JP2013185840A - Road surface friction coefficient estimation device and road surface friction coefficient estimation method - Google Patents

Road surface friction coefficient estimation device and road surface friction coefficient estimation method Download PDF

Info

Publication number
JP2013185840A
JP2013185840A JP2012048846A JP2012048846A JP2013185840A JP 2013185840 A JP2013185840 A JP 2013185840A JP 2012048846 A JP2012048846 A JP 2012048846A JP 2012048846 A JP2012048846 A JP 2012048846A JP 2013185840 A JP2013185840 A JP 2013185840A
Authority
JP
Japan
Prior art keywords
road surface
friction coefficient
surface friction
convergence
correction function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012048846A
Other languages
Japanese (ja)
Inventor
Takuro Matsuda
拓郎 松田
Shinichiro Jo
新一郎 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012048846A priority Critical patent/JP2013185840A/en
Publication of JP2013185840A publication Critical patent/JP2013185840A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a road surface friction coefficient estimation device that prevents a reduction in response speed even when a road surface friction coefficient suddenly changes and improves detection performance, and to provide a method thereof.SOLUTION: A road surface friction coefficient estimation device 1 includes: a road surface friction coefficient sudden change determination part 2 that outputs a road surface friction coefficient sudden change signal when a sudden change of the road surface friction coefficient is determined on the basis of a change in road surface condition; a convergence correction function setting part 3 that changes and sets a convergence correction function on the basis of the road surface friction coefficient sudden change signal; a tire deformation state amount detection part 4 that detects a state amount of tire deformation indicative of a tire deformation condition; and an estimated road surface friction coefficient value calculation part 6 that estimates a road surface friction coefficient on the basis of the tire deformation state amount and the convergence correction function, to calculate an estimated road surface friction coefficient value. When a road surface friction coefficient sudden change signal indicates a sudden change in road surface friction coefficient, a convergence correction function is set so as to reduce the ease of converging to a first target convergence value as a normal target convergence value.

Description

本発明は、タイヤと路面との間の摩擦係数を推定する路面摩擦係数推定装置及び路面摩擦係数推定方法に関する。   The present invention relates to a road surface friction coefficient estimation device and a road surface friction coefficient estimation method for estimating a friction coefficient between a tire and a road surface.

従来、路面摩擦係数を推定する装置としては特許文献1が開示されており、モデル誤差の影響やセンサの計測値に含まれるノイズなどの影響を抑制して路面摩擦係数の値を精度良く推定している。この特許文献1で開示された路面摩擦係数推定装置は、モデルを用いて算出したスリップ率と計測したスリップ率との間の誤差が減少するように路面摩擦係数を推定する装置である。この装置では、路面摩擦係数を推定する際に、校正パラメータを予め設定した値付近に収束させる働きをもつ補正項を付加することによって、モデル誤差に対するロバスト性を向上させていた。   Conventionally, Patent Document 1 has been disclosed as an apparatus for estimating the road surface friction coefficient, and the value of the road surface friction coefficient is accurately estimated by suppressing the influence of model error and noise included in the sensor measurement value. ing. The road friction coefficient estimation device disclosed in Patent Document 1 is a device that estimates a road friction coefficient so that an error between a slip ratio calculated using a model and a measured slip ratio is reduced. In this apparatus, when the road surface friction coefficient is estimated, the robustness against the model error is improved by adding a correction term having a function of converging the calibration parameter around a preset value.

特開2001−133391号公報JP 2001-133391 A

しかしながら、上述した従来の路面摩擦係数推定装置では、補正項に乗算されている可変ゲインの大きさの設定が容易ではなく、可変ゲインの設定が大きすぎると、摩擦係数が急変する場合や加減速を開始した走行シーンにおいてスリップ率が増加しても摩擦係数の変化を精度良く検知できずに検知性能が低下してしまう可能性があった。   However, in the conventional road surface friction coefficient estimating device described above, it is not easy to set the magnitude of the variable gain multiplied by the correction term. If the setting of the variable gain is too large, the friction coefficient may change suddenly or acceleration / deceleration may occur. Even if the slip ratio increases in the running scene where the vehicle has started, there is a possibility that the change in the friction coefficient cannot be detected accurately and the detection performance is deteriorated.

そこで、本発明は、上述した実情に鑑みて提案されたものであり、路面摩擦係数が急変した場合でも応答速度の低下を防止して検知性能を向上させることのできる路面摩擦係数推定装置及び路面摩擦係数推定方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of the above-described circumstances, and a road surface friction coefficient estimation device and a road surface that can prevent a decrease in response speed and improve detection performance even when the road surface friction coefficient changes suddenly. An object of the present invention is to provide a friction coefficient estimation method.

本発明は、路面状態の変化に基づいて路面摩擦係数が急変すると判定したときには路面摩擦係数急変信号を出力する路面摩擦係数急変判定部と、路面摩擦係数が所定の収束目標値へ収束するように補正するための関数である収束補正関数を、路面摩擦係数急変信号に基づいて変更して設定する収束補正関数設定部と、タイヤの変形状態を表すタイヤ変形状態量を検出するタイヤ変形状態量検出部と、タイヤ変形状態量と収束補正関数とに基づいて路面摩擦係数を推定して路面摩擦係数推定値を算出する路面摩擦係数推定値演算部とを備えている。そして、収束補正関数設定部は、路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときには通常時の収束目標値である第1収束目標値への収束のし易さを低下させるように収束補正関数を設定することを特徴としている。   The present invention provides a road surface friction coefficient sudden change determination unit that outputs a road surface friction coefficient sudden change signal when it is determined that the road surface friction coefficient suddenly changes based on a change in the road surface state, and a road surface friction coefficient converges to a predetermined convergence target value. A convergence correction function setting unit that changes and sets a convergence correction function that is a function for correction based on a road surface friction coefficient sudden change signal, and a tire deformation state amount detection that detects a tire deformation state amount that represents a tire deformation state And a road surface friction coefficient estimated value calculation unit that calculates the road surface friction coefficient estimated value by estimating the road surface friction coefficient based on the tire deformation state quantity and the convergence correction function. The convergence correction function setting unit reduces the ease of convergence to the first convergence target value, which is the normal convergence target value, when a sudden change in the road surface friction coefficient is indicated by the road surface friction coefficient sudden change signal. It is characterized by setting a convergence correction function.

本発明に係る路面摩擦係数推定装置及び路面摩擦係数推定方法によれば、路面摩擦係数が急変すると判定したときには通常時の収束目標値である第1収束目標値への収束のし易さが低下するように収束補正関数を設定するので、急変時の収束目標値へ収束し易くなり路面摩擦係数が急変した場合でも応答速度の低下を防止して検知性能を向上させることができる。   According to the road surface friction coefficient estimation apparatus and the road surface friction coefficient estimation method according to the present invention, when it is determined that the road surface friction coefficient changes suddenly, the ease of convergence to the first convergence target value, which is the normal convergence target value, is reduced. Thus, since the convergence correction function is set, it is easy to converge to the convergence target value at the time of sudden change, and even when the road surface friction coefficient changes suddenly, the response speed can be prevented from decreasing and the detection performance can be improved.

