JP2013187839A - Microwave terminator - Google Patents

Microwave terminator Download PDF

Info

Publication number
JP2013187839A
JP2013187839A JP2012053330A JP2012053330A JP2013187839A JP 2013187839 A JP2013187839 A JP 2013187839A JP 2012053330 A JP2012053330 A JP 2012053330A JP 2012053330 A JP2012053330 A JP 2012053330A JP 2013187839 A JP2013187839 A JP 2013187839A
Authority
JP
Japan
Prior art keywords
microwave
center frequency
short
transmission line
viewed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053330A
Other languages
Japanese (ja)
Other versions
JP6067976B2 (en
Inventor
Saneto Kimura
実人 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012053330A priority Critical patent/JP6067976B2/en
Publication of JP2013187839A publication Critical patent/JP2013187839A/en
Application granted granted Critical
Publication of JP6067976B2 publication Critical patent/JP6067976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave terminator that can achieve high power resistance, wide band, and miniaturization at the same time.SOLUTION: On the surface of a dielectric substrate 2 formed are: a rectangular membrane resistor 1 one side of which is short circuited to a ground conductor 6 of the rear face of the dielectric substrate 2 and about which the real part of normalization impedance is equal to or less than 1 Ω and the imaginary part is nearly 0 Ω at the center frequency of a transmission signal when the short circuited end side is viewed from the opposite side of the short circuited end; a transmission line 4 which is formed such that one end contacts with the whole width of the opposite side of the short circuited end of the membrane resistor 1 and normalization admittance is nearly 1 S at the center frequency of the transmission signal when the membrane resistor 1 side is viewed from the other end; and a tip open stub 5 which is connected to the other end of the transmission line 4, and about which both of the real part and the imaginary part of normalization impedance are nearly 1 Ω at the center frequency of the transmission signal when the membrane resistor 1 side is viewed from a connection point with the transmission line 4.

Description

本発明は、マイクロ波終端器に関する。   The present invention relates to a microwave terminator.

マイクロ波回路においては、アイソレータやカップラ、ハイブリッド回路等の一端をマイクロ波終端器で終端しているが、しばしば大電力マイクロ波信号を終端することのできる高耐電力終端器が要求される場合がある。多くの場合、高耐電力終端器には小型化、広帯域化が要求される。平面回路で構成されるマイクロ波終端器は、終端抵抗として基板上に形成された膜抵抗を用いる場合が多い。このような構成の場合、高耐電力化の手段としては、膜抵抗の大型化、基板の薄型化、および高熱伝導基板の使用が挙げられる。しかしながら、膜抵抗の大型化、基板の薄型化は膜抵抗の寄生キャパシタンスを増加させるため、高周波帯域においては反射特性が劣化するという問題がある。   In a microwave circuit, one end of an isolator, coupler, hybrid circuit, etc. is terminated with a microwave terminator. However, there is a case where a high power durability terminator capable of terminating a high power microwave signal is often required. is there. In many cases, the high power withstand terminator is required to be small and have a wide bandwidth. In many cases, a microwave terminator configured by a planar circuit uses a film resistor formed on a substrate as a termination resistor. In the case of such a configuration, means for increasing the power durability include increasing the film resistance, reducing the thickness of the substrate, and using a high thermal conductive substrate. However, the increase in film resistance and the reduction in thickness of the substrate increase the parasitic capacitance of the film resistance, so that there is a problem that the reflection characteristics deteriorate in the high frequency band.

例えば、小型で大電力の無反射終端を可能とする技術として、基板上に構成された膜抵抗に先端開放スタブおよび整合回路を設ける構成が開示されている(例えば、特許文献1)。   For example, as a technique that enables a small-sized and high-power non-reflective termination, a configuration in which an open-ended stub and a matching circuit are provided on a film resistor configured on a substrate is disclosed (for example, Patent Document 1).

また、例えば、反射特性の広帯域化を実現する技術として、基板上に構成された膜抵抗をテーパー状に形成して線路導体に接続する構成が開示されている(例えば、特許文献2)。   Further, for example, as a technique for realizing a broadband reflection characteristic, a configuration in which a film resistance formed on a substrate is formed in a tapered shape and connected to a line conductor is disclosed (for example, Patent Document 2).

また、例えば、膜抵抗の入力インピーダンスが所定の抵抗値かつリアクタンス成分がほぼ零となるように誘電体基板厚を任意に選択することにより反射特性の広帯域特性を実現する技術が開示されている(例えば、特許文献3)。   In addition, for example, a technique for realizing a broadband characteristic of a reflection characteristic by arbitrarily selecting a dielectric substrate thickness so that an input impedance of a film resistor has a predetermined resistance value and a reactance component is almost zero is disclosed ( For example, Patent Document 3).

特開平7−7307号公報Japanese Patent Laid-Open No. 7-7307 特開2005−260454号公報JP 2005-260454 A 特開平5−129805号公報Japanese Patent Laid-Open No. 5-129805

しかしながら、特許文献1に示された技術では、反射特性の広帯域化のためには整合回路を多段構成にする必要があるため、広帯域化と小型化とを同時に実現することが難しい、という問題があった。   However, the technique disclosed in Patent Document 1 has a problem that it is difficult to simultaneously realize a wide band and a small size because the matching circuit needs to have a multistage configuration in order to widen the reflection characteristics. there were.

また、特許文献2に示された技術では、膜抵抗と導体パターンの接続部は膜抵抗の一部分のみであり、マイクロ波電力は膜抵抗の一部で局所的に消費されることから高耐電力化の効果が小さい、という問題があった。   In the technique disclosed in Patent Document 2, the connection portion between the film resistance and the conductor pattern is only a part of the film resistance, and the microwave power is locally consumed by a part of the film resistance. There was a problem that the effect of the conversion was small.

