JP2013185150A - Polystyrene supported pyridine bisoxazoline derivative-calcium catalyst - Google Patents

Polystyrene supported pyridine bisoxazoline derivative-calcium catalyst Download PDF

Info

Publication number
JP2013185150A
JP2013185150A JP2012070251A JP2012070251A JP2013185150A JP 2013185150 A JP2013185150 A JP 2013185150A JP 2012070251 A JP2012070251 A JP 2012070251A JP 2012070251 A JP2012070251 A JP 2012070251A JP 2013185150 A JP2013185150 A JP 2013185150A
Authority
JP
Japan
Prior art keywords
reaction
ligand
calcium
pybox
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012070251A
Other languages
Japanese (ja)
Other versions
JP6011769B2 (en
Inventor
Osamu Kobayashi
修 小林
Takahiro Yamashita
恭弘 山下
Satoru Tsubosato
哲 坪郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Chemical Industries Co Ltd
Original Assignee
Tokyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Kogyo Co Ltd filed Critical Tokyo Kasei Kogyo Co Ltd
Priority to JP2012070251A priority Critical patent/JP6011769B2/en
Publication of JP2013185150A publication Critical patent/JP2013185150A/en
Application granted granted Critical
Publication of JP6011769B2 publication Critical patent/JP6011769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To immobilize a complex to which a chiral calcium pyridine bisoxazoline derivative is coordinated.SOLUTION: As shown in chemical reaction formula (11), CaXis reacted with a pyridine bisoxazoline derivative having a polystyrene bridged structure prepared by mutually mixing at an arbitrary ratio and at random (4S,4'S,5S,5'S)-2,2' (4-vinylpyridine-2,6-diyl) bis(4,5-diphenyl-4,5-dihydroxazole), styrene and divinylbenzene (including ethyl vinyl benzene).

Description

この発明は中性のキラル配位子であるピリジンビスオキサゾリン誘導体(以下、Pyboxという)をポリスチレン樹脂に担持させたもの(以下、PS−Pyboxという)に、カルシウム塩(CaX・nHO)を導入した錯体で、有機合成の属する分野において効率的な不斉合成に供するものである。In this invention, a pyridine bisoxazoline derivative (hereinafter referred to as Pybox) which is a neutral chiral ligand is supported on a polystyrene resin (hereinafter referred to as PS-Pybox), and a calcium salt (CaX 2 · nH 2 O). This complex is used for efficient asymmetric synthesis in the field of organic synthesis.

医薬、農薬、あるいは強誘電性液晶を始めとする機能性材料の研究、開発、製造において光学活性化合物の需要は高まりつつある。目的とする光学活性化合物の入手法として光学分割法、キラルプール法、不斉合成法などが用いられ、中でも効率がよい入手法としてキラル配位子と重金属類から成る錯体を触媒として用いる不斉合成法が挙げられる。このキラル配位子と重金属類を組み合わせて用いる不斉合成法の成功例は数多く報告されており、実用に供されているものもある。  There is an increasing demand for optically active compounds in research, development and production of functional materials such as pharmaceuticals, agricultural chemicals, and ferroelectric liquid crystals. Optical resolution methods, chiral pool methods, asymmetric synthesis methods, etc. are used as methods for obtaining the target optically active compounds. Among them, asymmetry using a complex composed of a chiral ligand and heavy metals as a catalyst is an efficient method. Examples include synthesis methods. Many successful examples of asymmetric synthesis using this chiral ligand in combination with heavy metals have been reported, and some have been put into practical use.

一方、第2属元素を用いた有機合成反応は、Grignard試薬に代表されるマグネシウムを用いた反応はよく知られているが、ベリリウムおよびマグネシウムを除いた安定金属種(Ca,Sr,Ba)、いわゆるアルカリ土類金属種については、その報告例は限られており、とりわけエナンチオ選択的な合成例となると非常に少ない。エナンチオ選択性を発現させるため、各種キラルな配位子が検討されている。  On the other hand, organic synthesis reactions using Group 2 elements are well known reactions using magnesium typified by Grignard reagents, but stable metal species excluding beryllium and magnesium (Ca, Sr, Ba), Regarding so-called alkaline earth metal species, there are only a limited number of reports, and in particular, there are very few examples of enantioselective synthesis. Various chiral ligands have been studied to develop enantioselectivity.

最初の成功例は、ジイソプロポキシバリウムBa(OPr)とキラルなビナフチル型配位子により調製されるバリウム錯体を触媒として用いたアルデヒドとケトンのアルドール反応であり、1998年に報告された(非特許文献1)。エナンチオ選択性は50〜70ee%である。さらにキラルなヒドロベンゾインのジアルコキシドとカルシウムイオンから調製される錯体を触媒として用いた不斉アルドール反応が開発され、エナンチオ選択性は15〜91ee%となった(非特許文献2)。これら反応では、アルデヒドとケトンを直接交差アルドール反応させているため、必ずしも生成物が熱的に有利に生成する条件にはならない。また交差アルドール化合物を収率よく得るには、活性プロトンを持たない3級アルキル基や、シクロヘキシル基などのかさ高い置換基を持つアルデヒドを用いる必要がある。エナンチオ選択性も、かさ高い置換基を用いた場合に良い結果が得られている。しかし一方で、立体障害の少ないアルデヒドに適用した場合には自己縮合反応が進行する、古典的アルドール反応の特徴ともいえる問題点が指摘されている。The first successful example is an aldol reaction of an aldehyde and a ketone, catalyzed by a barium complex prepared with diisopropoxybarium Ba (O i Pr) 2 and a chiral binaphthyl-type ligand, reported in 1998. (Non-Patent Document 1). The enantioselectivity is 50-70 ee%. Furthermore, an asymmetric aldol reaction was developed using a catalyst prepared from a chiral hydrobenzoin dialkoxide and a calcium ion as a catalyst, and the enantioselectivity was 15 to 91 ee% (Non-patent Document 2). In these reactions, an aldehyde and a ketone are directly subjected to a cross-aldol reaction, so that the product is not necessarily in a condition that the product is thermally favorably formed. In order to obtain a crossed aldol compound in a high yield, it is necessary to use a tertiary alkyl group having no active proton or an aldehyde having a bulky substituent such as a cyclohexyl group. Enantioselectivity is also good when bulky substituents are used. However, on the other hand, a problem that can be said to be a characteristic of the classic aldol reaction has been pointed out, in which the self-condensation reaction proceeds when applied to an aldehyde with little steric hindrance.

