JP2013185197A - Steel product for hydrogen sulfide environment excellent in hydrogen absorption resistance, and steel structure - Google Patents

Steel product for hydrogen sulfide environment excellent in hydrogen absorption resistance, and steel structure Download PDF

Info

Publication number
JP2013185197A
JP2013185197A JP2012050612A JP2012050612A JP2013185197A JP 2013185197 A JP2013185197 A JP 2013185197A JP 2012050612 A JP2012050612 A JP 2012050612A JP 2012050612 A JP2012050612 A JP 2012050612A JP 2013185197 A JP2013185197 A JP 2013185197A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
steel material
hydrogen sulfide
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012050612A
Other languages
Japanese (ja)
Other versions
JP5869918B2 (en
Inventor
Shinji Sakashita
真司 阪下
Junichiro Kinugasa
潤一郎 衣笠
Hiroshi Kato
拓 加藤
Hiroki Imamura
弘樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012050612A priority Critical patent/JP5869918B2/en
Publication of JP2013185197A publication Critical patent/JP2013185197A/en
Application granted granted Critical
Publication of JP5869918B2 publication Critical patent/JP5869918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a steel product for a hydrogen sulfide environment, capable of being suitably used for line pipes or the like transporting crude oil, natural gas and the like which contain hydrogen sulfide, and excellent in hydrogen absorption resistance; and a steel structure.SOLUTION: A steel product includes 0.01-0.20% of C, 0.01-0.50% of Si, 0.1-2.0% of Mn, 0.015% or less (excluding 0%) of P, 0.03% or less (excluding 0%) of S, 0.005-0.10% of Al, and 0.05-1.0% of Cu, as well as 0.001-0.050% of Sn and/or 0.001-0.050% of Sb, with the remainder comprising Fe and inevitable impurities, while a ratio of [Cu]/([Sn]+[Sb]) is 1.0-30.0.

Description

本発明は、硫化水素(HS)を含有する原油や天然ガス等を輸送するラインパイプ、或いは、圧力容器等として用いるのに最適な耐水素吸収性に優れた硫化水素環境用鋼材、および前記鋼材を用いて建造されたラインパイプ、或いは、圧力容器等の硫化水素雰囲気に曝される鋼構造物に関するものである。 The present invention relates to a hydrogen sulfide environmental steel material excellent in hydrogen absorption resistance, which is optimal for use as a line pipe for transporting crude oil or natural gas containing hydrogen sulfide (H 2 S), or a pressure vessel, and the like. The present invention relates to a steel structure exposed to a hydrogen sulfide atmosphere such as a line pipe constructed using the steel material or a pressure vessel.

硫化水素を含有する雰囲気で使用される鋼構造物、例えば、原油や天然ガス等を輸送するラインパイプ、石油精製装置(水素化精製装置、水素化脱硫装置、接触分解装置等)等では、水素誘起割れ(HIC)や硫化物応力腐食割れ(SSCC)等の水素脆化が発生することがあり、安全上等の問題となることが多い。   In steel structures used in atmospheres containing hydrogen sulfide, such as line pipes for transporting crude oil, natural gas, etc., oil refineries (hydrorefining equipment, hydrodesulfurization equipment, catalytic cracking equipment, etc.) Hydrogen embrittlement such as induced cracking (HIC) and sulfide stress corrosion cracking (SSCC) may occur, which is often a safety issue.

これら水素誘起割れや硫化物応力腐食割れ等の鋼材の割れは、硫化水素に起因して水素が鋼材中に多量に吸収され、鋼材中のMnSなどの介在物等と母材との界面に集積した水素が、分子状水素になるときのガス圧が原因となって発生すると考えられている。これらの割れの発生は、硫化水素を含有する雰囲気で使用される鋼構造物から原油や天然ガス等が漏れだすという問題の発生につながり、大事故発生の原因となることも考えられる。よって、原油や天然ガス等を輸送するラインパイプ、圧力容器等の安全性確保という観点から、鋼材の割れの発生防止が非常に重要な技術課題となっている。   These cracks in steel materials such as hydrogen-induced cracking and sulfide stress corrosion cracking are caused by hydrogen sulfide being absorbed in the steel material in large quantities and accumulated at the interface between inclusions such as MnS in the steel material and the base material. It is thought that the generated hydrogen is generated due to the gas pressure when it becomes molecular hydrogen. The occurrence of these cracks leads to the problem of crude oil, natural gas, etc. leaking from the steel structure used in an atmosphere containing hydrogen sulfide, which may cause a major accident. Therefore, from the viewpoint of ensuring the safety of line pipes, pressure vessels, and the like for transporting crude oil, natural gas, and the like, prevention of cracking of steel materials has become a very important technical issue.

このような水素誘起割れや硫化物応力腐食割れ等の水素脆化の発生を防止するための対策技術として、以下のような公知技術が従来からある。   Conventionally, the following known techniques have been conventionally used as countermeasure techniques for preventing the occurrence of hydrogen embrittlement such as hydrogen-induced cracking and sulfide stress corrosion cracking.

(1)鋼材中のSを低減することにより、割れ起点となる鋼材中のMnSの量を低減する。
(2)鋼材にCaを添加することにより、MnSなどの介在物の形態を制御して割れにくい介在物とする。
(3)制御圧延及び圧延後の加速冷却を行うことにより、鋼材の組織を均一化し、水素脆化に対する抵抗を増大させる。
(1) By reducing S in the steel material, the amount of MnS in the steel material serving as a crack starting point is reduced.
(2) By adding Ca to the steel material, the inclusions such as MnS are controlled to form inclusions that are difficult to break.
(3) By performing controlled rolling and accelerated cooling after rolling, the structure of the steel material is made uniform and the resistance to hydrogen embrittlement is increased.

しかしながら、これらの対策を施したとしても、水素脆化の発生を防止するにはまだ十分とはいえず、依然、鋼材に水素誘起割れや硫化物応力腐食割れが発生することがあった。このような実情もあり、更にそれらの対策を図った技術として、特許文献1により、電縫溶接部の介在物を制御することで耐水素脆化特性を向上させる技術が、特許文献2により、鋼材中の特定成分(Mn、Nb、Ti)の偏析度を低下させることで中心偏析部の最高硬さの上昇を抑制させて耐水素脆化特性を向上する技術が、夫々提案されている。しかしながら、特許文献1記載の技術は溶接部のみの耐水素脆化特性の向上を図った技術であり、また、特許文献2記載の技術は制御が難しく実用的ではないという問題があった。   However, even if these measures are taken, it is still not sufficient to prevent the occurrence of hydrogen embrittlement, and hydrogen-induced cracking and sulfide stress corrosion cracking may still occur in steel materials. There is also such a situation, and as a technique for further countermeasures, according to Patent Document 1, a technique for improving hydrogen embrittlement resistance by controlling inclusions in an electric resistance welded portion is disclosed in Patent Document 2, Technologies for improving the resistance to hydrogen embrittlement by suppressing the increase in the maximum hardness of the central segregation part by reducing the segregation degree of specific components (Mn, Nb, Ti) in steel materials have been proposed. However, the technique described in Patent Document 1 is a technique for improving the hydrogen embrittlement resistance of only the welded portion, and the technique described in Patent Document 2 has a problem that it is difficult to control and is not practical.

