JP2013187483A - Defect determination method and defect determination device - Google Patents

Defect determination method and defect determination device Download PDF

Info

Publication number
JP2013187483A
JP2013187483A JP2012053355A JP2012053355A JP2013187483A JP 2013187483 A JP2013187483 A JP 2013187483A JP 2012053355 A JP2012053355 A JP 2012053355A JP 2012053355 A JP2012053355 A JP 2012053355A JP 2013187483 A JP2013187483 A JP 2013187483A
Authority
JP
Japan
Prior art keywords
component
coordinate
reflow
possibility
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053355A
Other languages
Japanese (ja)
Other versions
JP5975206B2 (en
Inventor
Yoshinori Ueno
義則 植野
Hiroshi Naka
浩 中
Yasushi Tomita
安 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2012053355A priority Critical patent/JP5975206B2/en
Publication of JP2013187483A publication Critical patent/JP2013187483A/en
Application granted granted Critical
Publication of JP5975206B2 publication Critical patent/JP5975206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the possibility of a defect even in the case that a product has part floating with little floating amount or the wettability of a part electrode a little worse than that of a good part.SOLUTION: A defect determination device 100 includes: solder printing means 10 for printing solder on a substrate; part mounting means 11 for mounting a part on the solder-printed substrate; mounted part position measuring means 12 for measuring part coordinates after the part is mounted, and for calculating a first coordinate deviation from part implementation target coordinates; reflow means 13 for heating the substrate after the part is mounted and for soldering the part; after-reflow part position measuring means 14 for measuring part coordinates after reflow and for calculating a second coordinate deviation from the part implementation target coordinates; and fault determination means 15 for determining the possibility of a defect of the part after reflow on the basis of the first coordinate deviation and second coordinate deviation.

Description

本発明は、部品の不良判定方法及び不良判定装置に関し、特に、基板に搭載した部品の不良判定方法及び不良判定装置に関する。   The present invention relates to a component defect determination method and a defect determination device, and more particularly to a component defect determination method and a defect determination device mounted on a substrate.

はんだ印刷・部品搭載・リフローの各工程から成る電子部品の基板実装において、特に両端に電極を有するチップ型の電子部品では、部品位置ずれ・部品浮きや部品立ち(マンハッタンあるいはツームストーンと呼ばれる現象)などの様々な不良が発生している。   In the mounting of electronic components that consist of solder printing, component mounting, and reflow processes, especially in chip-type electronic components that have electrodes on both ends, component displacement, component floating, and component standing (a phenomenon called Manhattan or Tombstone) Various defects such as are occurring.

これら不良の原因として、部品を実装するパッドへのはんだ印刷量のばらつきや、部品電極のはんだ濡れ性のばらつきにより、溶融したはんだによって電極に働く界面張力に差が出ることが挙げられる。   The causes of these defects include a difference in the interfacial tension acting on the electrodes due to the molten solder due to variations in the amount of solder printed on the pads on which the components are mounted and variations in the solder wettability of the component electrodes.

これらのばらつきが少ない場合、両電極に働く界面張力がほぼ等しくなるパッド間中心付近に移動する(セルフアライメント効果)が、ばらつきが大きくなると両電極間の界面張力差も大きくなり、部品が界面張力の大きい方へ引き寄せられて部品位置ずれや部品浮きなどの不良になる。   When these variations are small, the interfacial tension acting on both electrodes moves to near the center between the pads (self-alignment effect). However, if the variation increases, the interfacial tension difference between the two electrodes also increases, and the component has an interfacial tension. It is attracted to the larger one, resulting in defective parts such as part displacement and part floating.

これに対し、従来ははんだ印刷後検査やリフロー後の外観検査による不良判定が行われている。リフロー後の外観検査における部品実装位置ずれについては、一例として基準となる部品画像を用いたパターンマッチングにより部品位置を検出し、部品実装目標座標(設計における実装位置)からのずれ量が許容範囲内にあるかどうかを確認する方法が行われている。   On the other hand, conventionally, defect determination is performed by inspection after solder printing or appearance inspection after reflow. For component mounting position deviation in visual inspection after reflow, for example, the component position is detected by pattern matching using a reference component image, and the deviation from the component mounting target coordinates (mounting position in the design) is within the allowable range. There is a way to check if there is.

また、部品浮きについては、上記パターンマッチングによる検出に加えて、特開平1−282410号公報(特公平6−1173号公報:特許文献1)に記載されているように、部品浮きや濡れ不足の場合、部品電極とはんだの接合部分(フィレット)が正しく形成されないことから、フィレットの形状を測定し、フィレットが正しく形成されていない場合に不良と判断し、部品浮きや濡れ不足を含めた不良判定が行なわれている。   In addition to the detection by the above pattern matching, the component floating is caused by component floating or insufficient wetting as described in Japanese Patent Laid-Open No. 1-282410 (Japanese Patent Publication No. 6-1173: Patent Document 1). In this case, since the joint part (fillet) between the component electrode and the solder is not formed correctly, the shape of the fillet is measured, and if the fillet is not formed correctly, it is determined as defective, and the defect determination including part floating and insufficient wetting is performed. Has been done.

しかし、浮き上がり量の少ない部品浮きや部品電極の濡れ性が良品よりやや劣る場合は良品との差が小さく、また微小部品の場合はフィレット自体が小さいため、フィレット形状による不良判定では不良を完全に検出することは難しいという問題があった。   However, if the lift of the component with a small lift amount and the wettability of the component electrode are slightly inferior to those of the good product, the difference from the good product is small.In the case of micro components, the fillet itself is small. There was a problem that it was difficult to detect.