本発明の一実施形態に係る路面摩擦係数推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面摩擦係数推定装置を搭載した車両の構成を示す図である。It is a figure which shows the structure of the vehicle carrying the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面摩擦係数推定装置による路面摩擦係数推定値の演算処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the calculation process of the road surface friction coefficient estimated value by the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面摩擦係数推定装置によって設定される収束補正関数の一例を示す図である。It is a figure which shows an example of the convergence correction function set by the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面摩擦係数推定装置によって設定される収束補正関数の一例を示す図である。It is a figure which shows an example of the convergence correction function set by the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面摩擦係数推定装置によって設定される収束補正関数の一例を示す図である。It is a figure which shows an example of the convergence correction function set by the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面摩擦係数推定装置におけるタイヤ変形状態量とタイヤすべり角との間の関係を示す図である。It is a figure which shows the relationship between the tire deformation state quantity and the tire slip angle in the road surface friction coefficient estimation apparatus which concerns on one Embodiment of this invention.

以下、本発明を適用した一実施形態について図面を参照して説明する。   Hereinafter, an embodiment to which the present invention is applied will be described with reference to the drawings.

[路面摩擦係数推定装置の構成]
図1は、本実施形態に係る路面摩擦係数推定装置の構成を示すブロック図である。図1に示すように、本実施形態に係る路面摩擦係数推定装置1は、路面状態の変化に基づいて路面摩擦係数が急変すると判定したときには路面摩擦係数急変信号を出力する路面摩擦係数急変判定部2と、路面摩擦係数急変信号に基づいて収束補正関数を変更して設定する収束補正関数設定部3と、タイヤの変形状態を表すタイヤ変形状態量を検出するタイヤ変形状態量検出部4と、タイヤすべり角を検出するタイヤすべり角検出部5と、タイヤ変形状態量と収束補正関数とに基づいて路面摩擦係数を推定して路面摩擦係数推定値を算出する路面摩擦係数推定値演算部6と、算出された路面摩擦係数推定値を記憶しておく記憶部7とを備えている。
[Configuration of road friction coefficient estimation device]
FIG. 1 is a block diagram showing a configuration of a road surface friction coefficient estimating apparatus according to the present embodiment. As shown in FIG. 1, the road surface friction coefficient estimation device 1 according to the present embodiment outputs a road surface friction coefficient sudden change signal that outputs a road surface friction coefficient sudden change signal when it is determined that the road surface friction coefficient changes suddenly based on a change in road surface state. 2, a convergence correction function setting unit 3 that changes and sets a convergence correction function based on a road surface friction coefficient sudden change signal, a tire deformation state amount detection unit 4 that detects a tire deformation state amount that represents a tire deformation state, A tire slip angle detecting unit 5 for detecting a tire slip angle, a road surface friction coefficient estimated value calculating unit 6 for estimating a road surface friction coefficient based on a tire deformation state quantity and a convergence correction function, and calculating a road surface friction coefficient estimated value; And a storage unit 7 for storing the calculated road surface friction coefficient estimated value.

図1に示す路面摩擦係数推定装置1は車両に搭載されており、検出された路面摩擦係数推定値を利用して車両の運動制御が実施される。ここで、本実施形態に係る路面摩擦係数推定装置1が搭載された車両の一例を図2に基づいて説明する。図2に示すように、車両100は駆動力発生源としての駆動モータ101を備え、動力軸は後輪104RL、104RRにそれぞれ連結されて左右の後輪を駆動している。   A road surface friction coefficient estimation device 1 shown in FIG. 1 is mounted on a vehicle, and vehicle motion control is performed using the detected road surface friction coefficient estimation value. Here, an example of a vehicle equipped with the road surface friction coefficient estimating apparatus 1 according to the present embodiment will be described with reference to FIG. As shown in FIG. 2, the vehicle 100 includes a drive motor 101 as a driving force generation source, and the power shaft is connected to the rear wheels 104RL and 104RR to drive the left and right rear wheels.

駆動回路102は、駆動モータ101の出力トルクが統合コントローラ130から指令されるトルク指令値と一致するようにリチウムイオンバッテリ103からの電力を制御して駆動モータ101を駆動する。   The drive circuit 102 drives the drive motor 101 by controlling the electric power from the lithium ion battery 103 so that the output torque of the drive motor 101 matches the torque command value commanded from the integrated controller 130.

統合コントローラ130には、アクセルペダルセンサ123によって検出されるアクセル開度信号APOと、ステアリングホイール111の回転軸に取り付けられた操舵角センサ121によって検出されるステアリングホイールの舵角信号と、各車輪に取り付けられた車輪速センサ105FL、105FR、105RL、105RRによって検出される各車輪速と、ヨーレートセンサ108で検出されるヨーレートと、加速度センサ109で検出される前後加速度と横加速度とが入力される。 The integrated controller 130 includes an accelerator opening signal APO detected by an accelerator pedal sensor 123, a steering angle signal of a steering wheel detected by a steering angle sensor 121 attached to a rotation shaft of the steering wheel 111, and each wheel. The wheel speeds detected by the attached wheel speed sensors 105FL, 105FR, 105RL, and 105RR, the yaw rate detected by the yaw rate sensor 108, the longitudinal acceleration and the lateral acceleration detected by the acceleration sensor 109 are input.

ステアリングホイール111は反力モータ115に連結されており、転舵時にタイヤで発生するセルフアライニングトルク相当の反力トルクが反力モータ115で生成されて加えられている。前輪104FL、104FRは、ステアリングホイール111に取り付けられた操舵角センサ121で検出された角度に応じて、転舵モータ113L、113Rがステアリングラックを車幅方向へ変位させることによって左右同相に転舵されている。また、転舵モータ113L、113Rは、モータの出力トルクとモータの回転速度をそれぞれ統合コントローラ130に送信している。そして、本実施形態に係る路面摩擦係数推定装置1は統合コントローラ130に実装されている。   The steering wheel 111 is connected to a reaction force motor 115, and a reaction force torque corresponding to a self-aligning torque generated in the tire at the time of turning is generated and applied by the reaction force motor 115. The front wheels 104FL and 104FR are steered in the same phase on the left and right sides when the steering motors 113L and 113R displace the steering rack in the vehicle width direction according to the angle detected by the steering angle sensor 121 attached to the steering wheel 111. ing. The steered motors 113L and 113R transmit the output torque of the motor and the rotation speed of the motor to the integrated controller 130, respectively. The road surface friction coefficient estimation device 1 according to this embodiment is mounted on the integrated controller 130.

次に、図1に示す路面摩擦係数推定装置1を構成する各部について説明する。   Next, each part which comprises the road surface friction coefficient estimation apparatus 1 shown in FIG. 1 is demonstrated.

