polymer or oxide can be made using the particle arrangement as a template. In particular, the inversion regular structure mainly composed of isopropylacrylamide can change the interference wavelength not only by the volume change due to deformation but also by the volume change due to temperature and pH change, and can be applied to a physicochemical sensor ( Patent Document 5).
従来の結晶の規則構造は、同じ粒子径の粒子を使った簡単な構造がほとんどであるため、より複雑な応答特性を求めるためには、異なる粒子径の粒子から粒子構造物の作成を試みる必要がある。しかし、同じ粒子径を有していて球状粒子間の相互作用が等方的であるコロイド結晶は、上述のように、異なる粒子径の粒子と本質的には共存できない。 Since the regular structure of conventional crystals is mostly a simple structure using particles of the same particle size, it is necessary to try to create a particle structure from particles of different particle sizes in order to obtain more complex response characteristics. There is. However, colloidal crystals having the same particle size and isotropic interaction between spherical particles cannot essentially coexist with particles having different particle sizes as described above.
結晶を構成する粒子は、その粒子径より小さな粒子径を有する粒子(小粒子ともいう)と混合系を作ることはできるものの、小粒子は結晶を構成する粒子(大粒子ともいう)により構成された結晶の間隙を不規則に埋めるだけとされていた。例えば、結晶を構成する大粒子および小粒子の直径の比が(2√3−3)/3=0.1547以下であり、かつ、小粒子が大粒子間の引力に影響を与えない場合に、小粒子が大粒子の間隙を埋めることとされていた。しかし、比が0.1547を超える場合は、異方的な相互作用を有するナノ粒子では例外が認められるものの、小粒子は大粒子の集積体から排除されるか、または集積体の規則性を劣化させ、特に三次元結晶では粒子径の近い二種類以上の粒子を規則的に配列させることはできなかった。 Although the particles constituting the crystal can form a mixed system with particles (also referred to as small particles) having a particle size smaller than the particle size, the small particles are composed of particles constituting the crystal (also referred to as large particles). It was supposed to fill the gaps between the crystals irregularly. For example, when the ratio of the diameters of the large particles and the small particles constituting the crystal is (2√3-3) /3=0.1547 or less, and the small particles do not affect the attractive force between the large particles. The small particles were supposed to fill the gaps between the large particles. However, if the ratio exceeds 0.1547, exceptions are observed for nanoparticles with anisotropic interactions, but small particles are excluded from large particle aggregates, or the regularity of the aggregates is reduced. In particular, two or more kinds of particles having a close particle diameter could not be regularly arranged in a three-dimensional crystal.
一方、塗膜法を用いて大粒子および小粒子の混合懸濁液から二次元的な粒子構造物を作成することにより粒子細線を作る技術が公知である(特許文献6)。この場合、メニスカスの部分でそれらの粒子が規則構造をとることが報告されている。しかし、このような構造は、移流集積(特許文献1、2)およびメニスカスのStick−Slip運動により実現されているため、小粒子が大粒子の規則構造に対して確実に配列するわけではない。 On the other hand, a technique for forming a fine particle line by creating a two-dimensional particle structure from a mixed suspension of large particles and small particles using a coating method is known (Patent Document 6). In this case, it is reported that these particles have a regular structure at the meniscus portion. However, since such a structure is realized by advection accumulation (Patent Documents 1 and 2) and the Meniscus Stick-Slip motion, the small particles are not surely arranged with respect to the regular structure of the large particles.
以上の問題に鑑み、本発明は、大粒子集積体の表面に小粒子の規則的な二次元配列構造を形成することにより、様々な用途に応用可能な新しい粒子集積体およびその製造方法を提供することを目的とする。 In view of the above problems, the present invention provides a new particle assembly applicable to various uses by forming a regular two-dimensional array structure of small particles on the surface of the large particle assembly, and a method for manufacturing the same. The purpose is to do.
上記目的を達成するため、本発明の粒子構造物の製造方法は、被塗布粒子から被塗布粒子の集積体を形成する工程と、被塗布粒子の粒径より小さい粒径を有する塗布粒子および溶媒を含む懸濁液を、被塗布粒子の集積体上に塗布する工程と、を含み、被塗布粒子が、懸濁液の溶媒に接触したとき、塗布粒子の符号とは逆の符号に帯電する粒子であることを特徴とする。 In order to achieve the above object, a method for producing a particle structure according to the present invention includes a step of forming an aggregate of coated particles from coated particles, and coated particles and a solvent having a particle size smaller than the particle size of the coated particles. And applying a suspension containing the particles on the aggregate of particles to be coated, and when the particles to be coated come into contact with the solvent of the suspension, they are charged to a sign opposite to the sign of the particles to be coated. It is characterized by being particles.