また、鋼材の耐食性の向上という観点からだけで判断すると、特許文献3〜5により、鋼材にSnやSbを添加することで耐食性の向上を図る技術も提案されている。しかし、これら特許文献3〜5に記載された技術は、硫化水素を含有する雰囲気で使用される鋼構造物の水素脆化の発生を防止するという観点で開発された技術ではないため、成分調整等が不十分であり、硫化水素を含有する雰囲気で使用される鋼構造物の耐水素脆化特性の向上技術という観点からは十分といえる技術ではなかった。   Moreover, judging only from the viewpoint of improving the corrosion resistance of the steel material, Patent Documents 3 to 5 propose a technique for improving the corrosion resistance by adding Sn or Sb to the steel material. However, these techniques described in Patent Documents 3 to 5 are not developed from the viewpoint of preventing the occurrence of hydrogen embrittlement in a steel structure used in an atmosphere containing hydrogen sulfide. From the viewpoint of improving the hydrogen embrittlement resistance of a steel structure used in an atmosphere containing hydrogen sulfide, the technology was not sufficient.

近年、油田開発やガス田開発においては、硫化水素をより多く含有する更に厳しい環境が増大する傾向にあり、前記従来からの技術のみで対策を施しても必ずしも十分とはいえなかった。また、パイプラインにおいて原油や天然ガス等をより効率よく輸送するためにはラインパイプ等の高圧化が有効であり、特にラインパイプでは高強度材料採用のニーズがある。しかし、鋼材を高強度化させることは、逆に鋼材の水素脆化感受性をより増大させることになってしまい、鋼材を高強度化させれば、水素誘起割れや硫化物応力腐食割れ等の水素脆化が発生しやすくなるという相矛盾する問題点を抱えていた。   In recent years, in oil field development and gas field development, there has been a tendency for a more severe environment containing more hydrogen sulfide to increase, and it has not always been sufficient to take measures only with the conventional technology. In order to more efficiently transport crude oil, natural gas, and the like in a pipeline, it is effective to increase the pressure of the line pipe and the like, and in particular, there is a need for adopting a high-strength material in the line pipe. However, increasing the strength of steel will conversely increase the hydrogen embrittlement susceptibility of the steel, and if the strength of the steel is increased, hydrogen-induced cracking, sulfide stress corrosion cracking, etc. There was a contradictory problem that embrittlement was likely to occur.

特開2011−26695号公報JP 2011-26695 A 特開2010−209461号公報JP 2010-209461 A 特開2011−202215号公報JP 2011-202215 A 特開2008−174768号公報JP 2008-174768 A 特開2007−26558号公報JP 2007-26558 A

本発明は、上記従来の問題を解決せんとしてなされたもので、硫化水素を含有する原油や天然ガス等を輸送するラインパイプ、或いは、圧力容器等として好適に用いることができる耐水素吸収性に優れた硫化水素環境用鋼材、およびその硫化水素環境用鋼材を用いて建造される鋼構造物を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and has a hydrogen absorption resistance that can be suitably used as a line pipe for transporting crude oil or natural gas containing hydrogen sulfide, or a pressure vessel. An object of the present invention is to provide an excellent steel material for hydrogen sulfide environment and a steel structure constructed using the steel material for hydrogen sulfide environment.

請求項1記載の発明は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.1〜2.0%、P:0.015%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Al:0.005〜0.10%、Cu:0.05〜1.0%を含有すると共に、Sn:0.001〜0.050%、および/または、Sb:0.001〜0.050%を含有し、残部がFeおよび不可避的不純物からなり、[Cu]/([Sn]+[Sb])から求められる値が1.0〜30.0であることを特徴とする耐水素吸収性に優れた硫化水素環境用鋼材である。
但し、上式で[ ]は各元素の含有量(質量%)である。
Invention of Claim 1 is the mass%, C: 0.01-0.20%, Si: 0.01-0.50%, Mn: 0.1-2.0%, P: 0.015 %: Not more than 0 (not including 0%), S: not more than 0.03% (not including 0%), Al: 0.005 to 0.10%, Cu: 0.05 to 1.0% , Sn: 0.001 to 0.050%, and / or Sb: 0.001 to 0.050%, with the balance being Fe and inevitable impurities, [Cu] / ([Sn] + [ The value obtained from Sb]) is 1.0 to 30.0, and is a steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance.
However, in the above formula, [] is the content (% by mass) of each element.

請求項2記載の発明は、更に、質量%で、Mg:0.0005〜0.005%、Ca:0.0005〜0.010%、REM:0.0001〜0.020%の1種または2種以上を含有する請求項1記載の耐水素吸収性に優れた硫化水素環境用鋼材である。   The invention according to claim 2 further includes, in mass%, one of Mg: 0.0005 to 0.005%, Ca: 0.0005 to 0.010%, REM: 0.0001 to 0.020%, or The steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance according to claim 1, containing two or more kinds.

請求項3記載の発明は、更に、質量%で、Ni:0.01〜1.0%、Cr:0.01〜1.0%、Mo:0.01〜0.30%の1種または2種以上を含有する請求項1または2記載の耐水素吸収性に優れた硫化水素環境用鋼材である。   The invention according to claim 3 further comprises, in mass%, one of Ni: 0.01 to 1.0%, Cr: 0.01 to 1.0%, Mo: 0.01 to 0.30%, or The steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance according to claim 1 or 2 containing two or more.

請求項4記載の発明は、更に、質量%で、Nb:0.001〜0.1%、Ti:0.001〜0.1%、Zr:0.001〜0.1%、V:0.001〜0.1%、B:0.0001〜0.005%の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれかに記載の耐水素吸収性に優れた硫化水素環境用鋼材である。   The invention according to claim 4 further includes, in mass%, Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%, Zr: 0.001 to 0.1%, V: 0. It has excellent hydrogen absorption resistance according to any one of claims 1 to 3, characterized by containing one or more of 0.001 to 0.1% and B: 0.0001 to 0.005%. It is a steel material for hydrogen sulfide environment.

請求項5記載の発明は、ラインパイプ建造用材料として用いられることを特徴とする請求項1乃至4のいずれかに記載の耐水素吸収性に優れた硫化水素環境用鋼材である。   The invention according to claim 5 is the steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance according to any one of claims 1 to 4, which is used as a material for building a line pipe.

請求項6記載の発明は、硫化水素雰囲気に曝される鋼構造物であって、請求項1乃至4のいずれかに記載の鋼材を用いて建造されていることを特徴とする鋼構造物である。   Invention of Claim 6 is a steel structure exposed to a hydrogen sulfide atmosphere, Comprising: It is constructed using the steel material in any one of Claims 1 thru | or 4, It is a steel structure characterized by the above-mentioned. is there.