まず、路面摩擦係数急変判定部2は、タイヤの変形状態以外の路面状態の変化に基づいて路面摩擦係数の急変を検知しており、例えば、路面を撮影するカメラの画像を解析することによって路面がドライからウェットあるいは雪道に変化したことを検出して、路面摩擦係数の急変を判定する。また、油圧ないし電動アクチュエータを用いてアクティブに振動を制御するサスペンションに設置された加速度センサによって検出される加速度に基づいて、例えば加速度検出値の高周波成分が短時間に増加したときには砂利道に進入したと判断して路面摩擦係数が急変したと判定するようにしてもよい。あるいはABS(アンチロックブレーキシステム)が作動した場合や、TCS(トラクションコントロールシステム)等によって駆動力を加えたときにタイヤ縦方向にスリップを検知した場合に、路面摩擦係数が急変したと判定するようにしてもよい。その他にも車両に設置された横Gセンサやヨーレートセンサの検出値が、舵角および車速の変化から推定される程度よりも速く変化する場合に、路面摩擦係数が急変したと判定するような構成としてもよい。そして、このようにして路面摩擦係数が急変すると判定したときには、路面摩擦係数急変判定部2は路面摩擦係数急変信号を出力する。   First, the road surface friction coefficient sudden change determination unit 2 detects a sudden change in the road surface friction coefficient based on a change in the road surface state other than the deformation state of the tire. For example, the road surface friction coefficient sudden change determination unit 2 analyzes the image of the camera that captures the road surface. Is detected from dry to wet or snowy, and a sudden change in the road surface friction coefficient is determined. Also, based on acceleration detected by an acceleration sensor installed in a suspension that actively controls vibration using a hydraulic or electric actuator, for example, when the high frequency component of the acceleration detection value increased in a short time, it entered the gravel road It may be determined that the road surface friction coefficient has suddenly changed. Alternatively, when the ABS (anti-lock brake system) is activated, or when slip is detected in the tire longitudinal direction when a driving force is applied by a TCS (traction control system) or the like, it is determined that the road surface friction coefficient has suddenly changed. It may be. In addition, when the detection value of the lateral G sensor or yaw rate sensor installed in the vehicle changes faster than the degree estimated from the change in the steering angle and the vehicle speed, it is determined that the road surface friction coefficient has changed suddenly. It is good. When it is determined that the road surface friction coefficient changes suddenly in this way, the road surface friction coefficient sudden change determination unit 2 outputs a road surface friction coefficient sudden change signal.

収束補正関数設定部3は、路面摩擦係数急変信号に基づいて収束補正関数を変更して設定する。収束補正関数は、路面摩擦係数が予め設定された収束目標値に収束するように補正するための関数である。本実施形態では、収束補正関数設定部3に、通常時の収束補正関数と路面摩擦係数が急変したときの収束補正関数とが別に予め設定されており、路面摩擦係数急変信号に応じて切り換えるような構成となっている。しかし、このような構成に限定されるわけではなく、路面摩擦係数急変信号に応じて収束補正関数を変更して設定できるような構成であれば、その他の構成であってもよい。   The convergence correction function setting unit 3 changes and sets the convergence correction function based on the road surface friction coefficient sudden change signal. The convergence correction function is a function for correcting the road surface friction coefficient so as to converge to a preset convergence target value. In the present embodiment, the convergence correction function setting unit 3 is set in advance separately with a normal convergence correction function and a convergence correction function when the road surface friction coefficient suddenly changes, so that switching is performed according to the road surface friction coefficient sudden change signal. It has become a structure. However, the present invention is not limited to such a configuration, and any other configuration may be used as long as the convergence correction function can be changed and set according to the road surface friction coefficient sudden change signal.

タイヤ変形状態量検出部4は、タイヤの変形に応じて生じる検出可能な状態量であるタイヤ変形状態量を検出する。タイヤ変形状態量としては、例えばタイヤ横力、セルフアライニングトルク(以下SATという)、タイヤ前後力、スリップ率等である。本実施形態では特にSATをタイヤ変形状態量とした場合を一例として説明するが、他の量をタイヤ変形状態量とする場合についてはSATを他の量に読み替えればよい。   The tire deformation state quantity detection unit 4 detects a tire deformation state quantity that is a detectable state quantity that occurs in accordance with tire deformation. Examples of the tire deformation state quantity include tire lateral force, self-aligning torque (hereinafter referred to as SAT), tire longitudinal force, and slip ratio. In the present embodiment, a case where SAT is a tire deformation state amount will be described as an example. However, when another amount is a tire deformation state amount, SAT may be read as another amount.

タイヤすべり角検出部5は、2輪モデル(車両の運動と制御第2版、山海堂、安部正人著)等の車両モデルを用いて舵角と車速とから演算することによってタイヤすべり角を検出する。また、GPSを用いて路面に対する車体の横方向速度を検出し、この横方向速度を変換することによってタイヤすべり角を求めてもよい。   The tire slip angle detection unit 5 detects the tire slip angle by calculating from the rudder angle and the vehicle speed using a vehicle model such as a two-wheel model (vehicle movement and control second edition, written by Sankaido and Masato Abe). To do. Alternatively, the tire slip angle may be obtained by detecting the lateral speed of the vehicle body relative to the road surface using GPS and converting the lateral speed.

路面摩擦係数推定値演算部6は、タイヤ変形状態量とタイヤモデルから推定したタイヤ変形状態量推定値との差にタイヤ変形状態量ゲインを乗算してタイヤ変形状態量誤差を算出し、このタイヤ変形状態量誤差と収束補正関数との和を時間積分することによって路面摩擦係数推定値を算出している。また、路面摩擦係数推定値演算部6は、タイヤすべり角と路面摩擦係数推定値とに応じてタイヤ変形状態量推定値を算出している。   The road surface friction coefficient estimated value calculation unit 6 calculates a tire deformation state amount error by multiplying the difference between the tire deformation state amount and the tire deformation state amount estimated value estimated from the tire model by a tire deformation state amount gain. The road surface friction coefficient estimated value is calculated by time integration of the sum of the deformation state quantity error and the convergence correction function. Further, the road surface friction coefficient estimated value calculation unit 6 calculates a tire deformation state quantity estimated value according to the tire slip angle and the road surface friction coefficient estimated value.

記憶部7は、路面摩擦係数推定値演算部6によって算出された路面摩擦係数推定値μ^ k+1を記憶しており、この路面摩擦係数推定値μ^ k+1は次回の計算ステップが実行される際に前回の計算ステップにおける路面摩擦係数推定値μ^ として読み出される。 The storage unit 7 stores the road surface friction coefficient estimated value μ ^ k + 1 calculated by the road surface friction coefficient estimated value calculation unit 6, and the road surface friction coefficient estimated value μ ^ k + 1 is used when the next calculation step is executed. Is read as the road surface friction coefficient estimated value μ ^ k in the previous calculation step.