ここで、塗布粒子の融点以上、被塗布粒子の融点未満で更に加熱する工程を含むことが好ましい。あるいは、塗布粒子の融点未満、被塗布粒子の融点以上で更に加熱する工程を含むことが好ましい。 Here, it is preferable to include a step of further heating at a temperature equal to or higher than the melting point of the coated particles and lower than the melting point of the coated particles. Alternatively, it is preferable to include a step of further heating at a temperature lower than the melting point of the coated particles and higher than the melting point of the coated particles.
本発明の粒子構造物は、被塗布粒子の集積体と、被塗布粒子の粒径より小さい粒径を有していて被塗布粒子の集積体上に形成された塗布粒子の層と、を含み、被塗布粒子および塗布粒子は、所定の溶媒に接触したとき、互いに逆の符号に帯電する粒子であることを特徴とする。 The particle structure of the present invention includes an aggregate of coated particles and a layer of coated particles having a particle size smaller than the particle size of the coated particles and formed on the coated particle aggregate. The coated particles and the coated particles are characterized in that they are particles that are charged to opposite signs when in contact with a predetermined solvent.
ここで、被塗布粒子の集積体の表面の間隙に、一種類又は二種類以上の塗布粒子が規則的にはまり込んでいることが好ましい。あるいは、被塗布粒子の集積体の表面に、一種類又は二種類以上の塗布粒子が一様に吸着していることが好ましい。また、塗布粒子の融点が被塗布粒子の融点より低いことが好ましい。あるいは、塗布粒子の融点が被塗布粒子の融点より高いことが好ましい。また、被塗布粒子の集積体の表面を構成する被塗布粒子間の間隙において塗布粒子が溶解融合して塗布粒子の融合体を形成しており、塗布粒子の融合体が被塗布粒子間の間隙の間隔で配列していることが好ましい。あるいは、被塗布粒子の集積体の表面が、塗布粒子の溶解融合により形成された塗布粒子の連続膜によって被覆されていることが好ましい。また、被塗布粒子の集積体の溶解融合により形成された被塗布粒子の融合体の表面に、塗布粒子が所定の間隔で配列していることが好ましい。あるいは、被塗布粒子の集積体の溶解融合により形成された被塗布粒子の融合体の表面に、塗布粒子が一様に吸着していることが好ましい。 Here, it is preferable that one kind or two or more kinds of coated particles regularly fit in the gaps on the surface of the aggregate of coated particles. Alternatively, it is preferable that one kind or two or more kinds of coated particles are uniformly adsorbed on the surface of the aggregate of coated particles. Further, the melting point of the coated particles is preferably lower than the melting point of the particles to be coated. Alternatively, the melting point of the coated particles is preferably higher than the melting point of the particles to be coated. In addition, the coated particles are dissolved and fused in the gaps between the coated particles constituting the surface of the aggregate of coated particles to form a fused particle of the coated particles, and the fused particles of the coated particles are formed between the coated particles. It is preferable that they are arranged at intervals of. Alternatively, it is preferable that the surface of the aggregate of coated particles is coated with a continuous film of coated particles formed by dissolution and fusion of coated particles. Further, it is preferable that the coated particles are arranged at a predetermined interval on the surface of the coated particle fusion body formed by dissolution and fusion of the aggregate of coated particles. Alternatively, it is preferable that the coated particles are uniformly adsorbed on the surface of the fused particles formed by dissolution and fusion of the collected particles.
本発明によれば、被塗布粒子の集積体の表面に、その配列構造を壊すことなく規則的に、被塗布粒子の粒径より小さい粒径を有する塗布粒子の二次元配列構造を形成した粒子構造物を製造できる。また、本発明によれば、被塗布粒子の集積体の表面に、典型的には粒子直径比0.1574以上の、塗布粒子の二次元配列構造を規則的に形成した粒子構造物を製造できる。 According to the present invention, particles in which a two-dimensional array structure of coated particles having a particle size smaller than the particle size of the coated particles is regularly formed on the surface of the aggregate of coated particles without breaking the array structure. A structure can be manufactured. In addition, according to the present invention, it is possible to manufacture a particle structure in which a two-dimensional array structure of coated particles having a particle diameter ratio of 0.1574 or more is regularly formed on the surface of an aggregate of coated particles. .
