JP2013185903A - Method and apparatus for evaluating cell culture substrate, and method for manufacturing cell culture substrate - Google Patents

Method and apparatus for evaluating cell culture substrate, and method for manufacturing cell culture substrate Download PDF

Info

Publication number
JP2013185903A
JP2013185903A JP2012050358A JP2012050358A JP2013185903A JP 2013185903 A JP2013185903 A JP 2013185903A JP 2012050358 A JP2012050358 A JP 2012050358A JP 2012050358 A JP2012050358 A JP 2012050358A JP 2013185903 A JP2013185903 A JP 2013185903A
Authority
JP
Japan
Prior art keywords
cell culture
functional layer
culture substrate
temperature
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012050358A
Other languages
Japanese (ja)
Other versions
JP5928008B2 (en
Inventor
Masatoshi Kuroda
正敏 黒田
Masahiko Hase
政彦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012050358A priority Critical patent/JP5928008B2/en
Publication of JP2013185903A publication Critical patent/JP2013185903A/en
Application granted granted Critical
Publication of JP5928008B2 publication Critical patent/JP5928008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating a state of a functional layer consisting of poly-N-isopropylacrylamide as a temperature-responsive polymer, in a short time without any necessity of executing a cell culture.SOLUTION: The method for evaluating a cell culture substrate according to the present invention includes; a substrate; and a functional layer provided on the substrate and including organic compound whose cellular adhesiveness is changed by a predetermined stimulus. The method includes: a first measuring step of measuring a falling speed of droplet supplied to the surface of the functional layer of the inclined cell culture substrate; and a second measuring step of measuring a falling speed of droplet supplied to the surface of the functional layer of the inclined cell culture substrate under a condition where the cellular adhesiveness of the functional layer is changed from when measuring the first measuring step. The state of the functional layer is evaluated on the basis of the droplet falling speed obtained in the first measuring step and the droplet falling speed obtained by the second measuring step.

Description

本発明は、基材上に機能性層を備える細胞培養基材の評価方法及び評価装置、並びにそのような細胞培養基材の製造方法に関する。   The present invention relates to a method and an apparatus for evaluating a cell culture substrate having a functional layer on the substrate, and a method for producing such a cell culture substrate.

細胞をシート状に培養し、トリプシン等の酵素を使用せずに例えば温度を低下させるだけで細胞をシート状に回収する「細胞シート工学」という技術が再生医療分野で注目されている。本技術によって得られる細胞シートは、角膜や歯周組織等の再生医療で既に一定の治療効果が確認され、欧州で既に臨床研究や治験が進められている。また、複数の種類の細胞シートを積層させることによる三次元組織モデルの作製や、血管組織を伴う成熟した組織を生体外で作製することも可能であり、本技術をベースにした研究開発や治療が今後ますます期待される。   A technique called “cell sheet engineering”, in which cells are cultured in a sheet form and the cells are recovered in a sheet form simply by lowering the temperature without using an enzyme such as trypsin, has attracted attention in the field of regenerative medicine. The cell sheet obtained by this technology has already been confirmed to have a certain therapeutic effect in regenerative medicine such as the cornea and periodontal tissue, and clinical research and clinical trials are already underway in Europe. It is also possible to create a three-dimensional tissue model by laminating multiple types of cell sheets, and to create mature tissue with vascular tissue in vitro. Research and development and treatment based on this technology Is expected more and more in the future.

培養した細胞シートの接着、脱着の制御は、例えば、基材上に固定したポリ−N−イソプロピルアクリルアミド(PIPAAm)等の機能性層を介して行われる。このポリマーは、主に温度に応答して水和能が変化する材料であり、臨界溶解温度未満の温度では周囲の水に対する親和性が向上し、ポリマーが水を取り込み膨潤して表面に細胞を接着しにくくする性質(細胞非接着性)を示し、同温度以上の温度ではポリマーから水が脱離することでポリマーが収縮し表面に細胞を接着しやすくする性質(細胞接着性)を示すものである。細胞の脱接着性は、上記PIPAAmの固定化密度や鎖長に影響を受けることが知られており、したがって、細胞の脱接着性の良否を検討するため、機能性層の状態を評価する手法の開発が望まれている。   Control of adhesion and desorption of the cultured cell sheet is performed, for example, via a functional layer such as poly-N-isopropylacrylamide (PIPAAm) fixed on a substrate. This polymer is a material whose hydration ability changes mainly in response to temperature. At a temperature lower than the critical dissolution temperature, the affinity for surrounding water is improved, and the polymer takes up water and swells, so that cells are swelled on the surface. It exhibits the property of making it difficult to adhere (cell non-adhesiveness), and the property that makes it easier for cells to adhere to the surface due to water detaching from the polymer at temperatures above the same temperature (cell adhesion) It is. It is known that cell deadhesion is affected by the immobilization density and chain length of the above PIPAAm. Therefore, in order to examine the quality of cell deadhesion, a method for evaluating the state of the functional layer Development is desired.

基材上に機能性層を設けた細胞培養基材を評価する従来の方法として、(特許文献1)が知られている。(特許文献1)には、0〜80℃の温度範囲で水和力が変化するポリ−N−イソプロピルアクリルアミド等の温度応答性ポリマーを被覆した細胞培養基材の表面上に、細胞を播種後、48時間以内に蛋白質加水分解酵素を使わずに温度処理だけで細胞を当該基材表面から剥離して回収し、生細胞と反応する試薬を用いて分光計で定量する、温度応答性細胞培養基材の評価方法が開示されている。培養細胞は、基材表面積当たり100〜10000個/cmとなるように個々の状態で基材表面上に付着していることが必要とされる。すなわち、細胞をシートの状態で回収すると、細胞間接着によって細胞が引っ張られる力の影響が無視できないため、(引用文献1)では個々の状態(まばらな状態)で基材上に播種することにより細胞間接着の影響を排除し、基材と細胞との相互作用のみを反映した結果を得ている。 As a conventional method for evaluating a cell culture substrate provided with a functional layer on the substrate, (Patent Document 1) is known. In (Patent Document 1), cells are seeded on the surface of a cell culture substrate coated with a temperature-responsive polymer such as poly-N-isopropylacrylamide whose hydration power changes in a temperature range of 0 to 80 ° C. In 48 hours, temperature-responsive cell culture in which cells are detached and recovered from the substrate surface by temperature treatment without using protein hydrolase and quantified with a spectrometer using a reagent that reacts with living cells A method for evaluating a substrate is disclosed. The cultured cells are required to be attached on the surface of the base material in an individual state so as to be 100 to 10,000 cells / cm 2 per surface area of the base material. That is, when cells are collected in a sheet state, the influence of the force of pulling the cells due to cell-cell adhesion cannot be ignored. Therefore, in (Cited document 1), by seeding on a substrate in individual states (sparse state) The result of eliminating the influence of cell-cell adhesion and reflecting only the interaction between the substrate and the cells is obtained.