[路面摩擦係数推定値の演算処理]
以下、図3に示すフローチャートを参照して、本実施形態に係る路面摩擦係数推定装置による路面摩擦係数推定値の演算処理の手順を説明する。
[Calculation of estimated road friction coefficient]
Hereinafter, with reference to the flowchart shown in FIG. 3, the procedure of the calculation process of the road surface friction coefficient estimated value by the road surface friction coefficient estimation apparatus which concerns on this embodiment is demonstrated.

図3に示すように、本実施形態に係る路面摩擦係数推定値の演算処理では、まずステップS101においてタイヤ変形状態量検出部4によってタイヤ変形状態量としてSAT検出値Tsatが検出される。このSAT検出値Tsatの検出方法としては、例えば既存の電動パワーステアリングに設置されている運転者トルクセンサとアシストモータの電流とから算出することができる。また、ステアリングタイロッドにひずみセンサを設置することによって直接的にSATに相当する量を計測することも可能である。 As shown in FIG. 3, in the road surface friction coefficient estimated value calculation process according to this embodiment, first, in step S101, the tire deformation state amount detection unit 4 detects the SAT detection value T sat as the tire deformation state amount. As a detection method of the SAT detection value T sat , for example, it can be calculated from the driver torque sensor installed in the existing electric power steering and the current of the assist motor. It is also possible to directly measure the amount corresponding to SAT by installing a strain sensor on the steering tie rod.

次に、ステップS102においてタイヤすべり角検出部5がタイヤすべり角を検出すると、ステップS103では路面摩擦係数推定値演算部6が前回の計算ステップにおける路面摩擦係数推定値μ^ を読み出す。 Next, when the tire slip angle detection unit 5 detects the tire slip angle in step S102, the road friction coefficient estimated value calculation unit 6 reads the road surface friction coefficient estimated value μ ^ k in the previous calculation step in step S103.

そして、ステップS104において、路面摩擦係数急変判定部2は路面状態の変化に基づいて路面摩擦係数が急変しているか否かを判定し、路面摩擦係数が急変している場合には、路面摩擦係数急変信号を出力する。路面摩擦係数が急変しているか否かの判定方法としては、上述したようにカメラ画像の解析や加速度の高周波成分の変化等によって判定する。   In step S104, the road surface friction coefficient sudden change determination unit 2 determines whether or not the road surface friction coefficient has suddenly changed based on the change in the road surface state. If the road surface friction coefficient has changed suddenly, the road surface friction coefficient A sudden change signal is output. As described above, as a method for determining whether or not the road surface friction coefficient has suddenly changed, the determination is made by analyzing the camera image, changing the high frequency component of acceleration, or the like.

次に、ステップS105において、収束補正関数設定部3は、路面摩擦係数急変信号を参照して路面摩擦係数が急変しているか否かを認識し、路面摩擦係数が急変していない場合にはステップS106において通常時の収束補正関数を設定する。   Next, in step S105, the convergence correction function setting unit 3 refers to the road surface friction coefficient sudden change signal to recognize whether or not the road surface friction coefficient has suddenly changed. If the road surface friction coefficient has not suddenly changed, the step is performed. In S106, a normal convergence correction function is set.

通常時の収束補正関数は、現在の計算ステップにおける路面摩擦係数推定値μ^ を変数として次式のように表すことができる。 The normal convergence correction function can be expressed as the following equation using the road surface friction coefficient estimated value μ ^ k in the current calculation step as a variable.

corr(μ^ )=K(μ^ ) (1)
ここで、Kは補正ゲインで収束補正関数の絶対値の大きさを表しており、設計者によって適切に定められる。また関数g(μ^ )は正弦関数に基づいて設定される関数であり、例えば図4に示す形状の関数となる。
f corr (μ ^ k) = K s g 1 (μ ^ k) (1)
Here, K s represents the magnitude of the absolute value of the convergence correction function as a correction gain, and is appropriately determined by the designer. The function g 1^ k ) is a function set based on a sine function, and is a function having the shape shown in FIG. 4, for example.

図4に示す収束補正関数は、正弦関数をベースとして路面摩擦係数推定値μ^を変数とした関数であり、収束目標値0.3、1.0ではその値が0となり、収束目標値の前後でその値が+1と−1に切り替わっている。この収束補正関数では、路面摩擦係数が高いか低いかを判断することを目的としているので、舗装路などの高い摩擦係数に対応した第1収束目標値μ1を1.0に、凍結した路面のような低い摩擦係数に対応した第2収束目標値μを0.3に設定している。ここで、第1収束目標値μ1は車両が通常走行可能な通常時の収束目標値であり、第2収束目標値μは路面摩擦係数が急変したときの収束目標値である。 The convergence correction function shown in FIG. 4 is a function based on a sine function and a road surface friction coefficient estimated value μ ^ as a variable. The convergence target value is 0.3 or 1.0, and the value becomes 0. The values are switched between +1 and −1 before and after. Since the purpose of this convergence correction function is to determine whether the road friction coefficient is high or low, the first convergence target value μ 1 corresponding to a high friction coefficient such as a paved road is set to 1.0, and the frozen road surface. The second convergence target value μ 2 corresponding to such a low friction coefficient is set to 0.3. Here, the first convergence target value μ 1 is a normal convergence target value at which the vehicle can normally travel, and the second convergence target value μ 2 is a convergence target value when the road surface friction coefficient suddenly changes.

一方、ステップS105において、路面摩擦係数が急変している場合にはステップS107において路面摩擦係数が急変しているときの収束補正関数を設定する。   On the other hand, when the road surface friction coefficient changes suddenly in step S105, a convergence correction function when the road surface friction coefficient changes suddenly is set in step S107.

急変時の収束補正関数は、現在の計算ステップにおける路面摩擦係数推定値μ^ を変数として次式のように表すことができる。 The convergence correction function at the time of sudden change can be expressed as the following equation using the road surface friction coefficient estimated value μ ^ k at the current calculation step as a variable.

corr(μ^ )=K(μ^ ) (2)
ここで、Kは補正ゲインで収束補正関数の絶対値の大きさを表しており、チューニングによって適切に定められる。また関数g(μ^ )は正弦関数に基づいて設定される関数であり、例えば図5に示す形状の関数となる。
f corr (μ ^ k) = K s g 2 (μ ^ k) (2)
Here, K s represents the magnitude of the absolute value of the convergence correction function as a correction gain, and is appropriately determined by tuning. The function g 2^ k ) is a function set based on a sine function, for example, a function having the shape shown in FIG.

図5に示すように、急変時の収束補正関数は、第1収束目標値と第2収束目標値との間で値が0となる中間零点の位置を第1収束目標値の方向へ近づけている。図4に示す通常時の収束補正関数では中間零点を0.6に設定していたが、図5に示す急変時の収束補正関数では中間零点の位置を0.7に設定して第1収束目標値の方向へ近づけている。   As shown in FIG. 5, the convergence correction function at the time of sudden change brings the position of the intermediate zero point where the value is 0 between the first convergence target value and the second convergence target value closer to the direction of the first convergence target value. Yes. In the normal convergence correction function shown in FIG. 4, the intermediate zero is set to 0.6. However, in the convergence correction function during sudden change shown in FIG. It is close to the target value.