また、特許文献3に示された技術では、高耐電力を得るためには膜抵抗を大きくする必要があるため、反射特性の広帯域化のためには基板厚を厚くする必要がある。しかしながら基板厚を厚くすると基板の熱抵抗が増加し耐電力が低下するため、高耐電力化と広帯域化を同時に実現することは困難である、という問題があった。   Further, in the technique disclosed in Patent Document 3, it is necessary to increase the film resistance in order to obtain high power resistance, and thus it is necessary to increase the thickness of the substrate in order to widen the reflection characteristics. However, when the substrate thickness is increased, the thermal resistance of the substrate is increased and the power durability is lowered. Therefore, there is a problem that it is difficult to simultaneously realize a high power durability and a wide band.

本発明は、上記に鑑みてなされたものであって、高耐電力化、広帯域化、小型化を同時に実現することが可能なマイクロ波終端器を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a microwave terminator capable of simultaneously realizing high power durability, wide band, and downsizing.

上述した課題を解決し、目的を達成するため、本発明にかかるマイクロ波終端器は、裏面に地導体を具備した誘電体基板の表面に形成されるマイクロ波終端器であって、一辺が前記地導体に短絡され、当該短絡端の対辺から前記短絡端側を見た伝送信号の中心周波数における規格化インピーダンスの実部が1Ω以下、虚部が略0Ωの矩形状の膜抵抗と、一端が前記膜抵抗の前記短絡端の対辺の全幅に接して形成され、他端から前記膜抵抗側を見た前記中心周波数における規格化アドミッタンスが略1Sとなる伝送線路と、前記伝送線路の他端に接続され、前記伝送線路との接続点から前記膜抵抗側を見た前記中心周波数における規格化インピーダンスの実部および虚部が共に略1Ωとなる先端開放スタブと、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a microwave terminator according to the present invention is a microwave terminator formed on the surface of a dielectric substrate having a ground conductor on the back surface, and one side of the microwave terminator is A rectangular membrane resistance having a real part of normalized impedance at the center frequency of the transmission signal, which is short-circuited to the ground conductor and viewed from the opposite side of the short-circuited end to the short-circuited end, and an imaginary part of approximately 0Ω, and one end A transmission line that is formed in contact with the entire width of the opposite side of the short-circuit end of the film resistor and has a normalized admittance at the center frequency viewed from the other end of the film resistance side is approximately 1S, and the other end of the transmission line And a tip open stub in which the real part and the imaginary part of the normalized impedance at the center frequency viewed from the connection point with the transmission line are approximately 1Ω.

本発明によれば、高耐電力化、広帯域化、小型化を同時に実現することが可能なマイクロ波終端器を得ることができる、という効果を奏する。   According to the present invention, there is an effect that it is possible to obtain a microwave terminator capable of simultaneously realizing high power durability, wide band, and downsizing.

図1は、実施の形態1にかかるマイクロ波終端器の一例を示す図である。FIG. 1 is a diagram illustrating an example of a microwave terminator according to the first embodiment. 図2は、実施の形態1にかかるマイクロ波終端器の各部から膜抵抗側を見込んだインピーダンスおよびアドミッタンスの周波数特性の一例を示すスミスチャートである。FIG. 2 is a Smith chart illustrating an example of frequency characteristics of impedance and admittance when the membrane resistance side is expected from each part of the microwave terminator according to the first exemplary embodiment. 図3は、実施の形態1にかかるマイクロ波終端器の反射特性の一例を示す図である。FIG. 3 is a diagram illustrating an example of reflection characteristics of the microwave terminator according to the first embodiment. 図4は、マイクロ波終端器の従来例を示す図である。FIG. 4 is a diagram showing a conventional example of a microwave terminator. 図5は、図4に示す従来のマイクロ波終端器の反射特性の一例を示す図である。FIG. 5 is a diagram showing an example of reflection characteristics of the conventional microwave terminator shown in FIG. 図6は、実施の形態2にかかるマイクロ波終端器の一例を示す図である。FIG. 6 is a diagram of an example of the microwave terminator according to the second embodiment. 図7は、実施の形態3にかかるマイクロ波終端器の一例を示す図である。FIG. 7 is a diagram of an example of the microwave terminator according to the third embodiment.

以下に添付図面を参照し、本発明の実施の形態にかかるマイクロ波終端器について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。   A microwave terminator according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.

実施の形態1.
図1は、実施の形態1にかかるマイクロ波終端器の一例を示す図である。図1(a)は、実施の形態1にかかるマイクロ波終端器の平面図を示し、図1(b)は、図1(a)中のA−A’線に沿う断面図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating an example of a microwave terminator according to the first embodiment. FIG. 1A is a plan view of the microwave terminator according to the first embodiment, and FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG.

図1に示すように、実施の形態1にかかるマイクロ波終端器は、裏面に地導体6を具備した誘電体基板2の表面に形成され、一辺が地導体6にスルーホール(ビア)3を介して短絡された矩形状の膜抵抗1と、一端が膜抵抗1の短絡端の対辺の全幅に接した高インピーダンス線路で形成された伝送線路4と、伝送線路4の他端に接続された矩形状の低インピーダンス線路で形成された先端開放スタブ5とを備えている。実施の形態1にかかるマイクロ波終端器が適用されるマイクロ波伝送回路の伝送信号であるマイクロ波信号は、伝送線路4と先端開放スタブ5とが接続された入力端子7から入力される。   As shown in FIG. 1, the microwave terminator according to the first embodiment is formed on the surface of a dielectric substrate 2 having a ground conductor 6 on the back surface, and a through hole (via) 3 is formed on one side of the ground conductor 6. A transmission line 4 formed of a high-impedance line whose one end is in contact with the entire width of the opposite side of the short-circuited end of the film resistance 1, and the other end of the transmission line 4. And an open-ended stub 5 formed of a rectangular low impedance line. A microwave signal that is a transmission signal of a microwave transmission circuit to which the microwave terminator according to the first embodiment is applied is input from an input terminal 7 to which the transmission line 4 and the open-ended stub 5 are connected.