特開平1−282410号公報JP-A-1-282410

本発明の目的は、上述した従来技術の課題を解決するための技術を提供することにあり、浮き上がり量の少ない部品浮きや部品電極の濡れ性が良品よりやや劣る場合においても、不良の可能性を判定することが可能な不良判定方法及び不良判定装置を提供することにある。   An object of the present invention is to provide a technique for solving the above-described problems of the prior art, and even when the component lift and the wettability of the component electrode with a small lift amount are slightly inferior to those of a good product, the possibility of failure It is an object of the present invention to provide a defect determination method and a defect determination apparatus that can determine the above.

本発明に係る不良判定方法は、
基板にはんだを印刷する工程と、
前記はんだを印刷した基板に部品を搭載する工程と、
前記部品を搭載した後の部品座標を測定し、部品実装目標座標からの第1の座標ずれを算出する工程と、
前記部品を搭載した後の基板を加熱して、前記部品のはんだ付けを行うリフロー工程と、
前記リフロー後の部品座標を測定し、前記部品実装目標座標からの第2の座標ずれを算出する工程と、
前記第1の座標ずれと前記第2の座標ずれに基づいて、前記リフロー後の部品の不良の可能性を判定する工程と、
を有することを特徴とする。
The defect determination method according to the present invention includes:
Printing solder on the board;
Mounting a component on the printed board of the solder;
Measuring component coordinates after mounting the component and calculating a first coordinate deviation from the component mounting target coordinates;
A reflow step of heating the substrate after mounting the component and soldering the component;
Measuring the component coordinates after the reflow, and calculating a second coordinate deviation from the component mounting target coordinates;
Determining a possibility of a defective part after the reflow based on the first coordinate shift and the second coordinate shift;
It is characterized by having.

また、本発明に係る不良判定装置は、
基板にはんだを印刷するはんだを印刷手段と、
前記はんだを印刷した基板に部品を搭載する部品搭載手段と、
前記部品を搭載した後の部品座標を測定し、部品実装目標座標からの第1の座標ずれを算出する搭載後部品位置測定手段と、
前記部品を搭載した後の基板を加熱して、前記部品のはんだ付けを行うリフロー手段と、
前記リフロー後の部品座標を測定し、前記部品実装目標座標からの第2の座標ずれを算出するリフロー後部品位置測定手段と、
前記第1の座標ずれと前記第2の座標ずれに基づいて、前記リフロー後の部品の不良の可能性を判定する不良判定手段と、
を有することを特徴とする。
Moreover, the defect determination apparatus according to the present invention is
A solder printing means for printing solder on a substrate; and
Component mounting means for mounting a component on the printed board of the solder;
A post-mounting component position measuring means for measuring the component coordinates after mounting the component and calculating a first coordinate deviation from the component mounting target coordinates;
Reflow means for heating the substrate after mounting the component and soldering the component;
A component position measuring unit after reflow that measures the component coordinates after the reflow and calculates a second coordinate deviation from the component mounting target coordinates;
A failure determination means for determining a possibility of a failure of the component after the reflow based on the first coordinate shift and the second coordinate shift;
It is characterized by having.

本発明によれば、浮き上がり量の少ない部品浮きや部品電極の濡れ性が良品よりやや劣る場合においても、不良の可能性を判定することができる。   According to the present invention, it is possible to determine the possibility of failure even when the component floating amount and the wettability of the component electrode are slightly inferior to those of the non-defective product.

本発明の実施の形態に係る不良判定装置の構成を示す図である。It is a figure which shows the structure of the defect determination apparatus which concerns on embodiment of this invention. 部品が不良である可能性を判定する方法の一例を説明するための図であり、(a)は部品実装後の部品実装位置を示し、(b)はリフロー後の部品実装位置を示している。It is a figure for demonstrating an example of the method of determining possibility that a component is defective, (a) shows the component mounting position after component mounting, (b) has shown the component mounting position after reflow. . 部品が不良である可能性を判定する方法の一例を説明するための図であり、(a)は部品実装後の部品実装位置を示し、(b)はリフロー後の部品実装位置を示している。It is a figure for demonstrating an example of the method of determining possibility that a component is defective, (a) shows the component mounting position after component mounting, (b) has shown the component mounting position after reflow. . 本発明の実施の形態に係る不良判定方法について説明するためのフローチャートである。It is a flowchart for demonstrating the defect determination method which concerns on embodiment of this invention. 部品搭載手段における基板への部品の搭載例を示す図である。It is a figure which shows the example of mounting of the component on the board | substrate in a component mounting means. リフロー手段における部品のはんだ付けの一例を示す図である。It is a figure which shows an example of the soldering of the components in a reflow means. リフロー手段における部品のはんだ付けの一例を示す図である。It is a figure which shows an example of the soldering of the components in a reflow means. リフロー手段における部品のはんだ付けの一例を示す図である。It is a figure which shows an example of the soldering of the components in a reflow means. リフロー手段における部品のはんだ付けの一例を示す図である。It is a figure which shows an example of the soldering of the components in a reflow means.

本発明の実施の形態について図面を参照して詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

図1を参照して、本発明の実施の形態に係る不良判定装置の構成について説明する。   With reference to FIG. 1, the structure of the defect determination apparatus according to the embodiment of the present invention will be described.

図1に示すように、不良判定装置100は、基板にはんだを印刷するはんだ印刷手段10と、はんだを印刷した基板に部品を搭載する部品搭載手段11と、部品を搭載した基板を撮像して、部品位置と部品実装目標座標の座標ずれを測定する搭載後部品位置測定手段12と、部品搭載後の基板を加熱して部品のはんだ付けを行うリフロー手段13と、リフローを行った基板を撮像して、部品位置と部品実装目標座標の座標ずれを測定するリフロー後部品位置測定手段14と、搭載後部品位置測定手段12とリフロー後部品位置測定手段14で検出した部品位置の座標ずれから、リフロー後に不良が発生している可能性を判定する不良判定手段15を有する。   As shown in FIG. 1, the defect determination apparatus 100 images a solder printing unit 10 that prints solder on a substrate, a component mounting unit 11 that mounts a component on a substrate printed with solder, and a substrate on which the component is mounted. The post-mounting part position measuring unit 12 that measures the coordinate deviation between the component position and the component mounting target coordinates, the reflow unit 13 that heats the substrate after mounting the component, and solders the component, and the reflowed board Then, from the post-reflow component position measuring means 14 for measuring the coordinate deviation between the component position and the component mounting target coordinates, and the component position coordinate deviation detected by the post-mounting component position measuring means 12 and the post-reflow component position measuring means 14, There is a failure determination means 15 for determining the possibility of a failure after reflow.