上記(特許文献1)に記載の評価方法は、細胞培養を実施するため、評価を行うために少なくとも数時間〜数十時間を要するという問題点があった。   The evaluation method described in the above (Patent Document 1) has a problem in that it takes at least several hours to several tens of hours to perform the evaluation in order to perform cell culture.

特開2009−82123号公報JP 2009-82123 A

そこで本発明は、上記従来の状況に鑑み、細胞培養を実施する必要がなく、短時間でPIPAAm等からなる機能性層の状態を評価することができる方法、及びその方法を実施するための評価装置を提供することを目的とする。また、上記評価方法を利用して、機能性層の状態が良であるような細胞培養基材を製造する方法を提供することを目的とする。   Therefore, in view of the above-described conventional situation, the present invention eliminates the need for cell culture and can evaluate the state of the functional layer composed of PIPAAm and the like in a short time, and evaluation for implementing the method. An object is to provide an apparatus. Another object of the present invention is to provide a method for producing a cell culture substrate having a good functional layer state using the above evaluation method.

本発明者らは、PIPAAm等の、所定の刺激により細胞接着性が変化する有機化合物を含む機能性層の状態によって、その機能性層の表面における液体のはじき挙動が異なる点に着目した。そして、細胞接着性が変化する前後の条件下において、機能性層の表面を転落する液滴の速度を測定し、それらの複数の速度値を指標として機能性層の状態を評価できることを見出し、本発明を完成した。すなわち、本発明は以下の発明を包含する。   The present inventors paid attention to the point that the repelling behavior of the liquid on the surface of the functional layer differs depending on the state of the functional layer containing an organic compound whose cell adhesion changes by a predetermined stimulus such as PIPAAm. And, under the conditions before and after the cell adhesiveness change, measure the speed of the droplet that falls on the surface of the functional layer, find that the state of the functional layer can be evaluated using those multiple velocity values as an index, The present invention has been completed. That is, the present invention includes the following inventions.

(1)基材と、前記基材上に設けられ、所定の刺激により細胞接着性が変化する有機化合物を含む機能性層とを有する細胞培養基材の評価方法であって、
傾斜させた細胞培養基材の機能性層の表面に供給された液滴の転落速度を測定する第1測定工程と、
前記第1測定工程の測定時とは機能性層の細胞接着性が変化する条件下で、傾斜させた細胞培養基材の機能性層の表面に供給された液滴の転落速度を測定する第2測定工程と、
を有し、
第1測定工程で得られた液滴の転落速度と、第2測定工程で得られた液滴の転落速度とに基づいて、機能性層の状態の評価を行う前記細胞培養基材の評価方法。
(2)有機化合物が、温度変化により細胞接着性が変化する温度応答性ポリマーである上記(1)に記載の細胞培養基材の評価方法。
(3)上記(1)又は(2)に記載の評価方法を実施するための装置であって、
細胞培養基材が配置され、該細胞培養基材を傾斜させるためのステージと、
ステージ上に配置された細胞培養基材の機能性層の表面に液滴を供給するための液滴供給手段と、
転落する液滴を撮影する撮像手段と、
撮像手段により撮影した画像に基づき液滴の転落速度を算出する転落速度算出部と、
ステージ上に配置された細胞培養基材に所定の刺激を付与する刺激付与手段と、
を有する細胞培養基材の評価装置。
(1) A method for evaluating a cell culture substrate, comprising a substrate and a functional layer provided on the substrate and containing an organic compound whose cell adhesion is changed by a predetermined stimulus,
A first measurement step of measuring a falling speed of a droplet supplied to the surface of the functional layer of the inclined cell culture substrate;
The measurement of the first measurement step is to measure the falling speed of the droplet supplied to the surface of the functional layer of the inclined cell culture substrate under the condition that the cell adhesion of the functional layer changes. Two measurement steps;
Have
The cell culture substrate evaluation method for evaluating the state of the functional layer based on the droplet falling speed obtained in the first measuring step and the droplet falling speed obtained in the second measuring step .
(2) The method for evaluating a cell culture substrate according to the above (1), wherein the organic compound is a temperature-responsive polymer whose cell adhesiveness is changed by temperature change.
(3) An apparatus for carrying out the evaluation method according to (1) or (2) above,
A cell culture substrate is disposed, and a stage for tilting the cell culture substrate;
A droplet supply means for supplying droplets to the surface of the functional layer of the cell culture substrate disposed on the stage;
An imaging means for photographing the falling droplet;
A falling speed calculation unit that calculates the falling speed of the droplet based on the image taken by the imaging means;
A stimulus applying means for applying a predetermined stimulus to the cell culture substrate disposed on the stage;
An apparatus for evaluating a cell culture substrate.

(4)基材上に、所定の刺激により細胞接着性が変化する有機化合物を含む機能性層を設けて細胞培養基材を得る工程と、
得られた細胞培養基材について、上記(1)に記載の評価方法を実施する工程と、
を有し、
評価の結果、機能性層の状態が良と判定されたものとを製品とする細胞培養基材の製造方法。
(5)有機化合物が、0℃〜80℃の下限臨界溶解温度を有し、その下限臨界溶解温度以上の温度では細胞接着性を示し、かつ下限臨界溶解温度未満の温度では細胞非接着性を示す温度応答性ポリマーであり、
下限臨界溶解温度以上の温度で、細胞培養基材を40°の角度に傾斜させ、機能性層の表面に供給された液滴の転落速度を測定する第1測定工程と、
下限臨界溶解温度未満の温度で、細胞培養基材を60°の角度に傾斜させ、機能性層の表面に供給された液滴の転落速度を測定する第2測定工程と、
を有し、
第1測定工程で得られた液滴の転落速度が0.05mm/msec〜0.10mm/msecであり、かつ第2測定工程で得られた液滴の転落速度が1.0×10mm/msec〜1.0×10mm/msecである場合に機能性層の状態を良と判定する上記(4)に記載の細胞培養基材の製造方法。
(4) A step of providing a cell culture substrate by providing a functional layer containing an organic compound whose cell adhesion is changed by a predetermined stimulus on the substrate;
For the obtained cell culture substrate, a step of performing the evaluation method described in (1) above;
Have
The manufacturing method of the cell culture substratum which uses what the state of the functional layer was judged to be good as a result of evaluation.
(5) The organic compound has a lower critical solution temperature of 0 ° C. to 80 ° C., exhibits cell adhesion at a temperature equal to or higher than the lower critical solution temperature, and exhibits non-cell adhesion at a temperature lower than the lower critical solution temperature. A temperature responsive polymer,
A first measurement step in which the cell culture substrate is inclined at an angle of 40 ° at a temperature equal to or higher than the lower critical solution temperature, and the falling speed of the droplets supplied to the surface of the functional layer is measured;
A second measurement step in which the cell culture substrate is tilted at an angle of 60 ° at a temperature lower than the lower critical solution temperature, and the drop rate of the droplets supplied to the surface of the functional layer is measured;
Have
The drop rate of the droplet obtained in the first measurement step is 0.05 mm / msec to 0.10 mm / msec, and the drop rate of the droplet obtained in the second measurement step is 1.0 × 10 3 mm. The method for producing a cell culture substrate according to the above (4), wherein the state of the functional layer is determined to be good when it is / msec to 1.0 × 10 4 mm / msec.