このように形成された実施の形態1にかかるマイクロ波終端器の動作について説明する。入力端子7から入力されたマイクロ波信号は、先端開放スタブ5および伝送線路4によりインピーダンス整合された膜抵抗1に入力され、膜抵抗1で熱エネルギーに変換されることで終端される。この膜抵抗1で発生する熱エネルギーは、主に誘電体基板2の誘電体層を介して裏面の地導体6に放熱される。地導体6の温度をT1、誘電体基板2の膜抵抗1から地導体6までの誘電体層の熱抵抗をRth、膜抵抗1での発熱量をQとすると、膜抵抗1の温度T2は、下記の式(1)により表される。   The operation of the microwave terminator according to the first embodiment formed as described above will be described. The microwave signal input from the input terminal 7 is input to the film resistor 1 impedance-matched by the open-ended stub 5 and the transmission line 4 and is terminated by being converted into heat energy by the film resistor 1. The thermal energy generated by the film resistor 1 is radiated to the ground conductor 6 on the back surface mainly through the dielectric layer of the dielectric substrate 2. Assuming that the temperature of the ground conductor 6 is T1, the thermal resistance of the dielectric layer from the film resistance 1 of the dielectric substrate 2 to the ground conductor 6 is Rth, and the amount of heat generated by the film resistance 1 is Q, the temperature T2 of the film resistance 1 is Is represented by the following formula (1).

T2=T1+Rth×Q ・・・(1)   T2 = T1 + Rth × Q (1)

所望の電力を実施の形態1にかかるマイクロ波終端器に入力した際に、上記の(1)式において膜抵抗1の温度T2が膜抵抗1の許容温度の範囲内であれば、その電力に対する耐電力を満足することができる。   When the desired power is input to the microwave terminator according to the first embodiment, if the temperature T2 of the film resistor 1 is within the allowable temperature range of the film resistor 1 in the above equation (1), It can satisfy the withstand power.

誘電体基板2の膜抵抗1から地導体6までの誘電体層の熱抵抗Rthは、誘電体基板2の熱伝導率、厚さ、および発熱面積により決定される。耐電力を大きくするためには、誘電体基板2の誘電体層に高熱伝導率材料を使用することや、誘電体基板2の誘電体層の薄型化、膜抵抗1の面積の大型化により発熱面積を増加させること等が効果的である。また、マイクロ波信号の終端による発熱は、とりわけ膜抵抗1と伝送線路4との接続部に集中する性質がある。このため、本実施の形態では、膜抵抗1と伝送線路4との接続幅を膜抵抗1の一辺の幅まで広げることにより、発熱面積を拡げている。これにより、マイクロ波信号の終端による発熱を効率よく放熱することができる。   The thermal resistance Rth of the dielectric layer from the film resistance 1 to the ground conductor 6 of the dielectric substrate 2 is determined by the thermal conductivity, thickness, and heat generation area of the dielectric substrate 2. In order to increase the withstand power, heat is generated by using a high thermal conductivity material for the dielectric layer of the dielectric substrate 2, reducing the thickness of the dielectric layer of the dielectric substrate 2, and increasing the area of the film resistor 1. Increasing the area is effective. Further, the heat generated by the termination of the microwave signal has a property of being concentrated particularly on the connection portion between the membrane resistor 1 and the transmission line 4. For this reason, in this embodiment, the heat generation area is expanded by expanding the connection width between the film resistor 1 and the transmission line 4 to the width of one side of the film resistor 1. Thereby, the heat generated by the termination of the microwave signal can be efficiently radiated.

つぎに、実施の形態1にかかるマイクロ波終端器の反射特性の広帯域整合手法について、図1および図2を参照して説明する。図2は、実施の形態1にかかるマイクロ波終端器の各部から膜抵抗側を見込んだインピーダンスおよびアドミッタンスの周波数特性の一例を示すスミスチャートである。図2(a)は、図1(a)中のaから膜抵抗側を見込んだインピーダンスの周波数特性の一例を示すスミスチャート(インピーダンスチャート)であり、図2(b)は、図1(a)中のbから膜抵抗側を見込んだアドミッタンスの周波数特性の一例を示すスミスチャート(アドミッタンスチャート)であり、図2(c)は、図1(a)中のcから膜抵抗側を見込んだインピーダンスの周波数特性の一例を示すスミスチャート(インピーダンスチャート)である。   Next, a broadband matching method of reflection characteristics of the microwave terminator according to the first embodiment will be described with reference to FIGS. FIG. 2 is a Smith chart illustrating an example of frequency characteristics of impedance and admittance when the membrane resistance side is expected from each part of the microwave terminator according to the first exemplary embodiment. FIG. 2A is a Smith chart (impedance chart) showing an example of the frequency characteristic of the impedance when the membrane resistance side is expected from a in FIG. 1A, and FIG. 2) is a Smith chart (admittance chart) showing an example of the frequency characteristics of the admittance when the film resistance side is expected from b in FIG. 2, and FIG. 2 (c) is the film resistance side expected from c in FIG. 1 (a). It is a Smith chart (impedance chart) which shows an example of the frequency characteristic of an impedance.