このように、本発明の実施の形態では、電子部品の基板実装において、部品搭載後の部品座標情報とリフロー後の部品座標情報を用いて、部品が不良である可能性を判定する。   As described above, in the embodiment of the present invention, in mounting the electronic component on the board, the possibility of the component being defective is determined using the component coordinate information after component mounting and the component coordinate information after reflow.

ここで、図2、図3を参照して、部品が不良である可能性を判定する方法の一例について説明する。ここで、図2(a)、図3(a)は、部品搭載後の部品位置を示し、図2(b)、図3(b)は、リフロー後の部品位置を示している。ここで、図2(b)、図3(b)で示す部品位置は同一であり、従来技術による不良判定では同一の結果となる。図2、図3に示すように、パッド102を有する基板上に部品101が搭載される。   Here, with reference to FIG. 2 and FIG. 3, an example of a method for determining the possibility that a part is defective will be described. Here, FIGS. 2A and 3A show the component positions after mounting the components, and FIGS. 2B and 3B show the component positions after reflow. Here, the component positions shown in FIGS. 2B and 3B are the same, and the same result is obtained in the defect determination according to the prior art. As shown in FIGS. 2 and 3, a component 101 is mounted on a substrate having a pad 102.

図2(a)、(b)に示すように、部品搭載工程後の部品座標が部品実装目標座標から大きくずれていた部品101が、リフロー工程後に部品実装目標座標であるパッド間中心の近くまで移動していた場合は、大きくセルフアライメント効果が現れているので、良好なはんだ濡れ性が得られ、良好なはんだ付けが行われたと判断できる。   As shown in FIGS. 2A and 2B, the component 101 whose component coordinates after the component mounting process greatly deviated from the component mounting target coordinates is close to the center between the pads which are the component mounting target coordinates after the reflow process. If it has moved, a large self-alignment effect appears, so that good solder wettability can be obtained and it can be determined that good soldering has been performed.

これに対して、図3(a)、(b)に示すように、部品搭載工程後の部品座標がパッド間中心のやや右側であった部品が、リフロー工程後に部品実装目標座標であるパッド間中心を越えて、パッド間中心のやや左側まで移動していた場合は、部品右側電極の濡れ性が悪く、左側パッドの方に大きく引き寄せられたと推測可能であり、不良の可能性があると考えられる。   On the other hand, as shown in FIGS. 3A and 3B, a component whose component coordinates after the component mounting process are slightly on the right side of the center between the pads is a component mounting target coordinate after the reflow process. If it moves beyond the center and slightly to the left of the center between the pads, it can be assumed that the right electrode of the component has poor wettability and has been drawn toward the left pad, which may be defective. It is done.

このことから、本発明の実施の形態では、部品搭載後の製品画像及びリフロー後の製品画像から各々における部品座標を測定して部品実装目標座標からの座標ずれを求め、これらの座標ずれを比較して、部品が不良である可能性を判定するようにしている。   Therefore, in the embodiment of the present invention, the component coordinates in each are measured from the product image after component mounting and the product image after reflow to determine the coordinate deviation from the component mounting target coordinates, and these coordinate deviations are compared. Thus, the possibility that the part is defective is determined.

次に、図4を参照して、本発明の実施の形態に係る不良判定方法について説明する。ここで、図4は、基板へ部品を実装するまでの手順を示している。   Next, with reference to FIG. 4, the failure determination method according to the embodiment of the present invention will be described. Here, FIG. 4 shows a procedure until components are mounted on the board.

まず、はんだ印刷手段10は部品が実装されていない基板に対してはんだ印刷を行い、基板を部品搭載手段11へ搬出する(ステップ40)。   First, the solder printing means 10 performs solder printing on a board on which no component is mounted, and carries the board to the component mounting means 11 (step 40).

次に、部品搭載手段11は、はんだ印刷手段10から搬入された基板に対して部品の搭載を行い、基板を搭載後部品位置測定手段12へ搬出する(ステップ41)。   Next, the component mounting means 11 mounts components on the board carried in from the solder printing means 10 and carries the board to the component position measuring means 12 after mounting (step 41).

次に、搭載後部品位置測定手段12は、部品搭載手段11から搬入された基板に対して撮像を行い、部品座標を測定して、部品実装目標座標からの座標ずれを算出する(ステップ42)。   Next, the post-mounting component position measuring unit 12 captures an image of the board carried from the component mounting unit 11, measures the component coordinates, and calculates a coordinate deviation from the component mounting target coordinates (step 42). .

ここで、座標ずれはX・Y及びθ方向のずれを意味するが、必ずしも全ての値を用いる必要はなく、X・Y及びθ方向のずれのうち一部を測定して、処理を行っても良い。また、X・Y及びθ方向のずれのうち複数を用いる場合は、1つでも不良の可能性ありと判定されたら、該部品は不良の可能性ありと判定する。   Here, the coordinate deviation means a deviation in the X, Y, and θ directions, but it is not always necessary to use all the values. Some of the deviations in the X, Y, and θ directions are measured and processed. Also good. Further, when a plurality of deviations in the X, Y, and θ directions are used, if it is determined that there is a possibility that even one of the parts is defective, the part is determined to be defective.

測定完了後、基板をリフロー手段13へ搬出し、算出した座標ずれを不良判定手段15へ出力する。   After the measurement is completed, the substrate is carried out to the reflow unit 13 and the calculated coordinate deviation is output to the defect determination unit 15.