効果1(合金粒配列構造の製造)
特に、塗布粒子(小粒子ともいう)が金属粒子で、複数の小粒子が被塗布粒子(大粒子ともいう)の集積体の凹部分に集積した、表面の周期を反映した構造を作製できる。小粒子の融点が大粒子の融点より低い場合、製造された粒子構造物を小粒子の融点以上大粒子の融点未満に加熱することで、小粒子が溶解し大粒子が作る各凹点に小粒子の溶融体が配列した構造体が得られる。この時、例えば図2に示すように、小粒子が異種材料の金属の小粒子14a、14bからなると、大粒子10の粒子集積体12の各凹部分12aに、小粒子14a、14bから形成された合金14cを配列させた粒子構造物30を製造することができる。また、異種材料の小粒子が鉄粒子、コバルト粒子、またニッケル粒子と、白金粒子またはパラジウム粒子の組み合わせであれば、各凹部分に規則化磁性合金(例えばFePt、CoPt、FePd、CoPd等)を配列させることができる。また、小粒子が三種類の小粒子の組み合わせであれば、飽和磁化を制御した規則化磁性合金(例えばFeNiPt、CoNiPt等)を配列させることができる。これらは、磁気記録媒体のグラニュラ層とすることが可能である。
Effect 1 (Production of alloy grain arrangement structure)
In particular, a structure reflecting the period of the surface in which coated particles (also referred to as small particles) are metal particles and a plurality of small particles are accumulated in the concave portions of the aggregate of coated particles (also referred to as large particles) can be manufactured. When the melting point of the small particles is lower than the melting point of the large particles, the manufactured particle structure is heated to the melting point of the small particles or more and less than the melting point of the large particles, so that the small particles dissolve and become small at each concave point created by the large particles. A structure with an array of particle melts is obtained. At this time, for example, as shown in FIG. 2, when the small particles are made of metal small particles 14 a and 14 b of different materials, the small particles 14 a and 14 b are formed in the concave portions 12 a of the particle aggregate 12 of the large particles 10. The particle structure 30 in which the alloys 14c are arranged can be manufactured. In addition, if the small particles of different materials are a combination of iron particles, cobalt particles, nickel particles, platinum particles or palladium particles, an ordered magnetic alloy (for example, FePt, CoPt, FePd, CoPd, etc.) is formed in each concave portion. Can be arranged. If the small particles are a combination of three kinds of small particles, an ordered magnetic alloy (for example, FeNiPt, CoNiPt, etc.) with controlled saturation magnetization can be arranged. These can be a granular layer of a magnetic recording medium.
効果2(金属薄膜の製造)
特に、塗布された小粒子が金属粒子で、大粒子の集積体の表面に小粒子が一様に吸着している(または大粒子の集積体の表面を小粒子が覆っている)場合で、小粒子の融点が大粒子の融点より低い時、この製造された構造物を小粒子の融点以上大粒子の融点未満に加熱することで、小粒子である金属粒子が溶解して大粒子の集積体の表面を一様に金属膜で覆うことができる。この時、例えば図3に示すように、吸着した小粒子が異種材料の金属の小粒子14d、14eの混合物である場合は、大粒子10の粒子集積体12が合金の金属膜14fで覆われた粒子構造物40を製造できる。このとき、大粒子の集積体のストップバンドと金属膜のプラズモン吸収バンドが一致すると、消光状態を実現でき、僅かなバンドの移動や幅の変化を感度よく検出することが可能になり、物質化学センサーに応用可能となる。
Effect 2 (Manufacture of metal thin films)
In particular, when the applied small particles are metal particles, and the small particles are uniformly adsorbed on the surface of the large particle aggregate (or the small particles cover the surface of the large particle aggregate), When the melting point of the small particles is lower than the melting point of the large particles, the manufactured structure is heated above the melting point of the small particles to below the melting point of the large particles, so that the metal particles, which are small particles, dissolve and the large particles accumulate. The body surface can be uniformly covered with a metal film. At this time, for example, as shown in FIG. 3, when the adsorbed small particles are a mixture of small metal particles 14d and 14e of different materials, the particle aggregate 12 of the large particles 10 is covered with an alloy metal film 14f. The particle structure 40 can be manufactured. At this time, if the stop band of the large particle aggregate coincides with the plasmon absorption band of the metal film, a quenching state can be realized, and it is possible to detect a slight band movement and a change in width with high sensitivity. Applicable to sensors.