本発明の耐水素吸収性に優れた硫化水素環境用鋼材によると、硫化水素を含有する原油や天然ガス等を輸送するラインパイプ、或いは、圧力容器等として用いても、硫化水素雰囲気での耐水素吸収性に優れるため、水素誘起割れや硫化物応力腐食割れ等の水素脆化が発生しにくく、硫化水素を含有する雰囲気で使用されるラインパイプ、圧力容器等の鋼構造物の材料として好適に用いることができる。   According to the hydrogen sulfide environmental steel material having excellent hydrogen absorption resistance according to the present invention, even when used as a line pipe for transporting crude oil or natural gas containing hydrogen sulfide or a pressure vessel, it is resistant to hydrogen sulfide atmosphere. Because of its excellent hydrogen absorption, hydrogen embrittlement such as hydrogen induced cracking and sulfide stress corrosion cracking is unlikely to occur, and it is suitable as a material for steel structures such as line pipes and pressure vessels used in atmospheres containing hydrogen sulfide. Can be used.

また、本発明の鋼構造物は、硫化水素を含有する雰囲気での耐水素吸収性に優れるため、硫化水素を含有する原油や天然ガス等を輸送するラインパイプ、或いは、圧力容器等として用いても、水素誘起割れや硫化物応力腐食割れ等の水素脆化が発生しにくい。   Further, the steel structure of the present invention is excellent in hydrogen absorption resistance in an atmosphere containing hydrogen sulfide, so it is used as a line pipe for transporting crude oil or natural gas containing hydrogen sulfide, or a pressure vessel. However, hydrogen embrittlement such as hydrogen induced cracking and sulfide stress corrosion cracking is unlikely to occur.

以下、本発明を実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments.

本発明者らは、鋼材の耐水素脆化特性を向上させるには、水素脆化の根本原因である鋼材中への水素吸収を抑制すれば良いということに着目し、鋼材の耐水素脆化特性を向上させるための技術検討を行った。   In order to improve the hydrogen embrittlement resistance of steel materials, the present inventors focused on the fact that hydrogen absorption into the steel material, which is the root cause of hydrogen embrittlement, should be suppressed. A technical study was conducted to improve the characteristics.

硫化水素雰囲気に曝された鋼材表面では、腐食の反応として、水素イオンが水素ガスとなる電気化学反応が発生し、この中間過程で生成する吸着水素が鋼材中に吸収される。本発明者らは、鋼材に添加するCu、Sn、Sbの添加量(含有量)および添加量比(含有量比)を適切に制御すれば、水素イオンが水素ガスとなる電気化学反応が抑制され、鋼材中への水素吸収を大幅に抑制できることを知見した。このような鋼材中への水素吸収抑制効果は、硫化水素雰囲気において、Cu、Sn、Sbの化合物が鋼材表面に形成されて発現すると考えられる。すなわち、鋼材に添加するCu、Sn、Sbの添加量および添加量比を適切に制御することで、前記課題を解決できることを見出した。   On the surface of the steel material exposed to the hydrogen sulfide atmosphere, an electrochemical reaction in which hydrogen ions become hydrogen gas occurs as a corrosion reaction, and the adsorbed hydrogen generated in this intermediate process is absorbed into the steel material. When the inventors appropriately control the addition amount (content) and addition ratio (content ratio) of Cu, Sn, and Sb added to the steel material, the electrochemical reaction in which hydrogen ions become hydrogen gas is suppressed. As a result, it has been found that hydrogen absorption into the steel material can be significantly suppressed. It is considered that such an effect of suppressing the absorption of hydrogen into the steel material is manifested by forming a compound of Cu, Sn, and Sb on the surface of the steel material in a hydrogen sulfide atmosphere. That is, it has been found that the above-mentioned problems can be solved by appropriately controlling the addition amount and addition ratio of Cu, Sn, and Sb added to the steel material.

また、構造用材料として鋼材に必要な基本特性(機械的特性や溶接性)を確保させるためには、前記したCu、Sn、Sbに加えて、C、Si、Mn、Al、P、Sの添加量(含有量)を適切に調整することも必要である。以下に、これら必須添加元素の成分範囲の限定理由について説明する。尚、単位は全て%と記載するが、質量%のことを示す。次の必須添加元素以外の説明においても同様に%は質量%を示す。   Moreover, in order to ensure the basic characteristics (mechanical characteristics and weldability) necessary for steel as a structural material, in addition to the above-described Cu, Sn, Sb, C, Si, Mn, Al, P, S It is also necessary to adjust the addition amount (content) appropriately. The reason for limiting the component ranges of these essential additive elements will be described below. All units are described as%, but indicate mass%. In the following explanations other than the essential additive elements,% indicates mass% in the same manner.

・C:0.01〜0.20%
Cは、鋼材の強度確保のために必要な基本的添加元素である。鋼材として必要な強度を得るためには、少なくとも0.01%以上は含有させる必要がある。しかし、Cを過剰に含有させると靭性が劣化する。このようなCの添加による悪影響を発生させないためには、Cの含有量は多くても0.20%に抑える必要がある。よって、Cの含有量の範囲は0.01〜0.20%とした。尚、Cの含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上とするのが良い。また、Cの含有量の好ましい上限は0.19%であり、より好ましくは0.18%以下とするのが良い。
C: 0.01-0.20%
C is a basic additive element necessary for securing the strength of the steel material. In order to obtain the strength required as a steel material, it is necessary to contain at least 0.01% or more. However, when C is contained excessively, toughness deteriorates. In order not to cause such an adverse effect due to the addition of C, the C content needs to be suppressed to 0.20% at most. Therefore, the content range of C is set to 0.01 to 0.20%. In addition, the minimum with preferable content of C is 0.02%, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable content of C is 0.19%, More preferably, it is good to set it as 0.18% or less.

・Si:0.01〜0.50%
Siは、脱酸と強度確保のために必要な元素でもあり、少なくとも0.01%以上含有させないと構造用部材として用いる鋼材しての最低強度を確保できない。しかし、0.50%を超えて過剰に含有させると溶接性が劣化する。尚、Siの含有量の好ましい下限は0.03%であり、より好ましくは0.05%以上とするのが良い。また、Siの含有量の好ましい上限は0.45%であり、より好ましくは0.40%以下とするのが良い。
・ Si: 0.01-0.50%
Si is also an element necessary for deoxidation and ensuring strength, and unless it is contained at least 0.01% or more, the minimum strength as a steel material used as a structural member cannot be ensured. However, if the content exceeds 0.50%, the weldability deteriorates. In addition, the minimum with preferable content of Si is 0.03%, It is good to set it as 0.05% or more more preferably. Moreover, the upper limit with preferable content of Si is 0.45%, It is good to set it as 0.40% or less more preferably.