まず、図1(a)中のa、つまり、膜抵抗1と伝送線路4との接続部から膜抵抗1側を見たマイクロ波信号の中心周波数fcにおける規格化インピーダンスの実部が1Ω以下、虚部が0Ω程度になるように、膜抵抗1の面積抵抗率、幅、および長さを選択する。このとき、図1(a)中のaから膜抵抗1側を見たインピーダンスは、図2(a)に示すように、低周波ではほぼ直流抵抗値であり、周波数が上がるにつれて実軸を時計回りに回るような軌跡となる。このときの条件式は、規格化インピーダンスの実部をReal(Z1)、規格化インピーダンスの虚部をImag(Z1)とすると、マイクロ波信号の中心周波数fcにおいては下記の式(2)で表すことができる。   First, a in FIG. 1A, that is, the real part of the normalized impedance at the center frequency fc of the microwave signal when the film resistor 1 side is viewed from the connection part between the film resistor 1 and the transmission line 4 is 1Ω or less, The area resistivity, width, and length of the film resistor 1 are selected so that the imaginary part is about 0Ω. At this time, the impedance of the side of the membrane resistor 1 viewed from a in FIG. 1A is substantially a DC resistance value at a low frequency as shown in FIG. 2A. It becomes a trajectory that turns around. The conditional expression at this time is expressed by the following expression (2) at the center frequency fc of the microwave signal, where Real (Z1) is the real part of the normalized impedance and Imag (Z1) is the imaginary part of the normalized impedance. be able to.

Real(Z1)≦1Ω、Imag(Z1)≒0Ω ・・・(2)   Real (Z1) ≦ 1Ω, Imag (Z1) ≈0Ω (2)

つぎに、図1(a)中のb、つまり、伝送線路4を介して膜抵抗1側を見たマイクロ波信号の中心周波数fcにおける規格化アドミッタンスの実部が1S程度となるように、伝送線路4の幅および長さを選択する。このとき、図1(a)中のbから伝送線路4を介して膜抵抗1側を見たインピーダンスは、図2(b)に示すような周波数特性となる。このときの条件式は、規格化アドミッタンスの実部をReal(Y2)とすると、マイクロ波信号の中心周波数fcにおいては下記の式(3)で表すことができる。   Next, transmission is performed so that the real part of the normalized admittance at b in FIG. 1A, that is, the center frequency fc of the microwave signal viewed through the transmission line 4 at the center frequency fc is about 1S. The width and length of the line 4 are selected. At this time, the impedance when the membrane resistor 1 side is viewed from b in FIG. 1A via the transmission line 4 has frequency characteristics as shown in FIG. The conditional expression at this time can be expressed by the following expression (3) at the center frequency fc of the microwave signal, where Real (Y2) is the real part of the normalized admittance.

Real(Y2)≒1S ・・・(3)   Real (Y2) ≈1S (3)

さらに、図1(a)中のc、つまり、伝送線路4と先端開放スタブ5との接続点から膜抵抗1側を見たマイクロ波信号の中心周波数fcにおける規格化インピーダンスの実部が1Ω程度、虚部が0Ω程度となるように、先端開放スタブ5の幅および長さを選択する。このとき、図1(a)中のcから先端開放スタブ5および伝送線路4を介して膜抵抗1側を見たインピーダンスは、図2に示すような周波数特性となる。このときの条件式は、規格化インピーダンスの実部をReal(Z3)、規格化インピーダンスの虚部をImag(Z3)とすると、マイクロ波信号の中心周波数fcにおいては下記の式(4)で表すことができる。   Furthermore, c in FIG. 1 (a), that is, the real part of the normalized impedance at the center frequency fc of the microwave signal when the membrane resistor 1 side is viewed from the connection point between the transmission line 4 and the open-ended stub 5 is about 1Ω. The width and length of the open stub 5 are selected so that the imaginary part is about 0Ω. At this time, the impedance when the membrane resistor 1 side is viewed from c in FIG. 1A through the open end stub 5 and the transmission line 4 has frequency characteristics as shown in FIG. The conditional expression at this time is expressed by the following expression (4) at the center frequency fc of the microwave signal, where Real (Z3) is the real part of the normalized impedance and Imag (Z3) is the imaginary part of the normalized impedance. be able to.

Real(Z3)≒1Ω、Imag(Z3)≒0Ω ・・・(4)   Real (Z3) ≈1Ω, Imag (Z3) ≈0Ω (4)

このように、膜抵抗1の周波数特性を伝送線路4と先端開放スタブ5とで打ち消すことで、実施の形態1にかかるマイクロ波終端器の反射特性の広帯域整合が可能となる。図3は、実施の形態1にかかるマイクロ波終端器の反射特性の一例を示す図である。図3に示すように、実施の形態1にかかるマイクロ波終端器の反射特性が−25dB以下となる帯域は、マイクロ波信号の中心周波数に対して約40%となり、広帯域に渡り良好な反射特性が得られることが分かる。   Thus, by canceling out the frequency characteristics of the membrane resistor 1 with the transmission line 4 and the open-ended stub 5, broadband matching of the reflection characteristics of the microwave terminator according to the first embodiment becomes possible. FIG. 3 is a diagram illustrating an example of reflection characteristics of the microwave terminator according to the first embodiment. As shown in FIG. 3, the band in which the reflection characteristic of the microwave terminator according to the first embodiment is −25 dB or less is about 40% with respect to the center frequency of the microwave signal, and the reflection characteristic is good over a wide band. It can be seen that

図4は、マイクロ波終端器の従来例を示す図である。図4(a)は、従来型マイクロ波終端器の平面図であり、図4(b)は、図4(a)中のA−A’線に沿う断面図である。   FIG. 4 is a diagram showing a conventional example of a microwave terminator. FIG. 4A is a plan view of a conventional microwave terminator, and FIG. 4B is a cross-sectional view taken along line A-A ′ in FIG.

