JP2013185897A - Minute flow rate liquid feeding method and device utilizing the same - Google Patents

Minute flow rate liquid feeding method and device utilizing the same Download PDF

Info

Publication number
JP2013185897A
JP2013185897A JP2012050294A JP2012050294A JP2013185897A JP 2013185897 A JP2013185897 A JP 2013185897A JP 2012050294 A JP2012050294 A JP 2012050294A JP 2012050294 A JP2012050294 A JP 2012050294A JP 2013185897 A JP2013185897 A JP 2013185897A
Authority
JP
Japan
Prior art keywords
flow rate
liquid
liquid feeding
fed
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012050294A
Other languages
Japanese (ja)
Other versions
JP5957973B2 (en
Inventor
Genichi Uematsu
原一 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012050294A priority Critical patent/JP5957973B2/en
Publication of JP2013185897A publication Critical patent/JP2013185897A/en
Application granted granted Critical
Publication of JP5957973B2 publication Critical patent/JP5957973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a minute flow rate liquid feeding method capable of suppressing flow fluctuation for a long time and flow fluctuation for a short time and providing a stable liquid feeding state in a short period of time, and having a high responsibility, and a liquid feeding device having a simple configuration utilizing the method.SOLUTION: In a liquid feeding method for measuring the flow rate of a liquid fed by liquid feeding means and performing liquid feeding control by the liquid feeding means on the basis of the measured flow rate, the liquid feeding control by the liquid feeding means instructs the liquid feeding means to feed a flow rate higher than that to be fed by the liquid feeding means. When the measured flow rate becomes a flow rate higher than the flow rate of the liquid to be fed by a fixed value, the liquid feeding control instructs the liquid feeding means to stop liquid feeding. When the measured flow rate becomes a flow rate lower than the flow rate of the liquid to be fed by a fixed value, the liquid feeding control instructs the liquid feeding means to resume liquid feeding. The problem is solved by this liquid feeding method and a liquid feeding device utilizing the method.

Description

本発明は、毎分数μLから数十μLといった微小流量を安定的に送液することが可能な方法および前記方法を利用した装置に関する。   The present invention relates to a method capable of stably feeding a minute flow rate of several μL to several tens of μL per minute, and an apparatus using the method.

液体クロマトグラフィの分野では溶離液の削減等の観点から、カラムの内径を小さくする、いわゆる「マイクロ化」が進行している。一般的な液体クロマトグラフィでは内径4.6mm程度のカラムを使用し、毎分1mL程度の流量で分析を行なう。一方、「マイクロ化」した液体クロマトグラフィでは、内径数百μmから数mm程度のカラムを使用し、毎分数μLから数十μL程度の流量で分析を行なう。   In the field of liquid chromatography, so-called “micronization”, in which the inner diameter of the column is reduced, is progressing from the viewpoint of reducing the eluent. In general liquid chromatography, a column having an inner diameter of about 4.6 mm is used, and analysis is performed at a flow rate of about 1 mL per minute. On the other hand, in “micro-sized” liquid chromatography, a column having an inner diameter of several hundred μm to several mm is used, and analysis is performed at a flow rate of several μL to several tens μL per minute.

図1に一般的な液体クロマトグラフの構成図を示す。液体クロマトグラフは溶離液(10)を送液するポンプ(1)、試料(6)を導入する試料導入バルブ(4)、試料を分離する分析カラム(7)、および分離された成分を検出する検出器(9)を備えている。図1に示す液体クロマトグラフを「マイクロ化」するにあたっては、分析カラム(7)の微小化および性能向上はもちろん、その他各機構も微小化および性能向上が要求される。中でも、送液ポンプ(1)を含む送液手段が重要な要素となる。一般的な液体クロマトグラフに備える送液手段では、毎分1mL程度の流量で安定的に送液できれば十分であるのに対し、「マイクロ化」した液体クロマトグラフに備える送液手段では、毎分数μLから数十μLの流量で安定的に送液する必要があるためである。   FIG. 1 shows a configuration diagram of a general liquid chromatograph. The liquid chromatograph detects a pump (1) for feeding an eluent (10), a sample introduction valve (4) for introducing a sample (6), an analysis column (7) for separating the sample, and a separated component. A detector (9) is provided. When “micronizing” the liquid chromatograph shown in FIG. 1, not only miniaturization and performance improvement of the analytical column (7), but also other mechanisms are required to be miniaturization and performance improvement. Among them, the liquid feeding means including the liquid feeding pump (1) is an important element. The liquid feeding means provided in a general liquid chromatograph need only be able to send liquid stably at a flow rate of about 1 mL per minute, whereas the liquid feeding means provided in a “micro-sized” liquid chromatograph requires several minutes per minute. This is because it is necessary to stably feed liquid at a flow rate of μL to several tens of μL.

液体クロマトグラフに備える送液ポンプとして、通常、ポンプ室の上下に流体の流れを一方向に抑止する逆止弁(21)を配し、プランジャ(20)の往復運動により流体の吸引/吐出を繰り返す、プランジャポンプを使用する(図2)。プランジャ(20)は、モータ軸に直接またはプーリーベルト駆動を介して取り付けられたカム(22)の回転運動を変換することで往復運動される(図3)。カム(22)として、構造の単純な偏心カムを使用し、モータ(25)を等速回転させた場合、プランジャ(20)は変位−時間曲線がサインカーブを描く形で往復運動し、当該運動と同期して液体の吸引/吐出が行なわれる(レシプロ式:図3aおよび図4a)。レシプロ式では液体の吸引に要する時間と液体の吐出に要する時間は同一であり、脈動による影響がクロマトグラムに大きく出る。この問題を解消するために、カム(22)として、吐出の領域は長時間をかけて直線性を持たす一方、吸引の領域は短時間で復帰するリニアカムを使用し、当該カムを等速回転させることでプランジャ(20)を往復運動させる方法がある(クイックリターン式:図3bおよび図4b)。クイックリターン式では、液体の吐出に要する時間を長時間取る一方、液体の吸引に要する時間は短時間とすることで、レシプロ式と比較しクロマトグラムにおける脈動の影響を抑えることができる。   As a liquid feed pump provided in a liquid chromatograph, a check valve (21) that normally suppresses the flow of fluid in one direction is arranged above and below the pump chamber, and fluid is sucked / discharged by reciprocating movement of the plunger (20). Again, use a plunger pump (Figure 2). The plunger (20) is reciprocated by converting the rotational motion of a cam (22) attached to the motor shaft directly or via a pulley belt drive (FIG. 3). When an eccentric cam with a simple structure is used as the cam (22) and the motor (25) is rotated at a constant speed, the plunger (20) reciprocates in a form in which the displacement-time curve draws a sine curve. The liquid is sucked / discharged in synchronism (reciprocating type: FIGS. 3a and 4a). In the reciprocating method, the time required for sucking the liquid and the time required for discharging the liquid are the same, and the influence of the pulsation appears greatly in the chromatogram. In order to solve this problem, as the cam (22), a linear cam is used for which the discharge region has a linearity over a long time while the suction region returns in a short time, and the cam is rotated at a constant speed. Thus, there is a method of reciprocating the plunger (20) (quick return type: FIGS. 3b and 4b). In the quick return method, the time required for discharging the liquid is long, while the time required for sucking the liquid is short, so that the influence of pulsation in the chromatogram can be suppressed as compared with the reciprocating method.

プランジャポンプでは、カムを回転運動させるモータの回転数を上げることで送液量をあげる(高流量)ことができ、回転数を下げると送液量を下げる(低流量)ことができる。高流量時における、プランジャポンプのプランジャ動作および圧力変動を図5(レシプロ式:図5a、クイックリターン式:図5b)に、低流量時における、プランジャポンプのプランジャ動作および圧力変動を図6(レシプロ式:図6a、クイックリターン式:図6b)に、それぞれ示す。レシプロ式、クイックリターン式、いずれの方式であっても、カム形状が固定、かつモータ回転数も等速であるため、モータの回転数を少なくする(すなわち低流量にする)と液体を吸引する時間が長くなり、圧力が低下する時間も長くなる。そのため低流量域では流量の安定性を確保できず、良好な分析精度を得ることが難しい。   In the plunger pump, the amount of liquid feeding can be increased (high flow rate) by increasing the number of rotations of the motor that rotates the cam, and the amount of liquid feeding can be decreased (low flow rate) by decreasing the number of rotations. FIG. 5 (reciprocal type: FIG. 5a, quick return type: FIG. 5b) shows the plunger operation and pressure fluctuation of the plunger pump at a high flow rate, and FIG. 6 (reciprocation) shows the plunger operation and pressure fluctuation of the plunger pump at a low flow rate. Formula: FIG. 6a, quick return formula: FIG. 6b), respectively. Regardless of the reciprocating type or quick return type, the cam shape is fixed and the motor rotation speed is constant. Therefore, if the motor rotation speed is reduced (that is, the flow rate is reduced), liquid is sucked. The time becomes longer and the time for the pressure to drop also becomes longer. Therefore, the flow rate stability cannot be ensured in the low flow rate region, and it is difficult to obtain good analysis accuracy.