・Mn:0.1〜2.0%
MnもSiと同様に、脱酸および強度確保のために必要な元素であり、0.1%に満たないと構造用部材として用いる鋼材しての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。尚、Mnの含有量の好ましい下限は0.15%であり、より好ましくは0.2%以上とするのが良い。また、Mnの含有量の好ましい上限は1.9%であり、より好ましくは1.8%以下とするのが良い。
Mn: 0.1 to 2.0%
Like Si, Mn is an element necessary for deoxidation and securing strength, and if it is less than 0.1%, the minimum strength as a steel material used as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable content of Mn is 0.15%, More preferably, it is good to set it as 0.2% or more. Moreover, the upper limit with preferable Mn content is 1.9%, More preferably, it is good to set it as 1.8% or less.

・P:0.015%以下(0%を含まない)
Pは、鋼材の水素吸収量を増大させる元素であることに加えて、靭性も劣化させる元素であり、水素脆化の観点では好ましくない元素である。また、Pを過剰に含有させると溶接性も劣化する。よって、Pは極力含有されない方が好ましいが、許容される含有量の上限は0.015%である。Pの含有量のより好ましい上限は0.014%であり、更に好ましくは0.013%以下とするのが良い。しかし、工業的に鋼材中のPを0%にすることは困難である。
・ P: 0.015% or less (excluding 0%)
In addition to being an element that increases the amount of hydrogen absorbed by steel, P is an element that also deteriorates toughness, and is an undesirable element from the viewpoint of hydrogen embrittlement. Moreover, when P is contained excessively, weldability will also deteriorate. Therefore, it is preferable that P is not contained as much as possible, but the upper limit of the allowable content is 0.015%. The upper limit with more preferable content of P is 0.014%, More preferably, it is good to set it as 0.013% or less. However, it is difficult to make P in steel materials 0% industrially.

・S:0.03%以下(0%を含まない)
Sも含有量が多くなると靭性を劣化させる元素であり、水素脆化の観点では好ましくない元素である。また、Sを過剰に添加すると溶接性も劣化する。よって、Sは極力含有されない方が好ましいが、許容される含有量の上限は0.03%である。Sの含有量のより好ましい上限は0.025%であり、更に好ましくは0.02%以下とするのが良い。しかし、工業的に鋼材中のPを0%にすることは困難である。
S: 0.03% or less (excluding 0%)
S is an element that deteriorates toughness when the content is increased, and is not preferable from the viewpoint of hydrogen embrittlement. Moreover, when S is added excessively, weldability will also deteriorate. Therefore, it is preferable that S is not contained as much as possible, but the upper limit of the allowable content is 0.03%. The upper limit with more preferable content of S is 0.025%, More preferably, it is good to set it as 0.02% or less. However, it is difficult to make P in steel materials 0% industrially.

・Al:0.005〜0.10%
Alも前記したSi、Mnと同様に脱酸および強度確保のために必要な元素である。こうした作用を有効に発揮させるためには、0.005%以上含有させることが必要である。しかし、0.10%を超えて含有させると溶接性を害するため、Alの含有量は0.10%までとする。尚、Alの含有量の好ましい下限は0.008%であり、より好ましくは0.010%以上とするのが良い。また、Alの含有量の好ましい上限は0.09%であり、より好ましくは0.08%以下とするのが良い。
-Al: 0.005-0.10%
Al is also an element necessary for deoxidation and securing strength, like Si and Mn described above. In order to exhibit such an action effectively, it is necessary to contain 0.005% or more. However, if the content exceeds 0.10%, weldability is impaired, so the Al content is limited to 0.10%. In addition, the minimum with preferable content of Al is 0.008%, More preferably, it is good to set it as 0.010% or more. Moreover, the upper limit with preferable content of Al is 0.09%, More preferably, it is good to set it as 0.08% or less.

・Cu:0.05〜1.0%
Cuは、SnやSbとの共存により、鋼材中への水素吸収を抑制する効果を発揮する。このような水素吸収抑制効果を発揮させるためには、少なくとも0.05%以上含有させることが必要である。しかし、過剰に含有させると溶接性や熱間加工性が劣化させるので、Cuの含有量は1.0%以下とする必要がある。Cuの含有量の好ましい下限は0.06%であり、より好ましい下限は0.07%である。また、Cuの含有量の好ましい上限は0.95%であり、より好ましい上限は0.90%である。
Cu: 0.05 to 1.0%
Cu exhibits the effect of suppressing hydrogen absorption into the steel material by coexistence with Sn and Sb. In order to exhibit such an effect of suppressing hydrogen absorption, it is necessary to contain at least 0.05% or more. However, since excessive weldability deteriorates weldability and hot workability, the Cu content needs to be 1.0% or less. The minimum with preferable content of Cu is 0.06%, and a more preferable minimum is 0.07%. Moreover, the upper limit with preferable Cu content is 0.95%, and a more preferable upper limit is 0.90%.

・Sn:0.001〜0.050%、および/または、Sb:0.001〜0.050%
SnとSbは、Cuと共に適量含有させることにより、鋼材中への水素吸収を抑制する効果を発揮する。このような水素吸収抑制効果を発揮させるには、夫々0.001%以上含有させることが必要である。しかし、SnとSbは、過剰に含有させると逆に鋼材中への水素吸収を促進させてしまい、また、溶接性や熱間加工性が劣化することから、夫々0.050%以下の含有量とする必要がある。Sn、Sbは、含有量の好ましい下限は共に0.002%であり、より好ましい下限は0.003%である。また、含有量の好ましい上限は共に0.048%であり、より好ましい上限は0.045%である。
Sn: 0.001 to 0.050% and / or Sb: 0.001 to 0.050%
Sn and Sb exhibit an effect of suppressing hydrogen absorption into the steel material by being contained in appropriate amounts together with Cu. In order to exert such a hydrogen absorption suppressing effect, it is necessary to contain 0.001% or more of each. However, if Sn and Sb are contained excessively, the hydrogen absorption into the steel material is promoted conversely, and weldability and hot workability are deteriorated. Therefore, each content is 0.050% or less. It is necessary to. As for Sn and Sb, the minimum with preferable content is both 0.002%, and a more preferable minimum is 0.003%. Moreover, the upper limit with preferable content is 0.048% in both, and a more preferable upper limit is 0.045%.