図4に示す例では、膜抵抗1の抵抗値が規格化インピーダンス1Ωと等しくなるように、膜抵抗1の面積抵抗率、幅、および長さを選択した例を示している。このため、広帯域整合を行うためには、伝送線路4と先端開放スタブ5とによる整合回路を多段接続する必要があり、図4に示す例では、伝送線路4と先端開放スタブ5とによる整合回路を2段接続した例を示している。このため、本実施の形態にかかるマイクロ波終端器よりも回路サイズが大きくなる。   In the example shown in FIG. 4, an example is shown in which the area resistivity, width, and length of the membrane resistor 1 are selected so that the resistance value of the membrane resistor 1 is equal to the standardized impedance 1Ω. For this reason, in order to perform wideband matching, it is necessary to connect the matching circuit by the transmission line 4 and the open end stub 5 in multiple stages. In the example shown in FIG. 4, the matching circuit by the transmission line 4 and the open end stub 5 is used. Shows an example in which two stages are connected. For this reason, a circuit size becomes larger than the microwave terminator concerning this Embodiment.

図5は、図4に示す従来のマイクロ波終端器の反射特性の一例を示す図である。図5に示すように、図4に示す従来のマイクロ波終端器の反射特性が−25dB以下となる帯域は、マイクロ波信号の中心周波数に対して約20%となり、本実施の形態にかかるマイクロ波終端器よりも狭帯域であることが分かる。   FIG. 5 is a diagram showing an example of reflection characteristics of the conventional microwave terminator shown in FIG. As shown in FIG. 5, the band in which the reflection characteristic of the conventional microwave terminator shown in FIG. 4 is −25 dB or less is about 20% with respect to the center frequency of the microwave signal. It can be seen that the band is narrower than the wave terminator.

以上説明したように、実施の形態1のマイクロ波終端器によれば、裏面に地導体を具備した誘電体基板の表面に、一辺が地導体にスルーホール(ビア)を介して短絡された矩形状の膜抵抗と、一端が膜抵抗の短絡端の対辺の全幅に接して形成された伝送線路と、伝送線路の他端に接続された先端開放スタブとを形成し、膜抵抗と伝送線路との接続部から膜抵抗側を見たマイクロ波信号の中心周波数における規格化インピーダンスの実部が1Ω以下、虚部が0Ω程度になるように、膜抵抗1の面積抵抗率、幅、および長さを選択し、伝送線路を介して膜抵抗側を見たマイクロ波信号の中心周波数における規格化アドミッタンスの実部が1S程度となるように、伝送線路4の幅および長さを選択し、伝送線路と先端開放スタブとの接続点から膜抵抗側を見たマイクロ波信号の中心周波数における規格化インピーダンスの実部が1Ω程度、虚部が0Ω程度となるように、先端開放スタブの幅および長さを選択するようにしたので、膜抵抗の周波数特性が伝送線路と先端開放スタブとにより打ち消され、反射特性の広帯域整合が可能となる。   As described above, according to the microwave terminator of the first embodiment, a rectangular circuit in which one side is short-circuited to the ground conductor via a through hole (via) on the surface of the dielectric substrate having the ground conductor on the back surface. Forming a membrane resistance having a shape, a transmission line formed at one end in contact with the entire width of the opposite side of the short-circuited end of the film resistance, and an open-ended stub connected to the other end of the transmission line; The area resistivity, width, and length of the membrane resistor 1 so that the real part of the normalized impedance at the center frequency of the microwave signal viewed from the connection part of the wire is 1Ω or less and the imaginary part is about 0Ω. And the width and length of the transmission line 4 are selected so that the real part of the standardized admittance at the center frequency of the microwave signal as viewed through the transmission line through the transmission line is about 1S. Membrane resistance from the connection point between the stub and the open stub The width and length of the open-ended stub are selected so that the real part of the normalized impedance at the center frequency of the microwave signal viewed from the side is about 1Ω and the imaginary part is about 0Ω. The frequency characteristics are canceled by the transmission line and the open-ended stub, and the broadband matching of the reflection characteristics becomes possible.

また、一組の伝送線路と先端開放スタブとにより構成される1段の整合回路により実現できるので、従来の多段整合回路が必要となる構成よりも小型化することができる。   Further, since it can be realized by a single-stage matching circuit composed of a set of transmission lines and an open-ended stub, it can be made smaller than a configuration that requires a conventional multi-stage matching circuit.

また、膜抵抗の短絡端の対辺の全幅に伝送線路が接するようにしたので、マイクロ波信号の終端による発熱を効率よく放熱することができ、高耐電力化を図ることができる。   In addition, since the transmission line is in contact with the entire width of the opposite side of the short-circuited end of the membrane resistor, heat generated by the termination of the microwave signal can be efficiently radiated, and high power durability can be achieved.

このように、高耐電力化、広帯域化、小型化を同時に実現することが可能となり、実施の形態1にかかるマイクロ波終端器を適用したマイクロ波伝送回路の小型化・高性能化が可能となる。   As described above, it is possible to simultaneously achieve high power durability, wide bandwidth, and downsizing, and it is possible to reduce the size and improve the performance of the microwave transmission circuit to which the microwave terminator according to the first embodiment is applied. Become.