1,3−ジカルボニル化合物や、イミノグリシン誘導体では、安定なエノールが形成することから、これら基質に対するα,β−不飽和化合物の不斉1,4−付加反応が多数報告されている。キラルなBINOLにカリウムtert−ブトキシドを作用させた後、塩化カルシウムで金属交換すると、キラルBINOLのカルシウムジアルコキシドが調製される。このキラルBINOL−Ca錯体は、1,3−ジカルボニル化合物とα,β−不飽和ケトンの不斉1,4−付加反応の触媒になり、相当する1,4−付加生成物を与える(非特許文献3)。反応収率は60〜90%程度と良好だが、エナンチオ選択性は0〜88ee%であり、不斉誘導については基質依存性が高く、これが問題点として指摘されている。  Since 1,3-dicarbonyl compounds and iminoglycine derivatives form stable enols, many asymmetric 1,4-addition reactions of α, β-unsaturated compounds to these substrates have been reported. Chiral BINOL calcium dialkoxide is prepared by reacting chiral BINOL with potassium tert-butoxide followed by metal exchange with calcium chloride. This chiral BINOL-Ca complex catalyzes an asymmetric 1,4-addition reaction between a 1,3-dicarbonyl compound and an α, β-unsaturated ketone to give the corresponding 1,4-addition product (non- Patent Document 3). Although the reaction yield is as good as about 60 to 90%, the enantioselectivity is 0 to 88ee%, and the asymmetric induction is highly substrate-dependent, which has been pointed out as a problem.

ジイソプロポキシストロンチウムSr(OPr)とキラルなジスルホンアミド配位子の組み合わせでは、アルコール交換によりストロンチウムにアミド部位がイオン結合した錯体を形成することが示唆されている(非特許文献4)。そして、このキラル錯体のストロンチウムは、1,3−ジカルボニル化合物のカルボニル基と配位結合を形成し、1,3−ジカルボニル化合物を活性化する。活性化されたカルボニル化合物は、α,β−不飽和化合物との不斉1,4−付加反応が速やかに起こる。不斉誘導は90ee%以上を示す場合が多く、不飽和化合物の構造に依存することなく、高い不斉誘導を導くことができる。It has been suggested that a combination of diisopropoxystrontium Sr (O i Pr) 2 and a chiral disulfonamide ligand forms a complex in which the amide moiety is ion-bonded to strontium by alcohol exchange (Non-patent Document 4). . And strontium of this chiral complex forms a coordination bond with the carbonyl group of the 1,3-dicarbonyl compound, and activates the 1,3-dicarbonyl compound. The activated carbonyl compound rapidly undergoes an asymmetric 1,4-addition reaction with the α, β-unsaturated compound. Asymmetric induction often shows 90ee% or more, and high asymmetric induction can be led without depending on the structure of the unsaturated compound.

ビスオキサゾリン骨格を持つキラル配位子(以下、Boxという)とアルカリ土類金属アルコキシドの組み合わせで得られるキラル錯体は、イミノグリシン誘導体とα,β−不飽和化合物の不斉1,4−付加反応の触媒として機能する(非特許文献5、特許文献1)。反応収率はCa、Sr、Baいずれの金属を用いても良好である。一方、エナンチオ選択性についてはCaを用いたときにもっとも良好であり、Sr、Baと原子番号が大きくなるに従って選択性は大きく減少する。これは、Box配位子の配位サイトの空間に対し、Caの原子サイズがちょうど適合して、良好な不斉場を形成するのに対し、SrとBaでは原子のサイズが配位サイトに対して大きいため、金属と配位サイトとの間で十分な配位結合距離が得られなくなる。このため、十分な不斉場を形成することができず、不斉誘導の減少につながったものと推定されている(非特許文献6)。Box配位子とCa(OPr)の反応では、Box配位子とCa金属との間にCa−Nイオン結合とCa−N配位結合がそれぞれ形成される。このことは、Ca(OPr)がBox配位子の架橋メチレン上の活性プロトンを引き抜くだけの塩基性を有していることを示唆している。A chiral complex obtained by combining a chiral ligand having a bisoxazoline skeleton (hereinafter referred to as Box) and an alkaline earth metal alkoxide is an asymmetric 1,4-addition reaction between an iminoglycine derivative and an α, β-unsaturated compound. (Non-patent document 5, Patent document 1). The reaction yield is good even when any metal of Ca, Sr, and Ba is used. On the other hand, the enantioselectivity is best when Ca is used, and the selectivity decreases greatly as the Sr, Ba and atomic number increase. This is because the atomic size of Ca just fits the space of the coordination site of the Box ligand and forms a good asymmetric field, whereas in Sr and Ba, the atomic size is smaller than the coordination site. Therefore, a sufficient coordination bond distance cannot be obtained between the metal and the coordination site. For this reason, it is presumed that a sufficient asymmetric field cannot be formed, leading to a decrease in asymmetric induction (Non-patent Document 6). In the reaction between the Box ligand and Ca (O i Pr) 2 , a Ca—N ion bond and a Ca—N coordination bond are formed between the Box ligand and the Ca metal, respectively. This suggests that Ca (O i Pr) 2 is basic enough to draw active protons on the bridging methylene of the Box ligand.

上記のようなキラル配位子−Ca錯体において、カルシウムはルイス酸として機能している。一方で、キラル配位子がもつアルコキシドやアミド部位は、触媒反応においてブロンステッド塩基として働いているため、カルシウムはルイス酸としての効果を十分に発揮できていないと考えられる。一般に、アルカリ土類金属種は電気陰性度が低く、その金属アルコキシドは強塩基性を示す。また配位サイトを多くもつことから、これら配位サイトと配位結合が可能な中性のキラル配位子を設計すれば、より高い触媒活性が得られると期待される。この用件を満たすには、中性配位子と十分な配位結合が形成できるだけのルイス酸性を有する金属種を用いることが要求される。  In the above chiral ligand-Ca complex, calcium functions as a Lewis acid. On the other hand, since the alkoxide or amide moiety of the chiral ligand functions as a Bronsted base in the catalytic reaction, it is considered that calcium cannot sufficiently exhibit the effect as a Lewis acid. In general, alkaline earth metal species have low electronegativity and their metal alkoxides are strongly basic. Furthermore, since it has many coordination sites, it is expected that higher catalytic activity can be obtained by designing neutral chiral ligands that can coordinate with these coordination sites. In order to satisfy this requirement, it is required to use a metal species having Lewis acidity that can form a sufficient coordination bond with a neutral ligand.