・[Cu]/([Sn]+[Sb])が1.0〜30.0
鋼材を、硫化水素を含有する雰囲気で使用されるラインパイプ、圧力容器等の鋼構造物の材料として好適に用いるには、更にCuの含有量とSn+Sbの含有量の比を適切に調整する必要がある。これらの元素は硫化水素雰囲気において水素吸収の電気化学反応を抑制する皮膜を形成する元素であるが、[Cu]/([Sn]+[Sb])比が1.0に満たない場合には、Sn+Sb過剰の皮膜となって水素吸収の電気化学反応を抑制する効果が得られない。一方、[Cu]/([Sn]+[Sb])比が30.0を超えると、Cu過剰の皮膜となって同様に水素吸収の電気化学反応を抑制する効果が得られない。このような理由から、[Cu]/([Sn]+[Sb])比は1.0から30.0とすることが必要である。尚、[Cu]/([Sn]+[Sb])比のより好ましい下限は1.2であり、より好ましい上限は28.0である。尚、前式で[ ]は各元素の含有量(質量%)である。
[Cu] / ([Sn] + [Sb]) is 1.0 to 30.0
In order to suitably use steel as a material for steel structures such as line pipes and pressure vessels used in an atmosphere containing hydrogen sulfide, the ratio of Cu content to Sn + Sb content needs to be adjusted appropriately. There is. These elements form a film that suppresses the electrochemical reaction of hydrogen absorption in a hydrogen sulfide atmosphere. When the ratio of [Cu] / ([Sn] + [Sb]) is less than 1.0, , Sn + Sb excess film is not obtained, and the effect of suppressing the electrochemical reaction of hydrogen absorption cannot be obtained. On the other hand, when the [Cu] / ([Sn] + [Sb]) ratio exceeds 30.0, a Cu-excess film is formed and the effect of suppressing the electrochemical reaction of hydrogen absorption cannot be obtained. For this reason, the [Cu] / ([Sn] + [Sb]) ratio needs to be 1.0 to 30.0. The more preferable lower limit of the [Cu] / ([Sn] + [Sb]) ratio is 1.2, and the more preferable upper limit is 28.0. In the above formula, [] is the content (% by mass) of each element.

以上が、本発明の鋼材の必須添加元素の成分範囲の限定理由であり、残部はFeおよび不可避的不純物である。不可避的不純物としては、O、H等を挙げることができ、これらの元素は鋼材の諸特性を害さない程度で含有していても構わない。但し、これら不可避的不純物の合計含有量は、0.1%以下、好ましくは0.09%以下に抑えることによって、本発明による耐食性発現効果を極大化することができる。   The above is the reason for limiting the component range of the essential additive elements of the steel material of the present invention, and the balance is Fe and inevitable impurities. Inevitable impurities include O, H and the like, and these elements may be contained to the extent that they do not impair various properties of the steel material. However, by suppressing the total content of these inevitable impurities to 0.1% or less, preferably 0.09% or less, the corrosion resistance effect according to the present invention can be maximized.

また、本発明の鋼材に、以下に示す元素を含有すれば更に有効である。これら元素を含有させる場合の成分範囲の限定理由について次に説明する。   It is more effective if the steel material of the present invention contains the following elements. The reason for limiting the component range when these elements are contained will be described below.

・Mg:0.0005〜0.005%、Ca:0.0005〜0.010%、REM:0.0001〜0.020%
Mg、CaおよびREMは、硫化水素雰囲気において、鋼材が腐食溶解した際に、表面のpHを上昇させて、水素吸収の原因となる水素イオン濃度を低下させる作用を有しており、耐水素吸収特性向上に有効な元素である。こうした作用は、MgとCaは0.0005%以上、REMは0.0001%以上含有させることによって有効に発揮される。しかしながら、これらの元素を過剰に含有させると加工性と溶接性を共に劣化させてしまう。加工性と溶接性を劣化させないためには、含有させる場合の上限を、Mgは0.005%、Caは0.010%、REMは0.020%とする必要がある。MgとCaを含有させる場合のより好ましい下限は夫々0.0006%であり、更に好ましい下限は夫々0.0008%である。REMを含有させる場合のより好ましい下限は0.0002%であり、更に好ましい下限は0.0003%である。一方、Mgの含有量のより好ましい上限は0.0048%であり、更に好ましい上限は0.0045%である。Caの含有量のより好ましい上限は0.0098%であり、更に好ましい上限は0.0095%である。REMの含有量のより好ましい上限は0.019%であり、更に好ましい上限は0.018%である。
Mg: 0.0005-0.005%, Ca: 0.0005-0.010%, REM: 0.0001-0.020%
Mg, Ca, and REM have the effect of increasing the pH of the surface and lowering the hydrogen ion concentration that causes hydrogen absorption when the steel material is corroded and dissolved in a hydrogen sulfide atmosphere. It is an effective element for improving characteristics. Such an effect is effectively exhibited by containing 0.0005% or more of Mg and Ca and 0.0001% or more of REM. However, when these elements are contained excessively, both workability and weldability are deteriorated. In order not to deteriorate the workability and weldability, the upper limit of inclusion is required to be 0.005% for Mg, 0.010% for Ca, and 0.020% for REM. The more preferable lower limit in the case of containing Mg and Ca is 0.0006%, respectively, and the more preferable lower limit is 0.0008%. A more preferable lower limit in the case of containing REM is 0.0002%, and a further preferable lower limit is 0.0003%. On the other hand, the more preferable upper limit of the Mg content is 0.0048%, and the more preferable upper limit is 0.0045%. A more preferable upper limit of the Ca content is 0.0098%, and a more preferable upper limit is 0.0095%. The upper limit with more preferable content of REM is 0.019%, and a more preferable upper limit is 0.018%.

・Ni:0.01〜1.0%
Niは、フェライトに固溶してアノードの活性度を低下させることに加えて、鋼材表面に緻密な錆皮膜を形成する作用も有しており、水素吸収の反応を抑制する効果を発揮する。また、Niは母材靱性を向上させるのにも有効であり、更には、Cuによる赤熱脆性を防止するのにも必要な元素である。こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかし、含有量が過剰になると溶接性や熱間加工性が劣化することから、含有させる場合は1.0%以下とする。Niを含有させるときのより好ましい下限は0.02%であり、0.03%以上が更に好ましい。Niを含有させるときのより好ましい上限は0.95%であり、0.90%以下が更に好ましい。
Ni: 0.01-1.0%
Ni has a function of forming a dense rust film on the surface of the steel material in addition to lowering the activity of the anode by solid solution in ferrite and exerts an effect of suppressing a hydrogen absorption reaction. Ni is also effective in improving the toughness of the base material, and is an element necessary for preventing red heat embrittlement due to Cu. In order to exhibit such an effect, it is preferable to make it contain 0.01% or more. However, if the content is excessive, weldability and hot workability are deteriorated. The more preferable lower limit when Ni is contained is 0.02%, and more preferably 0.03% or more. A more preferable upper limit when Ni is contained is 0.95%, and more preferably 0.90% or less.