なお、上述した実施の形態1では、膜抵抗の短絡端は、スルーホールあるいはビアにより地導体に接続する構成例について説明したが、膜抵抗の短絡端を基板側面メタライズにより地導体に接続する構成であってもよく、上述した構成と同様の効果が得られることは言うまでもない。   In the first embodiment described above, the configuration example in which the short-circuited end of the membrane resistor is connected to the ground conductor through a through hole or via has been described. However, the configuration in which the short-circuited end of the membrane resistor is connected to the ground conductor by substrate side metallization. It goes without saying that the same effects as those of the above-described configuration can be obtained.

また、先端開放スタブを矩形状の低インピーダンス線路に代えてラジアルスタブにより形成する構成であってもよく、上述した構成と同様の効果が得られることは言うまでもない。   Further, it is possible to adopt a configuration in which the tip open stub is formed by a radial stub instead of the rectangular low impedance line, and it goes without saying that the same effect as the above-described configuration can be obtained.

実施の形態2.
図6は、実施の形態2にかかるマイクロ波終端器の一例を示す図である。なお、実施の形態1と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 2. FIG.
FIG. 6 is a diagram of an example of the microwave terminator according to the second embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 1, or equivalent, and the detailed description is abbreviate | omitted.

図6に示す実施の形態2にかかるマイクロ波終端器では、実施の形態1にかかるマイクロ波終端器とは異なり、膜抵抗1の短絡端は、マイクロ波信号の中心周波数の略4分の1波長の長さの先端開放スタブで構成されている。   In the microwave terminator according to the second embodiment shown in FIG. 6, unlike the microwave terminator according to the first embodiment, the short-circuited end of the film resistor 1 is approximately one quarter of the center frequency of the microwave signal. It consists of an open-ended stub with a wavelength length.

このように構成することにより、スルーホールやビア、あるいは基板側面メタライズにより膜抵抗1を地導体6に電気的に接続することが不可能な場合であっても対応可能となる。   With this configuration, even when it is impossible to electrically connect the film resistor 1 to the ground conductor 6 by through holes, vias, or substrate side metallization, it is possible to cope.

なお、本実施の形態にかかるマイクロ波終端器の構成では、実施の形態1において説明した構成よりも大型化するものの、図4に示す従来の構成において膜抵抗1の短絡端をマイクロ波信号の中心周波数の略4分の1波長の長さの先端開放スタブで構成する場合よりも小型化することができる。   The configuration of the microwave terminator according to the present embodiment is larger than the configuration described in the first embodiment. However, in the conventional configuration shown in FIG. The size can be reduced as compared with the case of a stub having an open end having a length of approximately a quarter wavelength of the center frequency.

以上説明したように、実施の形態2のマイクロ波終端器によれば、膜抵抗の短絡端をマイクロ波信号の中心周波数の略4分の1波長の長さの先端開放スタブで構成するようにしたので、スルーホールやビア、あるいは基板側面メタライズにより膜抵抗を地導体に電気的に接続することが不可能な場合であっても、実施の形態1と同様の効果を得ることができる。   As described above, according to the microwave terminator of the second embodiment, the short-circuited end of the membrane resistor is configured with the open-ended stub having a length of about a quarter wavelength of the center frequency of the microwave signal. Therefore, even if it is impossible to electrically connect the film resistance to the ground conductor by through holes, vias, or substrate side surface metallization, the same effect as in the first embodiment can be obtained.

実施の形態3.
図7は、実施の形態3にかかるマイクロ波終端器の一例を示す図である。なお、実施の形態1と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 3 FIG.
FIG. 7 is a diagram of an example of the microwave terminator according to the third embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 1, or equivalent, and the detailed description is abbreviate | omitted.

図7に示す実施の形態3にかかるマイクロ波終端器では、実施の形態1にかかるマイクロ波終端器とは異なり、図1に示した実施の形態1の構成において低インピーダンス線路やラジアルスタブにより構成される先端開放スタブ5に代えて、平行平板コンデンサ上地電極9、平行平板コンデンサ誘電体11、および平行平板コンデンサ下地電極12からなるコンデンサを備える構成としている。   Unlike the microwave terminator according to the first embodiment, the microwave terminator according to the third embodiment illustrated in FIG. 7 is configured by a low impedance line or a radial stub in the configuration of the first embodiment illustrated in FIG. Instead of the open-ended stub 5, a capacitor including a parallel plate capacitor ground electrode 9, a parallel plate capacitor dielectric 11, and a parallel plate capacitor ground electrode 12 is provided.

平行平板コンデンサ下地電極12は、スルーホール(ビア)3を介して地導体6に短絡されている。   The parallel plate capacitor base electrode 12 is short-circuited to the ground conductor 6 through a through hole (via) 3.

また、入力端子7と平行平板コンデンサ誘電体11との間、および平行平板コンデンサ誘電体11と伝送線路4との間は、エアブリッジ10により電気的に接続されている。   Further, the air bridge 10 is electrically connected between the input terminal 7 and the parallel plate capacitor dielectric 11 and between the parallel plate capacitor dielectric 11 and the transmission line 4.

このように構成することにより、実施の形態1において説明した先端開放スタブ5を備える構成よりも構造は複雑化するものの、整合回路をより小型化することができる。   By configuring in this way, the matching circuit can be made smaller, although the structure is more complicated than the configuration including the tip open stub 5 described in the first embodiment.

以上説明したように、実施の形態3のマイクロ波終端器によれば、実施の形態1の構成において低インピーダンス線路やラジアルスタブにより構成される先端開放スタブ5に代えて、一端が短絡されたコンデンサを備える構成としたので、実施の形態1において説明した先端開放スタブ5を備える構成よりも整合回路をより小型化することができ、実施の形態3にかかるマイクロ波終端器を適用したマイクロ波伝送回路のさらなる小型化が可能となる。   As described above, according to the microwave terminator of the third embodiment, a capacitor whose one end is short-circuited in place of the open-ended stub 5 configured by a low impedance line or a radial stub in the configuration of the first embodiment. Therefore, the matching circuit can be made more compact than the configuration provided with the open end stub 5 described in the first embodiment, and the microwave transmission to which the microwave terminator according to the third embodiment is applied. The circuit can be further miniaturized.