次に、リフロー手段13は、搭載後部品位置測定手段12から搬入された基板に対して熱を加えてはんだ付けを行い、リフロー後部品位置測定手段14へ搬出する(ステップ43)。   Next, the reflow unit 13 applies heat to the board carried in from the post-mounting component position measuring unit 12 to perform soldering, and carries it out to the post-reflow component position measuring unit 14 (step 43).

次に、リフロー後部品位置測定手段14は、リフロー手段13から搬入された基板に対して撮像を行い、部品座標を測定して、部品実装目標座標からの座標ずれを算出する(ステップ44)。測定完了後、基板を後工程へ搬出し、算出した座標ずれを不良判定手段15へ出力する。   Next, the post-reflow component position measurement unit 14 performs imaging on the board carried in from the reflow unit 13, measures the component coordinates, and calculates a coordinate deviation from the component mounting target coordinates (step 44). After the measurement is completed, the substrate is carried out to a subsequent process, and the calculated coordinate deviation is output to the defect determination means 15.

次に、ステップ42とステップ44で算出した座標ずれを用いて、部品の不良の可能性を判定する(ステップ45)。   Next, the possibility of component failure is determined using the coordinate shift calculated in steps 42 and 44 (step 45).

この判定の結果、部品の不良の可能性ありと判定されたら、外部へ部品不良の可能性を通知する(ステップ46)。   If it is determined that there is a possibility of component failure as a result of this determination, the possibility of component failure is notified to the outside (step 46).

一方、判定の結果、部品の不良の可能性なしと判定されたら処理は終了する。   On the other hand, if it is determined that there is no possibility of component failure as a result of the determination, the process ends.

次に、図5〜図9を参照して、図1に示す搭載後部品位置測定手段12及びリフロー後部品位置測定手段14の動作について説明する。   Next, operations of the post-mounting part position measuring unit 12 and the post-reflow part position measuring unit 14 shown in FIG. 1 will be described with reference to FIGS.

最初に、図5に、部品搭載手段11における基板への部品31の搭載例を示す。搭載後部品位置測定手段12では、基板の撮像を行い、得られた画像から部品中心位置34を測定し、座標ずれを算出する。   First, FIG. 5 shows an example of mounting the component 31 on the board in the component mounting means 11. The post-mounting component position measuring means 12 images the substrate, measures the component center position 34 from the obtained image, and calculates the coordinate deviation.

ここで、部品中心位置34を測定する方法としては、部品31の基準画像を用いたテンプレートマッチングにより、撮像した画像から部品31を検出し、得られた領域の中心を部品中心位置34とする方法や、輝度変化を用いて部品31の外形を求め、得られた領域の中心を部品中心位置34とする方法などが考えられるが、測定をこれらの方法に限定するものではない。   Here, as a method of measuring the component center position 34, a method of detecting the component 31 from the captured image by template matching using the reference image of the component 31 and setting the center of the obtained region as the component center position 34. Alternatively, a method of obtaining the outer shape of the component 31 using the luminance change and setting the center of the obtained region as the component center position 34 can be considered, but the measurement is not limited to these methods.

部品中心位置34を測定したら、部品実装目標座標に対する部品中心位置34の差分により座標ずれXm,Ym,θmを算出し、算出値を不良判定手段15へ出力する。   When the component center position 34 is measured, coordinate deviations Xm, Ym, θm are calculated from the difference of the component center position 34 with respect to the component mounting target coordinates, and the calculated values are output to the defect determination means 15.

ここで、一般的に、部品実装目標座標はパッド間中心位置33(パッド32の間の中心位置)であるため、以下、部品実装目標座標はパッド間中心位置33であるとして説明及び図示を行う。   Here, since the component mounting target coordinates are generally the pad-to-pad center position 33 (the center position between the pads 32), the following description will be given assuming that the component mounting target coordinates are the pad-to-pad center position 33. .

リフロー後部品位置測定手段14では、搭載後部品位置測定手段12と同様の方法で座標ずれXr,Yr,θrを算出し、算出値を不良判定手段15へ出力する。   The post-reflow component position measurement unit 14 calculates coordinate deviations Xr, Yr, θr in the same manner as the post-mounting component position measurement unit 12, and outputs the calculated values to the defect determination unit 15.

不良判定手段15では、実装後部品位置測定手段12で算出した座標ずれXm,Ym,θmと、リフロー後部品位置測定手段14で算出した座標ずれXr,Yr,θrから部品不良の可能性を判定する。判定の結果、部品不良の可能性を検出した場合は外部へ部品不良の可能性を通知する。   The defect determination means 15 determines the possibility of component failure from the coordinate deviations Xm, Ym, θm calculated by the post-mounting part position measurement means 12 and the coordinate deviations Xr, Yr, θr calculated by the post-reflow part position measurement means 14. To do. As a result of the determination, when the possibility of component failure is detected, the possibility of component failure is notified to the outside.

ここで、不良判定手段15での判定方法を以下に示す。   Here, the determination method in the defect determination means 15 is shown below.

リフロー手段13ではんだが溶融することで、部品31が両電極における界面張力が等しくなる位置へ移動するため、良品であれば部品中心位置34は部品実装目標座標であるパッド間中心位置33へ向けて移動すると考えられる。   When the solder is melted by the reflow means 13, the component 31 moves to a position where the interfacial tension between the two electrodes becomes equal. Therefore, if the product is a non-defective product, the component center position 34 is directed toward the inter-pad center position 33 that is the component mounting target coordinate. It is thought that moves.

このことから、部品搭載後及びリフロー後の座標ずれを比較して、部品搭載後の座標ずれに対するリフロー後の座標ずれが、部品実装目標座標から離れる方向である場合、不良の可能性があると考えられる。   From this, comparing the coordinate deviation after component mounting and after reflow, if the coordinate deviation after reflow relative to the coordinate deviation after component mounting is in a direction away from the component mounting target coordinates, there is a possibility of a defect. Conceivable.