・Cr:0.01〜1.0%
Crは、フェライトに固溶して腐食反応を抑制するため、水素吸収の反応も抑制する効果を発揮する。これらの効果を発揮させるためには、0.01%以上含有させることが好ましいが、過剰に含有させると溶接性や熱間加工性を劣化させてしまう。このようなCr含有による悪影響を発現させないためには、含有量を1.0%以下とする必要がある。Crの含有量のより好ましい下限は0.03%であり、0.05%以上とすることが更に好ましい。Crの含有量のより好ましい上限は0.95%であり、0.90%以下とすることが更に好ましい。
・ Cr: 0.01-1.0%
Since Cr dissolves in ferrite and suppresses the corrosion reaction, it exhibits the effect of suppressing the hydrogen absorption reaction. In order to exhibit these effects, it is preferable to make it contain 0.01% or more, but if it contains excessively, weldability and hot workability will deteriorate. In order not to exert such adverse effects due to the Cr content, the content needs to be 1.0% or less. A more preferable lower limit of the Cr content is 0.03%, and more preferably 0.05% or more. The upper limit with more preferable content of Cr is 0.95%, and it is still more preferable to set it as 0.90% or less.

・Mo:0.01〜0.30%
Moも、NiやCrと同様に硫化水素雰囲気において腐食反応を抑制するため、水素吸収の反応も抑制する効果を発揮する。これらの効果を発揮させるためには、0.01%以上含有させることが好ましいが、過剰に含有させると溶接性や熱間加工性を劣化させてしまう。このようなMo含有による悪影響を発現させないためには、含有量を0.30%以下とする必要がある。Moの含有量のより好ましい下限は0.015%であり、0.02%以上とすることが更に好ましい。Moの含有量のより好ましい上限は0.28%であり、0.25%以下とすることが更に好ましい。
Mo: 0.01-0.30%
Since Mo also suppresses the corrosion reaction in the hydrogen sulfide atmosphere like Ni and Cr, it exhibits the effect of suppressing the reaction of hydrogen absorption. In order to exhibit these effects, it is preferable to make it contain 0.01% or more, but if it contains excessively, weldability and hot workability will deteriorate. In order not to exert such an adverse effect due to the Mo content, the content needs to be 0.30% or less. The minimum with more preferable content of Mo is 0.015%, and it is still more preferable to set it as 0.02% or more. The upper limit with more preferable content of Mo is 0.28%, and it is still more preferable to set it as 0.25% or less.

・Nb:0.001〜0.1%、Ti:0.001〜0.1%、Zr:0.001〜0.1%、V:0.001〜0.1%、B:0.0001〜0.005%
Nb、Ti、Zr、VおよびBは強度向上に有効な元素である。これらの元素を含有させて強度向上効果を発揮させるためには、Nb、Ti、Zr、Vの場合は0.001%以上、Bの場合は0.0001%以上含有させる必要がある。しかし、これらの元素を過剰に含有させると母材靭性が劣化するため、Nb、Ti、Zr、Vを含有させる場合には0.1%以下、Bを含有させる場合には0.005%以下とする必要がある。尚、Nb、Ti、Zr、Vを含有させる場合のより好ましい下限は0.002%であり、更に好ましい下限は0.003%である。また、Nb、Ti、Zr、Vを含有させる場合のより好ましい上限は0.095%であり、更に好ましい上限は0.090%である。Bを含有させる場合のより好ましい下限は0.0002%であり、更に好ましい下限は0.0003%である。また、Bを含有させる場合のより好ましい上限は0.0045%以下であり、更に好ましい上限は0.004%である。
Nb: 0.001-0.1%, Ti: 0.001-0.1%, Zr: 0.001-0.1%, V: 0.001-0.1%, B: 0.0001 ~ 0.005%
Nb, Ti, Zr, V and B are effective elements for improving the strength. In order to contain these elements and exhibit the effect of improving the strength, it is necessary to contain 0.001% or more in the case of Nb, Ti, Zr, or V, and 0.0001% or more in the case of B. However, when these elements are contained excessively, the base material toughness deteriorates. Therefore, when Nb, Ti, Zr, and V are contained, 0.1% or less, and when B is contained, 0.005% or less It is necessary to. In addition, the more preferable lower limit in the case of containing Nb, Ti, Zr, and V is 0.002%, and the more preferable lower limit is 0.003%. Moreover, the more preferable upper limit in the case of containing Nb, Ti, Zr, and V is 0.095%, and a more preferable upper limit is 0.090%. The more preferable lower limit in the case of containing B is 0.0002%, and the more preferable lower limit is 0.0003%. Moreover, the more preferable upper limit in the case of containing B is 0.0045% or less, and a more preferable upper limit is 0.004%.

本発明の耐水素吸収性に優れた硫化水素環境用鋼材を確実に製造するには、例えば、以下に説明する方法により製造すれば良い。   In order to reliably manufacture the hydrogen sulfide environmental steel material excellent in hydrogen absorption resistance according to the present invention, for example, it may be manufactured by the method described below.

まず、転炉または電気炉から取鍋に出鋼した溶鋼に対して、RH真空脱ガス装置を用いて、本発明で規定する成分組成に調整すると共に、温度調整をすることで二次精錬を行う。その後、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とすれば良い。尚、構造用材料として鋼材に必要な基本特性(機械的特性や溶接性)を確保するために、脱酸形式としてはキルド鋼を用いることが好ましく、より好ましくはAlキルド鋼を用いることが推奨される。   First, for the molten steel that is discharged from the converter or electric furnace to the ladle, the RH vacuum degassing device is used to adjust the component composition specified in the present invention, and the temperature is adjusted for secondary refining. Do. Thereafter, the steel ingot may be formed by a normal casting method such as a continuous casting method or an ingot-making method. In order to secure the basic characteristics (mechanical characteristics and weldability) necessary for steel as a structural material, it is preferable to use killed steel as the deoxidation type, and more preferably Al killed steel is recommended. Is done.

次いで、得られた鋼塊を1000〜1300℃の温度域に加熱した後、熱間圧延を行って、所望の寸法形状に加工することが好ましい。尚、熱間圧延の終了温度を650〜850℃に制御し、熱間圧延終了後から500℃までの冷却速度を0.1〜15℃/秒以下の範囲に制御することによって、所定の強度特性を得ることができる。   Subsequently, after heating the obtained steel ingot to 1000-1300 degreeC temperature range, it is preferable to hot-roll and process into a desired dimension shape. The end temperature of the hot rolling is controlled to 650 to 850 ° C., and the cooling rate from the end of the hot rolling to 500 ° C. is controlled within a range of 0.1 to 15 ° C./second or less to obtain a predetermined strength. Characteristics can be obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[供試材の作製]
表1および表2に示す種々の成分組成の鋼材を真空溶解炉により溶製し、20kgの鋼塊とした。得られた鋼塊を1150℃に加熱した後、熱間圧延を行って、板厚10mmの鋼素材とした。このとき、熱間圧延終了温度は650〜850℃の範囲、熱間圧延終了後から500℃までの冷却速度を0.1〜15℃/秒以下の範囲で適宜調整した。
[Production of test materials]
Steel materials having various component compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace to form a 20 kg steel ingot. The obtained steel ingot was heated to 1150 ° C. and then hot-rolled to obtain a steel material having a plate thickness of 10 mm. At this time, the hot rolling end temperature was appropriately adjusted in the range of 650 to 850 ° C., and the cooling rate from the end of hot rolling to 500 ° C. within the range of 0.1 to 15 ° C./second or less.