また、関数g(μ^ )は図6に示すような形状にしてもよい。図6に示す収束補正関数では、第1収束目標値近傍の区間(μ^ が0.6〜0.9の区間)における収束補正関数の絶対値が、第2収束目標値近傍の区間(μ^ が0.3〜0.6の区間)における収束補正関数の絶対値より小さくなるように設定されている。図4に示す通常時の収束補正関数では絶対値はどの区間でも1に設定されていたが、図6に示す急変時の収束補正関数では絶対値を第1収束目標値近傍の区間では1より小さな値に設定し、第2収束目標値近傍の区間では1より大きな値に設定している。 Further, the function g 2^ k ) may be shaped as shown in FIG. In the convergence correction function shown in FIG. 6, the absolute value of the convergence correction function in the section near the first convergence target value (the section where μ ^ k is 0.6 to 0.9) is the section near the second convergence target value ( μ ^ k is set to be smaller than the absolute value of the convergence correction function in the interval of 0.3 to 0.6. In the normal convergence correction function shown in FIG. 4, the absolute value is set to 1 in every section. However, in the convergence correction function in the sudden change shown in FIG. 6, the absolute value is set to 1 in the section near the first convergence target value. A small value is set, and a value larger than 1 is set in the vicinity of the second convergence target value.

上述したように急変時の収束補正関数を図5及び図6に示すように設定すれば、通常時の収束目標値である第1収束目標値への収束のし易さを低下させ、急変したときの収束目標値である第2収束目標値への収束のし易さを増加させることができる。これにより、路面摩擦係数が急変したときの応答性が劣化することを防止して検知性能を向上させることができる。尚、図5に示した収束補正関数と図6に示した収束補正関数の両方を適用した収束補正関数を設定してもよい。   If the convergence correction function at the time of sudden change is set as shown in FIG. 5 and FIG. 6 as described above, the ease of convergence to the first convergence target value, which is the normal convergence target value, is reduced and suddenly changed. It is possible to increase the ease of convergence to the second convergence target value that is the convergence target value at that time. Thereby, it is possible to improve the detection performance by preventing the responsiveness from deteriorating when the road surface friction coefficient changes suddenly. In addition, you may set the convergence correction function which applied both the convergence correction function shown in FIG. 5, and the convergence correction function shown in FIG.

また、通常時の収束補正関数と急変時の収束補正関数とを予め別々に設定しておく必要はなく、路面摩擦係数急変信号に応じて収束補正関数を通常時の収束補正関数や急変時の収束補正関数に適宜変更して設定できるような構成にしておけばよい。   In addition, it is not necessary to set the convergence correction function for normal time and the convergence correction function for sudden change separately in advance, and the convergence correction function is changed according to the road surface friction coefficient sudden change signal. The configuration may be such that the convergence correction function can be changed and set as appropriate.

こうして通常時あるいは急変時の収束補正関数が設定されると、次にステップS108において路面摩擦係数推定値演算部6は、タイヤモデルから推定したタイヤ変形状態量推定値T^ sat^)を取得する。ここで、αはタイヤすべり角検出部5で検出されたタイヤすべり角であり、タイヤ変形状態量推定値T^ sat^)は予め実験的に求めてマップ等にして記憶部7に記憶させておくことによって、路面摩擦係数推定値μ^とタイヤすべり角αとに応じて適宜取得することができる。 When the convergence correction function at the time of normal or sudden change is set in this way, in step S108, the road surface friction coefficient estimated value calculation unit 6 next calculates the tire deformation state quantity estimated value T ^ sat^ , α estimated from the tire model. f ) is obtained. Here, α f is the tire slip angle detected by the tire slip angle detection unit 5, and the tire deformation state estimated value T ^ sat^ , α f ) is obtained experimentally in advance and stored as a map or the like. by storing in the section 7, it can be obtained appropriately according to the road surface frictional coefficient estimated value mu ^ and tire slip angle alpha f.

そして、タイヤ変形状態量検出部4で検出されたタイヤ変形状態量Tsat(μ,α)とタイヤ変形状態量推定値T^ sat^)との差にタイヤ変形状態量ゲインKsatを乗算してタイヤ変形状態量誤差Ksat{T^ sat^)−Tsat(μ,α)}を算出し、このタイヤ変形状態量誤差と収束補正関数fcorr(μ^)との和を算出して次式を求める。

Figure 2013185840
The difference between the tire deformation state quantity T sat (μ, α f ) detected by the tire deformation state quantity detection unit 4 and the tire deformation state quantity estimated value T ^ sat^ , α f ) is added to the tire deformation state quantity. By multiplying the gain K sat , the tire deformation state error K sat {T ^ sat^ , α f ) −T sat (μ, α f )} is calculated, and this tire deformation state amount error and the convergence correction function f The following equation is obtained by calculating the sum of corr^ ).
Figure 2013185840

式(3)は微分方程式であり、式(3)の第1項はタイヤモデルによって推定したタイヤ変形状態量推定値T^ satとタイヤ変形状態量の計測値Tsatとの間の誤差が減少するように路面摩擦係数を推定する作用がある。第2項は収束補正関数であり、種々の路面状態に対して予め設定した収束目標値の近傍へ路面摩擦係数推定値を収束させる作用がある。 Equation (3) is a differential equation, and the first term of Equation (3) is that the error between the estimated value T ^ sat of the tire deformation state estimated by the tire model and the measured value T sat of the tire deformation state amount is reduced. In this way, the road surface friction coefficient is estimated. The second term is a convergence correction function, which has the effect of converging the road surface friction coefficient estimated value in the vicinity of a convergence target value set in advance for various road surface conditions.

そして、式(3)を時間積分することによって次回の計算ステップにおける路面摩擦係数推定値を次式に基づいて算出する。   Then, the road friction coefficient estimated value in the next calculation step is calculated based on the following expression by integrating the expression (3) with time.

μ^ k+1=[Ksat{T^ sat^ fk)−Tsatfk)}+fcorr(μ^ )]Δt+μ^ (4)
ここで、kは計算ステップ、Δtはサンプリング時間、すなわち各計算ステップにおける時間間隔を表している。式(4)をデジタル計算器に実装することにより、路面摩擦係数推定値の現在値に基づいて次回値を演算することができる。
μ ^ k + 1 = [K sat {T ^ sat (μ ^ k, α fk) -T sat (μ k, α fk)} + f corr (μ ^ k)] Δt + μ ^ k (4)
Here, k represents a calculation step, and Δt represents a sampling time, that is, a time interval in each calculation step. By implementing Equation (4) in the digital calculator, the next value can be calculated based on the current value of the road surface friction coefficient estimated value.