本発明により、細胞培養を実施する必要がなく、短時間で細胞培養基材の温度応答性等を評価することができる。また、細胞の脱接着性に優れる細胞培養基材を効率的に製造することができる。   According to the present invention, it is not necessary to perform cell culture, and the temperature responsiveness of the cell culture substrate can be evaluated in a short time. In addition, it is possible to efficiently produce a cell culture substrate excellent in cell de-adhesiveness.

本発明に係る細胞培養基材の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the cell culture substratum which concerns on this invention. 本発明に係る細胞培養基材の評価装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the evaluation apparatus of the cell culture substratum which concerns on this invention.

以下、図面に基づき本発明を詳細に説明する。まず、本発明の評価対象である細胞培養基材の構成について述べる。
細胞培養基材は、基材上(通常は、基材の片面側)に、所定の刺激により細胞接着性が変化する有機化合物を含む機能性層を設けて構成される。基材と機能性層の間は、一般には直接密着しているが、必要に応じて、機能性層の固定化を容易にするプライマー層等の中間層が介在していても良い。
Hereinafter, the present invention will be described in detail with reference to the drawings. First, the structure of the cell culture substrate which is the evaluation target of the present invention will be described.
A cell culture substrate is configured by providing a functional layer containing an organic compound whose cell adhesion changes by a predetermined stimulus on a substrate (usually, one side of the substrate). In general, the substrate and the functional layer are in direct contact with each other, but an intermediate layer such as a primer layer for facilitating the fixation of the functional layer may be interposed as necessary.

細胞培養基材は、細胞及び培地を収容する細胞培養容器の内底面に設置されて使用される。したがって、基材は、細胞培養容器の底板を兼ねていても良いし、底板や側壁等から形成された容器の内底面に、後から基材及び機能性層の積層体を接合させる形態であっても良い。容器に後から接合させる積層体の形態である場合、基材は板状又はフィルム状であり、基材の、機能性層が設けられた側と反対側には、細胞培養容器の底板に接合させるための粘着剤層及び剥離シートを適宜設けることができる。   The cell culture substrate is used by being installed on the inner bottom surface of a cell culture container that contains cells and a medium. Therefore, the base material may also serve as the bottom plate of the cell culture container, or the laminate of the base material and the functional layer is later joined to the inner bottom surface of the container formed from the bottom plate and the side wall. May be. When it is in the form of a laminate to be subsequently joined to the container, the substrate is plate-like or film-like, and the side opposite to the side on which the functional layer is provided is joined to the bottom plate of the cell culture vessel A pressure-sensitive adhesive layer and a release sheet can be appropriately provided.

基材の材料は特に限定されない。具体的には、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリカーボネート(PC)、TAC(トリアセチルセルロース)、ポリイミド(PI)、ナイロン(Ny)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフェニレンサルファイド、ポリエーテルサルフォン、ポリエチレンナフタレート、ポリプロピレン、アクリル樹脂等の樹脂材料や、ガラス、石英等の無機材料が挙げられ、樹脂材料が好ましく用いられる。   The material of the substrate is not particularly limited. Specifically, polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE), medium density polyethylene (MDPE) ), Resin materials such as polyvinyl chloride, polyvinylidene chloride, polyphenylene sulfide, polyether sulfone, polyethylene naphthalate, polypropylene, acrylic resin, and inorganic materials such as glass and quartz, and resin materials are preferably used.

基材の、機能性層が設けられる側の表面は、易接着処理された表面であることができる。「易接着処理」とは、例えば、ポリエステル、アクリル酸エステル、ポリウレタン、ポリエチレンイミン、シランカップリング剤、ペルフルオロオクタンスルホン酸(PFOS)等の易接着剤による処理を指す。   The surface of the substrate on the side where the functional layer is provided can be a surface subjected to an easy adhesion treatment. “Easy adhesion treatment” refers to treatment with an easy adhesive such as polyester, acrylic ester, polyurethane, polyethyleneimine, silane coupling agent, perfluorooctane sulfonic acid (PFOS), and the like.

機能性層を構成する有機化合物としては、所定の刺激により細胞接着性が変化する機能を有するものであれば特に限定されない。例えば、刺激を加えることにより細胞接着性から細胞非接着性へと変化する刺激応答性ポリマーが好ましく用いられる。刺激応答性ポリマーとしては、温度応答性ポリマー、pH応答性ポリマー、イオン応答性ポリマー、光応答性ポリマー等を挙げることができ、作製しようとする細胞シートに適したものを適宜選択することができる。特に、温度応答性ポリマーが、温度変化により細胞接着性が変化し、刺激の付与が容易であることから好ましい。   The organic compound constituting the functional layer is not particularly limited as long as it has a function of changing cell adhesion by a predetermined stimulus. For example, a stimulus-responsive polymer that changes from cell adhesiveness to non-cell adhesiveness by applying a stimulus is preferably used. Examples of the stimulus responsive polymer include a temperature responsive polymer, a pH responsive polymer, an ion responsive polymer, a photoresponsive polymer, and the like, and a polymer suitable for the cell sheet to be produced can be appropriately selected. . In particular, a temperature-responsive polymer is preferable because cell adhesion changes due to temperature change and stimulation is easily applied.

温度応答性ポリマーとして、例えば、細胞を培養する温度では細胞接着性を示し、作製した細胞シートを剥離する時の温度では細胞非接着性を示すものを用いると良い。具体的には、臨界溶解温度未満の温度では周囲の水に対する親和性が向上し、ポリマーが水を取り込んで膨潤して表面に細胞を接着しにくくする性質(細胞非接着性)を示し、同温度以上の温度ではポリマーから水が脱離することでポリマーが収縮して表面に細胞を接着しやすくする性質(細胞接着性)を示すものを用いると良い。このような臨界溶解温度は、下限臨界溶解温度と呼ばれる。下限臨界溶解温度Tが0℃〜80℃、さらに好ましくは0℃〜50℃である温度応答性ポリマーを用いると良い。Tが0℃〜80℃であると、細胞を安定的に培養できるからである。   As the temperature-responsive polymer, for example, a polymer that exhibits cell adhesion at a temperature at which cells are cultured and exhibits cell non-adhesion at a temperature at which the produced cell sheet is peeled may be used. Specifically, at a temperature lower than the critical dissolution temperature, the affinity for surrounding water is improved, and the polymer takes in water and swells to show the property of making it difficult for cells to adhere to the surface (cell non-adhesiveness). It is preferable to use a material that exhibits a property (cell adhesion) that makes it easier for cells to adhere to the surface due to water detaching from the polymer at a temperature higher than the temperature. Such a critical solution temperature is called a lower critical solution temperature. A temperature-responsive polymer having a lower critical solution temperature T of 0 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C. may be used. This is because the cells can be stably cultured when T is 0 ° C to 80 ° C.