このような知見から、中性配位子であるPyboxと多数の配位サイトを有するカルシウムを組合せた触媒システムが検討された(非特許文献7、特許文献2)。このシステムではカルシウムジアルコキシドを用いることで、アルコキシドがブロンステッド塩基として働き、さらにPybox配位子にはカルシウムが配位結合することで不斉反応場が形成される。このシステムにより、1,3−ジカルボニル化合物とニトロオレフィンとの付加反応が、高いエナンチオ選択性で行われている。この触媒システムでは、Ca−ビスアリロキシドが高い触媒活性を示す。また、Pybox配位子を用いた場合のほうが、用いない場合に比べて反応収率が高い。これは、中性配位子であるPyboxにより、カルシウムアルコキシドがより活性化されたことを示唆している。この反応システムでは、N−Boc−イミン誘導体とのマーニッヒ反応(非特許文献8)や、イミノグリシン誘導体を用いた不斉1,4−付加反応(非特許文献9)も報告されている。  From such knowledge, a catalyst system in which Pybox, which is a neutral ligand, and calcium having a large number of coordination sites are combined was examined (Non-patent Document 7, Patent Document 2). In this system, by using calcium dialkoxide, the alkoxide acts as a Bronsted base, and an asymmetric reaction field is formed when calcium is coordinated to the Pybox ligand. With this system, the addition reaction between a 1,3-dicarbonyl compound and a nitroolefin is performed with high enantioselectivity. In this catalyst system, Ca-bisallyloxide exhibits high catalytic activity. Moreover, the reaction yield is higher when the Pybox ligand is used than when it is not used. This suggests that the calcium alkoxide was more activated by the neutral ligand Pybox. In this reaction system, a Mannich reaction with an N-Boc-imine derivative (Non-patent Document 8) and an asymmetric 1,4-addition reaction using an iminoglycine derivative (Non-patent Document 9) have also been reported.

アルカリ土類金属のなかでも、カルシウムは自然界に多く存在し、毒性も低いため有機合成に応用できれば非常に有用な手法となる。とりわけ塩化カルシウムは安価で入手も容易で、非常に扱いやすい化学種である。しかしながら、塩化カルシウムを用いた合成例は非常に限られている(非特許文献10)。  Among alkaline earth metals, calcium is abundant in nature and has low toxicity, so it can be a very useful technique if it can be applied to organic synthesis. In particular, calcium chloride is a chemical species that is inexpensive, easily available, and very easy to handle. However, synthesis examples using calcium chloride are very limited (Non-Patent Document 10).

塩化カルシウムを用いた有機合成反応例として、エノールシリルエーテルとアルデヒドのアルドール反応(非特許文献11)、アルデヒドと1級アミン、ジエチルホスファイトの3成分の縮合反応(非特許文献12)が挙げられる。興味深いことにこれら2つの反応において、塩化カルシウムのクロルイオンがルイス塩基として働いている。  Examples of organic synthesis reactions using calcium chloride include an aldol reaction between an enol silyl ether and an aldehyde (Non-Patent Document 11), and a three-component condensation reaction of an aldehyde with a primary amine and diethyl phosphite (Non-Patent Document 12). . Interestingly, in these two reactions, the chloride ion of calcium chloride serves as the Lewis base.

不斉触媒反応は、上記したようにアルカリ土類金属などの重金属類を用いない反応を開発することで、環境負荷を大いに減少させることに成功している。一方、廃棄物を減らす観点から反応触媒を固定化することで固体触媒システムとし、触媒回収や再利用する技術への応用が数多く考案されている。こうした技術は古くは活性炭や無機物に金属を直接固定化させることで達成されてきたが、近年では有機高分子や無機高分子などを用いる方法が広く研究されている。  As described above, the asymmetric catalytic reaction has succeeded in greatly reducing the environmental load by developing a reaction that does not use heavy metals such as alkaline earth metals. On the other hand, from the viewpoint of reducing waste, many applications have been devised for solid catalyst system by immobilizing a reaction catalyst to recover and reuse the catalyst. In the past, such techniques have been achieved by directly immobilizing metals on activated carbon or inorganic substances, but in recent years, methods using organic polymers or inorganic polymers have been widely studied.

シリカゲルやポリスチレンは、もっとも広く用いられている固定化担体である。シリカゲルは表面に水酸基が多数存在しているため、これら水酸基からリンカーを介してキラル配位子を導入することでキラル固相担体が得られる。一方、ポリスチレンでは一般に、スチレンと配位サイト部位を有するスチレン誘導体を任意の割合で重合させることで合成される。金属を固定化するため、さまざまな金属配位サイトを有する基質がポリスチレンに導入されている。特にキラル配位子を導入することで不斉合成への利用が考えられるため、さまざまな種類のキラル配位子を導入した例が多数報告されている。特にPyboxに代表されるビスオキサゾリン類の配位子は、平面分子であり化学的にも安定なため、ポリスチレンに導入した例も多いことから、多数の固体触媒システムが考案されている。しかし、組み合わされる金属種についてはYb(非特許文献13)、Ru(非特許文献14−15)、Cu(非特許文献16−17)、Er(非特許文献18)などの重金属類であり、アルカリ土類金属を導入した例は報告されていない。  Silica gel and polystyrene are the most widely used immobilization carriers. Since silica gel has a large number of hydroxyl groups on its surface, a chiral solid phase carrier can be obtained by introducing a chiral ligand from these hydroxyl groups via a linker. On the other hand, in general, polystyrene is synthesized by polymerizing styrene and a styrene derivative having a coordination site site at an arbitrary ratio. In order to immobilize metals, substrates having various metal coordination sites have been introduced into polystyrene. In particular, introduction of chiral ligands can be considered for use in asymmetric synthesis, and many examples of introducing various types of chiral ligands have been reported. In particular, since the ligands of bisoxazolines represented by Pybox are planar molecules and are chemically stable, there are many examples of introducing them into polystyrene, and many solid catalyst systems have been devised. However, the metal species to be combined are heavy metals such as Yb (Non-Patent Document 13), Ru (Non-Patent Document 14-15), Cu (Non-Patent Document 16-17), Er (Non-Patent Document 18), No examples of introducing alkaline earth metals have been reported.