なお、上述した実施の形態3では、膜抵抗の短絡端は、スルーホールあるいはビアにより地導体に接続する構成例について説明したが、実施の形態1において説明したように、膜抵抗の短絡端を基板側面メタライズにより地導体に接続する構成であってもよいし、実施の形態2において説明したように、マイクロ波信号の中心周波数の略4分の1波長の長さの先端開放スタブで構成してもよく、上述した構成と同様の効果が得られることは言うまでもない。   In the third embodiment described above, the configuration example in which the short-circuited end of the membrane resistance is connected to the ground conductor through a through hole or via has been described. However, as described in the first embodiment, the short-circuited end of the membrane resistance is It may be configured to be connected to the ground conductor by substrate side surface metallization, and as described in the second embodiment, it is configured by a tip open stub having a length of about a quarter wavelength of the center frequency of the microwave signal. Needless to say, the same effects as those of the above-described configuration can be obtained.

なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。   Note that the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

1 膜抵抗
2 誘電体基板
3 スルーホール(ビア)
4 伝送線路
5 先端開放スタブ
6 地導体
7 入力端子
9 平行平板コンデンサ上地電極
10 エアブリッジ
11 平行平板コンデンサ誘電体
12 平行平板コンデンサ下地電極
1 Film resistance 2 Dielectric substrate 3 Through hole (via)
4 Transmission line 5 Open end stub 6 Ground conductor 7 Input terminal 9 Parallel plate capacitor upper electrode 10 Air bridge 11 Parallel plate capacitor dielectric 12 Parallel plate capacitor ground electrode

Claims (7)

裏面に地導体を具備した誘電体基板の表面に形成されるマイクロ波終端器であって、
一辺が前記地導体に短絡され、当該短絡端の対辺から前記短絡端側を見た伝送信号の中心周波数における規格化インピーダンスの実部が1Ω以下、虚部が略0Ωの矩形状の膜抵抗と、
一端が前記膜抵抗の前記短絡端の対辺の全幅に接して形成され、他端から前記膜抵抗側を見た前記中心周波数における規格化アドミッタンスが略1Sとなる伝送線路と、
前記伝送線路の他端に接続され、前記伝送線路との接続点から前記膜抵抗側を見た前記中心周波数における規格化インピーダンスの実部および虚部が共に略1Ωとなる先端開放スタブと、
を備えることを特徴とするマイクロ波終端器。
A microwave terminator formed on the surface of a dielectric substrate having a ground conductor on the back surface,
A rectangular membrane resistance in which one side is short-circuited to the ground conductor, the real part of the normalized impedance at the center frequency of the transmission signal viewed from the opposite side of the short-circuited end side is 1Ω or less, and the imaginary part is approximately 0Ω. ,
A transmission line having one end in contact with the entire width of the opposite side of the short-circuited end of the film resistor and a normalized admittance at the center frequency viewed from the other end of the film resistor side of approximately 1S;
An open-ended stub connected to the other end of the transmission line, the real part and the imaginary part of the normalized impedance at the center frequency viewed from the connection point with the transmission line at the center frequency are approximately 1Ω,
A microwave terminator comprising:
前記先端開放スタブは、低インピーダンス線路あるいはラジアルスタブにより形成されたことを特徴とする請求項1に記載のマイクロ波終端器。   The microwave terminator according to claim 1, wherein the open end stub is formed by a low impedance line or a radial stub. 裏面に地導体を具備した誘電体基板の表面に形成されるマイクロ波終端器であって、
一辺が前記地導体に短絡され、当該短絡端の対辺から前記地導体との接続辺側を見た伝送信号の中心周波数における規格化インピーダンスの実部が1Ω以下、虚部が略0Ωの矩形状の膜抵抗と、
一端が前記膜抵抗の短絡端の対辺の全幅に接して形成され、他端から前記膜抵抗側を見た前記中心周波数における規格化アドミッタンスが略1Sとなる伝送線路と、
一端が前記地導体に短絡され、他端が前記伝送線路の他端に接続され、前記伝送線路との接続点から前記膜抵抗側を見た前記中心周波数における規格化インピーダンスの実部および虚部が共に略1Ωとなるコンデンサと、
を備えることを特徴とするマイクロ波終端器。
A microwave terminator formed on the surface of a dielectric substrate having a ground conductor on the back surface,
A rectangular shape in which one side is short-circuited to the ground conductor, the real part of the normalized impedance at the center frequency of the transmission signal is 1Ω or less, and the imaginary part is about 0Ω when viewed from the opposite side of the short-circuited end to the ground conductor The membrane resistance of
A transmission line having one end formed in contact with the entire width of the opposite side of the short-circuited end of the film resistor, and a normalized admittance at the center frequency viewed from the other end of the film resistor side is approximately 1S;
One end is short-circuited to the ground conductor, the other end is connected to the other end of the transmission line, and the real part and imaginary part of the normalized impedance at the center frequency when the membrane resistance side is viewed from the connection point with the transmission line Both of which are approximately 1Ω,
A microwave terminator comprising:
前記伝送線路は、高インピーダンス線路により形成されたことを特徴とする請求項1〜3のいずれか一項に記載のマイクロ波終端器。   The microwave transmission unit according to any one of claims 1 to 3, wherein the transmission line is formed of a high impedance line. 前記膜抵抗の短絡端は、スルーホールあるいはビアにより構成されたことを特徴とする請求項1〜4のいずれか一項に記載のマイクロ波終端器。   The microwave terminator according to any one of claims 1 to 4, wherein the short-circuit end of the film resistor is configured by a through hole or a via. 前記膜抵抗の短絡端は、基板側面メタライズにより構成されたことを特徴とする請求項1〜4のいずれか一項に記載のマイクロ波終端器。   The microwave terminator according to any one of claims 1 to 4, wherein the short-circuit end of the film resistor is configured by substrate side metallization. 前記膜抵抗の短絡端は、前記中心周波数の略4分の1波長の長さの先端開放スタブで構成されたことを特徴とする請求項1〜4のいずれか一項に記載のマイクロ波終端器。   5. The microwave termination according to claim 1, wherein the short-circuited end of the film resistor is configured by an open-ended stub having a length of approximately a quarter wavelength of the center frequency. vessel.
JP2012053330A 2012-03-09 2012-03-09 Microwave terminator Active JP6067976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053330A JP6067976B2 (en) 2012-03-09 2012-03-09 Microwave terminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053330A JP6067976B2 (en) 2012-03-09 2012-03-09 Microwave terminator