また、タイヤ変形状態量ゲイン(SAT誤差補償ゲイン)Ksatは、チューニング等によって予め適切に定めた定数値を用いてもよいが、カルマンフィルタのアルゴリズムを用いてSAT計測値に含まれているノイズ強度を考慮しつつ路面摩擦係数推定値またはタイヤすべり角に応じて定めるようにしてもよい。このとき、タイヤ変形状態量ゲインKsatをタイヤすべり角に応じて変化させる場合には、図7に示すようにタイヤすべり角αが0近傍に近づくにしたがってタイヤ変形状態量ゲインKsatを急激に減少させるように設定する。こうすることによって、SAT検出値に路面摩擦係数の情報が含まれていないタイヤすべり角が0付近において、路面摩擦係数推定値が不安定になることを防止する効果を期待することができる。 The tire deformation state gain (SAT error compensation gain) K sat may be a constant value appropriately determined in advance by tuning or the like, but the noise intensity included in the SAT measurement value using the Kalman filter algorithm May be determined according to the estimated value of the road surface friction coefficient or the tire slip angle. At this time, when the tire deformation state gain K sat is changed according to the tire slip angle, as shown in FIG. 7, the tire deformation state gain K sat is rapidly increased as the tire slip angle α approaches zero. Set to decrease. By doing so, it is possible to expect an effect of preventing the estimated value of the road surface friction coefficient from becoming unstable when the tire slip angle in which the road surface friction coefficient information is not included in the SAT detection value is near zero.

こうして路面摩擦係数推定値の次回値μ^ k+1が算出されると、ステップS109において路面摩擦係数推定値演算部6が記憶部7に路面摩擦係数推定値の次回値μ^ k+1を記憶させて、本実施形態に係る路面摩擦係数推定装置1による路面摩擦係数推定値の演算処理は終了する。 When the next value μ ^ k + 1 of the road surface friction coefficient estimated value is calculated in this way, the road surface friction coefficient estimated value calculation unit 6 stores the next value μ ^ k + 1 of the road surface friction coefficient estimated value in the storage unit 7 in step S109. The calculation process of the road surface friction coefficient estimation value by the road surface friction coefficient estimation device 1 according to the present embodiment ends.

[実施形態の効果]
上述したように、本実施形態に係る路面摩擦係数推定装置によれば、路面摩擦係数が急変すると判定したときには通常時の収束目標値である第1収束目標値への収束のし易さが低下するように収束補正関数を設定するので、急変時の収束目標値へ収束し易くなり路面摩擦係数が急変した場合でも応答速度の低下を防止して検知性能を向上させることができる。さらに算出した路面摩擦係数推定値を車両の運動制御に利用することにより、路面摩擦係数が急激に低下したときでも車両の挙動が乱れる前に安定化制御を実施することができ、スピンを防止できるなどの効果が期待できる。
[Effect of the embodiment]
As described above, according to the road surface friction coefficient estimation device according to the present embodiment, when it is determined that the road surface friction coefficient changes suddenly, the ease of convergence to the first convergence target value, which is the normal convergence target value, decreases. Thus, since the convergence correction function is set, it is easy to converge to the convergence target value at the time of sudden change, and even when the road surface friction coefficient changes suddenly, the response speed can be prevented from decreasing and the detection performance can be improved. Furthermore, by using the calculated estimated value of the road surface friction coefficient for vehicle motion control, even when the road surface friction coefficient suddenly decreases, stabilization control can be performed before the behavior of the vehicle is disturbed, and spin can be prevented. Such effects can be expected.

また、本実施形態に係る路面摩擦係数推定装置によれば、路面摩擦係数が急変すると判定したときには急変時の収束目標値である第2収束目標値への収束のし易さが増加するように収束補正関数を設定するので、急変時の収束目標値へ収束し易くなり路面摩擦係数が急変した場合でも応答速度の低下を防止して検知性能を向上させることができる。   Moreover, according to the road surface friction coefficient estimating apparatus according to the present embodiment, when it is determined that the road surface friction coefficient changes suddenly, the ease of convergence to the second convergence target value that is the convergence target value at the time of sudden change increases. Since the convergence correction function is set, it is easy to converge to the convergence target value at the time of sudden change, and even when the road surface friction coefficient changes suddenly, the response speed can be prevented from decreasing and the detection performance can be improved.

さらに、本実施形態に係る路面摩擦係数推定装置によれば、路面摩擦係数推定値が収束目標値のときに値が0になり、収束目標値の前後において符号が切り替わる関数を収束補正関数とするので、路面摩擦係数推定値を収束目標値へ収束させることができ、タイヤモデル誤差に対してロバストに路面摩擦係数推定値を算出することができる。   Furthermore, according to the road surface friction coefficient estimation apparatus according to the present embodiment, a function that has a value of 0 when the road surface friction coefficient estimated value is a convergence target value and whose sign is switched before and after the convergence target value is used as a convergence correction function. Therefore, the road surface friction coefficient estimated value can be converged to the convergence target value, and the road surface friction coefficient estimated value can be calculated robustly with respect to the tire model error.

また、本実施形態に係る路面摩擦係数推定装置によれば、路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときに第1収束目標値近傍における収束補正関数の絶対値を第2収束目標値近傍における収束補正関数の絶対値より小さくするので、路面摩擦係数の急変時に路面摩擦係数推定値をより速く推定することができる。   Further, according to the road surface friction coefficient estimating apparatus according to the present embodiment, the absolute value of the convergence correction function in the vicinity of the first convergence target value is obtained when the road surface friction coefficient sudden change signal is indicated by the road surface friction coefficient sudden change signal. Since it is smaller than the absolute value of the convergence correction function in the vicinity of the target value, the road surface friction coefficient estimated value can be estimated faster when the road surface friction coefficient changes suddenly.

さらに、本実施形態に係る路面摩擦係数推定装置によれば、路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときに第1収束目標値と第2収束目標値との間で値が0となる中間零点の位置を第1収束目標値の方向へ近づけるので、路面摩擦係数の急変時に路面摩擦係数推定値をより速く推定することができる。   Furthermore, according to the road surface friction coefficient estimating device according to the present embodiment, when the road surface friction coefficient sudden change signal is indicated by the road surface friction coefficient sudden change signal, the value is between the first convergence target value and the second convergence target value. Since the position of the intermediate zero point that becomes 0 is brought closer to the direction of the first convergence target value, the road surface friction coefficient estimated value can be estimated faster when the road surface friction coefficient changes suddenly.

また、本実施形態に係る路面摩擦係数推定装置によれば、タイヤ変形状態量とタイヤ変形状態量推定値との差にタイヤ変形状態量ゲインを乗算してタイヤ変形状態量誤差を算出し、このタイヤ変形状態量誤差と収束補正関数との和を時間積分することによって路面摩擦係数推定値を算出するので、タイヤ変形状態量に含まれるノイズに起因する路面摩擦係数推定値の時刻暦振動を低減することができる。   Further, according to the road surface friction coefficient estimating apparatus according to the present embodiment, the tire deformation state amount error is calculated by multiplying the difference between the tire deformation state amount and the tire deformation state amount estimated value by the tire deformation state amount gain, The road surface friction coefficient estimated value is calculated by time integration of the sum of the tire deformation state quantity error and the convergence correction function, thus reducing the time calendar vibration of the road surface friction coefficient estimated value caused by the noise included in the tire deformation state quantity. can do.