特開2008−253987.JP2008-253987. 特開2010−207786.JP2010-207786.

Yoichi M.A.Yamada,M.Shibasaki,Tetrahedron Lett.1998,39,5561−5564. T.Suzuki,N.Yamagiwa,Y.Matsuo,S.Sakamoto,K.Yamaguchi,M,Shibasaki,R.Noyori,Tetrahedron Lett.2001,42,4669−4671. G.Kumaraswamy,M.N.Sastry,N.Jena,Tetrahedron.Lett.2001,42,8515−8517. M.Agostinho,S.Kobayashi,J.Am.Chem.Soc.2008,130,2430−2431. S.Saito,T.Tsubogo,S.Kobayashi,J.Am.Chem.Soc.2007,129,5364−5365. T.Tsubogo,S.Saito,K.Seki,Y.Yamashita,S.Kobayashi,J.Am.Chem.Soc.2008,130,13321−13332. T.Tsubogo,Y.Yamashita,S.Kobayashi,Angew.Chem.Int.Ed.2009,48,9117−9120. T.Poisson,T.Tsubogo,Y.Yamashita,S.Kobayashi,J.Org.Chem.2010,75,963−965. T.Tsubogo,Y.Kano,K.Ikemoto,Y.Yamashita,S.Kobayashi,Tetrahedron:Asymmetry 2010,21,1221−1225. S.Harder,Chem.Rev,3852−3876. K.Miura,T.Nakagawa,A.Hosomi,J.Am.Chem.Soc.2002,124,536−537. B.Kaboudin,H.Zahedi,Chem.Lett.2008,37,540−541. L.Stina,L.Serghey,J.Christina,M.Christina,Organic Lett.2003,5,3663−3665.

Figure 2013185150
Figure 2013185150
Figure 2013185150
M.Alessandro,O.Simonetta,P.Dario,S.Piero,Tetrahedron:Asymmetry 2004,15,3233−3244. W.Avi,H.Baruch,P.Moshe,J.Org.Chem.2005,70,4556−4559. N.Madhavan,W.Sommer,M.Weck,J.Mol.Catal.A:Chem.2011,334,1−7. Yoichi M. A. Yamada, M .; Shibasaki, Tetrahedron Lett. 1998, 39, 5561-5564. T. T. et al. Suzuki, N .; Yamagiwa, Y. et al. Matsuo, S .; Sakamoto, K .; Yamaguchi, M, Shibasaki, R .; Noyori, Tetrahedron Lett. 2001, 42, 4669-4671. G. Kumaraswamy, M .; N. Sastry, N .; Jena, Tetrahedron. Lett. 2001, 42, 8515-8517. M.M. Agostinho, S .; Kobayashi, J. et al. Am. Chem. Soc. 2008, 130, 2430-2431. S. Saito, T .; Tsubogo, S .; Kobayashi, J. et al. Am. Chem. Soc. 2007, 129, 5364-5365. T. T. et al. Tsubogo, S .; Saito, K .; Seki, Y .; Yamashita, S .; Kobayashi, J. et al. Am. Chem. Soc. 2008, 130, 13321-13332. T. T. et al. Tsubogo, Y .; Yamashita, S .; Kobayashi, Angew. Chem. Int. Ed. 2009, 48, 9117-9120. T. T. et al. Poisson, T.M. Tsubogo, Y .; Yamashita, S .; Kobayashi, J. et al. Org. Chem. 2010, 75, 963-965. T. T. et al. Tsubogo, Y .; Kano, K .; Ikemoto, Y. et al. Yamashita, S .; Kobayashi, Tetrahedron: Asymmetry 2010, 21, 1221-1225. S. Harder, Chem. Rev, 3852-3876. K. Miura, T .; Nakagawa, A .; Hosomi, J. et al. Am. Chem. Soc. 2002, 124, 536-537. B. Kaboudin, H .; Zahedi, Chem. Lett. 2008, 37, 540-541. L. Stina, L .; Sergey, J .; Christina, M .; Christina, Organic Lett. 2003, 5, 3663-3665.
Figure 2013185150
Figure 2013185150
Figure 2013185150
M.M. Alessandro, O .; Simonetta, P.A. Dario, S .; Piero, Tetrahedron: Asymmetry 2004, 15, 3233-3244. W. Avi, H .; Baruch, P.M. Moshe, J .; Org. Chem. 2005, 70, 4556-4559. N. Madhavan, W.M. Somer, M .; Weck, J .; Mol. Catal. A: Chem. 2011, 334, 1-7.

本発明者はこれまでに、Pyboxとカルシウム塩類からなる触媒システムを用いた1,3−ジカルボニル化合物の、電子吸引性置換基を有するオレフィンおよびイミン誘導体への不斉1,4−付加反応を開発している。この手法をポリスチレンに担持した配位子(以下、PS−Pyboxという)に拡張し、カルシウムを結合させた錯体を作ることにある。  The present inventor has so far conducted an asymmetric 1,4-addition reaction of 1,3-dicarbonyl compounds to olefins and imine derivatives having electron-withdrawing substituents using a catalyst system composed of Pybox and calcium salts. We are developing. This method is to extend the ligand to a polystyrene-supported ligand (hereinafter referred to as PS-Pybox) to form a complex bound with calcium.

上記課題を解決する手段となるPS−Pybox配位子は、下記式(1)で示される4成分から構成され、その部分構造は下記式(2)で表される。

Figure 2013185150
(但し成分A,B,C,Dは任意の比率であり、各成分同士の結合がランダムに混合される形態をとることで(化2)に示される部分構造を形成する。R、RはそれぞれHまたは芳香環あるいはアルキル基であり、R、Rは同一でも異なっていても良い。)
Figure 2013185150
(但しw,x,y,zはそれぞれ独立に1以上の整数であり、任意の相手鎖と結合することでポリスチレン重合体を形成している。)The PS-Pybox ligand that is a means for solving the above problems is composed of four components represented by the following formula (1), and its partial structure is represented by the following formula (2).
Figure 2013185150
(However, the components A, B, C, and D are in any ratio, and the partial structure shown in (Chemical Formula 2) is formed by taking a form in which the bonds of the components are mixed randomly. R 1 , R 2 is H, an aromatic ring or an alkyl group, and R 1 and R 2 may be the same or different.
Figure 2013185150
(W, x, y, and z are each independently an integer of 1 or more, and a polystyrene polymer is formed by bonding to an arbitrary partner chain.)