以下図1に基づいて本発明を実施するための好ましい形態を説明する。図1に示すように、例えば大粒子10による規則的な構造を有する粒子集積体12を公知の技術で作製し、その表面に小粒子14の懸濁液16を塗布する。このとき、大粒子10は、懸濁液16の溶媒18に接触すると、小粒子14とは逆に帯電する表面を持つとする。このため、小粒子14は、電気力により大粒子10の表面に吸着する。さらに、大粒子10の粒子集積体12の凹部分12aは、電気力が大きくなるため、そこに小粒子14が集積しやすい。このように反対電荷を持った大粒子10と小粒子14による構造形成を二段階に分けることで、より複雑な粒子構造物20を確実に実現する。 Hereinafter, a preferred embodiment for carrying out the present invention will be described with reference to FIG. As shown in FIG. 1, for example, a particle assembly 12 having a regular structure with large particles 10 is prepared by a known technique, and a suspension 16 of small particles 14 is applied to the surface thereof. At this time, it is assumed that the large particle 10 has a surface that is oppositely charged from the small particle 14 when it contacts the solvent 18 of the suspension 16. For this reason, the small particles 14 are adsorbed on the surface of the large particles 10 by electric force. Furthermore, since the concave portion 12a of the particle aggregate 12 of the large particles 10 has a large electric force, the small particles 14 are likely to accumulate there. Thus, by dividing the structure formation by the large particles 10 and the small particles 14 having opposite charges into two stages, a more complicated particle structure 20 is reliably realized.
本発明は、溶媒に懸濁させると帯電する大粒子を規則的に配列させて大粒子の集積体を形成し、その溶媒を予め除去した大粒子の集積体の表面に、大粒子の集積体を構成する大粒子の粒子サイズより小さく、かつ、逆に帯電する小粒子および溶媒を含む懸濁液を後塗布することで、より複雑な構造を製造するものである。本発明は、大粒子集積体の表面を利用して、等方的に相互作用する小粒子の二次元的配列構造を作り、元々の大粒子集積体と共存させることで、より複雑な規則構造を実現するものである。 In the present invention, large particles that are charged when suspended in a solvent are regularly arranged to form a large particle aggregate, and the large particle aggregate is formed on the surface of the large particle aggregate from which the solvent has been removed in advance. A more complicated structure is produced by post-coating a suspension containing small particles and a solvent which are smaller than the size of the large particles constituting the particles and which are oppositely charged. The present invention makes use of the surface of the large particle aggregate to create a two-dimensional array structure of small particles that interact isotropically and coexist with the original large particle aggregate to form a more complicated regular structure. Is realized.
本発明者は、コロイド結晶の内部と異なり表面では異なるサイズの粒子間に異方的な力が働くので、その表面では異なるサイズの粒子が共存し得ることに着目し、大粒子と反対の符号の電荷を持つ小粒子を用い、溶媒の蒸発工程および電気力の組み合わせを利用して、小粒子を大粒子の集積体の表面へ接近させて吸着させると、大粒子の集積体上に小粒子を規則的に配列させ得ることを見出した。本発明者は、溶媒が、大粒子および小粒子を互いに逆に帯電させる作用とともに小粒子を大粒子の集積体の表面へ接近させて規則的に配列させる作用を有することに着目し、その溶媒を蒸発させることで、大粒子の集積体上に小粒子を規則的に配列させ得ることを見出した。 The present inventor noticed that different size particles can coexist on the surface because the anisotropic force acts on the surface unlike the inside of the colloidal crystal. When small particles having the following charge are adsorbed by approaching the surface of the large particle aggregate using a combination of the evaporation process of the solvent and electric force, the small particles are put on the large particle aggregate. Has been found to be regularly arranged. The present inventor has paid attention to the fact that the solvent has an action of charging the large particles and the small particles oppositely to each other and an action of regularly arranging the small particles close to the surface of the aggregate of the large particles. It was found that small particles can be regularly arranged on an aggregate of large particles by evaporating.