さらに、本実施形態に係る路面摩擦係数推定装置によれば、タイヤすべり角と路面摩擦係数推定値とに応じてタイヤ変形状態量推定値を算出するので、タイヤ変形状態量としてセルフアライニングトルクまたはタイヤ横力を選択したときに、タイヤ変形状態量推定値を精度良く算出することができ、路面摩擦係数の推定精度を向上させることができる。   Furthermore, according to the road surface friction coefficient estimating device according to the present embodiment, since the tire deformation state amount estimated value is calculated according to the tire slip angle and the road surface friction coefficient estimated value, the self-aligning torque or the tire deformation state amount is calculated as the tire deformation state amount. When the tire lateral force is selected, the tire deformation state quantity estimated value can be calculated with high accuracy, and the estimation accuracy of the road surface friction coefficient can be improved.

また、本実施形態に係る路面摩擦係数推定装置によれば、タイヤ変形状態量ゲインをタイヤすべり角が小さくなるのに応じて小さくなるように設定したので、タイヤすべり角が小さいときなどタイヤ変形状態から路面摩擦係数の情報が取り出せないときに路面摩擦係数推定値が不安定化することを防止できる。   Further, according to the road surface friction coefficient estimating device according to the present embodiment, the tire deformation state amount gain is set so as to decrease as the tire slip angle decreases, so that the tire deformation state such as when the tire slip angle is small. Therefore, it is possible to prevent the estimated value of the road surface friction coefficient from becoming unstable when information on the road surface friction coefficient cannot be extracted from the road surface.

また、本実施形態に係る路面摩擦係数推定装置によれば、タイヤ変形状態量をタイヤ横力、タイヤ前後力、セルフアライニングトルク、スリップ率のうちのいずれか1つとしたので、タイヤが出力する特徴的な量から直接的に路面摩擦係数推定値を算出することができ、応答性および精度を確保することができる。   In addition, according to the road surface friction coefficient estimating device according to the present embodiment, the tire output is because the tire deformation state quantity is any one of the tire lateral force, the tire longitudinal force, the self-aligning torque, and the slip ratio. The estimated value of the road surface friction coefficient can be calculated directly from the characteristic amount, and responsiveness and accuracy can be ensured.

以上、本発明の路面摩擦係数推定装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることが可能である。   As mentioned above, although the road surface friction coefficient estimation apparatus of the present invention has been described based on the illustrated embodiment, the present invention is not limited to this, and the configuration of each part is an arbitrary configuration having the same function. It is possible to replace it.

1 路面摩擦係数推定装置
2 路面摩擦係数急変判定部
3 収束補正関数設定部
4 タイヤ変形状態量検出部
5 タイヤすべり角検出部
6 路面摩擦係数推定値演算部
7 記憶部
DESCRIPTION OF SYMBOLS 1 Road surface friction coefficient estimation apparatus 2 Road surface friction coefficient sudden change determination part 3 Convergence correction function setting part 4 Tire deformation state amount detection part 5 Tire slip angle detection part 6 Road surface friction coefficient estimated value calculation part 7 Memory | storage part

Claims (10)