次に、図6に、リフロー手段13における部品31のはんだ付けの一例を示す。ここで、部品搭載後は図5に示す状態であったものとする。この場合、部品搭載後の座標ずれXm,Ym,θmとリフロー後の座標ずれXr,Yr,θrを比較すると、
Xr=(12/11)Xm
Yr=(2/9)Ym
θr=(1/6)θm
となり、X座標に関してXmとXrの符号が同じ、即ちずれの向きが同じで、かつXr>Xmであることから、X座標が部品実装目標座標から離れる方向へ移動しているため、不良の可能性があると判定する。
Next, FIG. 6 shows an example of soldering of the component 31 in the reflow means 13. Here, it is assumed that the state shown in FIG. In this case, when the coordinate deviations Xm, Ym, θm after component mounting and the coordinate deviations Xr, Yr, θr after reflow are compared,
Xr = (12/11) Xm
Yr = (2/9) Ym
θr = (1/6) θm
Since the signs of Xm and Xr are the same with respect to the X coordinate, that is, the direction of the deviation is the same and Xr> Xm, the X coordinate is moving away from the component mounting target coordinates, so a defect is possible. Judge that there is sex.

また、部品中心位置34が部品実装目標座標へ近づく方向へ動いた場合、つまり、部品搭載後の部品中心位置34から見て、部品実装目標座標へ向けて動いた場合でも、部品搭載後の座標ずれよりも前記部品搭載後の座標ずれと前記リフロー後座標ずれの差が大きい、つまり部品搭載後からリフロー後にかけての移動量が、部品搭載後の座標ずれ量よりも大きい場合は、リフロー工程後に部品実装目標座標を越える位置まで動いていた、即ち、必要以上に部品が動いたということで、不良の可能性があると考えられる。   Further, even when the component center position 34 moves in a direction approaching the component mounting target coordinates, that is, when the component center position 34 moves toward the component mounting target coordinates as viewed from the component center position 34 after the components are mounted, the coordinates after the components are mounted. The difference between the coordinate shift after mounting the component and the coordinate shift after reflow is larger than the shift, that is, if the movement amount after mounting the component after the reflow is larger than the coordinate shift amount after mounting the component, after the reflow process It has been considered that there is a possibility of a failure because it has moved to a position exceeding the component mounting target coordinates, that is, the component has moved more than necessary.

次に、図7に、リフロー手段13における部品31のはんだ付け例で、図6とは異なる例を示す。ここで、部品搭載後は図5に示す状態であったものとする。この場合、部品搭載後の座標ずれXm,Ym,θmとリフロー後の座標ずれXr,Yr,θrを比較すると、
Xr=(−4/11)Xm
Yr=(2/9)Ym
θr=(1/6)θm
となり、X座標に関して、Xr<Xmであることから、部品搭載後の部品中心位置34から見て、部品実装目標座標へ向けて動いたことが分かる。また、部品搭載後の状態からリフロー後の状態までの移動量である|Xr−Xm|と部品搭載後の座標ずれ量|Xm|を比較すると、|Xr−Xm|の方が大きいことから、部品中心位置34がリフロー工程後に部品実装目標座標を越える位置まで動いたということで、不良の可能性があると判定する。
Next, FIG. 7 shows an example of soldering of the component 31 in the reflow means 13, which is different from FIG. Here, it is assumed that the state shown in FIG. In this case, when the coordinate deviations Xm, Ym, θm after component mounting and the coordinate deviations Xr, Yr, θr after reflow are compared,
Xr = (− 4/11) Xm
Yr = (2/9) Ym
θr = (1/6) θm
Thus, with respect to the X coordinate, since Xr <Xm, it can be seen that the X coordinate moves from the component center position 34 after component mounting toward the component mounting target coordinate. In addition, when | Xr−Xm |, which is the amount of movement from the state after component mounting to the state after reflow, is compared with the coordinate deviation amount | Xm | after component mounting, | Xr−Xm | Since the component center position 34 has moved to a position exceeding the component mounting target coordinates after the reflow process, it is determined that there is a possibility of a defect.

また、部品搭載後の座標ずれ及びリフロー後の座標ずれは、部品実装目標座標を原点とした値であるため、各々の符号が異なっている場合、部品中心位置34がリフロー工程後に部品実装目標座標を越える位置まで動いたということで、不良の可能性があると判定することも可能である。図7に示す例では、X方向のずれ量であるXmとXrの符号が異なるため、不良の可能性がありと判定する。   Further, since the coordinate deviation after component mounting and the coordinate deviation after reflow are values with the component mounting target coordinates as the origin, if the respective signs are different, the component center position 34 is the component mounting target coordinates after the reflow process. It is also possible to determine that there is a possibility of a failure because it has moved to a position exceeding. In the example shown in FIG. 7, since the signs of Xm and Xr, which are deviation amounts in the X direction, are different, it is determined that there is a possibility of failure.

ただし、実際には測定時の誤差や、両電極に働く界面張力が等しくなる位置へ部品31が動く際の停止位置のばらつきが発生するため、定数C1を用いて、部品搭載後の状態からリフロー後の状態までの移動量が、部品搭載後の座標ずれ量よりもC1以上大きい場合に不良と判定するようにしても良い。   However, in actuality, errors in measurement and variations in the stop position when the component 31 moves to a position where the interfacial tension acting on both electrodes are equal to each other occur. Therefore, the constant C1 is used to reflow from the state after the component is mounted. You may make it determine with a defect, when the movement amount to a later state is larger than C1 more than the amount of coordinate deviation after component mounting.