鋼素材より30×30×4(mm)の大きさの供試片を切り出し、全ての供試片の表面全体を湿式回転研磨機でSiC#600まで研磨し、更に水洗およびアセトン洗浄を施したものを試験に用いた。また、試験時に吊り下げるために供試片の端部には3mmφの吊り下げ孔を形成した。   A specimen having a size of 30 × 30 × 4 (mm) was cut out from the steel material, and the entire surface of all specimens was polished to SiC # 600 with a wet rotary grinder, and further washed with water and acetone. The one used for the test. In addition, a suspension hole of 3 mmφ was formed at the end of the specimen for suspension during the test.

[水素吸収試験方法]
硫化水素雰囲気における水素吸収試験を実施した。硫化水素ガスを通気した5%塩化ナトリウム+0.5%酢酸水溶液に供試片を浸漬後、供試片が吸収した水素量を測定した。尚、試験溶液の温度は30℃であり、供試片の浸漬時間は96時間である。また、通気する硫化水素ガスの流量は100mL/minとした。供試片の水溶液浸漬後の吸収水素量の測定は不活性ガス融解法により行った。
[Hydrogen absorption test method]
A hydrogen absorption test in a hydrogen sulfide atmosphere was performed. After immersing the specimen in 5% sodium chloride + 0.5% acetic acid aqueous solution in which hydrogen sulfide gas was passed, the amount of hydrogen absorbed by the specimen was measured. In addition, the temperature of a test solution is 30 degreeC, and the immersion time of a test piece is 96 hours. The flow rate of the hydrogen sulfide gas to be vented was 100 mL / min. The amount of absorbed hydrogen after immersion of the test piece in an aqueous solution was measured by an inert gas melting method.

[試験結果]
水素吸収試験の試験結果を表3に示す。評価はCu、SnおよびSbを含有しないNo.1の比較例の鋼材の測定結果を基準とし、測定された吸収水素量がNo.1の1/2以下で、10.0ppm以下のものを「○」、測定された吸収水素量がNo.1の1/4以下で、5.0ppm以下のものを「○〜◎」、測定された吸収水素量がNo.1の1/10以下で、2.0ppm以下のものを「◎」で示し、夫々耐水素吸収性に優れた硫化水素環境用鋼材であると評価した。
[Test results]
Table 3 shows the results of the hydrogen absorption test. The evaluation is No. containing no Cu, Sn and Sb. The amount of absorbed hydrogen was No. 1 based on the measurement result of the steel material of Comparative Example 1. No. 1 or less and 10.0 ppm or less is “◯”, and the measured absorbed hydrogen amount is No. 1. No. 1 or less and 5.0 ppm or less “◯ to ◎”, the measured absorbed hydrogen amount is No. 1. Those of 1/10 or less of 1 and 2.0 ppm or less are indicated by “◎” and evaluated as hydrogen sulfide environment steel materials excellent in hydrogen absorption resistance.

No.1〜No.7の供試片が吸収した鋼中水素量は、何れもが10.0ppmを超えており、耐水素吸収性が十分ではない。その理由は、No.1の供試片は、Cu、SnおよびSbを含有しないためであり、No.2並びにNo.6の供試片は、夫々P、Snの含有量が多すぎるためである。また、No.3並びにNo.4、の供試片は、夫々Cu、Snの含有量が少なすぎるためであり、No.4,5,7の供試片は、[Cu]/([Sn]+[Sb])から求められる値が適正範囲を外れるためである。その結果、鋼材表面に好ましい皮膜が形成されず、水素吸収抑制効果が不十分であったと考えられる。   No. 1-No. The amount of hydrogen in the steel absorbed by the specimen No. 7 exceeded 10.0 ppm, and the hydrogen absorption resistance was not sufficient. The reason is as follows. This is because the specimen No. 1 does not contain Cu, Sn and Sb. 2 and No. This is because the specimen No. 6 has too much P and Sn contents. No. 3 and no. This is because the specimens No. 4 and No. 4 have too little Cu and Sn contents, respectively. This is because the values obtained from [Cu] / ([Sn] + [Sb]) are out of the appropriate range for the test pieces of 4, 5, and 7. As a result, it is considered that a preferable film was not formed on the steel material surface, and the effect of suppressing hydrogen absorption was insufficient.

これに対し、本発明で規定する要件を満足するNo.8〜No.37の供試片が吸収した鋼中水素量は、何れもが10.0ppm以下であり、評価基準を満足し、耐水素吸収性に優れるという結果が得られた。これらの耐食性は、鋼材に添加するCu、Sn、Sbなどの添加量と添加量比を適切に制御することで、鋼材表面に好ましい形態の皮膜が形成されたと考えられる。このように、本発明で規定する要件を満足する鋼材は、耐水素吸収特性が優れており、硫化水素雰囲気において水素脆化特性に優れる構造用部材として好適に用いることができる。   On the other hand, No. 1 satisfying the requirements defined in the present invention. 8-No. The amount of hydrogen in the steel absorbed by the 37 specimens was 10.0 ppm or less, satisfying the evaluation criteria, and the result that the hydrogen absorption resistance was excellent was obtained. These corrosion resistances are considered that the film of the preferable form was formed in the steel material surface by controlling appropriately the addition amount and addition ratio of Cu, Sn, Sb, etc. which are added to steel materials. As described above, a steel material that satisfies the requirements defined in the present invention has excellent hydrogen absorption resistance and can be suitably used as a structural member having excellent hydrogen embrittlement characteristics in a hydrogen sulfide atmosphere.

Figure 2013185197
Figure 2013185197

Figure 2013185197
Figure 2013185197

Figure 2013185197
Figure 2013185197

Claims (6)