好適な温度応答性ポリマーとしては、アクリル系ポリマー又はメタクリル系ポリマーが挙げられる。より具体的には、例えばポリ−N−イソプロピルアクリルアミド(T=32℃)、ポリ−N−n−プロピルアクリルアミド(T=21℃)、ポリ−N−n−プロピルメタクリルアミド(T=32℃)、ポリ−N−エトキシエチルアクリルアミド(T=約35℃)、ポリ−N−テトラヒドロフルフリルアクリルアミド(T=約28℃)、ポリ−N−テトラヒドロフルフリルメタクリルアミド(T=約35℃)、及びポリ−N,N−ジエチルアクリルアミド(T=32℃)等が挙げられる。   Suitable temperature-responsive polymers include acrylic polymers or methacrylic polymers. More specifically, for example, poly-N-isopropylacrylamide (T = 32 ° C.), poly-Nn-propyl acrylamide (T = 21 ° C.), poly-Nn-propyl methacrylamide (T = 32 ° C.) Poly-N-ethoxyethyl acrylamide (T = about 35 ° C.), poly-N-tetrahydrofurfuryl acrylamide (T = about 28 ° C.), poly-N-tetrahydrofurfuryl methacrylamide (T = about 35 ° C.), and Examples include poly-N, N-diethylacrylamide (T = 32 ° C.).

これらのポリマーを形成するためのモノマーとしては、放射線照射によって重合し得るモノマーを用いることができる。モノマーとしては例えば、(メタ)アクリルアミド化合物、N−(もしくはN,N−ジ)アルキル置換(メタ)アクリルアミド誘導体、環状基を有する(メタ)アクリルアミド誘導体、及びビニルエーテル誘導体等が挙げられ、これらの1種以上を使用することができる。モノマーが一種類単独で使用された場合、基材上に形成されるポリマーはホモポリマーとなり、モノマーが複数種一緒に使用された場合、基材上に形成されるポリマーはヘテロポリマーとなるが、本発明においてはいずれの形態も適用可能である。   As a monomer for forming these polymers, a monomer that can be polymerized by irradiation with radiation can be used. Examples of the monomer include (meth) acrylamide compounds, N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives, (meth) acrylamide derivatives having a cyclic group, and vinyl ether derivatives. More than seeds can be used. When a single monomer is used alone, the polymer formed on the substrate is a homopolymer, and when multiple monomers are used together, the polymer formed on the substrate is a heteropolymer. Any form can be applied in the present invention.

また、増殖細胞の種類によってTを調節する必要がある場合や、機能性層の親水・疎水性のバランスを調整する必要がある場合等には、上記以外の他のモノマー類をさらに加えて共重合しても良い。さらに、上記ポリマーとその他のポリマーとのグラフト又はブロック共重合体、あるいは上記ポリマーと他のポリマーとの混合物を用いて機能性層を構成しても良い。また、ポリマー本来の性質が損なわれない範囲で架橋することも可能である。   In addition, when it is necessary to adjust T depending on the type of proliferating cells, or when it is necessary to adjust the hydrophilic / hydrophobic balance of the functional layer, other monomers other than those described above may be further added and used in combination. Polymerization may be performed. Furthermore, you may comprise a functional layer using the graft | grafting or block copolymer of the said polymer and another polymer, or the mixture of the said polymer and another polymer. Moreover, it is also possible to crosslink within a range where the original properties of the polymer are not impaired.

温度応答性ポリマー等の有機化合物を含む機能性層は、従来知られた手法を適宜採用して基材上に形成することができる。例えば、重合により目的の刺激応答性ポリマーを形成するモノマーと、該モノマーを溶解しうる有機溶媒と含む塗布用組成物を調製し、これを慣用の塗布方法に従って、基材の表面に塗布して塗膜を形成し、次に、該塗膜に放射線照射等の適当な手段により塗膜中のモノマーを重合してポリマーを形成するとともに、基材の表面とポリマーとの間にグラフト化反応を生じさせることにより形成することができる。   A functional layer containing an organic compound such as a temperature-responsive polymer can be formed on a substrate by appropriately employing a conventionally known method. For example, a coating composition containing a monomer that forms a target stimulus-responsive polymer by polymerization and an organic solvent capable of dissolving the monomer is prepared, and this is applied to the surface of a substrate according to a conventional coating method. A coating film is formed, and then the monomer in the coating film is polymerized by an appropriate means such as radiation irradiation to form a polymer, and a grafting reaction is performed between the surface of the substrate and the polymer. It can be formed by generating.

機能性層の膜厚は、例えば、0.5nm〜300nmの範囲内とすると良く、特に1nm〜100nmの範囲内であることが好ましいが、これに限定されるものではない。   The film thickness of the functional layer is, for example, preferably in the range of 0.5 nm to 300 nm, and particularly preferably in the range of 1 nm to 100 nm, but is not limited thereto.

次に、本発明の細胞培養基材の評価方法及び評価装置について述べる。本発明の評価方法は、傾斜させた細胞培養基材の機能性層の表面に供給された液滴の転落速度を測定する第1測定工程と、第1測定工程の測定時とは機能性層の細胞接着性が変化する条件下で、傾斜させた細胞培養基材の機能性層の表面に供給された液滴の転落速度を測定する第2測定工程とを有することを特徴とする。   Next, the cell culture substrate evaluation method and evaluation apparatus of the present invention will be described. The evaluation method of the present invention includes a first measurement step for measuring a falling speed of a droplet supplied to the surface of a functional layer of a tilted cell culture substrate, and a functional layer at the time of measurement in the first measurement step. And a second measurement step of measuring the falling speed of the droplets supplied to the surface of the functional layer of the inclined cell culture substrate under the condition that the cell adhesiveness changes.

ここで「第1測定工程の測定時とは機能性層の細胞接着性が変化する条件下で測定する」とは、具体的には、機能性層を構成する有機化合物の種類によって異なるが、機能性層の状態が細胞接着性から細胞非接着性に変化する臨界条件(温度、pH、光照射条件等)を挟む2つの条件下で第1及び第2の測定を行うことをいう。例えば、機能性層が下限臨界溶解温度を有する温度応答性ポリマーからなる場合は、機能性層が細胞接着性を示す下限臨界溶解温度以上の温度で第1測定工程を実施し、機能性層が細胞非接着性を示す下限臨界溶解温度未満の温度で第2測定工程を実施する。なお、2つの条件での測定について、いずれを第1ないし第2測定工程とするかは任意である。   Here, “when measuring in the first measurement step is measured under a condition in which the cell adhesion of the functional layer changes” specifically depends on the type of organic compound constituting the functional layer, The first and second measurements are performed under two conditions including critical conditions (temperature, pH, light irradiation conditions, etc.) in which the state of the functional layer changes from cell adhesiveness to cell nonadhesiveness. For example, when the functional layer is composed of a temperature-responsive polymer having a lower critical solution temperature, the first measurement step is performed at a temperature equal to or higher than the lower critical solution temperature at which the functional layer exhibits cell adhesion. The second measurement step is performed at a temperature lower than the lower critical solution temperature showing cell non-adhesiveness. In addition, regarding the measurement under two conditions, it is arbitrary which one is used as the first or second measurement step.