プランジャポンプで低流量を送液した場合でも流量安定性を確保するため、カムを回転させるモータの回転数を可変にする試みもされている。すなわち、液体吸引時におけるカムの回転速度を、液体吐出時におけるカムの回転速度より高速にすることで、圧力が低下する時間を短くし、クロマトグラムにおける脈動の影響を抑える方法である(図7参照)。また前記方法をより簡便に行なうため、カムの代わりにボールねじ(23)を用いてプランジャを往復運動させるポンプが開示されている(非特許文献1)。当該ポンプは、ボールねじ(23)を正転させることで液体を吐出させることができ、ボールねじ(23)を反転させることにより液体を吸引させることができるため、液体の吸引/吐出制御が容易である(図8および9参照)。しかしながら当該ポンプは、溶離液中に含まれる僅かな異物や気泡によりトラブルを起こしやすく、使用する際は十分に注意を払う必要がある。   In order to ensure flow rate stability even when a low flow rate is supplied by a plunger pump, attempts have been made to make the rotation speed of the motor that rotates the cam variable. That is, the cam rotation speed at the time of liquid suction is made higher than the rotation speed of the cam at the time of liquid discharge, thereby shortening the pressure drop time and suppressing the influence of pulsation in the chromatogram (FIG. 7). reference). Moreover, in order to perform the said method more simply, the pump which reciprocates a plunger using a ball screw (23) instead of a cam is disclosed (nonpatent literature 1). Since the pump can discharge the liquid by rotating the ball screw (23) forward and can suck the liquid by reversing the ball screw (23), the liquid suction / discharge control is easy. (See FIGS. 8 and 9). However, the pump is liable to be troubled by a small amount of foreign matters and bubbles contained in the eluent, and sufficient care must be taken when using it.

低流量送液時での流量安定性を確保するための別の方法として、シリンジポンプ(13)を使用する方法がある(図10)。これは1回の分析に必要な溶離液の容量以上のシリンダ容積を有したシリンダおよびピストンを有しており、分析系から切り離した状態でシリンダ内に溶離液を充填後、分析系に接続し、ゆっくりと吐出する方法である。シリンジポンプを用いることで低流量域での送液を非常に安定的に行なうことができる。しかしながら、送液量が微量(例えば、毎分数μLから数十μL)になると送液量に対するシリンダ容積が大きくなるため、安定に要する時間が長くなる問題がある。またシリンジポンプは連続測定には向かないという問題もある。   As another method for securing the flow rate stability at the time of low flow rate liquid feeding, there is a method using a syringe pump (13) (FIG. 10). It has a cylinder and a piston with a cylinder volume that is larger than the volume of the eluent required for one analysis, and is connected to the analysis system after filling the cylinder with the eluent while disconnected from the analysis system. This is a method of discharging slowly. By using a syringe pump, liquid feeding in a low flow rate region can be performed very stably. However, there is a problem in that the time required for stabilization becomes long because the cylinder volume with respect to the liquid supply amount increases when the liquid supply amount becomes very small (for example, several μL to several tens μL per minute). Another problem is that syringe pumps are not suitable for continuous measurement.

低流量送液時での流量安定性を確保するためのさらに別の方法として、プランジャポンプとしては一般的な液体クロマトグラフ(例えば流量が毎分数百μL)で使用するポンプを用いつつ、スプリッターにより微小流量を作成する方法がある(図11)。すなわち、送液ポンプ(1)により毎分数百μLの流量で送液後、スプリッターによりその1/10から1/100量を分析カラム(7)に導く方法である。スプリッターとしては、図11に示す抵抗管(11)を用いた単純な抵抗比を利用したものや、制御された弁機構を利用したもの等がある。しかしながら、いずれも安定性には欠け、また溶離液の大半を廃棄してしまう等問題が多い。   As yet another method for ensuring the flow rate stability at the time of low flow rate feeding, as a plunger pump, a splitter used in a general liquid chromatograph (for example, a flow rate of several hundred μL per minute) is used. There is a method of creating a minute flow rate (FIG. 11). That is, after the liquid is fed at a flow rate of several hundreds μl per minute by the liquid feed pump (1), the amount of 1/10 to 1/100 is led to the analysis column (7) by the splitter. Examples of the splitter include those using a simple resistance ratio using a resistance tube (11) shown in FIG. 11, and those using a controlled valve mechanism. However, there are many problems such as lack of stability and disposal of most of the eluent.

これらの問題を解決するために、送液ポンプによる送液量の値を送液ポンプの制御部にフィードバックすることで、送液ポンプによる送液量(流量)を一定とするよう、制御する方法がある(図12から14)。具体的には、送液ポンプ(1)による送液量を測定可能な流量計(15)を送液ポンプ(1)の吐出側に設け、コントローラ(3)を用いて、流量計(15)の値が指定値になるよう、PID制御等により比例制御することで、送液ポンプの送液量を微調整する。当該方法により安定的に微小流量を送液することが可能となる。しかしながら、流量が一定になるまで長い時間を要したり、図13に示すように安定化後もうねりが残る問題がある。また比例制御により流量を微調整していることから、長期間における流量変動に対する修正力は強いものの、短時間における流量変動には追随しにくい欠点がある。   In order to solve these problems, a method of controlling the liquid feed amount (flow rate) by the liquid feed pump to be constant by feeding back the value of the liquid feed amount by the liquid feed pump to the control unit of the liquid feed pump (FIGS. 12 to 14). Specifically, a flow meter (15) capable of measuring the amount of liquid fed by the liquid feed pump (1) is provided on the discharge side of the liquid feed pump (1), and the flow meter (15) using the controller (3). The liquid feed amount of the liquid feed pump is finely adjusted by performing proportional control by PID control or the like so that the value of becomes the specified value. By this method, it becomes possible to stably feed a minute flow rate. However, there is a problem that it takes a long time until the flow rate becomes constant, or the waviness remains after stabilization as shown in FIG. Further, since the flow rate is finely adjusted by proportional control, there is a drawback that it is difficult to follow the flow rate fluctuation in a short time, although the correction force for the flow rate fluctuation in the long term is strong.

微小流量で送液する場合、送液開始から圧力が一定になるまでに膨大な時間を要することも大きな問題である。送液量が低いと、送液ポンプ等が有するボイド容積の割合が送液量に対し大きくなるため、送液を開始しても圧力がなかなか上昇しないためである。当該問題を解決するため、圧力が上昇するまでは実際に分析で使用する流量よりも多くの流量で送液することで短時間で圧力を上昇させた後、分析で使用する流量に戻す等の方法があげられる(図15参照)。しかしながら、前記方法を採用する場合、分析を開始するのに必要な圧力値をあらかじめ設定する必要があり、この設定を間違えると分析カラムに大きなダメージを与えるおそれがある。
In the case of liquid feeding at a minute flow rate, it is a big problem that a huge amount of time is required from the start of liquid feeding until the pressure becomes constant. This is because, when the liquid feeding amount is low, the ratio of the void volume of the liquid feeding pump or the like increases with respect to the liquid feeding amount, so that the pressure does not increase easily even when the liquid feeding is started. To solve the problem, increase the pressure in a short time by sending it at a flow rate higher than the flow rate actually used until the pressure rises, and then return it to the flow rate used in the analysis. A method is mentioned (refer FIG. 15). However, when the above method is adopted, it is necessary to set in advance a pressure value necessary for starting the analysis. If this setting is mistaken, there is a possibility that the analysis column is seriously damaged.
.

株式会社ユニフローズ、送液用組込型マイクロポンプのホームページhttp://www.uniflows.co.jp/Uniflows Co., Ltd., homepage of embedded micropump for liquid delivery http://www.uniflows.co.jp/

前述したように、微小流量を安定的に送液する方法は、機械的に微小流量を安定化させる方法と、流量値を送液手段にフィードバックし、比例制御により送液量を一定に保つ方法とに分けられる。前者は構造的に複雑になる等の問題があり、後者は短時間の変動に対する応答が悪い等の問題があるため、分析者が容易に使いこなせるものではない。   As described above, the method of stably feeding a minute flow rate includes a method of mechanically stabilizing the minute flow rate, and a method of feeding back the flow rate value to the solution feeding means and keeping the amount of fluid fed constant by proportional control. And divided. The former has problems such as structural complexity, and the latter has problems such as poor response to short-term fluctuations, so that the analyst cannot easily use it.

そこで本発明は、長期間における流量変動および短期間における流量変動を抑制し、短時間で安定した送液状態が得られる、応答性の高い微小流量送液方法、および前記方法を利用した、構成の簡単な送液装置を提供することを目的とする。   Therefore, the present invention suppresses flow rate fluctuations in a long period and flow rates in a short period, and a stable liquid delivery state can be obtained in a short time, and a highly responsive micro flow rate liquid delivery method, and a configuration using the method An object of the present invention is to provide a simple liquid delivery device.

上記課題を鑑みてなされた本発明は、以下の発明を包含する。   The present invention made in view of the above problems includes the following inventions.

本発明の第一の態様は、
送液手段で送液した液体の流量を測定し、前記測定した流量に基づき、前記送液手段での送液制御を行なう、送液方法であって、
前記送液手段での送液制御が、前記送液手段で送液すべき液体の流量よりも多い流量を送液するよう前記送液手段に指示し、前記測定した流量が前記送液すべき液体の流量よりも一定値以上多い流量となった場合は前記送液手段での送液を停止するよう指示し、前記測定した流量が前記送液すべき液体の流量よりも一定値以上少ない流量となった場合は前記送液手段での送液を再開するよう指示する制御である、前記送液方法である。
The first aspect of the present invention is:
A liquid feeding method for measuring the flow rate of the liquid fed by the liquid feeding means and performing liquid feeding control by the liquid feeding means based on the measured flow rate,
The liquid feeding control by the liquid feeding means instructs the liquid feeding means to feed a flow rate higher than the flow rate of the liquid to be fed by the liquid feeding means, and the measured flow rate should be the liquid feeding. When the flow rate is higher than the liquid flow rate by a certain value or more, the flow rate is instructed to stop by the liquid feeding means, and the measured flow rate is lower than the liquid flow rate to be fed by a certain value or more. In this case, the liquid feeding method is a control for instructing to resume the liquid feeding by the liquid feeding means.