また、部品中心位置34が部品実装目標座標へ近づく方向へ動いた場合でも、部品搭載後の座標ずれXm,Ym,θmと前記リフロー後の座標ずれXr,Yr,θrの差が、部品搭載後の座標ずれから算出されるしきい値より小さい場合、リフロー工程後に部品31があまり動いていない、即ちセルフアライメント効果が小さいということで、不良の可能性があると考えられる。   Further, even when the component center position 34 moves in a direction approaching the component mounting target coordinates, the difference between the coordinate deviation Xm, Ym, θm after component mounting and the coordinate deviation Xr, Yr, θr after reflow is the difference after component mounting. If the value is smaller than the threshold value calculated from the coordinate deviation, the part 31 does not move much after the reflow process, that is, the self-alignment effect is small.

ここで、しきい値としては、部品搭載後の座標ずれXm,Ym,θmをα倍(0<α<1)した値を用いることが考えられる。αは、材料や部品重量などによるセルフアライメント効果の程度に応じて設定することが考えられる。セルフアライメント効果が働きやすい場合は、良品であれば部品中心位置34が部品実装目標座標へ近づきやすくなると考えられるため、セルフアライメント効果が働きにくい場合はα=1/3、セルフアライメント効果が働きやすい場合はα=2/3とするなど、セルフアライメント効果が働きやすい場合はαを大きく設定することが好ましい。   Here, as the threshold value, it is conceivable to use a value obtained by multiplying the coordinate deviation Xm, Ym, θm after mounting the component by α (0 <α <1). It is conceivable that α is set according to the degree of self-alignment effect due to the material and the weight of the component. If the self-alignment effect is easy to work, if it is a non-defective product, the component center position 34 is likely to approach the component mounting target coordinates. Therefore, if the self-alignment effect is difficult to work, α = 1/3, and the self-alignment effect is easy to work. If the self-alignment effect is easy to work, such as α = 2/3, it is preferable to set α large.

また、部品搭載後の座標ずれXm,Ym,θmが小さい場合、良品であっても移動量は小さく、しきい値として部品搭載後の座標ずれを用いた場合、良品に対して不良の可能性ありと判定する可能性がある。このため、部品搭載後の座標ずれXm,Ym,θmが一定値以下の場合は、しきい値として定数C2を用いることも考えられる。   In addition, if the coordinate deviation Xm, Ym, θm after component mounting is small, the amount of movement is small even if it is a non-defective product. There is a possibility of determining that there is. For this reason, when the coordinate deviations Xm, Ym, and θm after component mounting are equal to or less than a certain value, it may be considered to use the constant C2 as the threshold value.

次に、図8に、リフロー手段13における部品31のはんだ付け例で、図6及び図7とは異なる例を示す。ここで、部品搭載後は図5に示す状態であったものとする。この場合、部品搭載後の座標ずれXm,Ym,θmとリフロー後の座標ずれXr,Yr,θrを比較すると、
Xr=(7/11)Xm
Yr=(2/9)Ym
θr=(1/6)θm
ここで、α=2/3とした場合、X座標に関して、Xr<Xmで、かつXm−Xrが(2/3)Xmよりも小さいことから、部品中心位置34は部品実装目標座標へ近づく方向へ動いているが、その移動量がしきい値より小さいため、不良の可能性があると判定する。
Next, FIG. 8 shows an example of soldering of the component 31 in the reflow means 13, which is different from FIGS. Here, it is assumed that the state shown in FIG. In this case, when the coordinate deviations Xm, Ym, θm after component mounting and the coordinate deviations Xr, Yr, θr after reflow are compared,
Xr = (7/11) Xm
Yr = (2/9) Ym
θr = (1/6) θm
Here, when α = 2/3, with respect to the X coordinate, since Xr <Xm and Xm−Xr is smaller than (2/3) Xm, the component center position 34 approaches the component mounting target coordinate. However, since the amount of movement is smaller than the threshold value, it is determined that there is a possibility of failure.

図9に、リフロー手段13における部品31のはんだ付け例で、図6、図7及び図8とは異なる例を示す。ここで、部品搭載後は図5に示す状態であったものとする。この場合、部品搭載後の座標ずれXm,Ym,θmとリフロー後の座標ずれXr,Yr,θrを比較すると、
Xr=(3/11)Xm
Yr=(2/9)Ym
θr=(1/6)θm
となり、前述した不良の可能性ありと判定する条件に当てはまらないことから、不良の可能性なしと判定する。
FIG. 9 shows an example of soldering of the component 31 in the reflow means 13, which is different from those shown in FIGS. Here, it is assumed that the state shown in FIG. In this case, when the coordinate deviations Xm, Ym, θm after component mounting and the coordinate deviations Xr, Yr, θr after reflow are compared,
Xr = (3/11) Xm
Yr = (2/9) Ym
θr = (1/6) θm
Therefore, since it does not apply to the condition for determining that there is a possibility of failure as described above, it is determined that there is no possibility of failure.

図6、図7、図8及び図9に示す例は、従来の手法では全て良品と判定される可能性もあるのに対し、本発明の手法により不良の可能性を適切に判定することを可能としている。   In the examples shown in FIGS. 6, 7, 8, and 9, there is a possibility that all the conventional methods may be determined as non-defective products, whereas the method according to the present invention appropriately determines the possibility of defects. It is possible.

このように、本発明の実施の形態によれば、部品搭載後の座標ずれとリフロー後の座標ずれとから、不良の可能性を判定することで、浮き上がり量の少ない部品浮きや部品電極の濡れ性が良品よりやや劣るなど、従来は不良判定が難しかった場合についても、不良の可能性を判定することができる。   As described above, according to the embodiment of the present invention, by determining the possibility of a defect from the coordinate deviation after component mounting and the coordinate deviation after reflow, the component floating or component electrode wetting with a small lift amount is determined. The possibility of a defect can be determined even when it has been difficult to determine the defect in the past, for example, the property is slightly inferior to a non-defective product.

以上、本発明の実施の形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。   Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.