図1に示すように、基材10及び機能性層20を含む細胞培養基材1を角度αで傾斜させ、その傾斜させた機能性層20の表面に、液滴Lを供給する。液滴Lは機能性層20上を転落するため、その時の転落速度をカメラ等の撮像手段を用いて測定する。なお、液滴Lとしては通常水が用いられるが、場合によりアルコール等の他の液体を用いても良い。機能性層20は、臨界条件を境にして表面の親水性・疎水性等の性質が変わり、転落する液滴Lの速度もそれに応じて変化するため、第1及び第2測定工程で得られる2つの転落速度から、機能性層が適切に機能していることが確認でき、また、細胞の脱接着性の良否を評価することができる。例えば、機能性層が親水性となり細胞の脱離性が高まるほど、一般に転落速度は遅くなる。さらに、転落速度は、機能性層の固定化量にも依存する。すなわち、例えば温度応答性ポリマーの場合には基材に対する固定化量が大きくなるほど転落速度は遅くなるため、転落速度の値から固定化量の大小を知ることができる。その際、第1及び第2測定工程の2つの条件下で測定を行うため、見積もられる固定化量の信頼性・精度が高まる。   As shown in FIG. 1, the cell culture substrate 1 including the substrate 10 and the functional layer 20 is tilted at an angle α, and droplets L are supplied to the surface of the tilted functional layer 20. Since the droplet L falls on the functional layer 20, the fall speed at that time is measured using an imaging means such as a camera. Note that water is usually used as the droplet L, but other liquids such as alcohol may be used in some cases. The functional layer 20 is obtained in the first and second measuring steps because the properties such as hydrophilicity and hydrophobicity of the surface change with the boundary of the critical condition, and the velocity of the falling droplet L also changes accordingly. From the two falling speeds, it can be confirmed that the functional layer is functioning properly, and the quality of the cell de-adhesion can be evaluated. For example, as the functional layer becomes hydrophilic and the detachability of the cells increases, the falling speed generally decreases. Furthermore, the falling speed depends on the amount of the functional layer immobilized. That is, for example, in the case of a temperature-responsive polymer, the falling speed decreases as the amount of immobilization on the base material increases, so that the amount of immobilization can be determined from the value of the falling speed. At that time, since the measurement is performed under the two conditions of the first and second measurement steps, the reliability and accuracy of the estimated immobilization amount are increased.

図1において、液滴Lの量は、適切な転落速度の値が得られれば良く特に限定されない。例えば、1μL〜1mL程度とすることができ、第1及び第2測定工程で同一の量とすることが好ましい。また、細胞培養基材1を傾斜させる角度αは、測定される転落速度が適度な値になるよう適宜調節される。具体的には、1°〜90°とすることができる。角度αは、第1及び第2測定工程で同一の値とすることが好ましいが、第1及び第2測定工程の転落速度が大きく異なり、かつ角度αと転落速度との相関が明らかである場合は、第1及び第2測定工程の双方で転落速度を精度良く測定できるように、一方の工程における角度αを他方よりも小さく(大きく)しても良い。   In FIG. 1, the amount of the droplet L is not particularly limited as long as an appropriate falling speed value can be obtained. For example, it can be set to about 1 μL to 1 mL, and is preferably set to the same amount in the first and second measurement steps. In addition, the angle α at which the cell culture substrate 1 is tilted is appropriately adjusted so that the measured falling speed has an appropriate value. Specifically, it can be set to 1 ° to 90 °. The angle α is preferably set to the same value in the first and second measurement steps, but the fall speeds of the first and second measurement steps are greatly different and the correlation between the angle α and the fall speed is clear. The angle α in one process may be smaller (larger) than the other so that the falling speed can be measured with high accuracy in both the first and second measurement processes.

以上の評価方法を細胞培養基材の製造工程において利用することにより、機能性層の状態(固定化量、細胞の脱接着性)が良好な細胞培養基材を効率的に製造することができる。一例として、機能性層が、0℃〜80℃の下限臨界溶解温度を有し、その下限臨界溶解温度以上の温度では細胞接着性を示し、かつ下限臨界溶解温度未満の温度では細胞非接着性を示す温度応答性ポリマーを含む細胞培養基材について、下限臨界溶解温度以上及び未満の温度条件で、細胞培養基材を所定の角度に傾斜させ、液滴の転落速度を測定する第1及び第2測定工程を実施し、第1測定工程で得られた液滴の転落速度が、第2測定工程で得られた液滴の転落速度と異なり、各値を比較してそれらが機能性層の親水・疎水性の振るまいを反映していることを確認するとよい。より具体的には、例えば、細胞培養基材を40°の角度に傾斜させた第1測定工程で得られた液滴の転落速度が0.05mm/msec〜0.10mm/msecであり、かつ細胞培養基材を60°の角度に傾斜させた第2測定工程で得られた液滴の転落速度が1.0×10mm/msec〜1.0×10mm/msecである場合に、機能性層の状態が良好であると判定することができる。このような判定作業は、従来のような細胞培養を実施しないため、極めて短時間で行うことができる。さらに、複数の細胞培養基材を製造するにあたり、予め、いくつかの細胞培養基材を用いて細胞培養を行い、その細胞培養結果と第1測定工程及び第2測定工程により得られる転落速度の値との相関を調べて各転落速度の好適範囲(又は閾値)を求めておき、それ以降に製造される他の細胞培養基材の転落速度の値が上記好適範囲(又は閾値)に含まれるか否かをもって製品の良否の判定作業を行っても良い。この場合でも、細胞培養は当初にのみ行えば済むため、細胞培養基材の量産工程の全体として大幅な効率化を図ることができる。 By using the above evaluation method in the cell culture substrate production process, it is possible to efficiently produce a cell culture substrate in which the state of the functional layer (immobilization amount, cell de-adhesiveness) is good. . As an example, the functional layer has a lower critical solution temperature of 0 ° C. to 80 ° C., exhibits cell adhesion at a temperature equal to or higher than the lower critical solution temperature, and cell non-adhesive at a temperature lower than the lower critical solution temperature. The cell culture substrate containing a temperature-responsive polymer having the following first and second tilting of the cell culture substrate at a predetermined angle under a temperature condition not lower than the lower critical dissolution temperature and measuring the drop falling speed: 2 The measurement process is carried out, and the drop rate of the droplet obtained in the first measurement process is different from the drop rate of the droplet obtained in the second measurement process. It is good to confirm that the behavior of hydrophilicity and hydrophobicity is reflected. More specifically, for example, the drop rate of the droplet obtained in the first measurement step in which the cell culture substrate is inclined at an angle of 40 ° is 0.05 mm / msec to 0.10 mm / msec, and When the drop rate of the droplet obtained in the second measurement step in which the cell culture substrate is inclined at an angle of 60 ° is 1.0 × 10 3 mm / msec to 1.0 × 10 4 mm / msec It can be determined that the state of the functional layer is good. Such a determination operation can be performed in a very short time because the conventional cell culture is not performed. Furthermore, in manufacturing a plurality of cell culture substrates, cell culture is performed using several cell culture substrates in advance, and the cell culture results and the falling speed obtained by the first measurement step and the second measurement step are determined. The suitable range (or threshold value) of each falling rate is obtained by examining the correlation with the value, and the falling rate values of other cell culture substrates produced thereafter are included in the above preferred range (or threshold value). Whether or not the product is good or bad may be determined based on whether or not the product is good. Even in this case, since cell culture only needs to be performed at the beginning, the efficiency of mass production of the cell culture substrate can be greatly improved as a whole.

図2に、上述の評価方法を実施するための装置の一実施形態を示す。この評価装置は、細胞培養基材1が配置され、その細胞培養基材1を傾斜させるためのステージ11と、ステージ11上に配置された細胞培養基材1の機能性層の表面に液滴Lを供給するためのシリンジ等の液滴供給手段12と、転落する液滴Lを撮影する撮像手段13a、13bと、それらの撮像手段により撮影した画像に基づき液滴Lの転落速度を算出する転落速度算出部14とを有している。   FIG. 2 shows an embodiment of an apparatus for performing the above-described evaluation method. In this evaluation apparatus, a cell culture substrate 1 is disposed, a stage 11 for tilting the cell culture substrate 1, and a droplet on the surface of the functional layer of the cell culture substrate 1 disposed on the stage 11. The droplet supply means 12 such as a syringe for supplying L, the imaging means 13a and 13b for photographing the falling droplet L, and the falling speed of the droplet L are calculated based on the images photographed by these imaging means. And a falling speed calculation unit 14.

ステージ上の細胞培養基材1は、拡散板16を通過させた光源15からの光で照明される。撮像手段13a、13bは、転落する液滴を捉えることができれば良く、具体的にはCCD等を備える高速度カメラが好適に用いられる。図2に示すように複数の撮像手段13a、13bを用い、例えばステージの上方及び側方から撮影することによって、より高精度に転落速度を測定することができるが、いずれか一方の撮像手段のみでも構わない。また、ステージ11は、設定した角度に細胞培養基材を傾斜させるための駆動装置が設けられ、また、機能性層の細胞接着性を変化させるためのヒーター、冷却装置、光源等の所定の刺激を付与する刺激付与手段17が、ステージ11に接続され、あるいは別途設けられている。液滴供給手段12は、設定した量の液滴Lを滴下できるよう設定されている。また、転落速度算出部は、撮像手段により取得される画像を解析し、液滴の転落速度を算出する機能を有している。速度を算出する際には、例えば、図1における液滴Lの前方端L又は後方端Lに着目し、その端部の変位量から求めることができる。 The cell culture substrate 1 on the stage is illuminated with light from the light source 15 that has passed through the diffusion plate 16. The imaging means 13a, 13b only needs to be able to catch the falling droplets. Specifically, a high-speed camera equipped with a CCD or the like is preferably used. As shown in FIG. 2, by using a plurality of imaging means 13a and 13b and photographing from above and the side of the stage, for example, the falling speed can be measured with higher accuracy, but only one of the imaging means is available. It doesn't matter. The stage 11 is provided with a driving device for tilting the cell culture substrate at a set angle, and a predetermined stimulus such as a heater, a cooling device, or a light source for changing the cell adhesion of the functional layer. Stimulus imparting means 17 for imparting is connected to the stage 11 or provided separately. The droplet supply means 12 is set so that a set amount of droplets L can be dropped. The falling speed calculation unit has a function of analyzing the image acquired by the imaging unit and calculating the falling speed of the droplet. When calculating the speed, for example, focusing on the forward end L 1 or the rear end L 2 of the droplet L in FIG. 1, it can be determined from the displacement amount of the end portion.

次に、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited thereto.

・細胞培養基材の製造
ポリ−N−イソプロピルアクリルアミド(アルドリッチ社)を2%含み、N−イソプロピルアクリルアミドを、最終モノマー濃度がそれぞれ30重量%、35重量%及び40重量%となるようにイソプロピルアルコール(IPA)に溶解させて3種類の溶液を調製した。続いて、基材としてポリスチレンフィルムシート(PS)を用い、このPS上に前記の3種類のN−イソプロピルアクリルアミド溶液をコーティングし、電子線照射装置を用いて電子線照射を行い、PS表面にポリ−N−イソプロピルアクリルアミド(PIPAAm)からなる機能性層をグラフト重合により形成した。ポリ−N−イソプロピルアクリルアミドが結合したPSを、5℃のイオン交換水を用いて洗浄し、その後乾燥して3種類の細胞培養基材を得た。30重量%、35重量%及び40重量%のモノマー濃度に対応する細胞培養基材をそれぞれ試料1〜3とする。また、比較例として、PSのみからなるシートについて試料1〜3と同様の測定を行った。
-Manufacture of cell culture substrate Isopropyl alcohol containing 2% poly-N-isopropylacrylamide (Aldrich) and containing N-isopropylacrylamide at a final monomer concentration of 30%, 35% and 40% by weight, respectively. Three types of solutions were prepared by dissolving in (IPA). Subsequently, a polystyrene film sheet (PS) is used as a base material, the above three kinds of N-isopropylacrylamide solutions are coated on the PS, electron beam irradiation is performed using an electron beam irradiation apparatus, and a polycrystal is applied to the PS surface. A functional layer made of -N-isopropylacrylamide (PIPAAm) was formed by graft polymerization. The PS to which poly-N-isopropylacrylamide was bonded was washed with ion exchange water at 5 ° C. and then dried to obtain three types of cell culture substrates. Samples 1 to 3 are cell culture substrates corresponding to monomer concentrations of 30%, 35% and 40% by weight, respectively. As a comparative example, the same measurement as in samples 1 to 3 was performed on a sheet made of only PS.

・第1測定工程
接触角測定装置DM−501(商品名、協和界面科学社製)のステージに試料1〜3を順に載置し、ヒーター温度をポリ−N−イソプロピルアクリルアミドの下限臨界溶解温度(T=32℃)以上である40℃、ステージの傾斜角を40°に設定した。続いて、マイクロシリンジにより試料1〜3の表面に純水を1μL滴下した。滴下後、転落する液滴の側方からCCDカメラで測定間隔100msecの条件で撮影し、液滴の前方端の変位から液滴の転落速度(第1転落速度という)を算出した。
First measurement step Samples 1 to 3 are placed in order on the stage of a contact angle measurement device DM-501 (trade name, manufactured by Kyowa Interface Science Co., Ltd.), and the heater temperature is set to the lower critical solution temperature of poly-N-isopropylacrylamide ( T = 32 ° C.) or higher, and the tilt angle of the stage was set to 40 °. Then, 1 microliter of pure water was dripped at the surface of the samples 1-3 with the micro syringe. After dropping, the image was taken from the side of the falling droplet with a CCD camera at a measurement interval of 100 msec, and the falling speed of the droplet (referred to as the first falling speed) was calculated from the displacement of the front end of the droplet.

・第2測定工程
接触角測定装置DM−501(商品名、協和界面科学社製)のステージに試料1〜3を順に載置し、ヒーター温度をポリ−N−イソプロピルアクリルアミドの下限臨界溶解温度(T=32℃)未満である25℃、ステージの傾斜角を60°に設定した。続いて、マイクロシリンジにより試料1〜3の表面に純水を1μL滴下した。滴下後、転落する液滴の側方からCCDカメラで測定間隔100msecの条件で撮影し、液滴の前方端の変位から液滴の転落速度(第2転落速度という)を算出した。
測定結果を表1に示す。

Figure 2013185903
Second measurement step Samples 1 to 3 are placed in order on the stage of a contact angle measuring device DM-501 (trade name, manufactured by Kyowa Interface Science Co., Ltd.), and the heater temperature is set to the lower critical solution temperature of poly-N-isopropylacrylamide ( T = 32 ° C.) and the tilt angle of the stage were set to 60 °. Then, 1 microliter of pure water was dripped at the surface of the samples 1-3 with the micro syringe. After dropping, the image was taken from the side of the falling droplet with a CCD camera at a measurement interval of 100 msec, and the falling speed of the droplet (referred to as the second falling speed) was calculated from the displacement of the front end of the droplet.
The measurement results are shown in Table 1.
Figure 2013185903

表1に示すように、試料1〜3の全てにおいて第1転落速度と第2転落速度が異なることから、細胞培養基材の表面に機能性層が形成されていることが確認された。一方、PSのみの場合は、機能性層を有しないため第1転落速度と第2転落速度は変わらなかった。また、第2転落速度の値が第1転落速度よりも小さいことから、下限臨界溶解温度未満の温度では機能性層は親水性となり、細胞非接着性を示すことが明らかとなった。さらに、第1及び第2転落速度の値は機能性層のモノマー濃度(PIPAAmの固定化量)を反映しており、モノマー濃度が高いほど、転落速度は低下することが分かった。試料1と試料2は、第2転落速度では差が見られなかったが、第1転落速度では差が見られたことから、両者は判別可能であることを確認した。   As shown in Table 1, since the first falling speed and the second falling speed are different in all samples 1 to 3, it was confirmed that a functional layer was formed on the surface of the cell culture substrate. On the other hand, in the case of PS alone, the first falling speed and the second falling speed did not change because there was no functional layer. In addition, since the value of the second falling speed was smaller than the first falling speed, it became clear that the functional layer became hydrophilic and exhibited cell non-adhesiveness at a temperature lower than the lower critical solution temperature. Furthermore, the values of the first and second falling speeds reflect the monomer concentration of the functional layer (PIPAAm immobilization amount), and it was found that the higher the monomer concentration, the lower the falling speed. Sample 1 and sample 2 showed no difference in the second falling speed, but a difference was seen in the first falling speed, so it was confirmed that both were distinguishable.

本発明では、2つの温度条件下で転落速度を測定するため、PIPAAmの固定化量の大小をより高い分解能で知ることができる。   In the present invention, since the falling speed is measured under two temperature conditions, the amount of immobilized PIPAAm can be determined with higher resolution.

1 細胞培養基材
10 基材
11 ステージ
12 液滴供給手段
13a、13b 撮像手段
14 転落速度算出部
15 光源
16 拡散板
17 刺激付与手段
20 機能性層
L 液滴
前方端
後方端
α 角度
DESCRIPTION OF SYMBOLS 1 Cell culture base material 10 Base material 11 Stage 12 Droplet supply means 13a, 13b Imaging means 14 Falling speed calculation part 15 Light source 16 Diffusion plate 17 Stimulation means 20 Functional layer L Droplet L 1 Front end L 2 Rear end α angle

Claims (5)

基材と、前記基材上に設けられ、所定の刺激により細胞接着性が変化する有機化合物を含む機能性層とを有する細胞培養基材の評価方法であって、
傾斜させた細胞培養基材の機能性層の表面に供給された液滴の転落速度を測定する第1測定工程と、
前記第1測定工程の測定時とは機能性層の細胞接着性が変化する条件下で、傾斜させた細胞培養基材の機能性層の表面に供給された液滴の転落速度を測定する第2測定工程と、
を有し、
第1測定工程で得られた液滴の転落速度と、第2測定工程で得られた液滴の転落速度とに基づいて、機能性層の状態の評価を行う前記細胞培養基材の評価方法。
A cell culture substrate evaluation method comprising: a substrate; and a functional layer that is provided on the substrate and includes an organic compound that changes cell adhesion by a predetermined stimulus,
A first measurement step of measuring a falling speed of a droplet supplied to the surface of the functional layer of the inclined cell culture substrate;
The measurement of the first measurement step is to measure the falling speed of the droplet supplied to the surface of the functional layer of the inclined cell culture substrate under the condition that the cell adhesion of the functional layer changes. Two measurement steps;
Have
The cell culture substrate evaluation method for evaluating the state of the functional layer based on the droplet falling speed obtained in the first measuring step and the droplet falling speed obtained in the second measuring step .
有機化合物が、温度変化により細胞接着性が変化する温度応答性ポリマーである請求項1に記載の細胞培養基材の評価方法。   The method for evaluating a cell culture substrate according to claim 1, wherein the organic compound is a temperature-responsive polymer whose cell adhesiveness is changed by temperature change. 請求項1又は2に記載の評価方法を実施するための装置であって、
細胞培養基材が配置され、該細胞培養基材を傾斜させるためのステージと、
ステージ上に配置された細胞培養基材の機能性層の表面に液滴を供給するための液滴供給手段と、
転落する液滴を撮影する撮像手段と、
撮像手段により撮影した画像に基づき液滴の転落速度を算出する転落速度算出部と、
ステージ上に配置された細胞培養基材に所定の刺激を付与する刺激付与手段と、
を有する細胞培養基材の評価装置。
An apparatus for carrying out the evaluation method according to claim 1 or 2,
A cell culture substrate is disposed, and a stage for tilting the cell culture substrate;
A droplet supply means for supplying droplets to the surface of the functional layer of the cell culture substrate disposed on the stage;
An imaging means for photographing the falling droplet;
A falling speed calculation unit that calculates the falling speed of the droplet based on the image taken by the imaging means;
A stimulus applying means for applying a predetermined stimulus to the cell culture substrate disposed on the stage;
An apparatus for evaluating a cell culture substrate.
基材上に、所定の刺激により細胞接着性が変化する有機化合物を含む機能性層を設けて細胞培養基材を得る工程と、
得られた細胞培養基材について、請求項1に記載の評価方法を実施する工程と、
を有し、
評価の結果、機能性層の状態が良と判定されたものとを製品とする細胞培養基材の製造方法。
A step of providing a cell culture substrate by providing a functional layer containing an organic compound whose cell adhesion changes by a predetermined stimulus on the substrate;
A step of performing the evaluation method according to claim 1 for the obtained cell culture substrate;
Have
The manufacturing method of the cell culture substratum which uses what the state of the functional layer was judged to be good as a result of evaluation.
有機化合物が、0℃〜80℃の下限臨界溶解温度を有し、その下限臨界溶解温度以上の温度では細胞接着性を示し、かつ下限臨界溶解温度未満の温度では細胞非接着性を示す温度応答性ポリマーであり、
下限臨界溶解温度以上の温度で、細胞培養基材を40°の角度に傾斜させ、機能性層の表面に供給された液滴の転落速度を測定する第1測定工程と、
下限臨界溶解温度未満の温度で、細胞培養基材を60°の角度に傾斜させ、機能性層の表面に供給された液滴の転落速度を測定する第2測定工程と、
を有し、
第1測定工程で得られた液滴の転落速度が0.05mm/msec〜0.10mm/msecであり、かつ第2測定工程で得られた液滴の転落速度が1.0×10mm/msec〜1.0×10mm/msecである場合に機能性層の状態を良と判定する請求項4に記載の細胞培養基材の製造方法。
A temperature response in which an organic compound has a lower critical lysis temperature of 0 ° C. to 80 ° C., exhibits cell adhesion at a temperature equal to or higher than the lower critical lysis temperature, and exhibits cell non-adhesion at a temperature lower than the lower critical lysis temperature. A functional polymer,
A first measurement step in which the cell culture substrate is inclined at an angle of 40 ° at a temperature equal to or higher than the lower critical solution temperature, and the falling speed of the droplets supplied to the surface of the functional layer is measured;
A second measurement step in which the cell culture substrate is tilted at an angle of 60 ° at a temperature lower than the lower critical solution temperature, and the drop rate of the droplets supplied to the surface of the functional layer is measured;
Have
The drop rate of the droplet obtained in the first measurement step is 0.05 mm / msec to 0.10 mm / msec, and the drop rate of the droplet obtained in the second measurement step is 1.0 × 10 3 mm. The method for producing a cell culture substrate according to claim 4, wherein the state of the functional layer is determined to be good when the ratio is / msec to 1.0 x 10 4 mm / msec.
JP2012050358A 2012-03-07 2012-03-07 Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate Active JP5928008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050358A JP5928008B2 (en) 2012-03-07 2012-03-07 Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050358A JP5928008B2 (en) 2012-03-07 2012-03-07 Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate

Publications (2)

Publication Number Publication Date
JP2013185903A true JP2013185903A (en) 2013-09-19
JP5928008B2 JP5928008B2 (en) 2016-06-01

Family

ID=49387461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050358A Active JP5928008B2 (en) 2012-03-07 2012-03-07 Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate

Country Status (1)

Country Link
JP (1) JP5928008B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003393A (en) * 2015-06-09 2017-01-05 大日本印刷株式会社 Evaluation method of functional layer
WO2017026090A1 (en) * 2015-08-07 2017-02-16 株式会社明治 Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
EP3210008A4 (en) * 2014-10-24 2018-12-12 Brighton Technologies LLC Method and device for detecting substances on surfaces

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115970784A (en) 2018-07-20 2023-04-18 布赖顿技术有限责任公司 Method and apparatus for determining droplet mass from a sample collected from a liquid droplet dispensing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110604A (en) * 2003-10-09 2005-04-28 Kawamura Inst Of Chem Res Cell culture substrate and cell culture method
JP2006078477A (en) * 2004-08-10 2006-03-23 Kanagawa Acad Of Sci & Technol Method and system for measuring of droplet migration behavior
JP2009082123A (en) * 2007-10-02 2009-04-23 Cellseed Inc Evaluation method of cell culture substrate
JP2010080626A (en) * 2008-09-25 2010-04-08 Toshiba Corp Method of forming resist pattern
US20110290008A1 (en) * 2010-05-28 2011-12-01 Ebstein Steven M Novel technique for uniformly applying analyte to a structured surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110604A (en) * 2003-10-09 2005-04-28 Kawamura Inst Of Chem Res Cell culture substrate and cell culture method
JP2006078477A (en) * 2004-08-10 2006-03-23 Kanagawa Acad Of Sci & Technol Method and system for measuring of droplet migration behavior
JP2009082123A (en) * 2007-10-02 2009-04-23 Cellseed Inc Evaluation method of cell culture substrate
JP2010080626A (en) * 2008-09-25 2010-04-08 Toshiba Corp Method of forming resist pattern
US20110290008A1 (en) * 2010-05-28 2011-12-01 Ebstein Steven M Novel technique for uniformly applying analyte to a structured surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3210008A4 (en) * 2014-10-24 2018-12-12 Brighton Technologies LLC Method and device for detecting substances on surfaces
JP2017003393A (en) * 2015-06-09 2017-01-05 大日本印刷株式会社 Evaluation method of functional layer
WO2017026090A1 (en) * 2015-08-07 2017-02-16 株式会社明治 Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
US10753839B2 (en) 2015-08-07 2020-08-25 Meiji Co., Ltd. Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing

Also Published As

Publication number Publication date
JP5928008B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
Ke et al. Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films
JP5928008B2 (en) Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate
TW201104253A (en) Microarray chip and method of fabricating for the same
AU2014364898A1 (en) Substrates comprising nano-patterning surfaces and methods of preparing thereof
WO2003079401A2 (en) Directed assembly of functional heterostructures
US20160067711A1 (en) Systems and methods for single cell isolation and analysis
JP5942387B2 (en) Cell culture container and culture cell recovery method
Xu et al. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form
JP5903968B2 (en) Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate
JP2008173018A (en) Method for culturing cell and substrate for cell culture
JP5849806B2 (en) Cell culture substrate inspection method and inspection apparatus, and cell culture substrate production method
TW201009338A (en) Microanalysis chip adhesive sheet, microanalysis chip, and manufacturing method thereof
JP5164156B2 (en) Patterning cells on a substrate using inkjet printing technology
JP2007202489A (en) Cell array sorter, method for producing the same and method for sorting cell by using the same
JP5849792B2 (en) Method and apparatus for evaluating cell culture substrate, and method for producing cell culture substrate
Zhou et al. Constructing silk fibroin-based three-dimensional microfluidic devices via a tape mask-assisted multiple-step etching technique
Ye et al. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA)
Hattori et al. On‐chip cell culture on a microarray of extracellular matrix with surface modification of poly (dimethylsiloxane)
US20100035766A1 (en) Cell chip
US20130066031A1 (en) Micromolding of polystyrene by soft lithography
JP5894732B2 (en) Cell culture substrate evaluation method
CN114414440A (en) Method for manufacturing polyacrylamide gel substrate with single cell pattern array
JP6060790B2 (en) Method for producing substrate for cell culture
JP2007253071A (en) Microchip
JP5866983B2 (en) Cell culture vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150