[実施例1]
Stoeber法により直径1μmのシリカ粒子を合成した。純水で洗浄しζ電位を測定したところ、このシリカ粒子は、水中で+30mV程度の電位を示した。したがって、このシリカ粒子はアミノ基で表面修飾されている。適当に濃度を調整したアミノ修飾シリカ粒子懸濁液をガラス基板上に滴下、乾燥し大粒子集積体を得た(図4:写真1)。小粒子として市販の直径0.209μmのカルボキシル基修飾されたポリスチレン(PS)粒子を使用した。市販の懸濁液を純水で洗浄し、懸濁液をとした。このPS粒子のζ電位は−40mV程度であった。大粒子と小粒子の直径比は0.209で、0.1574を上回る。このPS粒子懸濁液を大粒子集積体の表面に滴下し溶媒を乾燥により除去し、構造体を得た(図5:写真2)。大粒子の窪みに小粒子が集積しており、しかも、集積数が少ない部分と多い部分が規則的に配列している(図6:写真3)。この粒子構造物50は、図7に概念的に示すように、大粒子10の細密充填構造を有する粒子集積体12と、その表面の凹部分(窪み)12aに配列された小粒子からなる二種類の六方格子14g、14hとによる三重構造を有する。
[Example 1]
Silica particles having a diameter of 1 μm were synthesized by the Stoeber method. When the zeta potential was measured after washing with pure water, the silica particles showed a potential of about +30 mV in water. Therefore, the silica particles are surface-modified with amino groups. A suspension of amino-modified silica particles having an appropriately adjusted concentration was dropped onto a glass substrate and dried to obtain a large particle aggregate (FIG. 4: Photo 1). As small particles, commercially available carboxyl group-modified polystyrene (PS) particles having a diameter of 0.209 μm were used. A commercially available suspension was washed with pure water to obtain a suspension. The PS particle had a ζ potential of about −40 mV. The diameter ratio of large particles to small particles is 0.209, exceeding 0.1574. This PS particle suspension was dropped onto the surface of the large particle aggregate, and the solvent was removed by drying to obtain a structure (FIG. 5: Photo 2). Small particles are accumulated in the depressions of the large particles, and the portions with a small number and a large number are regularly arranged (FIG. 6: Photo 3). As conceptually shown in FIG. 7, the particle structure 50 is composed of a particle aggregate 12 having a finely packed structure of large particles 10 and small particles arranged in concave portions (dents) 12a on the surface thereof. It has a triple structure with various types of hexagonal lattices 14g and 14h.
[実施例2]
同様に合成したアミノ基修飾したシリカ粒子で大粒子集積体を得た。小粒子として市販の直径0.1μmのカルボキシル基修飾されたPS粒子懸濁液を塗布懸濁液とした。ζ電位は0.209μm品と同程度であった。直径比は0.1で、0.1547を下回る。このPS粒子懸濁液を大粒子集積体に同様に塗布し構造物を得た(図8:写真4)。PS粒子は、大粒子の表面にほぼ均一に吸着した(図9:写真5)。
[Example 2]
Large particle aggregates were obtained from silica particles modified with amino groups similarly synthesized. As a small particle, a commercially available suspension of PS particles modified with a carboxyl group having a diameter of 0.1 μm was used as a coating suspension. The ζ potential was about the same as the 0.209 μm product. The diameter ratio is 0.1, which is below 0.1547. This PS particle suspension was similarly applied to a large particle aggregate to obtain a structure (FIG. 8: Photo 4). PS particles were adsorbed almost uniformly on the surface of the large particles (FIG. 9: Photo 5).
[比較例1]
市販の直径1μmのカルボキシル基修飾されたPS粒子懸濁液を大粒子として同様に大粒子集積体を得た(図10:写真6)、カルボキシル基で修飾された0.209μmのPS粒子を小粒子として、同様に構造物を作ったところ、小粒子の規則構造は得られず、大粒子の構造が破壊された(図11:写真7)。これは、小粒子懸濁液を塗布したときに、どちら粒子も負に帯電したためである。
[Comparative Example 1]
A large particle aggregate was obtained in the same manner by using a commercially available suspension of PS particles modified with carboxyl groups having a diameter of 1 μm as a large particle (FIG. 10: Photo 6), and small 0.209 μm PS particles modified with a carboxyl group. When a structure was made in the same manner as particles, the regular structure of small particles was not obtained, and the structure of large particles was destroyed (FIG. 11: Photo 7). This is because both particles were negatively charged when the small particle suspension was applied.
10 大粒子
12 粒子集積体
12a 凹部分
14 小粒子
14a、14b、14d、14e 異種材料の金属の小粒子
14c 合金
14f 金属膜
14g、14h 小粒子からなる二種類の六方格子
16 懸濁液
18 溶媒
20、30、40、50 粒子構造物
10 Large particles 12 Particle aggregate 12a Recessed portion 14 Small particles 14a, 14b, 14d, 14e Small metal particles 14c of different materials Alloy 14f Metal films 14g, 14h Two types of hexagonal lattice 16 composed of small particles 16 Suspension 18 Solvent 20, 30, 40, 50 Particle structure
Claims (12)
被塗布粒子の粒径より小さい粒径を有する塗布粒子および溶媒を含む懸濁液を、被塗布粒子の集積体上に塗布する工程と、
を含む、粒子構造物の製造方法であって、
被塗布粒子が、懸濁液の溶媒に接触したとき、塗布粒子の符号とは逆の符号に帯電する粒子であることを特徴とする、製造方法。 Forming an aggregate of coated particles from coated particles;
A step of applying a suspension containing coating particles having a particle size smaller than the particle size of the particles to be coated and a solvent onto the aggregate of particles to be coated;
A method for producing a particle structure, comprising:
A production method, wherein the particles to be coated are particles that are charged to a sign opposite to the sign of the coated particles when they come into contact with the solvent of the suspension.
被塗布粒子の粒径より小さい粒径を有していて被塗布粒子の集積体上に形成された塗布粒子の層と、
を含む、粒子構造物であって、
被塗布粒子および塗布粒子は、所定の溶媒に接触したとき、互いに逆の符号に帯電する粒子であることを特徴とする、粒子構造物。 An aggregate of coated particles;
A layer of coated particles having a particle size smaller than the particle size of the coated particles and formed on the aggregate of coated particles;
A particle structure comprising:
A particle structure, wherein the particles to be coated and the particles to be coated are particles that are charged to opposite signs when contacted with a predetermined solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012056117A JP2013188674A (en) | 2012-03-13 | 2012-03-13 | Particle structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012056117A JP2013188674A (en) | 2012-03-13 | 2012-03-13 | Particle structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013188674A true JP2013188674A (en) | 2013-09-26 |
Family
ID=49389520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012056117A Pending JP2013188674A (en) | 2012-03-13 | 2012-03-13 | Particle structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013188674A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62298443A (en) * | 1986-06-17 | 1987-12-25 | Nara Kikai Seisakusho:Kk | Method for reforming surface of solid particle |
JPH0445834A (en) * | 1990-06-11 | 1992-02-14 | Masuko Sangyo Co Ltd | Production of metal deposited inorganic fine powder |
JPH10167707A (en) * | 1996-12-16 | 1998-06-23 | Kagaku Gijutsu Shinko Jigyodan | Production of inorganic ultrathin film having controlled thickness |
JP2006082073A (en) * | 2004-08-20 | 2006-03-30 | Tosoh Corp | Method for producing composite particle, and composite particle |
WO2007043569A1 (en) * | 2005-10-14 | 2007-04-19 | Kyoto University | Transparent conductive film and method for producing same |
US20070281160A1 (en) * | 2006-05-30 | 2007-12-06 | General Electric Company | Core-shell ceramic particulate and method of making |
JP2008520444A (en) * | 2004-11-09 | 2008-06-19 | コミサリヤ・ア・レネルジ・アトミク | Particle networks and methods for realizing such networks |
JP2010500277A (en) * | 2006-08-09 | 2010-01-07 | マサチューセッツ・インスティテュート・オブ・テクノロジー | Super hydrophilic coating |
JP2010505616A (en) * | 2006-10-06 | 2010-02-25 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | Chemically directed electrostatic self-assembly of materials |
JP2010267491A (en) * | 2009-05-14 | 2010-11-25 | Sharp Corp | Method of manufacturing electron emitter, electron emitter, electron emission device, charging device, image forming apparatus, electron beam curing device, self-luminous device, image display apparatus, blowing device, and cooling device |
-
2012
- 2012-03-13 JP JP2012056117A patent/JP2013188674A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62298443A (en) * | 1986-06-17 | 1987-12-25 | Nara Kikai Seisakusho:Kk | Method for reforming surface of solid particle |
JPH0445834A (en) * | 1990-06-11 | 1992-02-14 | Masuko Sangyo Co Ltd | Production of metal deposited inorganic fine powder |
JPH10167707A (en) * | 1996-12-16 | 1998-06-23 | Kagaku Gijutsu Shinko Jigyodan | Production of inorganic ultrathin film having controlled thickness |
JP2006082073A (en) * | 2004-08-20 | 2006-03-30 | Tosoh Corp | Method for producing composite particle, and composite particle |
JP2008520444A (en) * | 2004-11-09 | 2008-06-19 | コミサリヤ・ア・レネルジ・アトミク | Particle networks and methods for realizing such networks |
WO2007043569A1 (en) * | 2005-10-14 | 2007-04-19 | Kyoto University | Transparent conductive film and method for producing same |
US20070281160A1 (en) * | 2006-05-30 | 2007-12-06 | General Electric Company | Core-shell ceramic particulate and method of making |
JP2010500277A (en) * | 2006-08-09 | 2010-01-07 | マサチューセッツ・インスティテュート・オブ・テクノロジー | Super hydrophilic coating |
JP2010505616A (en) * | 2006-10-06 | 2010-02-25 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | Chemically directed electrostatic self-assembly of materials |
JP2010267491A (en) * | 2009-05-14 | 2010-11-25 | Sharp Corp | Method of manufacturing electron emitter, electron emitter, electron emission device, charging device, image forming apparatus, electron beam curing device, self-luminous device, image display apparatus, blowing device, and cooling device |
Non-Patent Citations (1)
Title |
---|
R.K.ILER: "MULTILAYERS OF COLLOIDAL PARTICLES", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 21, JPN6016045019, 1966, pages 569 - 594, XP024203819, ISSN: 0003445724, DOI: 10.1016/0095-8522(66)90018-3 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Colloidal assembly approaches to micro/nanostructures of complex morphologies | |
Liu et al. | Air‐liquid interfacial self‐assembly of two‐dimensional periodic nanostructured arrays | |
Wen et al. | Ultra-large-area self-assembled monolayers of nanoparticles | |
Lin et al. | Formation and dissolution of gold nanocrystal superlattices in a colloidal solution | |
Zhao et al. | Formation mechanism of Fe nanocubes by magnetron sputtering inert gas condensation | |
Rakers et al. | Influence of the evaporation rate on the packing order of polydisperse latex monofilms | |
Chen et al. | Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes | |
Zhang et al. | Fabrication of Single‐Nanocrystal Arrays | |
Xia et al. | Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles | |
Skjeltorp | One-and two-dimensional crystallization of magnetic holes | |
Santhanam et al. | Self-assembly of uniform monolayer arrays of nanoparticles | |
Masuda et al. | Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure | |
Rycenga et al. | Template-assisted self-assembly: a versatile approach to complex micro-and nanostructures | |
Dong et al. | Self-assembly and characterization of 2D plasmene nanosheets | |
Aoshima et al. | Structural analysis of self-assembled lattice structures composed of cubic hematite particles | |
Guo et al. | Guided assembly of colloidal particles on patterned substrates | |
Chan et al. | Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling | |
Wang et al. | Self-assembly of two-and three-dimensional particle arrays by manipulating the hydrophobicity of silica nanospheres | |
Kalsin et al. | Controlling the growth of “ionic” nanoparticle supracrystals | |
US11827520B2 (en) | Orientation of materials via application of a magnetic field and use of magnetically-oriented devices and device component | |
KR20180111192A (en) | Two dimensional hybrid nanopatternd structures through spontaneous self-assembly of plasmonic nanoparticles on a hydrogel colloidal crystal monolayer | |
Yammine et al. | Particles with magnetic patches: synthesis, morphology control, and assembly | |
Aoyama et al. | Two-dimensional nonclose-packed colloidal crystals by the electrostatic adsorption of three-dimensional charged colloidal crystals | |
JP4697866B2 (en) | Periodic structure, manufacturing method thereof, and optical element using the periodic structure | |
Baskin et al. | Clusters and lattices of particles stabilized by dipolar coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161129 |