路面状態の変化に基づいて路面摩擦係数が急変すると判定したときには路面摩擦係数急変信号を出力する路面摩擦係数急変判定手段と、
路面摩擦係数が所定の収束目標値へ収束するように補正するための関数である収束補正関数を、前記路面摩擦係数急変信号に基づいて変更して設定する収束補正関数設定手段と、
タイヤの変形状態を表すタイヤ変形状態量を検出するタイヤ変形状態量検出手段と、
前記タイヤ変形状態量と前記収束補正関数とに基づいて路面摩擦係数を推定して路面摩擦係数推定値を算出する路面摩擦係数推定値演算手段とを備え、
前記収束補正関数設定手段は、前記路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときには通常時の収束目標値である第1収束目標値への収束のし易さを低下させるように前記収束補正関数を設定することを特徴とする路面摩擦係数推定装置。
A road surface friction coefficient sudden change determination means for outputting a road surface friction coefficient sudden change signal when it is determined that the road surface friction coefficient changes suddenly based on a change in the road surface state;
A convergence correction function setting means for changing and setting a convergence correction function, which is a function for correcting the road surface friction coefficient so as to converge to a predetermined convergence target value, based on the road surface friction coefficient sudden change signal;
Tire deformation state quantity detecting means for detecting a tire deformation state quantity representing a tire deformation state;
Road surface friction coefficient estimated value calculating means for calculating a road surface friction coefficient estimated value by estimating a road surface friction coefficient based on the tire deformation state quantity and the convergence correction function,
The convergence correction function setting means reduces the ease of convergence to the first convergence target value, which is a convergence target value in a normal state, when a sudden change in the road surface friction coefficient is indicated by the road surface friction coefficient sudden change signal. A road surface friction coefficient estimating apparatus, wherein the convergence correction function is set.
前記収束補正関数設定手段は、前記路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときには、路面摩擦係数が急変したときの収束目標値である第2収束目標値への収束のし易さを増加させるように前記収束補正関数を設定することを特徴とする請求項1に記載の路面摩擦係数推定装置。   When the road surface friction coefficient sudden change signal indicates an abrupt change in the road surface friction coefficient, the convergence correction function setting means can easily converge to a second convergence target value that is a convergence target value when the road surface friction coefficient suddenly changes. The road surface friction coefficient estimating device according to claim 1, wherein the convergence correction function is set so as to increase the height. 前記収束補正関数は、前記路面摩擦係数推定値に応じて変化する関数であり、前記路面摩擦係数推定値が前記収束目標値のときに値が0になり、前記収束目標値の前後において符号が切り替わる関数であることを特徴とする請求項1または2に記載の路面摩擦係数推定装置。   The convergence correction function is a function that changes according to the road surface friction coefficient estimated value. When the road surface friction coefficient estimated value is the convergence target value, the value becomes 0, and the sign is before and after the convergence target value. The road friction coefficient estimation device according to claim 1 or 2, wherein the function is a function to be switched. 前記収束補正関数設定手段は、前記路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときには、前記第1収束目標値近傍における収束補正関数の絶対値を、前記第2収束目標値近傍における収束補正関数の絶対値より小さく設定することを特徴とする請求項2または3に記載の路面摩擦係数推定装置。   When the road surface friction coefficient sudden change signal indicates a sudden change in the road surface friction coefficient, the convergence correction function setting unit calculates an absolute value of the convergence correction function in the vicinity of the first convergence target value in the vicinity of the second convergence target value. 4. The road surface friction coefficient estimating device according to claim 2, wherein the road friction coefficient estimating device is set smaller than an absolute value of the convergence correction function. 前記収束補正関数設定手段は、前記路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときには、前記第1収束目標値と前記第2収束目標値との間で値が0となる中間零点の位置を前記第1収束目標値の方向へ近づけることを特徴とする請求項2〜4のいずれか1項に記載の路面摩擦係数推定装置。   When the road surface friction coefficient sudden change signal indicates a sudden change in the road surface friction coefficient, the convergence correction function setting means is an intermediate zero that has a value of 0 between the first convergence target value and the second convergence target value. The road surface friction coefficient estimating apparatus according to any one of claims 2 to 4, wherein the position of the road surface is brought closer to the direction of the first convergence target value. 前記路面摩擦係数推定値演算手段は、前記タイヤ変形状態量とタイヤモデルから推定したタイヤ変形状態量推定値との差にタイヤ変形状態量ゲインを乗算してタイヤ変形状態量誤差を算出し、前記タイヤ変形状態量誤差と前記収束補正関数との和を時間積分することによって前記路面摩擦係数推定値を算出することを特徴とする請求項1〜5のいずれか1項に記載の路面摩擦係数推定装置。   The road surface friction coefficient estimated value calculation means calculates a tire deformation state amount error by multiplying a difference between the tire deformation state amount and a tire deformation state amount estimated value estimated from a tire model by a tire deformation state amount gain, The road surface friction coefficient estimation value according to any one of claims 1 to 5, wherein the road surface friction coefficient estimation value is calculated by time-integrating a sum of a tire deformation state quantity error and the convergence correction function. apparatus. タイヤすべり角を検出するタイヤすべり角検出手段をさらに備え、
前記路面摩擦係数推定値演算手段は、前記タイヤすべり角と前記路面摩擦係数推定値とに応じて前記タイヤ変形状態量推定値を算出することを特徴とする請求項6に記載の路面摩擦係数推定装置。
A tire slip angle detecting means for detecting the tire slip angle;
7. The road surface friction coefficient estimation according to claim 6, wherein the road surface friction coefficient estimated value calculation means calculates the tire deformation state quantity estimated value according to the tire slip angle and the road surface friction coefficient estimated value. apparatus.
前記タイヤ変形状態量ゲインは、前記タイヤすべり角が小さくなるのに応じて小さくなるように設定されていることを特徴とする請求項7に記載の路面摩擦係数推定装置。   The road surface friction coefficient estimating device according to claim 7, wherein the tire deformation state amount gain is set so as to become smaller as the tire slip angle becomes smaller. 前記タイヤ変形状態量は、タイヤ横力、タイヤ前後力、セルフアライニングトルク、スリップ率のうちのいずれか1つであることを特徴とする請求項1〜8のいずれか1項に記載の路面摩擦係数推定装置。   The road surface according to any one of claims 1 to 8, wherein the tire deformation state quantity is any one of tire lateral force, tire longitudinal force, self-aligning torque, and slip ratio. Friction coefficient estimation device. 路面状態の変化に基づいて路面摩擦係数が急変すると判定したときには路面摩擦係数急変信号を出力する路面摩擦係数急変判定ステップと、
路面摩擦係数が所定の収束目標値へ収束するように補正するための関数である収束補正関数を、前記路面摩擦係数急変信号に基づいて変更して設定する収束補正関数設定ステップと、
タイヤの変形状態を表すタイヤ変形状態量を検出するタイヤ変形状態量検出ステップと、
前記タイヤ変形状態量と前記収束補正関数とに基づいて路面摩擦係数を推定して路面摩擦係数推定値を算出する路面摩擦係数推定値演算ステップとを備え、
前記収束補正関数設定ステップでは、前記路面摩擦係数急変信号によって路面摩擦係数の急変が示されたときには通常時の収束目標値である第1収束目標値への収束のし易さを低下させるように前記収束補正関数を設定することを特徴とする路面摩擦係数推定方法。
A road surface friction coefficient sudden change determination step for outputting a road surface friction coefficient sudden change signal when it is determined that the road surface friction coefficient changes suddenly based on a change in the road surface state;
A convergence correction function setting step for changing and setting a convergence correction function, which is a function for correcting the road surface friction coefficient to converge to a predetermined convergence target value, based on the road surface friction coefficient sudden change signal;
A tire deformation state amount detecting step for detecting a tire deformation state amount representing a tire deformation state; and
A road surface friction coefficient estimated value calculation step for calculating a road surface friction coefficient estimated value by estimating a road surface friction coefficient based on the tire deformation state quantity and the convergence correction function,
In the convergence correction function setting step, when a sudden change in the road surface friction coefficient is indicated by the road surface friction coefficient sudden change signal, the ease of convergence to the first convergence target value, which is the normal convergence target value, is reduced. A method for estimating a road friction coefficient, wherein the convergence correction function is set.
JP2012048846A 2012-03-06 2012-03-06 Road surface friction coefficient estimation device and road surface friction coefficient estimation method Pending JP2013185840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048846A JP2013185840A (en) 2012-03-06 2012-03-06 Road surface friction coefficient estimation device and road surface friction coefficient estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048846A JP2013185840A (en) 2012-03-06 2012-03-06 Road surface friction coefficient estimation device and road surface friction coefficient estimation method

Publications (1)

Publication Number Publication Date
JP2013185840A true JP2013185840A (en) 2013-09-19

Family

ID=49387406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048846A Pending JP2013185840A (en) 2012-03-06 2012-03-06 Road surface friction coefficient estimation device and road surface friction coefficient estimation method

Country Status (1)

Country Link
JP (1) JP2013185840A (en)

Similar Documents

Publication Publication Date Title
JP3539722B2 (en) Road surface friction coefficient estimation device for vehicles
JP4926715B2 (en) Method and apparatus for assisting a vehicle operator in stabilizing a vehicle
JP5035419B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP5141778B2 (en) Vehicle state estimation device
US20060041365A1 (en) Estimating method for road friction coefficient and vehicle slip angle estimating method
JP5431745B2 (en) Vehicle motion control device
JP2001334921A (en) Estimating device for surface friction coefficient of vehicle
US11648933B2 (en) Method for controlling wheel slip of vehicle
EP1760451A1 (en) Method and system for road surface friction coefficient estimation
JP5211995B2 (en) Vehicle deceleration control apparatus and method
JP4071529B2 (en) Self-aligning torque estimation device and lateral grip degree estimation device
JP2013180639A (en) Road surface friction coefficient estimating device and road surface friction coefficient estimation method
JP5206490B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
JP2010270854A (en) Vehicle control device
US10266202B2 (en) Methods and systems for vehicle lateral force control
GB2435102A (en) Friction estimation for vehicle control systems
JP3271956B2 (en) Road surface friction coefficient estimation device for vehicles
JP6674769B2 (en) Vehicle control device and vehicle control method
JP2007245901A (en) Vehicular motion control apparatus
JP2013075632A (en) Traveling state estimating device
JP4601650B2 (en) Vehicle behavior state estimation device
JP2013185840A (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP6064787B2 (en) Vehicle behavior control device and vehicle state estimation device
JP5521943B2 (en) Vehicle total weight estimation device
KR100799972B1 (en) Steering assist control method and vehicle's attitude adjusting apparatus