質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.1〜2.0%、P:0.015%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Al:0.005〜0.10%、Cu:0.05〜1.0%を含有すると共に、Sn:0.001〜0.050%、および/または、Sb:0.001〜0.050%を含有し、残部がFeおよび不可避的不純物からなり、
[Cu]/([Sn]+[Sb])から求められる値が1.0〜30.0であることを特徴とする耐水素吸収性に優れた硫化水素環境用鋼材。
但し、上式で[ ]は各元素の含有量(質量%)である。
In mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.1 to 2.0%, P: 0.015% or less (excluding 0%) ), S: 0.03% or less (excluding 0%), Al: 0.005 to 0.10%, Cu: 0.05 to 1.0%, and Sn: 0.001 to 0 0.050% and / or Sb: 0.001 to 0.050%, with the balance being Fe and inevitable impurities,
A steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance, wherein a value obtained from [Cu] / ([Sn] + [Sb]) is 1.0 to 30.0.
However, in the above formula, [] is the content (% by mass) of each element.
更に、質量%で、Mg:0.0005〜0.005%、Ca:0.0005〜0.010%、REM:0.0001〜0.020%の1種または2種以上を含有する請求項1記載の耐水素吸収性に優れた硫化水素環境用鋼材。   Furthermore, it contains one or more of Mg: 0.0005 to 0.005%, Ca: 0.0005 to 0.010%, and REM: 0.0001 to 0.020% in mass%. The steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance according to 1. 更に、質量%で、Ni:0.01〜1.0%、Cr:0.01〜1.0%、Mo:0.01〜0.30%の1種または2種以上を含有する請求項1または2記載の耐水素吸収性に優れた硫化水素環境用鋼材。   Furthermore, it contains one or more of Ni: 0.01 to 1.0%, Cr: 0.01 to 1.0%, and Mo: 0.01 to 0.30% in mass%. The steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance according to 1 or 2. 更に、質量%で、Nb:0.001〜0.1%、Ti:0.001〜0.1%、Zr:0.001〜0.1%、V:0.001〜0.1%、B:0.0001〜0.005%の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれかに記載の耐水素吸収性に優れた硫化水素環境用鋼材。   Furthermore, by mass%, Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%, Zr: 0.001 to 0.1%, V: 0.001 to 0.1%, B: One or two or more of 0.0001 to 0.005% is contained, The steel material for hydrogen sulfide environment excellent in hydrogen absorption resistance according to any one of claims 1 to 3. ラインパイプ建造用材料として用いられることを特徴とする請求項1乃至4のいずれかに記載の耐水素吸収性に優れた硫化水素環境用鋼材。   The steel material for hydrogen sulfide environment having excellent hydrogen absorption resistance according to any one of claims 1 to 4, wherein the steel material is excellent in hydrogen absorption resistance. 硫化水素雰囲気に曝される鋼構造物であって、請求項1乃至4のいずれかに記載の鋼材を用いて建造されていることを特徴とする鋼構造物。   A steel structure exposed to a hydrogen sulfide atmosphere, wherein the steel structure is constructed using the steel material according to any one of claims 1 to 4.
JP2012050612A 2012-03-07 2012-03-07 Steel and steel structure for hydrogen sulfide environment with excellent hydrogen absorption resistance Expired - Fee Related JP5869918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050612A JP5869918B2 (en) 2012-03-07 2012-03-07 Steel and steel structure for hydrogen sulfide environment with excellent hydrogen absorption resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050612A JP5869918B2 (en) 2012-03-07 2012-03-07 Steel and steel structure for hydrogen sulfide environment with excellent hydrogen absorption resistance

Publications (2)

Publication Number Publication Date
JP2013185197A true JP2013185197A (en) 2013-09-19
JP5869918B2 JP5869918B2 (en) 2016-02-24

Family

ID=49386902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050612A Expired - Fee Related JP5869918B2 (en) 2012-03-07 2012-03-07 Steel and steel structure for hydrogen sulfide environment with excellent hydrogen absorption resistance

Country Status (1)

Country Link
JP (1) JP5869918B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218584A (en) * 2018-06-18 2019-12-26 日本製鉄株式会社 bolt
CN113637891A (en) * 2020-04-27 2021-11-12 宝山钢铁股份有限公司 Alkali-brittleness-resistant low alloy steel, plate, welded pipe, seamless pipe and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274379A (en) * 2007-05-02 2008-11-13 Kobe Steel Ltd Steel sheet having excellent pit resistance, and method for producing the same
JP2009120957A (en) * 2002-06-19 2009-06-04 Nippon Steel Corp Steel for crude oil tank, production method thereof, crude oil tank and method for preventing corrosion thereof
JP2010216005A (en) * 2008-12-24 2010-09-30 Jfe Steel Corp Corrosion-resistant steel material for crude oil tanker
JP2011246793A (en) * 2010-05-31 2011-12-08 Jfe Steel Corp Method for manufacturing welded steel pipe for oil well superior in pipe expanding property and low temperature toughness, and welded steel pipe
JP2012001809A (en) * 2010-05-18 2012-01-05 Jfe Steel Corp Welded joint having excellent corrosion resistance and crude oil tank
JP2012012697A (en) * 2010-05-31 2012-01-19 Jfe Steel Corp Electric resistance welded steel pipe for oil well excellent in pipe expandability and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120957A (en) * 2002-06-19 2009-06-04 Nippon Steel Corp Steel for crude oil tank, production method thereof, crude oil tank and method for preventing corrosion thereof
JP2008274379A (en) * 2007-05-02 2008-11-13 Kobe Steel Ltd Steel sheet having excellent pit resistance, and method for producing the same
JP2010216005A (en) * 2008-12-24 2010-09-30 Jfe Steel Corp Corrosion-resistant steel material for crude oil tanker
JP2012001809A (en) * 2010-05-18 2012-01-05 Jfe Steel Corp Welded joint having excellent corrosion resistance and crude oil tank
JP2011246793A (en) * 2010-05-31 2011-12-08 Jfe Steel Corp Method for manufacturing welded steel pipe for oil well superior in pipe expanding property and low temperature toughness, and welded steel pipe
JP2012012697A (en) * 2010-05-31 2012-01-19 Jfe Steel Corp Electric resistance welded steel pipe for oil well excellent in pipe expandability and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218584A (en) * 2018-06-18 2019-12-26 日本製鉄株式会社 bolt
JP7155644B2 (en) 2018-06-18 2022-10-19 日本製鉄株式会社 bolt
CN113637891A (en) * 2020-04-27 2021-11-12 宝山钢铁股份有限公司 Alkali-brittleness-resistant low alloy steel, plate, welded pipe, seamless pipe and manufacturing method thereof
CN113637891B (en) * 2020-04-27 2022-07-19 宝山钢铁股份有限公司 Alkali-brittleness-resistant low alloy steel, plate, welded pipe and seamless pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP5869918B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
CA2830155C (en) Carburization resistant metal material
JP5984213B2 (en) Austenitic Fe-Ni-Cr alloy for cladding tubes with excellent weldability
JP2013129904A (en) Steel material excellent in alcohol-corrosion resistance
JP6241555B2 (en) Steel for ethanol storage and transport equipment
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
TWI482866B (en) Cost-effective ferritic stainless steel
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP5869918B2 (en) Steel and steel structure for hydrogen sulfide environment with excellent hydrogen absorption resistance
JP6105264B2 (en) Steel material with excellent resistance to alcohol corrosion
JP6113475B2 (en) Steel material with excellent resistance to alcohol corrosion
JP5836619B2 (en) Duplex stainless steel with good acid resistance
JP4709568B2 (en) UO steel pipe with excellent sour resistance
JP5962869B2 (en) Steel material excellent in alcohol pitting resistance and alcohol SCC resistance
JP5999196B2 (en) Steel material excellent in alcohol pitting resistance and alcohol SCC resistance
JP6200851B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP6288397B1 (en) Austenitic stainless steel
KR101505303B1 (en) Steel sheet and method of manufacturing the same
JPH01219144A (en) Highly corrosion-resistant two-phase stainless steel excellent in hot workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160108

R150 Certificate of patent or registration of utility model

Ref document number: 5869918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees