JP2013187963A - Power transmission system and power transmission device - Google Patents

Power transmission system and power transmission device Download PDF

Info

Publication number
JP2013187963A
JP2013187963A JP2012049695A JP2012049695A JP2013187963A JP 2013187963 A JP2013187963 A JP 2013187963A JP 2012049695 A JP2012049695 A JP 2012049695A JP 2012049695 A JP2012049695 A JP 2012049695A JP 2013187963 A JP2013187963 A JP 2013187963A
Authority
JP
Japan
Prior art keywords
frequency
power transmission
electrodes
power
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049695A
Other languages
Japanese (ja)
Other versions
JP5843066B2 (en
Inventor
Satoshi Shinoda
悟史 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012049695A priority Critical patent/JP5843066B2/en
Publication of JP2013187963A publication Critical patent/JP2013187963A/en
Application granted granted Critical
Publication of JP5843066B2 publication Critical patent/JP5843066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that there are safety and transmission performance limitations with the background technology since adjusting an operational frequency so as to maintain series resonance causes increase of a voltage applied to transmission electrodes, and to provide power transmission system and a transmission device which can improve transmission performance.SOLUTION: A power transmission device 10 comprises power transmission electrodes E1 to E2 for exciting electric fields on the basis of AC voltage applied through a transformer 20, where the transformer 20 and the power transmission electrodes E1 to E2 forms a resonance circuit. A power reception device 30, on the other hand, comprises power reception electrodes E3 to E4 performing electric field coupling to the power transmission electrodes E1 to E2, a transformer 32 and rectifier circuit 34 which supply AC voltage excited at the power reception electrodes E3 to E4 to a battery 36. A CPU 16 repeatedly changes a frequency of the AC voltage applied to the power transmission electrodes E1 to E2, and measures impedance in parallel with the change. The CPU 16 also retrieves a frequency at a time point when the measured impedance shows a decrease tendency satisfying a predetermined condition toward a resonance frequency of the resonance circuit, and sets the retrieved frequency as a frequency of AC voltage at power supply time.

Description

この発明は、電力伝送システムに関し、特に送電装置に設けられた複数の電極と受電装置に設けられた複数の電極との電界結合によって送電装置から受電装置に電力を伝送する、電力伝送システムに関する。   The present invention relates to a power transmission system, and more particularly to a power transmission system that transmits power from a power transmission device to a power reception device by electric field coupling between a plurality of electrodes provided in the power transmission device and a plurality of electrodes provided in the power reception device.

この発明はまた、送電装置に関し、上述の電力伝送システムに適用される、送電装置に関する。   The present invention also relates to a power transmission device, and relates to a power transmission device applied to the above-described power transmission system.

この種の電力電送システムの一例が、特許文献1に開示されている。この背景技術によれば、複数の送電電極を備える固定体は電力供給領域に配置され、複数の受電電極を備える可動体は電力被供給領域に配置される。複数の送電電極は、電力供給領域と電力被供給領域との相互の境界面に対する近傍位置に配置される。また、複数の受電電極は、複数の送電電極に非接触で対向するように境界面に対する近傍位置に配置される。また、固定体および可動体はそれぞれ直列共振回路および並列共振回路をさらに備え、固定体の動作周波数は少なくとも直列共振が保持されるように調整される。これによって、高効率での電力供給が実現される。   An example of this type of power transmission system is disclosed in Patent Document 1. According to this background art, the fixed body including a plurality of power transmission electrodes is disposed in the power supply area, and the movable body including the plurality of power reception electrodes is disposed in the power supply area. The plurality of power transmission electrodes are arranged in the vicinity of the boundary surface between the power supply region and the power supply region. In addition, the plurality of power receiving electrodes are arranged in the vicinity of the boundary surface so as to face the plurality of power transmitting electrodes in a non-contact manner. The fixed body and the movable body further include a series resonance circuit and a parallel resonance circuit, respectively, and the operating frequency of the fixed body is adjusted so that at least series resonance is maintained. Thereby, power supply with high efficiency is realized.

特開2009−89520号公報JP 2009-89520 A

しかし、直列共振が保持されるような動作周波数の調整は送電電極に印加される電圧の上昇を引き起こすため、背景技術では安全性すなわち伝送性能に限界がある。   However, since adjustment of the operating frequency so that series resonance is maintained causes an increase in the voltage applied to the power transmission electrode, there is a limit in safety, that is, transmission performance in the background art.

それゆえに、この発明の主たる目的は、電力の伝送性能を高めることができる、電力伝送システムおよび送電装置を提供することである。   Therefore, a main object of the present invention is to provide a power transmission system and a power transmission device that can enhance power transmission performance.

この発明に従う電力伝送システム(100:実施例で相当する参照符号。以下同じ)は、交流電圧に基づいて電界を励起する複数の第1電極(E1, E2)、および複数の第1電極とともに直列共振回路を形成する第1インダクタ(L2)を備える送電装置(10)と、複数の第1電極と電界結合される複数の第2電極(E3, E4)、および複数の第2電極に励起された電界に基づく電力を負荷(36)に供給する供給手段(32, 34)を備える受電装置(30)とによって形成される電力伝送システム(100)であって、送電装置は、交流電圧の周波数を繰り返し変更する変更手段(S33, S47~S51)、変更手段の処理と並行してインピーダンスを測定する測定手段(S35)、測定手段によって測定されたインピーダンスが直列共振回路の共振周波数に向かって既定条件を満足する減少傾向を示す時点の周波数を変更手段によって指定された複数の周波数の中から探索する第1探索手段(S41)、および第1探索手段によって探知された周波数を給電時の交流電圧の周波数として設定する第1設定手段(S45)をさらに備える。   A power transmission system according to the present invention (100: reference numeral corresponding to the embodiment; the same applies hereinafter) includes a plurality of first electrodes (E1, E2) that excite an electric field based on an AC voltage, and a plurality of first electrodes in series. A power transmission device (10) including a first inductor (L2) that forms a resonance circuit, a plurality of second electrodes (E3, E4) that are electrically coupled to a plurality of first electrodes, and a plurality of second electrodes are excited. A power transmission system (100) formed by a power receiving device (30) provided with a supply means (32, 34) for supplying power based on the electric field to a load (36), wherein the power transmission device has a frequency of an AC voltage. Change means (S33, S47 to S51) that repeatedly change, measurement means (S35) that measures impedance in parallel with the process of the change means, and the impedance measured by the measurement means is predetermined toward the resonance frequency of the series resonant circuit Change the frequency at the point of time when the decrease trend that satisfies the conditions is shown. First search means (S41) for searching among a plurality of frequencies designated by the means, and first setting means (S45) for setting the frequency detected by the first search means as the frequency of the AC voltage during power feeding Further prepare.

好ましくは、既定条件はインピーダンスの大きさが第1閾値を下回るという条件を含む。   Preferably, the predetermined condition includes a condition that the magnitude of the impedance is lower than the first threshold value.

好ましくは、既定条件はインピーダンスの減少率が第2閾値を上回るという条件を含む。   Preferably, the predetermined condition includes a condition that the decreasing rate of the impedance exceeds the second threshold value.

好ましくは、送電装置は、第1探索手段の探索範囲を変更手段の変更範囲よりも狭い範囲に限定する限定手段(S43)、および給電中に異物の接近が検知されたとき変更手段を再起動する再起動手段(S9, S13)をさらに備える。   Preferably, the power transmission device restarts the change unit when the approach of the foreign object is detected during the power supply, and the limiting unit (S43) that limits the search range of the first search unit to a range narrower than the change range of the change unit Restarting means (S9, S13).

さらに好ましくは、変更手段は周波数を高域側から低域側に既定幅ずつ変更する。   More preferably, the changing means changes the frequency by a predetermined width from the high frequency side to the low frequency side.

好ましくは、送電装置は、第1インダクタの巻き数よりも小さい巻き数を有して第1インダクタと誘導結合される第2インダクタ(L1)、および第2インダクタを導通する電流量を周期的に切り換える切り換え手段(14, 18)をさらに備える。   Preferably, the power transmission device periodically sets a second inductor (L1) having a number of turns smaller than that of the first inductor and inductively coupled to the first inductor, and a current amount for conducting the second inductor. Switching means (14, 18) for switching is further provided.

好ましくは、供給手段は複数の第2電極とともに並列共振回路または直列共振回路を形成する第3インダクタ(L3)を含み、送電装置は、変更手段によって指定された複数の周波数の中から並列共振回路の共振周波数を探索する処理を測定手段によって測定されたインピーダンスに基づいて実行する第2探索手段(S37)、および第2探索手段によって探知された周波数を交流電圧の周波数として設定する第2設定手段(S39)をさらに備え、第1設定手段は第2設定手段の処理に劣後して代替的に処理を実行する。   Preferably, the supply unit includes a third inductor (L3) that forms a parallel resonance circuit or a series resonance circuit together with the plurality of second electrodes, and the power transmission device includes the parallel resonance circuit out of the plurality of frequencies specified by the changing unit. Second search means (S37) for executing the process of searching for the resonance frequency of the first frequency based on the impedance measured by the measurement means, and second setting means for setting the frequency detected by the second search means as the frequency of the AC voltage (S39) is further provided, and the first setting means performs the process in an alternative manner after the process of the second setting means.

さらに好ましくは、供給手段は第3インダクタの巻き数よりも小さい巻き数を有して第3インダクタと誘導結合される第4インダクタ(L4)を含む。   More preferably, the supply means includes a fourth inductor (L4) having a number of turns smaller than that of the third inductor and inductively coupled to the third inductor.

この発明に従う送電装置(10)は、複数の第1電極(E3~E4)に励起された電界に基づく電力を負荷(36)に供給する供給手段(32, 34)を備える受電装置(30)に電力を伝送する送電装置であって、交流電圧に基づいて電界を励起するべく複数の第1電極と電界結合される複数の第2電極(E1, E2)、複数の第2電極とともに直列共振回路を形成するインダクタ(L2)、交流電圧の周波数を繰り返し変更する変更手段(S33, S47~S51)、変更手段の処理と並行してインピーダンスを測定する測定手段(S35)、測定手段によって測定されたインピーダンスが直列共振回路の共振周波数に向かって既定条件を満足する減少傾向を示す時点の周波数を変更手段によって指定された複数の周波数の中から探索する探索手段(S41)、および探索手段によって探知された周波数を給電時の交流電圧の周波数として設定する設定手段(S45)を備える。   A power transmission device (10) according to the present invention includes a power receiving device (30) provided with supply means (32, 34) for supplying electric power based on an electric field excited by a plurality of first electrodes (E3 to E4) to a load (36). A power transmission device for transmitting electric power to a plurality of second electrodes (E1, E2) coupled to a plurality of first electrodes to excite an electric field based on an alternating voltage, and a plurality of second electrodes in series resonance Inductor (L2) forming the circuit, changing means (S33, S47 to S51) for repeatedly changing the frequency of the AC voltage, measuring means (S35) for measuring impedance in parallel with the processing of the changing means, and measuring means Search means (S41) for searching for a frequency at a point in time when the impedance shows a decreasing tendency satisfying a predetermined condition toward the resonance frequency of the series resonance circuit from among a plurality of frequencies specified by the change means, and detection by the search means AC voltage when feeding the measured frequency Setting means for setting the frequency comprises (S45).

この発明によれば、直列共振回路の共振周波数(=直列共振周波数)に向かって既定条件を満足する減少傾向を示す時点の周波数が給電時の交流電圧の周波数として設定される。直列共振周波数に向かって減少傾向を示す周波数(=直列共振周波数と異なる周波数)に設定することで、複数の第1電極に印加される交流電圧が過大となる事態が回避され、これによって安全性が確保される。また、直列共振周波数を基準とすることで、送電装置と受電装置との結合度が低い状態でも給電時の交流電圧の周波数を確実に設定することができる。こうして、電力伝送性能が向上する。   According to this invention, the frequency at the time of showing a decreasing tendency that satisfies the predetermined condition toward the resonance frequency (= series resonance frequency) of the series resonance circuit is set as the frequency of the AC voltage during power feeding. By setting to a frequency that tends to decrease toward the series resonance frequency (= a frequency different from the series resonance frequency), a situation in which the AC voltage applied to the plurality of first electrodes is excessive is avoided, thereby ensuring safety. Is secured. Further, by using the series resonance frequency as a reference, it is possible to reliably set the frequency of the AC voltage during power feeding even in a state where the degree of coupling between the power transmitting device and the power receiving device is low. Thus, power transmission performance is improved.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

この発明の一実施例の構成を示すブロック図である。It is a block diagram which shows the structure of one Example of this invention. 図1実施例の外観の一例を示す図解図である。It is an illustration figure which shows an example of the external appearance of FIG. 1 Example. 図1実施例の等価回路を示すブロック図である。It is a block diagram which shows the equivalent circuit of FIG. 1 Example. 周波数に対するインピーダンスの変化の一例を示すグラフである。It is a graph which shows an example of the change of the impedance with respect to a frequency. 周波数に対するインピーダンスの変化の他の一例を示すグラフである。It is a graph which shows another example of the change of the impedance with respect to a frequency. 図1実施例に適用されるCPUの動作の一部を示すフロー図である。It is a flowchart which shows a part of operation | movement of CPU applied to the FIG. 1 Example. 図1実施例に適用されるCPUの動作の他の一部を示すフロー図である。It is a flowchart which shows a part of other operation | movement of CPU applied to the FIG. 1 Example. 図1実施例に適用されるCPUの動作のその他の一部を示すフロー図である。It is a flowchart which shows a part of other operation | movement of CPU applied to the FIG. 1 Example. 図1実施例に適用されるCPUの動作のさらにその他の一部を示すフロー図である。FIG. 12 is a flowchart showing yet another portion of behavior of the CPU applied to the embodiment in FIG. 1. この発明の他の実施例の構成の一部を示すブロック図である。It is a block diagram which shows a part of structure of the other Example of this invention.

図1および図2を参照して、この実施例の電力電送システム100は、送電電極E1およびE2が埋め込まれた上面を有する送電装置10と、受電電極E3およびE4が埋め込まれた下面を有する受電装置30とによって形成される。受電電極E3およびE4が送電電極E1およびE2と対向するように受電装置30の下面を送電装置10の上面に近づけると(図2参照)、受電装置30が送電装置10と電界結合される。これによって、送電装置10の電力が受電装置30に伝送される。   1 and 2, a power transmission system 100 according to this embodiment includes a power transmission device 10 having an upper surface in which power transmission electrodes E1 and E2 are embedded, and a power reception device having a lower surface in which power reception electrodes E3 and E4 are embedded. Formed by the device 30. When the lower surface of the power receiving device 30 is brought close to the upper surface of the power transmitting device 10 so that the power receiving electrodes E3 and E4 face the power transmitting electrodes E1 and E2 (see FIG. 2), the power receiving device 30 is electrically coupled to the power transmitting device 10. As a result, the power of the power transmission device 10 is transmitted to the power reception device 30.

図1に示すように、直流電源12は、端子T1およびT2のいずれか一方と接続されるスイッチSW1の入力端に直流電圧を印加する。端子T1は直接的にインバータ18と接続され、端子T2は抵抗R1を介してインバータ18と接続される。したがって、スイッチSW1が端子T1と接続されるときは直流電圧がインバータ18に供給され、スイッチSW1が端子T2と接続されるときは直流電流がインバータ18に供給される。   As shown in FIG. 1, the DC power supply 12 applies a DC voltage to the input terminal of the switch SW1 connected to either one of the terminals T1 and T2. The terminal T1 is directly connected to the inverter 18, and the terminal T2 is connected to the inverter 18 via the resistor R1. Therefore, a direct current voltage is supplied to the inverter 18 when the switch SW1 is connected to the terminal T1, and a direct current is supplied to the inverter 18 when the switch SW1 is connected to the terminal T2.

インバータ18は、PWM発生回路14から出力されたPWM信号がHレベルを示す期間にオン状態となり、PWM発生回路14から出力されたPWM信号がLレベルを示す期間にオフ状態となる。インバータ18はまた、トランス20を形成しかつ誘導結合されたインダクタL1およびL2のうち、インダクタL1と接続される。   The inverter 18 is turned on while the PWM signal output from the PWM generation circuit 14 is at the H level, and is turned off when the PWM signal output from the PWM generation circuit 14 is at the L level. Inverter 18 is also connected to inductor L1 among inductors L1 and L2 that form transformer 20 and are inductively coupled.

したがって、インバータ18が上述の要領でオン/オフされると、インダクタL1およびL2の各々に交流電圧が誘起される。ただし、インダクタL2の巻き数はインダクタL1の巻き数よりも大きく、インダクタL2に誘起される交流電圧はインダクタL1に誘起された交流電圧よりも高い値を示す。また、インダクタL1およびL2の各々に誘起される交流電圧の周波数および高さはそれぞれ、PMW信号の周波数(=PWM周波数)およびデューティ比に依存する。   Therefore, when inverter 18 is turned on / off as described above, an AC voltage is induced in each of inductors L1 and L2. However, the number of turns of the inductor L2 is larger than the number of turns of the inductor L1, and the AC voltage induced in the inductor L2 is higher than the AC voltage induced in the inductor L1. Further, the frequency and height of the AC voltage induced in each of the inductors L1 and L2 depend on the frequency (= PWM frequency) of the PMW signal and the duty ratio, respectively.

インダクタンスL2に誘起された交流電圧は、送電電極E1およびE2に印加される。送電電極E1およびE2と電界結合された受電電極E3およびE4には、印加された交流電圧の周波数に相当する周波数と電界結合度に依存する高さとを有する交流電圧が励起される。   The AC voltage induced in the inductance L2 is applied to the power transmission electrodes E1 and E2. An AC voltage having a frequency that corresponds to the frequency of the applied AC voltage and a height that depends on the degree of electric field coupling is excited in the receiving electrodes E3 and E4 that are field-coupled with the power transmission electrodes E1 and E2.

こうして励起された交流電圧は、トランス32を形成しかつ誘導結合されたインダクタL3およびL4を介して整流回路34に供給される。ただし、インダクタL4の巻き数はインダクタL3の巻き数よりも小さく、整流回路34に供給される交流電圧は受電電極E3およびE4に励起された交流電圧よりも低い値を示す。整流回路34は、このような交流電圧を直流電圧に整流し、整流された直流電圧をバッテリ36に供給する。これによって、バッテリ36が充電される。   The alternating voltage thus excited is supplied to the rectifier circuit 34 via inductors L3 and L4 that form a transformer 32 and are inductively coupled. However, the number of turns of the inductor L4 is smaller than the number of turns of the inductor L3, and the AC voltage supplied to the rectifier circuit 34 is lower than the AC voltage excited by the power receiving electrodes E3 and E4. The rectifier circuit 34 rectifies such an AC voltage into a DC voltage and supplies the rectified DC voltage to the battery 36. Thereby, the battery 36 is charged.

図1に示す電力伝送システム100の等価回路を図3に示す。図3によれば、インダクタンスLtを有するインダクタおよびキャパシタンスCtを有するキャパシタによって形成された送電側共振回路SR1が送電装置10に設けられ、インダクタンスLrを有するインダクタおよびキャパシタンスCrを有するキャパシタによって形成された受電側共振回路PR1が受電装置30に設けられる。また、2つのキャパシタの間には、結合容量Cmが発生する。   FIG. 3 shows an equivalent circuit of the power transmission system 100 shown in FIG. According to FIG. 3, the power transmission side resonance circuit SR1 formed by the inductor having the inductance Lt and the capacitor having the capacitance Ct is provided in the power transmission device 10, and the power reception is formed by the inductor having the inductance Lr and the capacitor having the capacitance Cr. The side resonance circuit PR1 is provided in the power receiving device 30. Further, a coupling capacitance Cm is generated between the two capacitors.

これを踏まえて、送電側共振回路SR1の反共振周波数および共振周波数はそれぞれ数1および数2に従って定義され、受電側共振回路PR1の反共振周波数および共振周波数はそれぞれ数3および数4に従って定義される。
[数1]
Ft_L=1/(2π√(Lt(Ct+Cm)))
Ft_L:送電側共振回路SR1の反共振周波数
[数2]
Ft_H=1/(2π√(Lt(Ct−Cm)))
Ft_H:送電側共振回路SR1の共振周波数
[数3]
Fr_L=1/(2π√(Lr(Cr+Cm)))
Fr_L:受電側共振回路PR1の反共振周波数
[数4]
Fr_H=1/(2π√(Lr(Cr−Cm)))
Fr_H:受電側共振回路PR1の共振周波数
Based on this, the anti-resonance frequency and the resonance frequency of the power transmission side resonance circuit SR1 are defined according to the equations 1 and 2, respectively, and the anti-resonance frequency and the resonance frequency of the power reception side resonance circuit PR1 are defined according to the equations 3 and 4, respectively. The
[Equation 1]
Ft_L = 1 / (2π√ (Lt (Ct + Cm)))
Ft_L: Anti-resonance frequency [Equation 2] of the power transmission side resonance circuit SR1
Ft_H = 1 / (2π√ (Lt (Ct−Cm)))
Ft_H: Resonance frequency of transmission side resonance circuit SR1 [Equation 3]
Fr_L = 1 / (2π√ (Lr (Cr + Cm)))
Fr_L: Anti-resonance frequency of the power receiving side resonance circuit PR1 [Equation 4]
Fr_H = 1 / (2π√ (Lr (Cr−Cm)))
Fr_H: Resonance frequency of the power receiving side resonance circuit PR1

送電装置10と受電装置30との電界結合度が高ければ、インバータ18から眺めたインピーダンスZはPWM周波数に対して図4に示す要領で変化する。これに対して、送電装置10と受電装置30との電界結合度が低ければ、インバータ18から眺めたインピーダンスZはPWM周波数に対して図5に示す要領で変化する。なお、電界結合度が低い状態で送電装置10に異物が接近すると、インピーダンスZは図5に示す一点鎖線に沿って変化する。   If the electric field coupling degree between the power transmitting device 10 and the power receiving device 30 is high, the impedance Z viewed from the inverter 18 changes in the manner shown in FIG. 4 with respect to the PWM frequency. On the other hand, if the electric field coupling degree between the power transmitting device 10 and the power receiving device 30 is low, the impedance Z viewed from the inverter 18 changes in the manner shown in FIG. 5 with respect to the PWM frequency. In addition, when a foreign object approaches the power transmission device 10 in a state where the electric field coupling degree is low, the impedance Z changes along a one-dot chain line shown in FIG.

電界結合度が高い図4によれば、インピーダンスZは、送電側共振回路SR1の反共振周波数Ft_Lおよび共振周波数Ft_Hにそれぞれ対応して極大値および極小値を示すだけでなく、受電側共振回路PR1の反共振周波数Fr_Lおよび共振周波数Fr_Hにそれぞれ対応して極大値および極小値を示す。これに対して、電界結合度が低い図5によれば、インピーダンスZは、送電側共振回路SR1の反共振周波数Ft_Lおよび共振周波数Ft_Hにそれぞれ対応して極大値および極小値を示すに留まる。   According to FIG. 4 where the electric field coupling degree is high, the impedance Z not only shows the maximum value and the minimum value corresponding to the anti-resonance frequency Ft_L and the resonance frequency Ft_H of the power transmission side resonance circuit SR1, but also the power reception side resonance circuit PR1. Corresponding to the anti-resonance frequency Fr_L and the resonance frequency Fr_H, respectively, show a maximum value and a minimum value. On the other hand, according to FIG. 5 where the electric field coupling degree is low, the impedance Z only shows the maximum value and the minimum value corresponding to the anti-resonance frequency Ft_L and the resonance frequency Ft_H of the power transmission side resonance circuit SR1, respectively.

なお、結合容量Cmの大きさは電界結合度に依存するため、送電側共振回路SR1の反共振周波数Ft_Lおよび共振周波数Ft_Hの値は図4および図5の間で相違する。また、この実施例では、インピーダンスZが極小値を示す点を共振点とし、インピーダンスZが極大値を示す点を反共振点としている。   Since the magnitude of the coupling capacitance Cm depends on the electric field coupling degree, the values of the anti-resonance frequency Ft_L and the resonance frequency Ft_H of the power transmission side resonance circuit SR1 are different between FIGS. Further, in this embodiment, a point where the impedance Z has a minimum value is a resonance point, and a point where the impedance Z has a maximum value is an anti-resonance point.

受電装置30に設けられたバッテリ36を充電するために、送電装置10のCPU16は、スイッチSW1の接続先を端子T2に接続し、初期値を示すデューティ比をPWM発生回路14に固定的に設定するとともに、図4〜図5に示す掃引範囲の最大値から最小値まで既定幅ずつ順に低減するPWM周波数をPWM発生回路14に繰り返し設定する。   In order to charge the battery 36 provided in the power receiving device 30, the CPU 16 of the power transmitting device 10 connects the connection destination of the switch SW1 to the terminal T2, and fixedly sets the duty ratio indicating the initial value in the PWM generation circuit 14. At the same time, the PWM generation circuit 14 is repeatedly set with a PWM frequency that sequentially decreases from the maximum value to the minimum value of the sweep range shown in FIGS.

PWM発生回路14は、設定されたデューディ比およびPWM周波数を有するPWM信号をインバータ18に与える。これによって、デューディ比およびPWM周波数に依存する高さおよび周波数を有する交流電圧が送電電極E1〜E2に印加され、さらにインピーダンスZがインバータ18の入力端の電圧に基づいて測定される。   PWM generation circuit 14 provides inverter 18 with a PWM signal having a set duty ratio and PWM frequency. Thus, an AC voltage having a height and frequency depending on the duty ratio and the PWM frequency is applied to the power transmission electrodes E1 to E2, and the impedance Z is measured based on the voltage at the input terminal of the inverter 18.

測定されたインピーダンスZが極大値を示せば、CPU16は、受電側共振回路PR1の反共振周波数Fr_Lが探知されたとみなし、現時点の周波数を給電時のPWM周波数として確定させる。これに対して、測定されたインピーダンスZが閾値THzを下回り、かつ現時点のPWM周波数が想定範囲に属せば、CPU16は、送電側共振回路SR1の共振周波数Ft_Hの周辺の周波数が探知されたとみなし、現時点の周波数を給電時のPWM周波数として確定させる。   If the measured impedance Z shows a maximum value, the CPU 16 considers that the anti-resonance frequency Fr_L of the power receiving side resonance circuit PR1 has been detected, and determines the current frequency as the PWM frequency at the time of power feeding. On the other hand, if the measured impedance Z falls below the threshold THz and the current PWM frequency belongs to the assumed range, the CPU 16 considers that a frequency around the resonance frequency Ft_H of the power transmission side resonance circuit SR1 has been detected. The current frequency is determined as the PWM frequency during power feeding.

つまり、送信装置10と受電装置30との電界結合度が高く、受電側共振回路PR1の共振および送電側共振回路SR1の共振の両方がインピーダンスZの周波数特性に反映されるとき(図4参照)は、受電側共振回路PR1の反共振周波数Fr_Lが給電時のPWM周波数として設定される。   That is, when the electric field coupling degree between the transmission device 10 and the power reception device 30 is high, both the resonance of the power reception side resonance circuit PR1 and the resonance of the power transmission side resonance circuit SR1 are reflected in the frequency characteristic of the impedance Z (see FIG. 4). , The anti-resonance frequency Fr_L of the power receiving side resonance circuit PR1 is set as the PWM frequency during power feeding.

これに対して、送信装置10と受電装置30との電界結合度が低く、受電側共振回路PR1の共振がインピーダンスZの周波数特性に反映されないとき(図5参照)は、送電側直列共振回路SR1の共振周波数Ft_Hの周辺の周波数が給電時のPWM周波数として設定される。さらに、共振周波数Ft_Hの周辺の周波数を設定する処理は、受電側共振回路PR1の反共振周波数Fr_Lを設定する処理に劣後して代替的に実行される。   On the other hand, when the electric field coupling between the transmission device 10 and the power reception device 30 is low and the resonance of the power reception side resonance circuit PR1 is not reflected in the frequency characteristic of the impedance Z (see FIG. 5), the power transmission side series resonance circuit SR1. The frequency around the resonance frequency Ft_H is set as the PWM frequency during power feeding. Furthermore, the process of setting the frequency around the resonance frequency Ft_H is performed in an alternative manner after the process of setting the anti-resonance frequency Fr_L of the power receiving resonance circuit PR1.

こうして給電時のPWM周波数が確定すると、CPU16は、スイッチSW1の接続先を端子T1に切り換える。これによって、受電装置30への給電が開始される。   When the PWM frequency during power supply is thus determined, the CPU 16 switches the connection destination of the switch SW1 to the terminal T1. Thereby, power supply to the power receiving device 30 is started.

インピーダンスZは、給電が開始された後も繰り返し測定される。送電装置10への異物の接近がインピーダンスZの変化に基づいて検知されると、CPU16は、スイッチSW1の接続先を端子T2に切り換え、上述と同じ要領でPWM周波数を探索する。   The impedance Z is repeatedly measured even after feeding is started. When the approach of a foreign object to the power transmission device 10 is detected based on the change in the impedance Z, the CPU 16 switches the connection destination of the switch SW1 to the terminal T2 and searches for the PWM frequency in the same manner as described above.

上述のように、電界結合度が低い状態で送電装置10に異物が接近すると、インピーダンスZは図5に示す一点鎖線に沿って変化する。この状態では、インピーダンスZが閾値THzを下回る時点の周波数は、想定範囲から外れる。このため、PWM周波数は掃引範囲内で繰り返し更新される。異物が送電装置10から離れることでインピーダンスZの周波数特性が元の状態に復帰すると、インピーダンスZが閾値THzを下回る時点の周波数は想定範囲に収まる。この結果、給電時のPWM周波数は共振周波数Ft_Hの周辺の周波数に設定される。周波数設定が完了すると、スイッチSW1の接続先が端子T1に切り換えられ、給電が再開される。   As described above, when a foreign object approaches the power transmission device 10 in a state where the electric field coupling degree is low, the impedance Z changes along the alternate long and short dash line shown in FIG. In this state, the frequency at which the impedance Z falls below the threshold THz is out of the assumed range. For this reason, the PWM frequency is repeatedly updated within the sweep range. When the frequency characteristic of the impedance Z returns to the original state due to the foreign object moving away from the power transmission device 10, the frequency at the time when the impedance Z falls below the threshold THz falls within the assumed range. As a result, the PWM frequency during power feeding is set to a frequency around the resonance frequency Ft_H. When the frequency setting is completed, the connection destination of the switch SW1 is switched to the terminal T1, and power feeding is resumed.

バッテリ36の満充電がインピーダンスZに基づいて検知されると、CPU16は、スイッチSW1の接続先を端子T2に切り換え、受電装置30への給電を停止するべくPWM発生回路14をオフする。指定時間(=たとえば1分)が経過すると、PWM発生回路14がオンされ、これによって受電装置30への給電が再開される。PWM発生回路14は、オフ状態に移行する前の周波数およびデューティ比を有するPWM信号を発生する。給電が再開されると、CPU16は、受電装置30と送電装置10との結合の有無を判別するために、PWM周波数を掃引してインピーダンスZの周波数特性を測定する。このような給電停止,指定時間の待機,給電再開,インピーダンス測定の一連の処理は、受電装置30と送電装置10の結合が検知される限り、繰り返し実行される。   When the full charge of the battery 36 is detected based on the impedance Z, the CPU 16 switches the connection destination of the switch SW1 to the terminal T2, and turns off the PWM generation circuit 14 to stop the power supply to the power receiving device 30. When a designated time (= for example, 1 minute) elapses, the PWM generation circuit 14 is turned on, whereby the power supply to the power receiving device 30 is resumed. The PWM generation circuit 14 generates a PWM signal having a frequency and a duty ratio before shifting to the off state. When the power supply is resumed, the CPU 16 sweeps the PWM frequency and measures the frequency characteristic of the impedance Z in order to determine whether or not the power receiving device 30 and the power transmitting device 10 are coupled. Such a series of processes of stopping power feeding, waiting for a specified time, restarting power feeding, and measuring impedance is repeatedly executed as long as the connection between the power receiving device 30 and the power transmitting device 10 is detected.

CPU16は、具体的には、図6〜図9に示すフロー図に従う処理を実行する。なお、このフロー図に対応する制御プログラムは、フラッシュメモリ16mに記憶される。   Specifically, the CPU 16 executes processing according to the flowcharts shown in FIGS. A control program corresponding to this flowchart is stored in the flash memory 16m.

図6を参照して、ステップS1ではスイッチSW1を端子T2に接続し、ステップS3では給電時のPWM周波数を確定するべく、給電前処理を実行する。PWM周波数が確定すると、ステップS5でスイッチSW1の接続先を端子T1に戻す。これによって、受電装置30への給電が開始される。   Referring to FIG. 6, in step S1, switch SW1 is connected to terminal T2, and in step S3, power feeding pre-processing is executed to determine the PWM frequency during power feeding. When the PWM frequency is determined, the connection destination of the switch SW1 is returned to the terminal T1 in step S5. Thereby, power supply to the power receiving device 30 is started.

ステップS7では、インバータ18の入力端の電圧に基づいてインピーダンスZを測定する。ステップS9では送電装置10に異物が接近したか否かを測定されたインピーダンスZに基づいて判別し、ステップS11ではバッテリ36が満充電状態になったか否かを測定されたインピーダンスZに基づいて判別する。ステップS9の判別結果がYESであれば、ステップS13でステップS1と同様の処理を実行してからステップS3に戻る。一方、ステップS11の判別結果がYESであれば、ステップS15でステップS1と同様の処理を実行してからステップS17に進む。   In step S7, the impedance Z is measured based on the voltage at the input terminal of the inverter 18. In step S9, it is determined based on the measured impedance Z whether or not a foreign object has approached the power transmission device 10, and in step S11, whether the battery 36 is fully charged is determined based on the measured impedance Z. To do. If the determination result of step S9 is YES, it will return to step S3, after performing the process similar to step S1 by step S13. On the other hand, if the determination result of step S11 is YES, it will progress to step S17 after performing the process similar to step S1 by step S15.

ステップS17では受電装置30への給電を停止するべくPWM発生回路14をオフし、ステップS19では指定時間(=たとえば1分)だけ待機する。指定時間が経過するとステップS21に進み、受電装置30への給電を再開するべくPWM発生回路14をオンする。PWM発生回路14は、オフ状態に移行する前の周波数およびデューティ比を有するPWM信号を発生する。   In step S17, the PWM generation circuit 14 is turned off to stop the power supply to the power receiving device 30, and in step S19, the system waits for a specified time (= for example, 1 minute). When the designated time elapses, the process proceeds to step S21, and the PWM generation circuit 14 is turned on to restart the power supply to the power receiving device 30. The PWM generation circuit 14 generates a PWM signal having a frequency and a duty ratio before shifting to the off state.

ステップS23では、PWM周波数を掃引してインピーダンスZの周波数特性を測定する。ステップS25では、受電装置30が送電装置10から離脱されたか否かを測定された周波数特性に基づいて判別する。判別結果がNOであればステップS17に戻る一方、判別結果がYESであればステップS3に戻る。   In step S23, the PWM frequency is swept to measure the frequency characteristic of the impedance Z. In step S25, it is determined based on the measured frequency characteristics whether or not the power receiving device 30 has been detached from the power transmitting device 10. If the determination result is NO, the process returns to step S17, while if the determination result is YES, the process returns to step S3.

ステップS3の給電前処理は、図8〜図9に示すサブルーチンに従って実行される。まずステップS31でデューティ比を初期値に設定し、ステップS33でPWM周波数を“fmax”(=掃引範囲の最大値)に設定する。PWM発生回路14は、設定されたデューディ比およびPWM周波数を有するPWM信号をインバータ18に与える。   The power feeding pre-processing in step S3 is executed according to the subroutine shown in FIGS. First, in step S31, the duty ratio is set to an initial value, and in step S33, the PWM frequency is set to “fmax” (= maximum value of the sweep range). PWM generation circuit 14 provides inverter 18 with a PWM signal having a set duty ratio and PWM frequency.

ステップS35ではインバータ18の入力端の電圧に基づいてインピーダンスZを測定し、ステップS37では測定されたインピーダンスZが極大値を示すか否かを判別する。判別結果がYESであれば、受電側共振回路PR1の共振周波数Fr_Lが探知されたとみなし、ステップS39に進む。ステップS39では、現時点の周波数を確定PWM周波数とし、その後に上階層のルーチンに復帰する。   In step S35, the impedance Z is measured based on the voltage at the input terminal of the inverter 18, and in step S37, it is determined whether or not the measured impedance Z shows a maximum value. If the determination result is YES, it is considered that the resonance frequency Fr_L of the power receiving side resonance circuit PR1 has been detected, and the process proceeds to step S39. In step S39, the current frequency is set as the deterministic PWM frequency, and then the process returns to the upper layer routine.

ステップS37の判別結果がNOであれば、ステップS35で測定されたインピーダンスZが閾値THzを下回るか否かをステップS41で判別し、現時点のPWM周波数が想定範囲に属するか否かをステップS43で判別し、現時点のPWM周波数が“fmin”(=掃引範囲の最小値)に相当するか否かをステップS47で判別する。   If the determination result in step S37 is NO, it is determined in step S41 whether or not the impedance Z measured in step S35 is lower than the threshold THz, and whether or not the current PWM frequency belongs to the assumed range is determined in step S43. In step S47, it is determined whether or not the current PWM frequency corresponds to “fmin” (= minimum value of the sweep range).

ステップS41またはS43の判別結果がNOでかつステップS47の判別結果がNOであれば、ステップS49でPWM周波数を既定幅だけ低減し、その後にステップS35に戻る。ステップS41またはS43の判別結果がNOでかつステップS47の判別結果がYESであれば、ステップS51でステップS33と同様の処理を実行し、その後にステップS35に戻る。ステップS41およびS43の判別結果がYESであれば、送電側共振回路SR1の反共振周波数Ft_Hの周辺の周波数が探知されたとみなし、ステップS45に進む。ステップS45では、現時点の周波数を確定PWM周波数とし、その後に上階層のルーチンに復帰する。   If the determination result in step S41 or S43 is NO and the determination result in step S47 is NO, the PWM frequency is reduced by a predetermined width in step S49, and then the process returns to step S35. If the determination result of step S41 or S43 is NO and the determination result of step S47 is YES, the same process as step S33 is executed in step S51, and then the process returns to step S35. If the determination result of step S41 and S43 is YES, it will consider that the frequency around the antiresonance frequency Ft_H of the power transmission side resonance circuit SR1 was detected, and will progress to step S45. In step S45, the current frequency is set as the deterministic PWM frequency, and then the process returns to the upper layer routine.

以上の説明から分かるように、送電装置10は、トランス20を介して印加される交流電圧に基づいて電界を励起する送電電極E1〜E2を備える。ここで、トランス20および送電電極E1〜E2は送電側共振回路SR1を形成する。一方、受電装置30は、送電電極E1〜E2と電界結合される受電電極E3〜E4と、受電電極E3〜E4に励起された交流電圧をバッテリ36に供給するトランス32および整流回路34とを備える。   As can be seen from the above description, the power transmission device 10 includes power transmission electrodes E <b> 1 to E <b> 2 that excite an electric field based on an AC voltage applied via the transformer 20. Here, the transformer 20 and the power transmission electrodes E1 to E2 form a power transmission side resonance circuit SR1. On the other hand, the power receiving device 30 includes power receiving electrodes E3 to E4 that are electric field coupled to the power transmitting electrodes E1 to E2, and a transformer 32 and a rectifier circuit 34 that supply an AC voltage excited by the power receiving electrodes E3 to E4 to the battery 36. .

これを踏まえて、CPU16は、送電電極E1〜E2に印加される交流電圧の周波数(=PWM周波数)を繰り返し変更し(S33, S47~S51)、これと並列してインピーダンスZを測定する(S35)。CPU16はまた、測定されたインピーダンスZが送電側共振回路SR1の共振周波数Ft_Hに向かって既定条件(既定条件:インピーダンスZの大きさが閾値THzを下回るという条件)を満足する減少傾向を示す時点の周波数を探索し(S41)、探知された周波数を給電時の交流電圧の周波数として設定する(S45)。   Based on this, the CPU 16 repeatedly changes the frequency (= PWM frequency) of the AC voltage applied to the power transmission electrodes E1 to E2 (S33, S47 to S51), and measures the impedance Z in parallel with this (S35). ). The CPU 16 also shows a time point when the measured impedance Z shows a decreasing tendency that satisfies a predetermined condition (a predetermined condition: a condition that the magnitude of the impedance Z is lower than the threshold THz) toward the resonance frequency Ft_H of the power transmission side resonance circuit SR1. The frequency is searched (S41), and the detected frequency is set as the frequency of the AC voltage during power feeding (S45).

共振周波数Ft_Hに向かって減少傾向を示す時点の周波数(=共振周波数Ft_Hと異なる周波数)に設定することで、送電電極E1〜E2に印加される交流電圧が過大となる事態が回避され、これによって安全性が確保される。また、共振周波数Ft_Hを基準とすることで、送電装置10と受電装置30との結合度が低い状態でも給電時の交流電圧の周波数を確実に設定することができる。こうして、電力伝送性能が向上する。   By setting the frequency at the time of showing a decreasing tendency toward the resonance frequency Ft_H (= a frequency different from the resonance frequency Ft_H), a situation in which the AC voltage applied to the power transmission electrodes E1 to E2 becomes excessive is avoided. Safety is ensured. Further, by using the resonance frequency Ft_H as a reference, it is possible to reliably set the frequency of the AC voltage during power feeding even in a state where the degree of coupling between the power transmitting device 10 and the power receiving device 30 is low. Thus, power transmission performance is improved.

なお、この実施例では、インピーダンスZが閾値THzを下回ることを既定条件として設定するようにしている。しかし、インピーダンスZの減少率が別の閾値を上回ることを既定条件として設定するようにしてもよい。   In this embodiment, it is set as a predetermined condition that the impedance Z is lower than the threshold value THz. However, it may be set as a predetermined condition that the decrease rate of the impedance Z exceeds another threshold value.

また、この実施例では、PWM周波数を確定させるために、インピーダンスZを測定するようにしている(ステップS25,S27,S31参照)。しかし、インピーダンスZに代えてインバータ18を導通する電流を測定するようにしてもよい。   In this embodiment, the impedance Z is measured in order to determine the PWM frequency (see steps S25, S27, and S31). However, instead of the impedance Z, a current that conducts the inverter 18 may be measured.

さらに、この実施例では、並列接続されたキャパシタおよびインダクタによって受電側共振回路PR1を形成するようにしている。しかし、図10に示すように直列接続されたキャパシタおよびインダクタによって受電側共振回路PR1を形成するようにしてもよい。   Furthermore, in this embodiment, the power receiving side resonance circuit PR1 is formed by a capacitor and an inductor connected in parallel. However, as shown in FIG. 10, the power receiving side resonance circuit PR1 may be formed by a capacitor and an inductor connected in series.