本発明の第二の態様は、
液体を送液する送液手段と、前記送液手段の吐出側に設けた、前記送液手段で送液した液体の流量を測定する流量測定手段と、前記流量測定手段で測定した流量に基づき前記送液手段での送液制御を行なう制御手段と、を設けた送液装置であって、
前記流量測定手段で測定した流量が、前記送液手段で送液すべき液体の流量よりも一定値以上多い流量か一定値以上少ない流量かを判定する、流量判定手段をさらに備え、
前記制御手段が、前記送液手段で送液すべき液体の流量よりも多い流量を送液するよう前記送液手段に指示し、前記流量測定手段で測定した流量が前記送液すべき液体の流量よりも一定値以上多いと前記流量判定手段が判定した場合は前記送液手段での送液を停止するよう指示し、前記流量測定手段で測定した流量が前記送液すべき液体の流量よりも一定値以上少ないと前記流量判定手段が判定した場合は前記送液手段での送液を再開するよう指示する手段である、前記送液装置である。
The second aspect of the present invention is:
Based on the liquid feeding means for feeding the liquid, the flow rate measuring means for measuring the flow rate of the liquid fed by the liquid feeding means provided on the discharge side of the liquid feeding means, and the flow rate measured by the flow rate measuring means A liquid feeding device provided with a control means for performing liquid feeding control in the liquid feeding means,
A flow rate determination means for determining whether the flow rate measured by the flow rate measurement means is a flow rate greater than a certain value or less than a flow rate of the liquid to be delivered by the liquid delivery means;
The control means instructs the liquid feeding means to send a flow rate higher than the flow rate of the liquid to be fed by the liquid feeding means, and the flow rate measured by the flow rate measuring means is the flow rate of the liquid to be delivered. When the flow rate determination means determines that the flow rate is more than a certain value, the flow rate is measured by the flow rate measurement means, and the flow rate measured by the flow rate measurement means is greater than the flow rate of the liquid to be sent. If the flow rate determining means determines that the value is less than a certain value, the liquid feeding device is a means for instructing the liquid feeding means to resume liquid feeding.

本発明の第三の態様は、流量測定手段が熱式流量計である、前記第二の態様に記載の送液装置である。   A third aspect of the present invention is the liquid delivery device according to the second aspect, wherein the flow rate measuring means is a thermal flow meter.

本発明の第四の態様は、溶離液を送液する送液部と、試料を導入する試料導入部と、導入した試料中の各成分を分離する分析カラム部と、前記分析カラム部から溶出した各成分を検出する検出部と、を備えた液体クロマトグラフであって、前記送液部が前記第二または第三の態様に記載の送液装置である、前記液体クロマトグラフである。   According to a fourth aspect of the present invention, there is provided a liquid feeding part for feeding an eluent, a sample introduction part for introducing a sample, an analysis column part for separating each component in the introduced sample, and elution from the analysis column part A liquid chromatograph including a detection unit that detects each of the components, wherein the liquid feeding unit is the liquid feeding device according to the second or third aspect.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の送液方法を示すフローチャートを図16に示す。本発明の送液方法では、
送液手段で送液すべき液体の流量である目的流量F(T)、
送液手段で実際に送液する流量の設定値である駆動流量:F(S)、
送液手段での送液を停止する流量(閾値)である制御上限流量F(H)、
送液手段での送液を再開する流量(閾値)である制御下限流量F(L)、
の4つのパラメータを設定し、微量流量を送液する。
A flow chart showing the liquid feeding method of the present invention is shown in FIG. In the liquid feeding method of the present invention,
A target flow rate F (T) which is a flow rate of the liquid to be fed by the liquid feeding means,
Drive flow rate: F (S), which is a set value of the flow rate that is actually delivered by the solution delivery means,
A control upper limit flow rate F (H) which is a flow rate (threshold value) for stopping liquid feeding by the liquid feeding means,
Control lower limit flow rate F (L) which is a flow rate (threshold value) for resuming liquid feeding by the liquid feeding means,
These four parameters are set and a minute flow rate is sent.

本発明の送液方法では、駆動流量F(S)は目的流量F(T)より大きな値を設定する。駆動流量F(S)の設定方法としては、目的流量F(T)に一定の値を加算して設定してもよいし、一定の値を乗算して設定してもよい。また、流量に応じて加算値または乗算値を変化させて設定してもよいし、加算と乗算とを組み合わせて設定してもよい。さらに脈動等の影響が少ない高流量域(例えば毎分数百μL以上)では、目的流量F(T)への加算を行なわないよう設定してもよい。本発明の送液方法における目的流量F(T)と駆動流量F(S)との関係の一例を図17および18に示す。   In the liquid feeding method of the present invention, the driving flow rate F (S) is set to a value larger than the target flow rate F (T). As a method of setting the driving flow rate F (S), a constant value may be added to the target flow rate F (T) or may be set by multiplying a constant value. Further, the addition value or the multiplication value may be changed according to the flow rate, or may be set in combination with addition and multiplication. Further, in a high flow rate region where the influence of pulsation or the like is small (for example, several hundred μL or more per minute), it may be set not to add to the target flow rate F (T). An example of the relationship between the target flow rate F (T) and the drive flow rate F (S) in the liquid feeding method of the present invention is shown in FIGS.

図17aは目的流量F(T)の全域にわたり、目的流量F(T)に一定の値を加算して駆動流量F(S)を設定する例を示した図である。   FIG. 17a is a diagram showing an example in which the drive flow rate F (S) is set by adding a certain value to the target flow rate F (T) over the entire range of the target flow rate F (T).

F(S)=F(T)+k1 ※ k1:加算流量
図17bは目的流量F(T)を一定の流量(m1)を境に2つの区間に分割し、流量m1未満の低流量域では目的流量F(T)以上でかつ一定値となるよう駆動流量F(S)を設定し、流量m1以上の高流量域では目的流量F(T)に一定の値を加算して駆動流量F(S)を設定する例を示した図である。
F (S) = F (T) + k1 * k1: Additional flow rate Figure 17b shows the target flow rate F (T) divided into two sections with a constant flow rate (m1) as the boundary. The driving flow rate F (S) is set so as to be equal to or higher than the flow rate F (T), and in a high flow rate region where the flow rate is equal to or higher than m1, the constant value is added to the target flow rate F (T). ) Is a diagram illustrating an example of setting.

0≦F(T)<m1:F(S)=k2
F(T)≧m1:F(S)=F(T)+k3
※ k2:低流量域での駆動流量、k3:高流量域での加算流量
m1:目的流量の区間分岐点
図18cは目的流量F(T)を一定の流量(m2)を境に2つの区間に分割し、流量m2未満の低流量域では、流量に応じて目的流量F(T)を下記式に基づき加算した値を駆動流量F(S)として設定し、流量m2以上の高流量域では目的流量F(T)への加算を行なわない(すなわち目的流量F(T)と駆動流量F(S)とが一致)例を示した図である。
0 ≦ F (T) <m1: F (S) = k2
F (T) ≧ m1: F (S) = F (T) + k3
* K2: Drive flow rate in the low flow rate range, k3: Addition flow rate in the high flow rate range
m1: Section flow point of the target flow rate FIG. 18c divides the target flow rate F (T) into two sections with a constant flow rate (m2) as a boundary, and in a low flow rate region less than the flow rate m2, the target flow rate F depends on the flow rate. A value obtained by adding (T) based on the following formula is set as the driving flow rate F (S), and the addition to the target flow rate F (T) is not performed in a high flow rate range of the flow rate m2 or more (that is, the target flow rate F (T)). And the drive flow rate F (S) coincides with each other).

0≦F(T)<m2:F(S)={(m2−k4)/m2}×F(T)+k4
F(T)≧m2:F(S)=F(T)
※ k4:低流量域での加算流量、m2:目的流量の区間分岐点
制御上限流量F(H)は目的流量F(T)に一定の値を加算して設定し、制御下限流量F(L)は目的流量F(T)に一定の値を減算して設定すればよい。目的流量F(T)への加算値および減算値を小さく設定すると、送液手段(ポンプ)によるFlow(送液)/Stop(停止)が頻繁に繰り返されるため、送液の安定性および精度が増す点で好ましい。ただし実際は、ポンプの流量制御の分解能のため、目的流量F(T)への加算値および減算値を小さくするのには限界がある。したがって、予備的な試験により、最適な加算値および減算値を設定するとよい。
0 ≦ F (T) <m2: F (S) = {(m2−k4) / m2} × F (T) + k4
F (T) ≧ m2: F (S) = F (T)
* K4: Additional flow rate in the low flow rate range, m2: Section point of the target flow rate The control upper limit flow rate F (H) is set by adding a certain value to the target flow rate F (T), and the control lower limit flow rate F (L ) May be set by subtracting a certain value from the target flow rate F (T). When the addition value and the subtraction value to the target flow rate F (T) are set small, Flow (liquid feeding) / Stop (stop) by the liquid feeding means (pump) is frequently repeated, so that the stability and accuracy of the liquid feeding are improved. It is preferable in terms of increase. In practice, however, there is a limit to reducing the added value and the subtracted value to the target flow rate F (T) because of the resolution of the pump flow rate control. Therefore, optimal addition values and subtraction values may be set through preliminary tests.

本発明の送液方法では、まず前述した方法により設定した駆動流量F(S)で、送液手段による液体の送液を行なう。送液された液体の流量を測定し、その値F(R)が制御上限流量F(H)を越えると、送液手段による送液を停止する。送液手段による送液を停止すると、流量値F(R)が低下する。そして、流量値F(R)が制御下限流量F(L)を下回ると、送液手段による送液を再開する。この操作を繰り返すことで、目的流量F(T)付近での安定的な送液が行なわれる(図19参照)。本発明の送液方法では、駆動流量F(S)は目的流量F(L)よりも大きな値を設定する。そのため、流量値F(R)が制御下限流量F(L)を下回ることで、送液手段による送液が再開すると、速やかに流量値F(R)が制御上限流量F(H)に達し、送液手段による送液が停止すると、速やかに流量値F(R)が制御下限流量F(L)に達し、送液手段による送液が再開される。結果、送液手段によるFlow(送液)/Stop(停止)が頻繁(例えば1秒間に数回)に繰り返されることになり、目的流量F(T)付近での極めて安定的な送液が実現される。   In the liquid feeding method of the present invention, the liquid is first fed by the liquid feeding means at the driving flow rate F (S) set by the above-described method. When the flow rate of the fed liquid is measured and the value F (R) exceeds the control upper limit flow rate F (H), the liquid feeding by the liquid feeding means is stopped. When the liquid feeding by the liquid feeding means is stopped, the flow rate value F (R) decreases. When the flow rate value F (R) falls below the control lower limit flow rate F (L), liquid feeding by the liquid feeding means is resumed. By repeating this operation, stable liquid feeding near the target flow rate F (T) is performed (see FIG. 19). In the liquid feeding method of the present invention, the driving flow rate F (S) is set to a value larger than the target flow rate F (L). Therefore, when the flow rate value F (R) falls below the control lower limit flow rate F (L), when the liquid feeding by the liquid feeding means resumes, the flow rate value F (R) quickly reaches the control upper limit flow rate F (H), When liquid feeding by the liquid feeding unit stops, the flow rate value F (R) quickly reaches the control lower limit flow rate F (L), and liquid feeding by the liquid feeding unit is resumed. As a result, Flow (stopping) / Stop (stopping) by the liquid feeding means is repeated frequently (for example, several times per second), and extremely stable liquid feeding near the target flow rate F (T) is realized. Is done.