Publications (2)

Publication Number Publication Date
JP2013187839A true JP2013187839A (en) 2013-09-19
JP6067976B2 JP6067976B2 (en) 2017-01-25

Family

ID=49388889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053330A Active JP6067976B2 (en) 2012-03-09 2012-03-09 Microwave terminator

Country Status (1)

Country Link
JP (1) JP6067976B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418193A (en) * 2017-12-06 2020-07-14 三菱电机株式会社 Signal transmission system
JP7442476B2 (en) 2021-03-05 2024-03-04 三菱電機株式会社 microwave terminator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531337A (en) * 1978-08-28 1980-03-05 Fujitsu Ltd Resistive terminator
JPH02193401A (en) * 1989-01-20 1990-07-31 Mitsubishi Electric Corp Ultra high frequency large power resistive terminating equipment
JPH054408U (en) * 1991-05-09 1993-01-22 三菱電機株式会社 Chip type termination resistor
JPH05129805A (en) * 1991-11-08 1993-05-25 Fujitsu Ltd Film resistance terminating device
JPH07221509A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Microwave band terminator
JPH09321215A (en) * 1996-03-27 1997-12-12 Honda Motor Co Ltd Package for microwave circuit
US20040227582A1 (en) * 2003-05-14 2004-11-18 Nitin Jain High power termination for radio frequency (RF) circuits
JP2005260454A (en) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp Terminator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531337A (en) * 1978-08-28 1980-03-05 Fujitsu Ltd Resistive terminator
JPH02193401A (en) * 1989-01-20 1990-07-31 Mitsubishi Electric Corp Ultra high frequency large power resistive terminating equipment
JPH054408U (en) * 1991-05-09 1993-01-22 三菱電機株式会社 Chip type termination resistor
JPH05129805A (en) * 1991-11-08 1993-05-25 Fujitsu Ltd Film resistance terminating device
JPH07221509A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Microwave band terminator
JPH09321215A (en) * 1996-03-27 1997-12-12 Honda Motor Co Ltd Package for microwave circuit
US20040227582A1 (en) * 2003-05-14 2004-11-18 Nitin Jain High power termination for radio frequency (RF) circuits
JP2005260454A (en) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp Terminator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011030521; 小泉勝男: '「高周波帯域用フィルタの設計法」' 雑誌トランジスタ技術1988年2月号 , 19880201, pp.403-412 *
JPN6015009382; 大井克己 著: 「RFデザイン・シリーズ スミス・チャート実践活用ガイド」 , 20060701, 第142頁, CQ出版株式会社 *
JPN6015019667; 羽石操: 「最新平面アンテナ技術」 , 19930325, pp.304-306, 株式会社総合技術センター *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418193A (en) * 2017-12-06 2020-07-14 三菱电机株式会社 Signal transmission system
CN111418193B (en) * 2017-12-06 2022-09-23 三菱电机株式会社 Signal transmission system
JP7442476B2 (en) 2021-03-05 2024-03-04 三菱電機株式会社 microwave terminator

Also Published As

Publication number Publication date
JP6067976B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
US9203361B2 (en) Harmonic control apparatus and related radio frequency devices and base stations
TWI234901B (en) Printed inverted-F antenna
TWI351789B (en) Multiband antenna
TW201436368A (en) Tunable antenna
TW200810236A (en) Antenna device
CN112106294A (en) Radio frequency power amplifier with harmonic control circuit and manufacturing method thereof
JP4519086B2 (en) Patch antennas and high frequency devices
JP6067976B2 (en) Microwave terminator
WO2024088202A1 (en) Electronic device
JP5701394B2 (en) ANTENNA DEVICE AND ANTENNA MOUNTING METHOD
JP5707501B2 (en) ANTENNA DEVICE AND ANTENNA MOUNTING METHOD
JP2011041097A (en) Antenna apparatus
TWM593665U (en) Dual antenna structure
CN105811065B (en) A kind of small size ultra wideband power divider
JP5203775B2 (en) Double harmonic suppression circuit
EP2117070A1 (en) Microwave device, high frequency device and high frequency apparatus
Gundumalla et al. Compact planar active integrated inverted‐F antenna with frequency reconfigurable capability
JP5255587B2 (en) Limiter circuit
JP2007281784A (en) Self-complementary antenna
JP3015348B1 (en) Large power distribution / combiner
KR102365761B1 (en) High frequency high power termination
TWI736285B (en) Antenna structure
JP2022135580A (en) microwave terminator
JP5003214B2 (en) High-frequency device and high-frequency device
US11228079B1 (en) Balun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6067976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250