例えば、部品搭載後の座標ずれXm,Ym,θm及びリフロー後の座標ずれXr,Yr,θrについて、Rm(Rm=√(Xm+Ym))及びRr(Rr=√(Xr+Yr))を用いて、部品搭載後の座標ずれRm,θm及びリフロー後の座標ずれRr,θrとして、X方向及びY方向の座標ずれを総合的に比較する方法が考えられる。 For example, Rm (Rm = √ (Xm 2 + Ym 2 )) and Rr (Rr = √ (Xr 2 + Yr 2 )) regarding the coordinate deviation Xm, Ym, θm after component mounting and the coordinate deviation Xr, Yr, θr after reflow. ), The coordinate deviation in the X direction and the Y direction can be comprehensively compared as the coordinate deviation Rm, θm after component mounting and the coordinate deviation Rr, θr after reflow.

10 はんだ印刷手段
11 部品搭載手段
12 搭載後部品位置測定手段
13 リフロー手段
14 リフロー後部品位置測定手段
15 不良判定手段
31 部品
32 パッド
33 パッド間中心位置
34 部品中心位置
100 不良判定装置
101 部品
102 パッド
DESCRIPTION OF SYMBOLS 10 Solder printing means 11 Component mounting means 12 After mounting component position measuring means 13 Reflow means 14 After reflowing part position measuring means 15 Defect determination means 31 Parts 32 Pad 33 Pad center position 34 Component center position 100 Defect determination apparatus 101 Parts 102 Pad

Claims (10)

基板にはんだを印刷する工程と、
前記はんだを印刷した基板に部品を搭載する工程と、
前記部品を搭載した後の部品座標を測定し、部品実装目標座標からの第1の座標ずれを算出する工程と、
前記部品を搭載した後の基板を加熱して、前記部品のはんだ付けを行うリフロー工程と、
前記リフロー後の部品座標を測定し、前記部品実装目標座標からの第2の座標ずれを算出する工程と、
前記第1の座標ずれと前記第2の座標ずれに基づいて、前記リフロー後の部品の不良の可能性を判定する工程と、
を有することを特徴とする不良判定方法。
Printing solder on the board;
Mounting a component on the printed board of the solder;
Measuring component coordinates after mounting the component and calculating a first coordinate deviation from the component mounting target coordinates;
A reflow step of heating the substrate after mounting the component and soldering the component;
Measuring the component coordinates after the reflow, and calculating a second coordinate deviation from the component mounting target coordinates;
Determining a possibility of a defective part after the reflow based on the first coordinate shift and the second coordinate shift;
A defect determination method characterized by comprising:
前記不良の可能性を判定する工程は、前記第1の座標ずれに対する前記第2の座標ずれが、前記部品実装目標座標から離れる方向である場合に、前記不良の可能性があると判定することを特徴とする請求項1に記載の不良判定方法。   The step of determining the possibility of the failure is to determine that there is a possibility of the failure when the second coordinate shift with respect to the first coordinate shift is in a direction away from the component mounting target coordinates. The defect determination method according to claim 1, wherein: 前記不良の可能性を判定する工程は、前記第1の座標ずれに対する前記第2の座標ずれが、前記部品実装目標座標に近づく方向であり、かつ前記第1の座標ずれよりも、前記第1の座標ずれと前記第2の座標ずれとの差が大きい場合に、前記不良の可能性があると判定することを特徴とする請求項1に記載の不良判定方法。   In the step of determining the possibility of the defect, the second coordinate shift with respect to the first coordinate shift is in a direction approaching the component mounting target coordinates, and the first coordinate shift is more than the first coordinate shift. 2. The defect determination method according to claim 1, wherein when there is a large difference between the coordinate deviation of the second coordinate deviation and the second coordinate deviation, it is determined that there is a possibility of the defect. 前記不良の可能性を判定する工程は、前記第1の座標ずれに対する前記第2の座標ずれが、前記部品実装目標座標に近づく方向であり、かつ前記第1の座標ずれと前記第2の座標ずれの差が所定のしきい値より小さい場合に、前記不良の可能性があると判定することを特徴とする請求項1に記載の不良判定方法。   The step of determining the possibility of the failure is a direction in which the second coordinate deviation with respect to the first coordinate deviation approaches the component mounting target coordinates, and the first coordinate deviation and the second coordinate. The defect determination method according to claim 1, wherein it is determined that there is a possibility of the defect when a difference in deviation is smaller than a predetermined threshold value. 前記第1及び第2の座標ずれは、X、Y及びθ方向のずれのうちの少なくとも1つであることを特徴とする請求項1から4のいずれか1項に記載の不良判定方法。   5. The defect determination method according to claim 1, wherein the first and second coordinate deviations are at least one of deviations in X, Y, and θ directions. 基板にはんだを印刷するはんだを印刷手段と、
前記はんだを印刷した基板に部品を搭載する部品搭載手段と、
前記部品を搭載した後の部品座標を測定し、部品実装目標座標からの第1の座標ずれを算出する搭載後部品位置測定手段と、
前記部品を搭載した後の基板を加熱して、前記部品のはんだ付けを行うリフロー手段と、
前記リフロー後の部品座標を測定し、前記部品実装目標座標からの第2の座標ずれを算出するリフロー後部品位置測定手段と、
前記第1の座標ずれと前記第2の座標ずれに基づいて、前記リフロー後の部品の不良の可能性を判定する不良判定手段と、
を有することを特徴とする不良判定装置。
A solder printing means for printing solder on a substrate; and
Component mounting means for mounting a component on the printed board of the solder;
A post-mounting component position measuring means for measuring the component coordinates after mounting the component and calculating a first coordinate deviation from the component mounting target coordinates;
Reflow means for heating the substrate after mounting the component and soldering the component;
A component position measuring unit after reflow that measures the component coordinates after the reflow and calculates a second coordinate deviation from the component mounting target coordinates;
A failure determination means for determining a possibility of a failure of the component after the reflow based on the first coordinate shift and the second coordinate shift;
A defect determination device characterized by comprising:
前記不良判定手段は、前記第1の座標ずれに対する前記第2の座標ずれが、前記部品実装目標座標から離れる方向である場合に、前記不良の可能性があると判定することを特徴とする請求項6に記載の不良判定装置。   The defect determination means determines that there is a possibility of the defect when the second coordinate shift with respect to the first coordinate shift is in a direction away from the component mounting target coordinates. Item 7. The defect determination device according to Item 6. 前記不良判定手段は、前記第1の座標ずれに対する前記第2の座標ずれが、前記部品実装目標座標に近づく方向であり、かつ前記第1の座標ずれよりも、前記第1の座標ずれと前記第2の座標ずれとの差が大きい場合に、前記不良の可能性があると判定することを特徴とする請求項6に記載の不良判定装置。   The defect determination unit is configured such that the second coordinate shift with respect to the first coordinate shift is in a direction approaching the component mounting target coordinates, and the first coordinate shift and the first coordinate shift are greater than the first coordinate shift. The defect determination device according to claim 6, wherein when there is a large difference from the second coordinate shift, it is determined that there is a possibility of the defect. 前記不良判定手段は、前記第1の座標ずれに対する前記第2の座標ずれが、前記部品実装目標座標に近づく方向であり、かつ前記第1の座標ずれと前記第2の座標ずれの差が所定のしきい値より小さい場合に、前記不良の可能性があると判定することを特徴とする請求項6に記載の不良判定装置。   The defect determination means has a direction in which the second coordinate deviation with respect to the first coordinate deviation approaches the component mounting target coordinates, and a difference between the first coordinate deviation and the second coordinate deviation is predetermined. The defect determination device according to claim 6, wherein if it is smaller than the threshold value, it is determined that there is a possibility of the defect. 前記第1及び第2の座標ずれは、X、Y及びθ方向のずれのうちの少なくとも1つであることを特徴とする請求項6から9のいずれか1項に記載の不良判定装置。   10. The defect determination device according to claim 6, wherein the first and second coordinate shifts are at least one of shifts in the X, Y, and θ directions.
JP2012053355A 2012-03-09 2012-03-09 Defect determination method and defect determination apparatus Active JP5975206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053355A JP5975206B2 (en) 2012-03-09 2012-03-09 Defect determination method and defect determination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053355A JP5975206B2 (en) 2012-03-09 2012-03-09 Defect determination method and defect determination apparatus