10 …送電装置
14 …PWM発生回路
16 …CPU
18 …インバータ
20,32 …トランス
34 …整流回路
E1〜E2 …送電電極
E3〜E4 …受電電極
DESCRIPTION OF SYMBOLS 10 ... Power transmission apparatus 14 ... PWM generation circuit 16 ... CPU
18 ... Inverter 20, 32 ... Transformer 34 ... Rectifier circuit E1-E2 ... Power transmission electrode E3-E4 ... Power reception electrode

Claims (9)

交流電圧に基づいて電界を励起する複数の第1電極、および前記複数の第1電極とともに直列共振回路を形成する第1インダクタを備える送電装置と、前記複数の第1電極と電界結合される複数の第2電極、および前記複数の第2電極に励起された電界に基づく電力を負荷に供給する供給手段を備える受電装置とによって形成される電力伝送システムであって、
前記送電装置は、
前記交流電圧の周波数を繰り返し変更する変更手段、
前記変更手段の処理と並行してインピーダンスを測定する測定手段、
前記測定手段によって測定されたインピーダンスが前記直列共振回路の共振周波数に向かって既定条件を満足する減少傾向を示す時点の周波数を前記変更手段によって指定された複数の周波数の中から探索する第1探索手段、および
前記第1探索手段によって探知された周波数を給電時の前記交流電圧の周波数として設定する第1設定手段をさらに備える、電力伝送システム。
A power transmission device including a plurality of first electrodes for exciting an electric field based on an alternating voltage, a first inductor that forms a series resonance circuit with the plurality of first electrodes, and a plurality of electric fields coupled to the plurality of first electrodes. A power transmission system formed by the second electrode and a power receiving device including a supply unit that supplies power based on an electric field excited by the plurality of second electrodes to a load,
The power transmission device is:
Changing means for repeatedly changing the frequency of the AC voltage;
Measuring means for measuring impedance in parallel with the processing of the changing means,
A first search for searching for a frequency at a point in time when the impedance measured by the measuring means shows a decreasing tendency satisfying a predetermined condition toward the resonance frequency of the series resonant circuit from among the plurality of frequencies specified by the changing means. And a first setting means for setting the frequency detected by the first searching means as the frequency of the AC voltage during power feeding.
前記既定条件は前記インピーダンスの大きさが第1閾値を下回るという条件を含む、請求項1記載の電力伝送システム。   The power transmission system according to claim 1, wherein the predetermined condition includes a condition that a magnitude of the impedance is lower than a first threshold value. 前記既定条件は前記インピーダンスの減少率が第2閾値を上回るという条件を含む、請求項1記載の電力伝送システム。   The power transmission system according to claim 1, wherein the predetermined condition includes a condition that a reduction rate of the impedance exceeds a second threshold value. 前記送電装置は、前記第1探索手段の探索範囲を前記変更手段の変更範囲よりも狭い範囲に限定する限定手段、および給電中に異物の接近が検知されたとき前記変更手段を再起動する再起動手段をさらに備える、請求項1ないし3のいずれかに記載の電力伝送システム。   The power transmission device includes a limiting unit that limits a search range of the first search unit to a range narrower than a change range of the change unit, and a restart unit that restarts the change unit when an approach of a foreign object is detected during power feeding. The power transmission system according to claim 1, further comprising an activation unit. 前記変更手段は前記周波数を高域側から低域側に既定幅ずつ変更する、請求項4記載の電力伝送システム。   The power transmission system according to claim 4, wherein the changing unit changes the frequency from a high frequency side to a low frequency side by a predetermined width. 前記送電装置は、前記第1インダクタの巻き数よりも小さい巻き数を有して前記第1インダクタと誘導結合される第2インダクタ、および前記第2インダクタを導通する電流量を周期的に切り換える切り換え手段をさらに備える、請求項1ないし5のいずれかに記載の電力伝送システム。   The power transmission device has a number of turns smaller than the number of turns of the first inductor, a second inductor that is inductively coupled to the first inductor, and a switching that periodically switches a current amount that conducts the second inductor. The power transmission system according to any one of claims 1 to 5, further comprising means. 前記供給手段は前記複数の第2電極とともに並列共振回路または直列共振回路を形成する前記第3インダクタを含み、
前記送電装置は、前記変更手段によって指定された複数の周波数の中から前記並列共振回路の共振周波数を探索する処理を前記測定手段によって測定されたインピーダンスに基づいて実行する第2探索手段、および前記第2探索手段によって探知された周波数を前記交流電圧の周波数として設定する第2設定手段をさらに備え、
前記第1設定手段は前記第2設定手段の処理に劣後して代替的に処理を実行する、請求項1ないし6のいずれかに記載の電力伝送システム。
The supply means includes the third inductor that forms a parallel resonance circuit or a series resonance circuit with the plurality of second electrodes,
The power transmission device includes: a second search unit that executes a process of searching for a resonance frequency of the parallel resonant circuit from a plurality of frequencies specified by the change unit based on the impedance measured by the measurement unit; Further comprising second setting means for setting the frequency detected by the second search means as the frequency of the AC voltage;
The power transmission system according to any one of claims 1 to 6, wherein the first setting unit performs processing in an alternative manner after the processing of the second setting unit.
前記供給手段は前記第3インダクタの巻き数よりも小さい巻き数を有して前記第3インダクタと誘導結合される第4インダクタを含む、請求項7記載の電力伝送システム。   The power transmission system according to claim 7, wherein the supply unit includes a fourth inductor having a smaller number of turns than the third inductor and inductively coupled to the third inductor. 複数の第1電極に励起された電界に基づく電力を負荷に供給する供給手段を備える受電装置に電力を伝送する送電装置であって、
交流電圧に基づいて前記電界を励起するべく前記複数の第1電極と電界結合される複数の第2電極、
前記複数の第2電極とともに直列共振回路を形成するインダクタ、
前記交流電圧の周波数を繰り返し変更する変更手段、
前記変更手段の処理と並行してインピーダンスを測定する測定手段、
前記測定手段によって測定されたインピーダンスが前記直列共振回路の共振周波数に向かって既定条件を満足する減少傾向を示す時点の周波数を前記変更手段によって指定された複数の周波数の中から探索する探索手段、および
前記探索手段によって探知された周波数を給電時の前記交流電圧の周波数として設定する設定手段を備える、送電装置。
A power transmission device that transmits power to a power receiving device including a supply unit that supplies power based on an electric field excited by a plurality of first electrodes to a load,
A plurality of second electrodes coupled to the plurality of first electrodes to excite the electric field based on an alternating voltage;
An inductor that forms a series resonant circuit with the plurality of second electrodes;
Changing means for repeatedly changing the frequency of the AC voltage;
Measuring means for measuring impedance in parallel with the processing of the changing means,
Search means for searching a frequency at a time point when the impedance measured by the measuring means shows a decreasing tendency that satisfies a predetermined condition toward the resonance frequency of the series resonant circuit, from among a plurality of frequencies designated by the changing means, And a power transmission device comprising setting means for setting the frequency detected by the search means as the frequency of the AC voltage during power feeding.
JP2012049695A 2012-03-06 2012-03-06 Power transmission system and power transmission device Active JP5843066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049695A JP5843066B2 (en) 2012-03-06 2012-03-06 Power transmission system and power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049695A JP5843066B2 (en) 2012-03-06 2012-03-06 Power transmission system and power transmission device

Publications (2)

Publication Number Publication Date
JP2013187963A true JP2013187963A (en) 2013-09-19
JP5843066B2 JP5843066B2 (en) 2016-01-13

Family

ID=49388976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049695A Active JP5843066B2 (en) 2012-03-06 2012-03-06 Power transmission system and power transmission device

Country Status (1)

Country Link
JP (1) JP5843066B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125732A1 (en) * 2013-02-14 2014-08-21 株式会社村田製作所 Parameter derivation method
WO2015072374A1 (en) * 2013-11-13 2015-05-21 株式会社村田製作所 Frequency characteristic measuring method
JP2015173587A (en) * 2014-02-18 2015-10-01 パナソニック株式会社 Wireless power transmission system and power feeding device
KR101604172B1 (en) 2013-12-26 2016-03-16 울산대학교 산학협력단 Capacitively coupled Wireless Charging Apparatus
JP5911608B2 (en) * 2013-12-26 2016-04-27 三菱電機エンジニアリング株式会社 Resonant transmission power supply apparatus and resonant transmission power supply system
CN105940589A (en) * 2015-06-01 2016-09-14 广东欧珀移动通信有限公司 Charging circuit and mobile terminal
WO2018003092A1 (en) * 2016-06-30 2018-01-04 三菱電機株式会社 Noncontact power transmission apparatus, noncontact power transmission system, and induction heating cooking device
KR20180129410A (en) * 2017-05-26 2018-12-05 울산대학교 산학협력단 Wireless power transmission system based on Coupled Electric Field
JP2020137180A (en) * 2019-02-14 2020-08-31 株式会社デンソー Radio power supply device and plant equipment using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079786A (en) * 2003-08-29 2005-03-24 Sony Corp Power transmission system, power supply apparatus, power receiving apparatus, signal transmission system, signal transmission apparatus, and signal receiving apparatus
JP2006074609A (en) * 2004-09-03 2006-03-16 Futaba Corp Super-wideband radio transmitter, super-wideband radio receiver and super-wideband radio transmission/reception system
JP2007535859A (en) * 2004-04-30 2007-12-06 ギランド、ゲイル、オラブ Non-contact energy transmission apparatus and method
JP2010233442A (en) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd Apparatus and method for supplying power in non-contact manner
JP2012016171A (en) * 2010-06-30 2012-01-19 Toshiba Corp Power transmission system and power transmission device
JP2012039800A (en) * 2010-08-10 2012-02-23 Murata Mfg Co Ltd Power transmission system
US20120049640A1 (en) * 2010-08-25 2012-03-01 Murata Manufacturing Co., Ltd. Power transmitting apparatus and power transmission system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079786A (en) * 2003-08-29 2005-03-24 Sony Corp Power transmission system, power supply apparatus, power receiving apparatus, signal transmission system, signal transmission apparatus, and signal receiving apparatus
JP2007535859A (en) * 2004-04-30 2007-12-06 ギランド、ゲイル、オラブ Non-contact energy transmission apparatus and method
JP2006074609A (en) * 2004-09-03 2006-03-16 Futaba Corp Super-wideband radio transmitter, super-wideband radio receiver and super-wideband radio transmission/reception system
JP2010233442A (en) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd Apparatus and method for supplying power in non-contact manner
JP2012016171A (en) * 2010-06-30 2012-01-19 Toshiba Corp Power transmission system and power transmission device
JP2012039800A (en) * 2010-08-10 2012-02-23 Murata Mfg Co Ltd Power transmission system
US20120049640A1 (en) * 2010-08-25 2012-03-01 Murata Manufacturing Co., Ltd. Power transmitting apparatus and power transmission system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9846183B2 (en) 2013-02-14 2017-12-19 Murata Manufacturing Co., Ltd. Parameter derivation method
GB2524683A (en) * 2013-02-14 2015-09-30 Murata Manufacturing Co Parameter derivation method
WO2014125732A1 (en) * 2013-02-14 2014-08-21 株式会社村田製作所 Parameter derivation method
WO2015072374A1 (en) * 2013-11-13 2015-05-21 株式会社村田製作所 Frequency characteristic measuring method
US10018659B2 (en) 2013-11-13 2018-07-10 Murata Manufacturing Co., Ltd. Frequency characteristic measurement method
JPWO2015072374A1 (en) * 2013-11-13 2017-03-16 株式会社村田製作所 Frequency characteristic measurement method
KR101604172B1 (en) 2013-12-26 2016-03-16 울산대학교 산학협력단 Capacitively coupled Wireless Charging Apparatus
JP5911608B2 (en) * 2013-12-26 2016-04-27 三菱電機エンジニアリング株式会社 Resonant transmission power supply apparatus and resonant transmission power supply system
JP2015173587A (en) * 2014-02-18 2015-10-01 パナソニック株式会社 Wireless power transmission system and power feeding device
CN109888895A (en) * 2015-06-01 2019-06-14 广东欧珀移动通信有限公司 Charging circuit and mobile terminal
US9960623B2 (en) 2015-06-01 2018-05-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging circuit and mobile terminal
WO2016192005A1 (en) * 2015-06-01 2016-12-08 广东欧珀移动通信有限公司 Charging circuit and mobile terminal
CN105940589A (en) * 2015-06-01 2016-09-14 广东欧珀移动通信有限公司 Charging circuit and mobile terminal
CN109888895B (en) * 2015-06-01 2023-01-10 Oppo广东移动通信有限公司 Charging circuit and mobile terminal
WO2018003092A1 (en) * 2016-06-30 2018-01-04 三菱電機株式会社 Noncontact power transmission apparatus, noncontact power transmission system, and induction heating cooking device
GB2565930A (en) * 2016-06-30 2019-02-27 Mitsubishi Electric Corp Noncontact power transmission apparatus, noncontact power transmission system, and induction heating cooking device
US10734845B2 (en) 2016-06-30 2020-08-04 Mitsubishi Electric Corporation Wireless power transmission system and induction heating cooker
GB2565930B (en) * 2016-06-30 2021-11-03 Mitsubishi Electric Corp Wireless power transmission system and induction heating cooker
KR20180129410A (en) * 2017-05-26 2018-12-05 울산대학교 산학협력단 Wireless power transmission system based on Coupled Electric Field
KR101996127B1 (en) 2017-05-26 2019-07-03 울산대학교 산학협력단 Wireless power transmission system based on Coupled Electric Field
JP2020137180A (en) * 2019-02-14 2020-08-31 株式会社デンソー Radio power supply device and plant equipment using the same
JP7237302B2 (en) 2019-02-14 2023-03-13 株式会社デンソー Wireless power supply device and factory equipment using the same

Also Published As

Publication number Publication date
JP5843066B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5843066B2 (en) Power transmission system and power transmission device
JP6471970B2 (en) Wireless power transmission system and power transmission device for wireless power transmission system
JP6920646B2 (en) Foreign object detectors, wireless power transfer devices, and wireless power transfer systems
JP6593661B2 (en) Power transmission device, power reception device, and wireless power transmission system for wireless power transmission
EP2950418B1 (en) Power transmission device and wireless power transmission system
JP6633857B2 (en) Power transmission device and wireless power transmission system
JP6004122B2 (en) Power receiving device and power transmission system
JP6178107B2 (en) Power feeding system and resonant circuit
JP5690251B2 (en) Resonance type wireless charger
CN102870315B (en) Power receiving system and power reception method
JP6122402B2 (en) Power transmission device and wireless power transmission system
JP5516824B2 (en) Power transmission system
JP5852225B2 (en) Power receiving apparatus and power receiving method
JP2016039644A (en) Power transmission device and radio power transmission system
WO2017104450A1 (en) Non-contact power supply device and method for controlling same
JP2012110199A (en) Electric power transmission system
JP5614510B2 (en) Power transmission system and power transmission device
JP5761508B2 (en) Power transmission system
JP2012210116A (en) Electric power transmission system
JP6747078B2 (en) Non-contact power supply device
JP6615575B2 (en) Power supply system
JP2014197935A (en) Power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151103

R150 Certificate of patent or registration of utility model

Ref document number: 5843066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150