また本発明の送液方法は、圧力が一定になるまでの時間を大幅に短縮する効果も併せ持っている。図20はその効果を模式的に示した図である。フィードバック制御を行なわない従来の送液方法では、常に目的流量値で送液手段による液体の送液が実施される。そのため、従来法では、微小流量を送液しようとすると、送液手段による液体の吸引時間も同時に長くなり、圧力が一定するまで(目的流量に達するまで)の間大きな圧力変動が生ずる。一方、本発明の送液方法では、送液開始時から、目的流量よりも大きな流量(駆動流量)で液体が送液される。よって、従来の方法より液体が高速で送液され、結果として、圧力が一定になるまで(目的流量に達するまで)の時間を大幅に短縮することができる。   The liquid feeding method of the present invention also has an effect of greatly shortening the time until the pressure becomes constant. FIG. 20 schematically shows the effect. In a conventional liquid feeding method that does not perform feedback control, liquid feeding by the liquid feeding means is always performed at a target flow rate value. Therefore, in the conventional method, when a minute flow rate is to be fed, the time for sucking the liquid by the liquid feeding means also becomes longer at the same time, and a large pressure fluctuation occurs until the pressure becomes constant (until the target flow rate is reached). On the other hand, in the liquid feeding method of the present invention, the liquid is fed at a flow rate (driving flow rate) larger than the target flow rate from the start of liquid feeding. Therefore, the liquid is fed at a higher speed than the conventional method, and as a result, the time until the pressure becomes constant (until the target flow rate is reached) can be greatly shortened.

本発明の送液方法を利用した送液装置(以下単に、本発明の送液装置とする)の一例を図21に示す。図21の装置は、溶離液(10)を送液する送液ポンプ(1)と、溶離液の流量を測定する流量計(15)と、流量判定手段(16)と、送液ポンプ(1)による液体の吸引/吐出を制御するポンプコントローラ(3)とを備えている。   FIG. 21 shows an example of a liquid feeding apparatus (hereinafter simply referred to as the liquid feeding apparatus of the present invention) using the liquid feeding method of the present invention. The apparatus of FIG. 21 includes a liquid feed pump (1) for feeding an eluent (10), a flow meter (15) for measuring the flow rate of the eluent, a flow rate determining means (16), and a liquid feed pump (1 And a pump controller (3) for controlling liquid suction / discharge.

本発明の送液装置に備える送液ポンプ(1)としては、カムを等速回転させて駆動させる一般的なレシプロ式プランジャポンプやクイックリターン式プランジャポンプ(図2および3)を用いてもよいが、カムを回転させるモータの回転数を可変とし液体吸引時におけるカムの回転速度を液体吐出時におけるカムの回転速度より高速にしたプランジャポンプ(図7)や、カムの代わりにボールねじを用いてプランジャを往復運動させるプランジャポンプ(図8および9)を用いたほうが、微小流量送液時でも高速で吸引動作を行なうことでき、流量変動およびそれに伴う圧力変動を最小に抑えることできるため、安定的な送液ができる点で好ましい。図8に示すプランジャポンプを用いて、本発明の送液方法を行なった場合の模式図を図22に示す。   As the liquid feeding pump (1) provided in the liquid feeding device of the present invention, a general reciprocating plunger pump or a quick return plunger pump (FIGS. 2 and 3) which is driven by rotating a cam at a constant speed may be used. However, using a plunger pump (FIG. 7) in which the rotation speed of the motor for rotating the cam is variable and the cam rotation speed during liquid suction is higher than the rotation speed of the cam during liquid discharge, or a ball screw is used instead of the cam. By using a plunger pump that reciprocates the plunger (Figs. 8 and 9), the suction operation can be performed at a high speed even when a minute flow rate is supplied, and fluctuations in the flow rate and the associated pressure fluctuations can be minimized. It is preferable at the point which can deliver liquid. FIG. 22 shows a schematic diagram when the liquid feeding method of the present invention is performed using the plunger pump shown in FIG.

本発明の送液装置に備える流量計(15)としては、微小流量(具体的には毎分数μL程度)を測定可能な流量計であれば特に限定はないものの、コリオリ式流量計や熱式流量計といった質量流量(g/min)を直接測定可能な流量計が微小流量を高精度に測定できる点で好ましい。中でも熱式流量計は、内部容量を極めて少量にできる点、構造が比較的単純な点、および耐圧性の確保が比較的容易な点で、本発明の送液装置に備える流量計として特に好ましい。熱式流量計の原理を図34に示す。液体が流れるパイプ(30)に一定熱量を供給するヒータ(29)が巻かれており、液体が流れていない時、T1の位置とT2の位置とが同じ温度になるよう調整する。液体が流れるとT1の位置での温度は液体に熱を奪われるため低下する一方、T2の位置での温度はヒータ(29)により上昇する。このT1の位置とT2の位置との温度差は、液体の質量流量に比例するため、温度検知部(28)によりT1の位置とT2の位置の温度を検知することで液体の質量流量を高精度に測定することができる。なお熱式流量計は流体の熱量に影響を受けるため、環境温度の変動を受けやすい。そのため、熱式流量計を本発明の送液装置に備える場合は、少なくとも温度検知部(28)およびヒータ(29)は恒温槽内に備え、環境温度を一定に保つと好ましい。また熱式流量計は、測定する液体の密度や比熱が異なると容積流量の測定値も変化する。例えば液体クロマトグラフィの溶離液として通常用いられるアセトニトリルの比熱は1.27J/℃・gであり、水の比熱(4.19J/℃・g)とは大きく異なる。そのため、水1mL/minを送液した結果、1mL/minの測定値を示す熱式流量計で、アセトニトリル1mL/minを送液すると、測定値は0.304mL/minとなる。したがって、熱式流量計を本発明の送液装置に備える場合は、使用する液体により事前に流量値を補正する必要がある。流量計(15)で測定された流量は、流量判定手段(16)で設定した流量と比較/演算処理を行なった後、ポンプコントローラ(3)に対して制御信号を送り、それを基づき送液ポンプ(1)の吸引/吐出動作が行なわれる。   The flow meter (15) provided in the liquid feeding device of the present invention is not particularly limited as long as it is a flow meter capable of measuring a minute flow rate (specifically, about several μL per minute), but a Coriolis type flow meter or a thermal type. A flow meter that can directly measure a mass flow rate (g / min) such as a flow meter is preferable in that a minute flow rate can be measured with high accuracy. Among them, the thermal flow meter is particularly preferable as the flow meter provided in the liquid feeding device of the present invention in that the internal capacity can be made extremely small, the structure is relatively simple, and the pressure resistance is relatively easy to secure. . FIG. 34 shows the principle of the thermal flow meter. A heater (29) for supplying a constant amount of heat is wound around the pipe (30) through which the liquid flows, and when the liquid is not flowing, the position of T1 and the position of T2 are adjusted to the same temperature. When the liquid flows, the temperature at the position of T1 decreases because the liquid loses heat, while the temperature at the position of T2 increases by the heater (29). Since the temperature difference between the T1 position and the T2 position is proportional to the liquid mass flow rate, the temperature detection unit (28) detects the temperature at the T1 position and the T2 position to increase the liquid mass flow rate. It can be measured with high accuracy. Thermal flow meters are susceptible to environmental temperature fluctuations because they are affected by the amount of heat of the fluid. For this reason, when the thermal flow meter is provided in the liquid feeding device of the present invention, it is preferable that at least the temperature detection unit (28) and the heater (29) are provided in a thermostat and the ambient temperature is kept constant. In the thermal type flow meter, the measured value of the volume flow rate also changes when the density and specific heat of the liquid to be measured are different. For example, the specific heat of acetonitrile usually used as an eluent for liquid chromatography is 1.27 J / ° C. · g, which is very different from the specific heat of water (4.19 J / ° C. · g). Therefore, as a result of feeding 1 mL / min of water, when 1 mL / min of acetonitrile is fed with a thermal flow meter showing a measured value of 1 mL / min, the measured value becomes 0.304 mL / min. Therefore, when the thermal flow meter is provided in the liquid delivery device of the present invention, it is necessary to correct the flow value in advance with the liquid to be used. After the flow rate measured by the flow meter (15) is compared / computed with the flow rate set by the flow rate determination means (16), a control signal is sent to the pump controller (3), and the liquid is sent based on the control signal. The suction / discharge operation of the pump (1) is performed.

本発明の送液方法は、送液手段で送液した液体の流量を測定し、前記測定した流量に基づき、前記送液手段での送液制御を行なう送液方法であって、前記送液手段での送液制御が、前記送液手段で送液すべき液体の流量よりも多い流量を送液するよう前記送液手段に指示し、前記測定した流量が前記送液すべき液体の流量よりも一定値以上多い流量となった場合は前記送液手段での送液を停止するよう指示し、前記測定した流量が前記送液すべき液体の流量よりも一定値以上少ない流量となった場合は前記送液手段での送液を再開するよう指示する制御である、ことを特徴としており、毎分数μLから数十μLといった微小流量であっても安定的に送液することができ、また圧力が一定となるまでの時間を大幅に短縮することができる。従って、本発明の送液方法を用いた送液装置を液体クロマトグラフに備えることで、液体クロマトグラフの「マイクロ化」が容易となる。   The liquid feeding method of the present invention is a liquid feeding method for measuring the flow rate of the liquid fed by the liquid feeding means and performing liquid feeding control by the liquid feeding means based on the measured flow rate, wherein the liquid feeding method The liquid feeding control by the means instructs the liquid feeding means to send a flow rate higher than the flow rate of the liquid to be fed by the liquid feeding unit, and the measured flow rate is the flow rate of the liquid to be fed. When the flow rate is more than a certain value than the flow rate, an instruction is given to stop the liquid feeding by the liquid feeding means, and the measured flow rate is a flow rate that is smaller than the constant value by more than the flow rate of the liquid to be fed. The case is characterized in that the control is instructed to restart the liquid feeding by the liquid feeding means, and the liquid can be stably fed even at a minute flow rate of several μL to several tens μL per minute, Further, the time until the pressure becomes constant can be greatly shortened. Therefore, the liquid chromatograph can be easily “micro-sized” by providing the liquid chromatograph with the liquid feeding device using the liquid feeding method of the present invention.

一般的な液体クロマトグラフの構成図である。It is a block diagram of a general liquid chromatograph. プランジャポンプの一例および前記ポンプによる吸引/吐出動作を示した図である。It is the figure which showed an example of the plunger pump and the suction / discharge operation | movement by the said pump. レシプロ式プランジャポンプ(a)およびクイックリターン式プランジャポンプ(b)の平面図である。It is a top view of a reciprocating plunger pump (a) and a quick return plunger pump (b). レシプロ式プランジャポンプ(a)およびクイックリターン式プランジャポンプ(b)におけるプランジャ動作ならびに圧力変動の模式図である。It is a schematic diagram of plunger operation and pressure fluctuation in the reciprocating plunger pump (a) and quick return plunger pump (b). 高流量時における、レシプロ式プランジャポンプ(a)およびクイックリターン式プランジャポンプ(b)におけるプランジャ動作ならびに圧力変動を示した図である。It is the figure which showed the plunger operation | movement and pressure fluctuation in a reciprocating type plunger pump (a) and a quick return type plunger pump (b) at the time of a high flow rate. 低流量時における、レシプロ式プランジャポンプ(a)およびクイックリターン式プランジャポンプ(b)におけるプランジャ動作ならびに圧力変動を示した図である。It is the figure which showed the plunger operation | movement and pressure fluctuation in a reciprocating type plunger pump (a) and a quick return type plunger pump (b) at the time of a low flow rate. 液体吸引時にカムを高速回転させたときの、プランジャポンプにおけるプランジャ動作および圧力変動を示した図である。It is the figure which showed the plunger operation | movement and pressure fluctuation in a plunger pump when a cam is rotated at high speed at the time of liquid suction. プランジャポンプの別の例および前記ポンプによる吸引/吐出動作を示した図である。It is the figure which showed another example of the plunger pump, and the suction / discharge operation | movement by the said pump. 図8のプランジャポンプにおけるプランジャ動作ならびに圧力変動を示した図である。It is the figure which showed the plunger operation | movement and pressure fluctuation in the plunger pump of FIG. 溶離液の送液ポンプとしてシリンジポンプを用いたときの液体クロマトグラフの一例を示す構成図である。It is a block diagram which shows an example of a liquid chromatograph when using a syringe pump as a liquid feeding pump of an eluent. さらにスプリッターを設けたときの液体クロマトグラフの一例を示す構成図である。Furthermore, it is a block diagram which shows an example of a liquid chromatograph when a splitter is provided. 比例制御によるフィードバック制御を行なう液体クロマトグラフの一例を示す構成図である。It is a block diagram which shows an example of the liquid chromatograph which performs the feedback control by proportional control. 図12の液体クロマトグラフにおける流量変動を示した図である。It is the figure which showed the flow volume fluctuation | variation in the liquid chromatograph of FIG. 比例制御によるフィードバック制御のフローチャートを示す図である。It is a figure which shows the flowchart of the feedback control by proportional control. 低流量時での圧力上昇を加速させるときの流量パターンおよび圧力変動の一例を示した図である。It is the figure which showed an example of the flow pattern and pressure fluctuation when accelerating the pressure rise at the time of a low flow rate. 本発明の送液方法を示すフローチャートである。It is a flowchart which shows the liquid feeding method of this invention. 本発明の送液方法における、目的流量と駆動流量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the target flow volume and a drive flow volume in the liquid feeding method of this invention. 本発明の送液方法における、目的流量と駆動流量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the target flow volume and a drive flow volume in the liquid feeding method of this invention. 本発明の送液方法における、流量の変化を模式的に示した図である。It is the figure which showed typically the change of the flow volume in the liquid feeding method of this invention. 本発明の送液方法と、フィードバック制御を行なわない従来の送液方法とで、送液開始時における圧力の上昇を模式的に示した図である。It is the figure which showed typically the raise of the pressure at the time of a liquid feeding start with the liquid feeding method of this invention, and the conventional liquid feeding method which does not perform feedback control. 本発明の送液方法を利用した送液装置の一例を示した図である。It is the figure which showed an example of the liquid feeding apparatus using the liquid feeding method of this invention. 図8に示すプランジャポンプを図21に示す送液装置に備えたときの、プランジャ位置モータ回転速度および圧力変動を模式的に示した図である。It is the figure which showed typically the plunger position motor rotational speed and pressure fluctuation when the plunger pump shown in FIG. 8 was equipped in the liquid feeding apparatus shown in FIG. 実施例で使用した液体クロマトグラフの構成図である。It is a block diagram of the liquid chromatograph used in the Example. 実施例で使用した本発明の送液方法における、目的流量と駆動流量との関係を示した図である。It is the figure which showed the relationship between the target flow volume and drive flow volume in the liquid feeding method of this invention used in the Example. 実施例1(A)の結果を示す図である。aはフィードバック制御を行なわない従来の送液方法で送液した場合の送液時間に対する流量(熱式流量計の出力値)変化を、bは本発明の送液方法で送液した場合の送液時間に対する流量変化を、それぞれ示した図である。It is a figure which shows the result of Example 1 (A). a shows the change in the flow rate (output value of the thermal flow meter) with respect to the feeding time when the solution is fed by the conventional solution feeding method without feedback control, and b shows the feeding when the solution is fed by the solution feeding method of the present invention. It is the figure which showed the flow volume change with respect to liquid time, respectively. 実施例1(A)の結果を示す図である。aはフィードバック制御を行なわない従来の送液方法で送液した場合の送液時間に対する圧力変化を、bは本発明の送液方法で送液した場合の送液時間に対する圧力変化を、それぞれ示した図である。It is a figure which shows the result of Example 1 (A). a shows the pressure change with respect to the liquid feeding time when the liquid is fed by the conventional liquid feeding method without feedback control, and b shows the pressure change with respect to the liquid feeding time when the liquid is fed by the liquid feeding method of the present invention. It is a figure. 実施例1(A)の結果のうち、表1の条件7の送液開始付近を拡大した図である。aはフィードバック制御を行なわない従来の送液方法で送液した場合の送液時間に対する流量(熱式流量計の出力値)変化の拡大図であり、bは本発明の送液方法で送液した場合の送液時間に対する流量変化の拡大図である。It is the figure which expanded the liquid feeding start vicinity of the conditions 7 of Table 1 among the results of Example 1 (A). a is an enlarged view of the flow rate (output value of the thermal flow meter) change with respect to the liquid feeding time when the liquid is fed by the conventional liquid feeding method without feedback control, and b is the liquid feeding method according to the present invention. It is an enlarged view of the flow volume change with respect to the liquid feeding time at the time of doing. 実施例1(A)の結果のうち、表1の条件7の送液開始付近を拡大した図である。aはフィードバック制御を行なわない従来の送液方法で送液した場合の送液時間に対する圧力変化の拡大図であり、bは本発明の送液方法で送液した場合の送液時間に対する圧力変化の拡大図である。It is the figure which expanded the liquid feeding start vicinity of the conditions 7 of Table 1 among the results of Example 1 (A). a is an enlarged view of a pressure change with respect to a liquid feeding time when the liquid is fed by a conventional liquid feeding method without feedback control, and b is a pressure change with respect to a liquid feeding time when the liquid is fed by the liquid feeding method of the present invention. FIG. 実施例1(B)の結果を示す図である。aはフィードバック制御を行なわない従来の送液方法で送液した場合の送液時間に対する流量(熱式流量計の出力値)変化を、bは本発明の送液方法で送液した場合の送液時間に対する流量変化を、それぞれ示した図である。It is a figure which shows the result of Example 1 (B). a shows the change in the flow rate (output value of the thermal flow meter) with respect to the feeding time when the solution is fed by the conventional solution feeding method without feedback control, and b shows the feeding when the solution is fed by the solution feeding method of the present invention. It is the figure which showed the flow volume change with respect to liquid time, respectively. 実施例1(B)の結果を示す図である。aはフィードバック制御を行なわない従来の送液方法で送液した場合の送液時間に対する圧力変化を、bは本発明の送液方法で送液した場合の送液時間に対する圧力変化を、それぞれ示した図である。It is a figure which shows the result of Example 1 (B). a shows the pressure change with respect to the liquid feeding time when the liquid is fed by the conventional liquid feeding method without feedback control, and b shows the pressure change with respect to the liquid feeding time when the liquid is fed by the liquid feeding method of the present invention. It is a figure. 実施例1において、流量に対する圧力変化率(脈動の大きさ)をまとめた図である。In Example 1, it is the figure which put together the pressure change rate (magnitude | size of a pulsation) with respect to the flow volume. 実施例2で得られたクロマトグラムを示す図である(溶離液送液量:毎分3μL)。aはフィードバック制御を行なわない従来の送液方法で送液した場合のクロマトグラムであり、bは本発明の送液方法で送液した場合のクロマトグラムである。It is a figure which shows the chromatogram obtained in Example 2 (Eluent liquid supply amount: 3 microliters per minute). a is a chromatogram when the liquid is fed by the conventional liquid feeding method without feedback control, and b is a chromatogram when the liquid is fed by the liquid feeding method of the present invention. 実施例2において、流量に対する溶出時間の再現性をまとめた図である。In Example 2, it is the figure which put together the reproducibility of the elution time with respect to a flow volume. 熱式流量計の原理を示した図である。It is the figure which showed the principle of the thermal type flow meter. 図23に示す液体クロマトグラフに備えた圧力センサの詳細図である。FIG. 24 is a detailed view of a pressure sensor provided in the liquid chromatograph shown in FIG. 23.

以下、液体クロマトグラフに備える溶離液の送液装置を例として、本発明をさらに詳細に説明するが、これら実施例は本発明を限定するものではない。   Hereinafter, the present invention will be described in more detail with reference to an eluent feeding device provided in a liquid chromatograph as an example, but these examples do not limit the present invention.

実施例1
液体クロマトグラフにおいて、微小流量の溶離液を送液する際の、流量変化および圧力変化を確認した。
Example 1
In a liquid chromatograph, changes in flow rate and pressure when a minute flow rate of an eluent was sent were confirmed.

(A)低圧条件下での送液
液体クロマトグラフとして図23に示す装置を用いた。図23に示す液体クロマトグラフは、溶離液(10)、送液ポンプ(1)、ダンパ(26)/圧力センサ(2)、試料導入バルブ(4)、分析カラム(7)、検出器(9)を、前記順に直列に備え、さらに流量計(15)を圧力センサ(2)と試料導入バルブ(4)の間に備えることで送液ポンプ(1)による溶離液(10)の流量をリアルタイムでモニタできる構成とした。ダンパ(26)/圧力センサ(2)は図35に示すような一体型のものを使用した。隔膜(32)と緩衝液(31)と設けた隔膜式ダンパ(26)の片面に圧力検知部(33)を設け、溶離液が直接圧力検知部(33)に接しない構成となっている。圧力センサ(2)は長野計器製KM15−S07 50PMAを使用した。送液ポンプ(1)は図8に示すプランジャポンプを、試料導入バルブ(4)は2位置切り替えバルブを、試料ループ(5)は0.5μL容量のループを、それぞれ用いた。低圧条件下での分析カラム(7)として東ソー製TSKgel ODS−100V(内径1.0mmI.D.、長さ35mm、粒径3μm)を用いた。検出器(9)は東ソー製紫外可視検出器UV−8020(マイクロセル)(検出波長:254nm)を、溶離液(10)は60%アセトニトリル水溶液を、それぞれ用いた。流量計(15)は、熱式流量計であるBronkhorst製LIQUID Mass Flow Meters L13を、45℃に制御された恒温槽(17)に収納した状態で使用した。送液ポンプ(1)による実流量は検出器(9)からの廃液を、天秤(18)上の計量容器(19)に受け、その重量変化から算出した。なお天秤による時間当たりの重量変化から求めた流量値は、温度による影響や液流による誤差等を含む。そのため、精度良く絶対値を測定することが難しく、本発明での流量計測値と差異が生じることがある。したがって、天秤による流量値はあくまで参考値として使用している。
(A) Liquid feeding under low pressure conditions The apparatus shown in FIG. 23 was used as a liquid chromatograph. The liquid chromatograph shown in FIG. 23 includes an eluent (10), a liquid feed pump (1), a damper (26) / pressure sensor (2), a sample introduction valve (4), an analytical column (7), a detector (9 ) In series in the above order, and a flow meter (15) is provided between the pressure sensor (2) and the sample introduction valve (4), so that the flow rate of the eluent (10) by the liquid feed pump (1) is real-time. The monitor can be monitored with As the damper (26) / pressure sensor (2), an integrated type as shown in FIG. 35 was used. A pressure detector (33) is provided on one side of the diaphragm damper (26) provided with the diaphragm (32) and the buffer solution (31), and the eluent does not directly contact the pressure detector (33). The pressure sensor (2) used was KM15-S07 50PMA manufactured by Nagano Keiki. The liquid delivery pump (1) used the plunger pump shown in FIG. 8, the sample introduction valve (4) used a 2-position switching valve, and the sample loop (5) used a 0.5 μL capacity loop. As an analytical column (7) under low pressure conditions, TSKgel ODS-100V (inner diameter: 1.0 mm ID, length: 35 mm, particle diameter: 3 μm) manufactured by Tosoh was used. The detector (9) was Tosoh UV-visible detector UV-8020 (microcell) (detection wavelength: 254 nm), and the eluent (10) was a 60% acetonitrile aqueous solution. The flow meter (15) was a thermal type flow meter, LIQUID Mass Flow Meters L13 manufactured by Bronkhorst, which was used in a state where it was housed in a thermostat (17) controlled at 45 ° C. The actual flow rate by the liquid feeding pump (1) was calculated from the change in weight of the waste liquid from the detector (9) received in the measuring container (19) on the balance (18). The flow rate value obtained from the change in weight per hour by the balance includes the influence of temperature, error due to liquid flow, and the like. For this reason, it is difficult to accurately measure the absolute value, and a difference from the flow rate measurement value in the present invention may occur. Therefore, the flow rate value by the balance is only used as a reference value.

図23に示す液体クロマトグラフにおいて、本発明の送液方法を採用する場合は、流量計(15)のアナログ出力を流量判定手段(16)に入力し、流量判定手段(16)であるプログラマブルリレーのON/OFF信号をポンプコントローラ(3)に送り、送液ポンプ(1)のFlow(送液)/Stop(停止)をフィードバック制御することで、溶離液(10)の流量を制御する。なお流量判定手段(16)であるプログラマブルリレーは、制御上限流量値を超えた場合にOFF、制御下限流量値を下回った場合にONとなる。送液ポンプ(1)の駆動流量は、目的流量が7μL/min以下では38.6μL/minに設定し、目的流量が7μL/min以上では目的流量値に概ね31.6μL/minを加算した値に設定した(図24)。   In the liquid chromatograph shown in FIG. 23, when the liquid feeding method of the present invention is adopted, the analog output of the flow meter (15) is input to the flow rate determining means (16), and the programmable relay which is the flow rate determining means (16) The flow rate of the eluent (10) is controlled by sending an ON / OFF signal to the pump controller (3) and performing feedback control of Flow (stopping) / Stop (stopping) of the pump (1). The programmable relay as the flow rate determining means (16) is turned off when the control upper limit flow value is exceeded, and turned on when the control lower limit flow value is fallen below. The driving flow rate of the liquid feeding pump (1) is set to 38.6 μL / min when the target flow rate is 7 μL / min or less, and approximately 31.6 μL / min is added to the target flow rate value when the target flow rate is 7 μL / min or more. (FIG. 24).

Figure 2013185897
表1に示す7つの条件で、フィードバック制御を行なう本発明の送液方法で送液した場合と、フィードバック制御を行なわない従来の送液方法で送液した場合とで、送液時間に対する流量変化(熱式流量計の出力値)を確認した結果を図25に、送液時間に対する圧力変化を確認した結果を図26に、それぞれ示す。また表1に示す条件の中で最も流量の少ない、条件7における送液開始時付近を拡大した図を図27(流量変化)および図28(圧力変化)に示す。
Figure 2013185897
The flow rate change with respect to the liquid feeding time when the liquid is fed by the liquid feeding method of the present invention that performs feedback control under the seven conditions shown in Table 1 and when the liquid is fed by the conventional liquid feeding method that does not perform feedback control. FIG. 25 shows the result of confirming (the output value of the thermal flow meter), and FIG. 26 shows the result of confirming the pressure change with respect to the liquid feeding time. In addition, FIG. 27 (flow rate change) and FIG. 28 (pressure change) are enlarged views of the vicinity of the time when the liquid supply is started under the condition 7 with the smallest flow rate among the conditions shown in Table 1.

フィードバック制御を行なわない従来の送液方法で送液した場合、送液ポンプによる溶離液の吸引/吐出は周期的に行なわれ、流量(熱式流量計の出力値)および圧力もそれと同期する形で周期的に変動する(図25a、図26a、図27aおよび図28a)。また流量が少なくなるとともに、その周期が長くなる。一方、本発明の送液方法で送液した場合は、目的流量よりも約30μL/min多い流量で送液ポンプを駆動させる。そのため、送液ポンプによる送液のFlow/Stopが短時間で切り替わり、送液ポンプによる吸引操作も高速で行なわれることから、流量および圧力の落ち込みを抑えることができる(図25b、図26b、図27bおよび図28b)。   When the liquid is fed by the conventional liquid feeding method without feedback control, the eluent is aspirated / discharged periodically by the liquid feeding pump, and the flow rate (the output value of the thermal flow meter) and the pressure are synchronized with it. Fluctuates periodically (FIGS. 25a, 26a, 27a and 28a). In addition, the flow rate decreases and the period increases. On the other hand, when the liquid is fed by the liquid feeding method of the present invention, the liquid feeding pump is driven at a flow rate about 30 μL / min higher than the target flow rate. Therefore, the flow / stop of liquid feeding by the liquid feeding pump is switched in a short time, and the suction operation by the liquid feeding pump is also performed at high speed, so that a drop in flow rate and pressure can be suppressed (FIGS. 25b, 26b, FIG. 27b and FIG. 28b).

また従来の送液方法で送液した場合、送液開始から圧力が一定になるまでに長い時間を要しており、特に流量が低い場合、顕著にあらわれる(図26a)。具体的には、表1に示す条件の中で最も流量の低い、条件7では圧力が一定(0.3MPa)になるまで10分程度要している(図28a)。一方、本発明の送液方法で送液した場合は、目的流量よりも約30μL/min多い流量で送液ポンプを駆動させるため、圧力が一定になるまでの時間が短縮される。具体的には、表1の条件7において、圧力が一定(0.3MPa)になるまでに要する時間は1分程度である(図28b)。   Further, when the liquid is fed by the conventional liquid feeding method, it takes a long time until the pressure becomes constant from the start of the liquid feeding, and particularly when the flow rate is low, this is remarkable (FIG. 26a). Specifically, it takes about 10 minutes until the pressure becomes constant (0.3 MPa) under the condition 7 in which the flow rate is the lowest among the conditions shown in Table 1 (FIG. 28a). On the other hand, in the case of liquid feeding by the liquid feeding method of the present invention, the liquid feeding pump is driven at a flow rate that is approximately 30 μL / min higher than the target flow rate, so the time until the pressure becomes constant is shortened. Specifically, under condition 7 in Table 1, the time required for the pressure to become constant (0.3 MPa) is about 1 minute (FIG. 28b).

(B)高圧条件下での送液
前記(A)よりも高圧条件下で送液する場合における、本発明の送液方法の有用性を評価した。使用した液体クロマトグラフは、高圧条件下での分析カラム(7)として東ソー製TSKgel ODS−100V(内径0.3mmI.D.、長さ90mm、粒径3μm)を用いたほかは、実施例1と同じである。なお本条件では、流量3μL/min付近において実施例1の約10倍にあたる、約3MPaの圧力が生じる。
(B) Liquid feeding under high pressure conditions The usefulness of the liquid feeding method of the present invention in the case of liquid feeding under higher pressure conditions than (A) was evaluated. The liquid chromatograph used was Example 1 except that TSKgel ODS-100V (inner diameter 0.3 mm ID, length 90 mm, particle size 3 μm) manufactured by Tosoh was used as the analytical column (7) under high pressure conditions. Is the same. Under this condition, a pressure of about 3 MPa, which is about 10 times that of Example 1, is generated near a flow rate of 3 μL / min.

表1の条件7で、本発明の送液方法で送液した場合と、フィードバック制御を行なわない従来の送液方法で送液した場合とで、送液時間に対する流量変化(熱式流量計の出力値)を確認した結果を図29に、送液時間に対する圧力変化を確認した結果を図30に、それぞれ示す。従来の送液方法で送液した場合、送液開始から圧力が一定(3MPa)になるまでに約50分要する(図30a)。一方本発明の送液方法で送液した場合、目的流量よりも約30μL/min多い流量で送液ポンプを駆動させるため、圧力が一定(3MPa)になるまでに要する時間は3分程度である(図30b)。すなわち高圧条件下では、本発明の送液方法を行なうことによる効果が、より顕著にあらわれることがわかる。   Under condition 7 in Table 1, the change in flow rate with respect to the liquid supply time (in the case of the liquid flow method of the thermal flow meter) when the liquid is supplied by the liquid supply method of the present invention and when the liquid is supplied by the conventional liquid supply method without feedback control. FIG. 29 shows the result of confirming the output value), and FIG. 30 shows the result of confirming the change in pressure with respect to the liquid feeding time. When liquid is fed by a conventional liquid feeding method, it takes about 50 minutes from the start of liquid feeding until the pressure becomes constant (3 MPa) (FIG. 30a). On the other hand, when the liquid is fed by the liquid feeding method of the present invention, the liquid feeding pump is driven at a flow rate about 30 μL / min higher than the target flow rate, so the time required for the pressure to become constant (3 MPa) is about 3 minutes. (FIG. 30b). That is, it can be seen that the effect of performing the liquid feeding method of the present invention appears more significantly under high pressure conditions.

(A)および(B)で実施した送液における、圧力が一定となった後の圧力変動率(脈動の大きさ)をまとめた結果を図31に示す。本発明の送液方法で送液することで、フィードバック制御を行なわない従来の送液方法で送液した場合と比較し、低圧条件下(A)では約40%、高圧条件下(B)では約80%、それぞれ低減させることができる。すなわち、本発明の送液方法で送液すると、脈動が低減するため、実流量変動が少なくなり、溶出時間の再現性の向上が期待できる。   FIG. 31 shows the result of summarizing the pressure fluctuation rate (the magnitude of pulsation) after the pressure became constant in the liquid feeding performed in (A) and (B). Compared with the case where the liquid is fed by the liquid feeding method of the present invention, the liquid is fed by the conventional liquid feeding method which does not perform the feedback control, and is about 40% under the low pressure condition (A) and under the high pressure condition (B). Each can be reduced by about 80%. That is, when the liquid is fed by the liquid feeding method of the present invention, the pulsation is reduced, so that the actual flow rate fluctuation is reduced, and improvement in reproducibility of the elution time can be expected.

実施例2
本発明の送液方法による、液体クロマトグラフによる分析への影響を確認した。使用した液体クロマトグラフは実施例1(A)で使用したものと同一である。溶離液(10)は60%アセトニトリル水溶液を、試料(6)はp−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸ブチルおよびp−ヒドロキシ安息香酸ヘキシルの混合液を、それぞれ用いた。溶離液(10)の送液量は毎分3μLとした(表1の条件7に相当)。前記試料を10回分析し、得られたクロマトグラムを図32に示す。図32のうち、本発明の送液方法で送液した場合のクロマトグラムを図32bに、フィードバック制御を行なわない従来の送液方法で送液した場合のクロマトグラムを図32aに、それぞれ示す。
Example 2
The influence on the liquid chromatograph analysis by the liquid feeding method of the present invention was confirmed. The liquid chromatograph used is the same as that used in Example 1 (A). The eluent (10) was a 60% acetonitrile aqueous solution, and the sample (6) was a mixture of methyl p-hydroxybenzoate, butyl p-hydroxybenzoate and hexyl p-hydroxybenzoate. The amount of eluent (10) fed was 3 μL per minute (corresponding to condition 7 in Table 1). FIG. 32 shows the chromatogram obtained by analyzing the sample 10 times. 32, FIG. 32b shows a chromatogram when the liquid is fed by the liquid feeding method of the present invention, and FIG. 32a shows a chromatogram when the liquid is fed by the conventional liquid feeding method without feedback control.

また溶離液(10)の送液量を、毎分15μL(表1の条件5に相当)、毎分7μL(表1の条件6に相当)または毎分3μL(表1の条件7に相当)で前記試料を10回分析して得られた、各成分の溶出時間、および溶出時間の再現性(Cv[%])を示した結果を表2(毎分15μL)、表3(毎分7μL)および表4(毎分3μL)に示す。さらに溶離液(10)の送液量に対する溶出時間の再現性(Cv[%])をプロットした図を図33に示す。   The amount of the eluent (10) to be fed is 15 μL / min (corresponding to condition 5 in Table 1), 7 μL / min (corresponding to condition 6 in Table 1), or 3 μL / min (corresponding to condition 7 in Table 1). Table 2 (15 μL / min) and Table 3 (7 μL / min) show the elution time of each component and the reproducibility of elution time (Cv [%]) obtained by analyzing the sample 10 times. ) And Table 4 (3 μL per minute). Further, FIG. 33 shows a plot of elution time reproducibility (Cv [%]) against the amount of eluent (10) fed.

Figure 2013185897
Figure 2013185897

Figure 2013185897
Figure 2013185897

Figure 2013185897
フィードバック制御を行なわない従来の送液方法で送液した場合、流量が低くなるにつれて溶出時間の再現性(Cv[%])が悪くなる傾向にある。特に毎分3μLの微小流量で送液した場合、溶出時間の再現性(Cv[%])は0.67%から1.2%と極端に悪くなり、実際の分析では許容できないレベルとなっている。一方、本発明の送液方法で送液する場合、毎分3μLから40μLまでの広い範囲で、溶出時間の再現性(Cv[%])は0.2%程度を維持しており、微小流量を送液する液体クロマトグラフであっても、試料中に含まれる成分を再現性高く分析することができる。
Figure 2013185897
When liquid is fed by a conventional liquid feeding method that does not perform feedback control, the reproducibility of elution time (Cv [%]) tends to deteriorate as the flow rate decreases. In particular, when the liquid is fed at a minute flow rate of 3 μL per minute, the reproducibility of elution time (Cv [%]) is extremely poor from 0.67% to 1.2%, which is unacceptable in actual analysis. Yes. On the other hand, when liquid is fed by the liquid feeding method of the present invention, the reproducibility of elution time (Cv [%]) is maintained at about 0.2% in a wide range from 3 μL to 40 μL per minute, Even in a liquid chromatograph that sends liquid, the components contained in the sample can be analyzed with high reproducibility.

1:送液ポンプ
2:圧力センサ
3:ポンプコントローラ
4:試料導入バルブ
5:試料ループ
6:試料
7:分析カラム
8:カラム恒温槽
9:検出器
10:溶離液
11:抵抗管
12:分岐ブロック
13:シリンジポンプ
14:流路切り替えバルブ
15:流量計
16:流量判定手段
17:恒温槽
18:天秤
19:計量容器
20:プランジャ
21:逆止弁
22:カム
23:ボールねじ
24:ポンプヘッド
25:モータ
26:ダンパ(脈動除去装置)
27:流量判定部
28:温度検知部
29:ヒータ
30:パイプ
31:緩衝液
32:隔膜
33:圧力検知部
34:溶離液通過部
1: Liquid feed pump 2: Pressure sensor 3: Pump controller 4: Sample introduction valve 5: Sample loop 6: Sample 7: Analytical column 8: Column thermostat 9: Detector 10: Eluent 11: Resistance tube 12: Branch block 13: Syringe pump 14: Flow path switching valve 15: Flow meter 16: Flow rate determination means 17: Constant temperature bath 18: Balance 19: Measuring container 20: Plunger 21: Check valve 22: Cam 23: Ball screw 24: Pump head 25 : Motor 26: Damper (pulsation removing device)
27: Flow rate determination unit 28: Temperature detection unit 29: Heater 30: Pipe 31: Buffer solution 32: Diaphragm 33: Pressure detection unit 34: Eluent passage unit

Claims (4)

送液手段で送液した液体の流量を測定し、前記測定した流量に基づき、前記送液手段での送液制御を行なう、送液方法であって、
前記送液手段での送液制御が、前記送液手段で送液すべき液体の流量よりも多い流量を送液するよう前記送液手段に指示し、前記測定した流量が前記送液すべき液体の流量よりも一定値以上多い流量となった場合は前記送液手段での送液を停止するよう指示し、前記測定した流量が前記送液すべき液体の流量よりも一定値以上少ない流量となった場合は前記送液手段での送液を再開するよう指示する制御である、前記送液方法。
A liquid feeding method for measuring the flow rate of the liquid fed by the liquid feeding means and performing liquid feeding control by the liquid feeding means based on the measured flow rate,
The liquid feeding control by the liquid feeding means instructs the liquid feeding means to feed a flow rate higher than the flow rate of the liquid to be fed by the liquid feeding means, and the measured flow rate should be the liquid feeding. When the flow rate is higher than the liquid flow rate by a certain value or more, the flow rate is instructed to stop by the liquid feeding means, and the measured flow rate is lower than the liquid flow rate to be fed by a certain value or more. When it becomes, the said liquid feeding method which is control which instruct | indicates to restart the liquid feeding by the said liquid feeding means.
液体を送液する送液手段と、前記送液手段の吐出側に設けた、前記送液手段で送液した液体の流量を測定する流量測定手段と、前記流量測定手段で測定した流量に基づき前記送液手段での送液制御を行なう制御手段と、を設けた送液装置であって、
前記流量測定手段で測定した流量が、前記送液手段で送液すべき液体の流量よりも一定値以上多い流量か一定値以上少ない流量かを判定する、流量判定手段をさらに備え、
前記制御手段が、前記送液手段で送液すべき液体の流量よりも多い流量を送液するよう前記送液手段に指示し、前記流量測定手段で測定した流量が前記送液すべき液体の流量よりも一定値以上多いと前記流量判定手段が判定した場合は前記送液手段での送液を停止するよう指示し、前記流量測定手段で測定した流量が前記送液すべき液体の流量よりも一定値以上少ないと前記流量判定手段が判定した場合は前記送液手段での送液を再開するよう指示する手段である、前記送液装置。
Based on the liquid feeding means for feeding the liquid, the flow rate measuring means for measuring the flow rate of the liquid fed by the liquid feeding means provided on the discharge side of the liquid feeding means, and the flow rate measured by the flow rate measuring means A liquid feeding device provided with a control means for performing liquid feeding control in the liquid feeding means,
A flow rate determination means for determining whether the flow rate measured by the flow rate measurement means is a flow rate greater than a certain value or less than a flow rate of the liquid to be delivered by the liquid delivery means;
The control means instructs the liquid feeding means to send a flow rate higher than the flow rate of the liquid to be fed by the liquid feeding means, and the flow rate measured by the flow rate measuring means is the flow rate of the liquid to be delivered. When the flow rate determination means determines that the flow rate is more than a certain value, the flow rate is measured by the flow rate measurement means, and the flow rate measured by the flow rate measurement means is greater than the flow rate of the liquid to be sent. If the flow rate determination means determines that the flow rate is less than a certain value, the liquid supply device is a means for instructing the liquid supply means to resume liquid supply.
流量測定手段が熱式流量計である、請求項2に記載の送液装置。 The liquid feeding device according to claim 2, wherein the flow rate measuring means is a thermal flow meter. 溶離液を送液する送液部と、試料を導入する試料導入部と、導入した試料中の各成分を分離する分析カラム部と、前記分析カラム部から溶出した各成分を検出する検出部と、を備えた液体クロマトグラフであって、前記送液部が請求項2または3に記載の送液装置である、前記液体クロマトグラフ。 A liquid feed section for feeding an eluent, a sample introduction section for introducing a sample, an analysis column section for separating each component in the introduced sample, and a detection section for detecting each component eluted from the analysis column section, The liquid chromatograph, wherein the liquid feeding unit is the liquid feeding device according to claim 2.
JP2012050294A 2012-03-07 2012-03-07 Micro flow rate liquid feeding method and apparatus using the method Active JP5957973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050294A JP5957973B2 (en) 2012-03-07 2012-03-07 Micro flow rate liquid feeding method and apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050294A JP5957973B2 (en) 2012-03-07 2012-03-07 Micro flow rate liquid feeding method and apparatus using the method

Publications (2)

Publication Number Publication Date
JP2013185897A true JP2013185897A (en) 2013-09-19
JP5957973B2 JP5957973B2 (en) 2016-07-27

Family

ID=49387455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050294A Active JP5957973B2 (en) 2012-03-07 2012-03-07 Micro flow rate liquid feeding method and apparatus using the method

Country Status (1)

Country Link
JP (1) JP5957973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190264631A1 (en) * 2016-09-23 2019-08-29 Continental Automotive France Method for controlling a fuel pump for a motor vehicle
WO2021005728A1 (en) * 2019-07-09 2021-01-14 株式会社島津製作所 Liquid delivery pump and liquid chromatograph

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011690A (en) * 1983-06-30 1985-01-21 Shimadzu Corp Liquid chromatography
JP2005134187A (en) * 2003-10-29 2005-05-26 Aida Eng Ltd Liquid transport method in minute flow path of microchip
JP2005147756A (en) * 2003-11-12 2005-06-09 Shimadzu Corp Liquid feed pump device
JP2005180996A (en) * 2003-12-17 2005-07-07 New Cosmos Electric Corp Gas measuring apparatus
JP2007057539A (en) * 2006-10-02 2007-03-08 Hitachi High-Technologies Corp Liquid chromatograph unit
JP2007513338A (en) * 2003-11-26 2007-05-24 ウオーターズ・インベストメンツ・リミテツド Flow rate detector
JP2007127562A (en) * 2005-11-07 2007-05-24 Hitachi High-Technologies Corp Liquid feed pump
JP2010101630A (en) * 2008-10-21 2010-05-06 Tosoh Corp Microflow solution sending device and solution sending method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011690A (en) * 1983-06-30 1985-01-21 Shimadzu Corp Liquid chromatography
JP2005134187A (en) * 2003-10-29 2005-05-26 Aida Eng Ltd Liquid transport method in minute flow path of microchip
JP2005147756A (en) * 2003-11-12 2005-06-09 Shimadzu Corp Liquid feed pump device
JP2007513338A (en) * 2003-11-26 2007-05-24 ウオーターズ・インベストメンツ・リミテツド Flow rate detector
JP2005180996A (en) * 2003-12-17 2005-07-07 New Cosmos Electric Corp Gas measuring apparatus
JP2007127562A (en) * 2005-11-07 2007-05-24 Hitachi High-Technologies Corp Liquid feed pump
JP2007057539A (en) * 2006-10-02 2007-03-08 Hitachi High-Technologies Corp Liquid chromatograph unit
JP2010101630A (en) * 2008-10-21 2010-05-06 Tosoh Corp Microflow solution sending device and solution sending method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190264631A1 (en) * 2016-09-23 2019-08-29 Continental Automotive France Method for controlling a fuel pump for a motor vehicle
US11280290B2 (en) * 2016-09-23 2022-03-22 Continental Automotive France Method for controlling a fuel pump for a motor vehicle
WO2021005728A1 (en) * 2019-07-09 2021-01-14 株式会社島津製作所 Liquid delivery pump and liquid chromatograph
JPWO2021005728A1 (en) * 2019-07-09 2021-01-14
CN113892030A (en) * 2019-07-09 2022-01-04 株式会社岛津制作所 Liquid feeding pump and liquid chromatograph
JP7088416B2 (en) 2019-07-09 2022-06-21 株式会社島津製作所 Liquid pump and liquid chromatograph
CN113892030B (en) * 2019-07-09 2023-08-08 株式会社岛津制作所 Liquid feeding pump and liquid chromatograph

Also Published As

Publication number Publication date
JP5957973B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP4377761B2 (en) Liquid chromatograph
US10876525B2 (en) Liquid feed device, liquid feed control method for liquid feed device, and liquid feed control program for liquid feed device
US10722816B2 (en) Method for adjusting a gradient delay volume
JP5022852B2 (en) Liquid chromatograph apparatus and liquid chromatograph analysis method
JP4511578B2 (en) Liquid feeding device, liquid chromatograph, and method of operating liquid feeding device
JP4377900B2 (en) Liquid chromatograph
US9631618B2 (en) Determination of a fluid loss of a piston pump based on evacuation time variation
JPH0348356B2 (en)
JP2004150402A (en) Pump for liquid chromatography
JP5155937B2 (en) Liquid feeding device and liquid chromatograph device
CN110809713B (en) Liquid feeding device and fluid chromatograph
US20080047611A1 (en) Fluid pump having low pressure metering and high pressure delivering
JP2009180617A (en) Solvent delivery device and analytical system having the same
JP5957973B2 (en) Micro flow rate liquid feeding method and apparatus using the method
JP6207872B2 (en) Liquid chromatograph apparatus and liquid chromatograph analysis method
JP5887412B2 (en) Liquid chromatograph device and liquid feeding device
JP2002243712A (en) Liquid feeder, correction method therefor, and liquid chromatograph
JP2013217816A (en) Liquid chromatograph
WO2017090184A1 (en) Liquid delivery device
CN108167171A (en) A kind of control method that pump pressure fluctuation automatically corrects of infusing
JP5409763B2 (en) Liquid chromatograph apparatus and liquid chromatograph analysis method
JPWO2009151096A1 (en) Liquid chromatograph and gradient liquid feeder
JP2009013957A (en) Liquid feeding device and method for controlling same
JP7226523B2 (en) Liquid chromatograph analysis system
JP2006126089A (en) Liquid feed pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5957973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151