Publications (2)

Publication Number Publication Date
JP2013187483A true JP2013187483A (en) 2013-09-19
JP5975206B2 JP5975206B2 (en) 2016-08-23

Family

ID=49388639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053355A Active JP5975206B2 (en) 2012-03-09 2012-03-09 Defect determination method and defect determination apparatus

Country Status (1)

Country Link
JP (1) JP5975206B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080809A1 (en) * 2014-11-20 2016-05-26 주식회사 고영테크놀러지 Component inspection apparatus and component mounting system having same
DE102020105185A1 (en) 2020-02-27 2021-09-02 Asm Assembly Systems Gmbh & Co. Kg Data correlation between different machines in a production line for electronic components
JP7520463B2 (en) 2020-12-03 2024-07-23 ヤマハ発動機株式会社 Board production system and board production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285880A (en) * 2006-04-17 2007-11-01 Omron Corp Sample image registration method in board inspection, and sample image producing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285880A (en) * 2006-04-17 2007-11-01 Omron Corp Sample image registration method in board inspection, and sample image producing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080809A1 (en) * 2014-11-20 2016-05-26 주식회사 고영테크놀러지 Component inspection apparatus and component mounting system having same
KR20190060750A (en) * 2014-11-20 2019-06-03 주식회사 고영테크놀러지 Inspection apparatus and component mounting system having the same
US10750649B2 (en) 2014-11-20 2020-08-18 Koh Young Technology Inc. Inspection apparatus and component mounting system having the same
KR102197181B1 (en) 2014-11-20 2020-12-31 주식회사 고영테크놀러지 Inspection apparatus and component mounting system having the same
DE102020105185A1 (en) 2020-02-27 2021-09-02 Asm Assembly Systems Gmbh & Co. Kg Data correlation between different machines in a production line for electronic components
DE102020105185A9 (en) 2020-02-27 2021-11-11 Asm Assembly Systems Gmbh & Co. Kg Data correlation between different machines in a production line for electronic components
JP7520463B2 (en) 2020-12-03 2024-07-23 ヤマハ発動機株式会社 Board production system and board production method

Also Published As

Publication number Publication date
JP5975206B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP6262378B1 (en) Substrate inspection apparatus, substrate inspection method, and substrate manufacturing method
KR102197181B1 (en) Inspection apparatus and component mounting system having the same
US20060000872A1 (en) Printed circuit board inspection device, printed circuit board assembly inspection line system, and computer-readable medium having program recorded thereon
CN107087388B (en) Substrate inspection apparatus system and substrate inspection method
CN104111037B (en) Apparatus for inspecting solder printing
CN110352635B (en) Component mounting system and adhesive inspection device
US8860456B2 (en) Non-destructive tilt data measurement to detect defective bumps
JP5975206B2 (en) Defect determination method and defect determination apparatus
JP6251268B2 (en) Component mounting inspection device
JP6349734B2 (en) Quality control device, quality control method, and program
JP6237054B2 (en) Component mounting inspection apparatus and component mounting inspection method
JP2013211284A (en) Solder print inspection device
JP2013069872A (en) Substrate inspection device, component mounting system, substrate inspection method and program
TWI857225B (en) Screen mask inspection device, solder printing inspection device and screen mask inspection method
KR100801899B1 (en) Testing method for printed circuit board
JP6468002B2 (en) Solder inspection apparatus and solder inspection method
KR101497947B1 (en) Method of inspecting a solder joint
KR102402523B1 (en) An electronic device mounting system and method for mounting electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5975206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150