また、この手段において限定されるわけではないが、PS−Pybox配位子は具体的には下記式(3)で表される成分から形成され、その比率がA:B:C:D=6:89:4:1またはA:B:C:D=13:83:3:1であり、各成分同士の結合がランダムに混合される形態をとることが望ましい。

Figure 2013185150
Although not limited in this means, the PS-Pybox ligand is specifically formed from a component represented by the following formula (3), and the ratio is A: B: C: D = 6. : 89: 4: 1 or A: B: C: D = 13: 83: 3: 1, and it is desirable to take a form in which the bonds of the components are randomly mixed.
Figure 2013185150

すなわち、(0018)で説明される重合体の部分構造は下記式(4)で表されるものであることが望ましい。

Figure 2013185150
(但しw,x,y,zはそれぞれ独立に1以上の整数であり、任意の相手鎖と結合することでポリスチレン重合体を形成している。)That is, it is desirable that the partial structure of the polymer described in (0018) is represented by the following formula (4).
Figure 2013185150
(W, x, y, and z are each independently an integer of 1 or more, and a polystyrene polymer is formed by bonding to an arbitrary partner chain.)

また、上記課題を解決するPS−Pybox配位子と組み合わせるカルシウム塩類は、CaCl,CaF,CaBr,CaI,Ca(OTf),CaCOのいずれかのカルシウム塩、またはそれらの水和体である。Further, calcium salts to be combined with the PS-Pybox ligand that solves the above problems are calcium salts of CaCl 2 , CaF 2 , CaBr 2 , CaI 2 , Ca (OTf) 2 , CaCO 3 , or water thereof. Japanese style.

また、この手段において限定されるわけではないが、PS−Pybox配位子と組み合わせるカルシウム塩類は具体的にはCaClあるいはその2水和物であることが望ましい。Although not limited in this means, the calcium salts to be combined with the PS-Pybox ligand are specifically preferably CaCl 2 or its dihydrate.

本発明の錯体は、不斉有機合成において触媒として用いることができる。限定されるものではないが、一例として下記式(5)に表される1,3−ジカルボニル化合物と、電子吸引性置換基を有するオレフィンの不斉1,4−付加反応に用いることができる。≦

Figure 2013185150
The complex of the present invention can be used as a catalyst in asymmetric organic synthesis. Although it is not limited, it can be used for an asymmetric 1,4-addition reaction of an olefin having an electron-withdrawing substituent and an 1,3-dicarbonyl compound represented by the following formula (5) as an example. . ≦
Figure 2013185150

上記(0022)で説明される使用例において、用いることができる1,3−ジカルボニル化合物は限定されるものではないが、一例として下記式(6)で示された化合物を用いることができる。

Figure 2013185150
(但し(6)式中、R、Rはそれぞれアルコキシ基、あるいはアルキル基であり、R、Rは同一でも異なっていても良い。RはH、アルキル基またはハロゲン基であり、RとRは分子内で結合している場合も含む。)In the use example described in the above (0022), the 1,3-dicarbonyl compound that can be used is not limited, but a compound represented by the following formula (6) can be used as an example.
Figure 2013185150
(In the formula (6), R 3 and R 4 are each an alkoxy group or an alkyl group, and R 3 and R 4 may be the same or different. R 5 is H, an alkyl group or a halogen group.) , R 4 and R 5 include the case where they are bonded within the molecule.)

上記(0022)で説明される使用例において、用いることができる電子吸引性置換基を有するオレフィンは限定されるものではないが、一例として下記式(7)で示された化合物を用いることができる。

Figure 2013185150
(但し(7)式中、Rはアルキル基または芳香環基または複素環基である。)In the use example described in the above (0022), the olefin having an electron-withdrawing substituent that can be used is not limited, but as an example, a compound represented by the following formula (7) can be used. .
Figure 2013185150
(In the formula (7), R 6 represents an alkyl group, an aromatic ring group or a heterocyclic group.)

上記(0022)〜(0024)で説明される使用例において、実施反応温度は−20℃であることが望ましい。しかし式(6)で示される化合物中、RもしくはRのどちらかが、アルキル基である場合、−40℃で反応を行うのが望ましい。In the use examples described in the above (0022) to (0024), the reaction temperature is preferably -20 ° C. However, in the compound represented by the formula (6), when either R 3 or R 4 is an alkyl group, the reaction is desirably performed at −40 ° C.

上記(0022)〜(0024)で説明される使用例は溶媒中で行われるのが望ましく、限定するものではないがトルエンを溶媒として用いることができる。含水トルエンでも反応は可能だが、より好ましくは無水トルエンあるいはモレキュラーシーブス4Aとの兼用が望ましい。  The use examples described in the above (0022) to (0024) are preferably carried out in a solvent, and although not limited, toluene can be used as a solvent. Although the reaction can be performed with hydrous toluene, it is more preferable to use anhydrous toluene or molecular sieves 4A.

上記(0022)〜(0024)で説明される使用例では塩基を用いる。限定するものではないがトリエチルアミンが使用できる。使用量は用いるPS−Pybox配位子と等モル量で十分だが、式(6)で示される化合物中、RがH以外の置換基である場合には、10mol%相当のトリエチルアミンを使用するのが望ましい。In the use examples described in the above (0022) to (0024), a base is used. Although not limited, triethylamine can be used. The amount used is equimolar with the PS-Pybox ligand to be used, but in the compound represented by formula (6), when R 5 is a substituent other than H, triethylamine corresponding to 10 mol% is used. Is desirable.

以下に実施例を用いて本発明を明らかにするが、本発明はこの実施例に限定されるものではない。  Hereinafter, the present invention will be clarified using examples, but the present invention is not limited to these examples.

(4S,4’ S,5S,5’ S)−2,2’−(4−bromopyridine−2,6−diyl)bis(4,5−diphenyl−4,5−dihydroxazole)の合成

Figure 2013185150
4−bromo−N,N−bis((1S,2S)−2−chloro−1,2−diphenylethyl)pyridine−2,6−dicarboxamide(4.00mmol)と水素化ナトリウム(55%,12.0mmol)を30mL反応器に加え、0℃に冷却した。21.6mLのTHFと2.4mLのDMFを加えて同じ温度を保ちながら1.5時間攪拌した。5mLの飽和塩化ナトリウム水溶液をゆっくり加えて反応を停止させた後、50mLの酢酸エチルを加えて希釈した。有機層を飽和食塩水50mLで3回洗浄した後、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過して濃縮して得られた残渣をショートシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製することで、ピリジンビスイミダゾリン誘導体を77%の収率で得た。
1H NMR
(CDCl,495.13 MHz)δ:5.26(d,2H,J=8.5Hz),5.47(d,2H,J=8.5Hz),7.18−7.36(m,20H),8.50(s,2H).
13C NMR
(CDCl,150.92 MHz)δ:79.0,90.3,126.2,126.8,128.0,128.7,128.9,129.0,129.7,135.0,139.4,140.9,148.0,162.0.Synthesis of (4S, 4'S, 5S, 5'S) -2,2 '-(4-bromopyridine-2,6-diyl) bis (4,5-diphenyl-4,5-dihydroxazole)
Figure 2013185150
4-bromo-N 2, N 6 -bis ((1S, 2S) -2-chloro-1,2-diphenylethyl) pyridine-2,6-dicarboxamide (4.00mmol) and sodium hydride (55%, 12. 0 mmol) was added to a 30 mL reactor and cooled to 0 ° C. 21.6 mL of THF and 2.4 mL of DMF were added and stirred for 1.5 hours while maintaining the same temperature. After slowly adding 5 mL of saturated aqueous sodium chloride solution to stop the reaction, 50 mL of ethyl acetate was added for dilution. The organic layer was washed 3 times with 50 mL of saturated brine and then dried over anhydrous sodium sulfate. The residue obtained by filtering and concentrating the desiccant was purified by short silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain a pyridinebisimidazoline derivative in a yield of 77%.
1H NMR
(CDCl 3 , 495.13 MHz) δ: 5.26 (d, 2H, J = 8.5 Hz), 5.47 (d, 2H, J = 8.5 Hz), 7.18-7.36 (m , 20H), 8.50 (s, 2H).
13C NMR
(CDCl 3 , 150.92 MHz) δ: 79.0, 90.3, 126.2, 126.8, 128.0, 128.7, 128.9, 129.0, 129.7, 135.0 , 139.4, 140.9, 148.0, 162.0.

Figure 2013185150
(4S,4’ S,5S,5’ S)−2,2’−(4−bromopyridine−2,6−diyl)bis(4,5−diphenyl−4,5−dihydroxazole)(3.10mmol)とPd(PPhCl(0.310mmol)を100mL反応器に加えた。94mLのトルエンとトリブチルビニルスズ(9.20mmol)を加え、反応液を75℃で1時間加熱した。反応液を室温まで冷した後、反応液をセライトろ過した。ろ液をエバポレーターで濃縮することで得られる残渣に、50mLのアセトニトリルを加えて希釈した後、50mLのヘキサンを加えて分液し、さらにアセトニトリル層にヘキサン50mLを加えて分液する操作を3回繰り返す。アセトニトリル層を濃縮したものをアルミナゲルカラムクロマトグラフィー(塩基性Al,ヘキサン:酢酸エチル=2:1)で精製することで生成物を80%の収率で得た。
IR (KBr,cm−1
3442,3060,3031,2919,1642,1594,1446,1263,1177,1105,969,757,697.
1H NMR
(CDCl,495.13 MHz)δ:5.31(d,2H,J=8.5Hz),5.52(d,2H,J=8.5Hz),5.61(d,1H,J=10.8Hz),6.16(d,1H,J=17.6Hz),6.76(dd,1H,J=17.6,10.8Hz),7.30−7.36(m,20H),8.35(s,2H).
13C NMR
(CDCl,150.92 MHz)δ:79.0,90.1,120.8,123.6,126.3,126.9,127.9,128.6,128.8,129.0,133.6,139.7,141.2,146.6,147.5,163.1.
ESI−HRMS
(m/z)計算値C3730[M+H]:548.2333;実測値548.2343.
Figure 2013185150
(4S, 4'S, 5S, 5'S) -2,2 '-(4-bromopyridine-2,6-diyl) bis (4,5-diphenyl-4,5-dihydroxazole) (3.10 mmol) and Pd (PPh 3 ) 2 Cl 2 (0.310 mmol) was added to the 100 mL reactor. 94 mL of toluene and tributylvinyltin (9.20 mmol) were added and the reaction was heated at 75 ° C. for 1 hour. After cooling the reaction solution to room temperature, the reaction solution was filtered through Celite. The residue obtained by concentrating the filtrate with an evaporator was diluted by adding 50 mL of acetonitrile, followed by liquid separation by adding 50 mL of hexane, and liquid separation by adding 50 mL of hexane to the acetonitrile layer three times. repeat. The product obtained in 80% yield was obtained by purifying the concentrated acetonitrile layer by alumina gel column chromatography (basic Al 2 O 3 , hexane: ethyl acetate = 2: 1).
IR (KBr, cm −1 )
3442, 3060, 3031, 2919, 1642, 1594, 1446, 1263, 1177, 1105, 969, 757, 697.
1H NMR
(CDCl 3 , 495.13 MHz) δ: 5.31 (d, 2H, J = 8.5 Hz), 5.52 (d, 2H, J = 8.5 Hz), 5.61 (d, 1H, J = 10.8 Hz), 6.16 (d, 1 H, J = 17.6 Hz), 6.76 (dd, 1 H, J = 17.6, 10.8 Hz), 7.30-7.36 (m, 20H), 8.35 (s, 2H).
13C NMR
(CDCl 3 , 150.92 MHz) δ: 79.0, 90.1, 120.8, 123.6, 126.3, 126.9, 127.9, 128.6, 128.8, 129.0 , 133.6, 139.7, 141.2, 146.6, 147.5, 163.1.
ESI-HRMS
(M / z) Calculated value C 37 H 30 N 3 O 2 [M + H] + : 548.2333; found value 548.2343.

Figure 2013185150
Figure 2013185150
(4S,4’ S,5S,5’ S)−2,2’−(4−vinylpyridine−2,6−diyl)bis(4,5−diphenyl−4,5−dihydroxazole)(0.15mmol)とスチレン(2.10mmol)、ジビニルベンゼン(エチルビニルベンゼンを含む)(約84%,0.087mmol)を0.45mLのトルエンに溶解させた。これにAIBN(0.018mmol)を加えた後、反応液を80℃で24時間加熱攪拌した。生成したポリマーをTHFで洗浄し、吸引フィルターで乾燥させた。得られたポリマーを乳鉢で粉砕しTHFで洗浄した後、50℃で真空乾燥することでPS−Pyboxポリマーを63%の収率で得た。Pyboxの担持量は5.1 x 10−1mmol/g
元素分析
計算値(%)(C9.949.510.190.127:C89.31,H7.17,N2.00;実測値C87.48,H7.31,N2.12.
Figure 2013185150
Figure 2013185150
(4S, 4 ′S, 5S, 5 ′S) -2,2 ′-(4-vinylpyridine-2,6-diyl) bis (4,5-diphenyl-4,5-dihydroxylazole) (0.15 mmol) and Styrene (2.10 mmol) and divinylbenzene (including ethylvinylbenzene) (about 84%, 0.087 mmol) were dissolved in 0.45 mL of toluene. After AIBN (0.018 mmol) was added thereto, the reaction solution was heated and stirred at 80 ° C. for 24 hours. The polymer produced was washed with THF and dried with a suction filter. The obtained polymer was pulverized in a mortar and washed with THF, and then vacuum-dried at 50 ° C. to obtain a PS-Pybox polymer in a yield of 63%. The supported amount of Pybox is 5.1 × 10 −1 mmol / g.
Analysis Calculated (%) (C 9.94 H 9.51 N 0.19 O 0.127) n: C89.31, H7.17, N2.00; Found C87.48, H7.31, N2 12.

Figure 2013185150
(4S,4’ S,5S,5’ S)−2,2’−(4−vinylpyridine−2,6−diyl)bis(4,5−diphenyl−4,5−dihydroxazole)(2.48mmol)とスチレン(16.1mmol)、ジビニルベンゼン(エチルビニルベンゼンを含む)(約84%,0.718mmol)を3.90mLのトルエンに溶解させた。これにAIBN(0.151mmol)を加えた後、反応液を80℃で24時間加熱攪拌した。生成したポリマーをTHFで洗浄し、吸引フィルターで乾燥させた。得られたポリマーを乳鉢で粉砕しTHFで洗浄した後、50℃で真空乾燥することでPS−Pyboxポリマーを66%の収率で得た。Pyboxの担持量は7.2 x 10−1mmol/gである。
元素分析
計算値(%)(C11.7810.770.3840.256:C87.4,H6.71,N3.32;実測値C86.7,H7.05,N3.04.
Figure 2013185150
(4S, 4 ′S, 5S, 5 ′S) -2,2 ′-(4-vinylpyridine-2,6-diyl) bis (4,5-diphenyl-4,5-dihydroxylazole) (2.48 mmol) and Styrene (16.1 mmol) and divinylbenzene (including ethylvinylbenzene) (about 84%, 0.718 mmol) were dissolved in 3.90 mL of toluene. After AIBN (0.151 mmol) was added thereto, the reaction solution was heated and stirred at 80 ° C. for 24 hours. The polymer produced was washed with THF and dried with a suction filter. The obtained polymer was pulverized in a mortar, washed with THF, and then vacuum-dried at 50 ° C. to obtain a PS-Pybox polymer in a yield of 66%. The supported amount of Pybox is 7.2 × 10 −1 mmol / g.
Elemental analysis calculated value (%) (C 11.78 H 10.77 N 0.384 O 0.256 ) n : C87.4, H6.71, N3.32; measured values C86.7, H7.05, N3 .04.

PS−Pybox−CaCl錯体の調製
10mL反応器に塩化カルシウム(7.5 x 10−3mmol)とPS−Pyboxポリマー(5.2 x 10−1mmol/g,7.5 x 10−3mmol)を加えた。0.75mLのトルエン(未乾燥)を加え、50℃で2時間攪拌した後、エバポレーターで濃縮した。得られた残渣を真空乾燥することでPS−Pyboxポリマーの塩化カルシウム錯体を得た。
Preparation of PS-Pybox-CaCl 2 complex Calcium chloride (7.5 x 10 -3 mmol) and PS-Pybox polymer (5.2 x 10 -1 mmol / g, 7.5 x 10 -3 mmol) in a 10 mL reactor. ) Was added. 0.75 mL of toluene (undried) was added, stirred at 50 ° C. for 2 hours, and then concentrated with an evaporator. The obtained residue was vacuum-dried to obtain a calcium chloride complex of PS-Pybox polymer.

参考例Reference example

参考例を用いて本発明の有用性を明らかにする。なお、これは例示の目的であり、本発明を有用性はこれに制限するものではない。  The usefulness of the present invention will be clarified using reference examples. Note that this is for illustrative purposes, and the utility of the present invention is not limited thereto.

参考例1Reference example 1

Figure 2013185150
実施例5で得たPS−Pyboxポリマーの塩化カルシウム錯体にトリエチルアミン(0.015mmol)とマロン酸メチル(0.30mmol)を加え、さらに0.75mLのトルエンを加えて−20℃に冷却した。トランス−β−ニトロスチレン(0.36mmol)を加え、−20℃で24時間反応させた後、THFで反応を希釈した。触媒をろ過した後、飽和塩化アンモニウム水溶液、10mLのジクロロメタンを加えて抽出した。水層を15mLの塩化メチレンで2回逆抽出した後、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過して濃縮して得られた残渣をPTLC(ヘキサン:酢酸エチル=4:1)で精製することで(S)−Dimethyl 2−(2−nitro−1−phenylethyl)malonateを69%、93ee%で得た。
(S)−Dimethyl 2−(2−nitro−1−phenylethyl)malonate
1H NMR
(CDCl,500 MHz)δ:7.31−7.20(m,5H),4.92−4.84(m,2H),4.22(td,1H,J=8.9,5.3Hz),3.84(d,1H,J=8.9),3.73(s,3H),3.53(s,3H).
13C NMR
(CDCl,124.51 MHz)δ:167.8,167.2,136.0,128.9,128.4,127.8,77.3,54.7,52.9,52.7,42.9.
HPLC
Column;Daicel Chiralcel OD−H, Solvent;hexane/PrOH=7/3, flow rate;0.5mL/min,Detection;wavelength=220nm:t=26.5min(S),t=32.3min(R).
Column;Daicel Chiralcel OD−3, Solvent;hexane/PrOH=7/3, flow rate=0.5mL/min,Detection;wavelength=220nm:t=22.4min(S),t=26.3min(R).
Figure 2013185150
Triethylamine (0.015 mmol) and methyl malonate (0.30 mmol) were added to the calcium chloride complex of the PS-Pybox polymer obtained in Example 5, and further 0.75 mL of toluene was added and cooled to -20 ° C. After trans-β-nitrostyrene (0.36 mmol) was added and reacted at −20 ° C. for 24 hours, the reaction was diluted with THF. After the catalyst was filtered, a saturated aqueous ammonium chloride solution and 10 mL of dichloromethane were added for extraction. The aqueous layer was back extracted twice with 15 mL of methylene chloride and then dried over anhydrous sodium sulfate. The residue obtained by filtering the desiccant and concentrating it was purified by PTLC (hexane: ethyl acetate = 4: 1) to give (S) -dimethyl 2- (2-nitro-1-phenylethyl) malonate 69%. , 93ee%.
(S) -Dimethyl 2- (2-nitro-1-phenylethyl) malonate
1H NMR
(CDCl 3 , 500 MHz) δ: 7.31-7.20 (m, 5H), 4.92-4.84 (m, 2H), 4.22 (td, 1H, J = 8.9, 5 .3 Hz), 3.84 (d, 1H, J = 8.9), 3.73 (s, 3H), 3.53 (s, 3H).
13C NMR
(CDCl 3 , 124.51 MHz) δ: 167.8, 167.2, 136.0, 128.9, 128.4, 127.8, 77.3, 54.7, 52.9, 52.7 , 42.9.
HPLC
Column; Daicel Chiralcel OD-H, Solvent; hexane / i PrOH = 7/3, flow rate; 0.5 mL / min, Detection; wavelength = 220 nm: t R = 26.5 min (S), t R = 32.3 min (R).
Column; Daicel Chiralcel OD-3, Solvent; hexane / i PrOH = 7/3, flow rate = 0.5 mL / min, Detection; wavelength = 220 nm: t R = 22.4 min (S), t R = 26.3 min (R).

Claims (1)

下記式(1)で示された成分A,B,C,Dを任意の比率で、かつ各成分同士の結合がランダムである下記式(2)で示されるポリスチレン架橋構造を有するカルシウム錯体。
Figure 2013185150
(R、RはそれぞれHまたは芳香環あるいはアルキル基であり、R、Rは同一でも異なっていても良く、w,x,y,zはそれぞれ独立に1以上の整数であり、任意の相手鎖と結合することでポリスチレン重合体を形成し、Xはクロル、フルオロ、ブロム、ヨード、トリフルオロメチルスルホナート、炭酸である。)
A calcium complex having a polystyrene cross-linked structure represented by the following formula (2) in which the components A, B, C, and D represented by the following formula (1) are in an arbitrary ratio and the bonds between the components are random.
Figure 2013185150
(R 1 and R 2 are each H, an aromatic ring or an alkyl group, R 1 and R 2 may be the same or different, and w, x, y and z are each independently an integer of 1 or more, (Polystyrene polymer is formed by combining with an arbitrary partner chain, and X is chloro, fluoro, bromine, iodo, trifluoromethylsulfonate, and carbonic acid.)
JP2012070251A 2012-03-08 2012-03-08 Polystyrene-supported pyridine bisoxazoline derivative-calcium catalyst Active JP6011769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070251A JP6011769B2 (en) 2012-03-08 2012-03-08 Polystyrene-supported pyridine bisoxazoline derivative-calcium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070251A JP6011769B2 (en) 2012-03-08 2012-03-08 Polystyrene-supported pyridine bisoxazoline derivative-calcium catalyst

Publications (2)

Publication Number Publication Date
JP2013185150A true JP2013185150A (en) 2013-09-19
JP6011769B2 JP6011769B2 (en) 2016-10-19

Family

ID=49386864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070251A Active JP6011769B2 (en) 2012-03-08 2012-03-08 Polystyrene-supported pyridine bisoxazoline derivative-calcium catalyst

Country Status (1)

Country Link
JP (1) JP6011769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327402A (en) * 2014-11-26 2015-02-04 重庆可益荧新材料有限公司 Waste high impact polystyrene modified material and preparation method thereof
WO2023163048A1 (en) * 2022-02-25 2023-08-31 日東電工株式会社 Immobilized catalyst, production method for immobilized catalyst, production method for formate, and production method for formic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066158A1 (en) * 2001-02-22 2002-08-29 Wako Pure Chemical Industries, Ltd. Osmium tetraoxide carried on polymer having ion-exchange group
JP2008074979A (en) * 2006-09-21 2008-04-03 Nitto Denko Corp Support for solid-phase synthesis
JP2010207786A (en) * 2009-03-12 2010-09-24 Japan Science & Technology Agency Alkaline earth metal-based catalyst and reaction method
JP2011184393A (en) * 2010-03-10 2011-09-22 Japan Science & Technology Agency Optically active dicarboxylic acid derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066158A1 (en) * 2001-02-22 2002-08-29 Wako Pure Chemical Industries, Ltd. Osmium tetraoxide carried on polymer having ion-exchange group
JP2008074979A (en) * 2006-09-21 2008-04-03 Nitto Denko Corp Support for solid-phase synthesis
JP2010207786A (en) * 2009-03-12 2010-09-24 Japan Science & Technology Agency Alkaline earth metal-based catalyst and reaction method
JP2011184393A (en) * 2010-03-10 2011-09-22 Japan Science & Technology Agency Optically active dicarboxylic acid derivative

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327402A (en) * 2014-11-26 2015-02-04 重庆可益荧新材料有限公司 Waste high impact polystyrene modified material and preparation method thereof
WO2023163048A1 (en) * 2022-02-25 2023-08-31 日東電工株式会社 Immobilized catalyst, production method for immobilized catalyst, production method for formate, and production method for formic acid

Also Published As

Publication number Publication date
JP6011769B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
Wang et al. Bromide-promoted visible-light-induced reductive Minisci reaction with aldehydes
Bandini et al. The First Catalytic Enantioselective Nozaki–Hiyama Reaction
US9045387B2 (en) Oxidative homo-coupling reactions of aryl boronic acids using a porous copper metal-organic framework as a highly efficient heterogeneous catalyst
CN105801625B (en) The preparation method of bidentate phosphite ester ligand and its application in Buchwald Hartwig reactions
CN108659041B (en) Phosphine ligand compound based on tetramethyl spiroindane skeleton, intermediate thereof, preparation method and application
CN107880079B (en) Cyclic N-heterocyclic bis-carbene-palladium complex and preparation method and application thereof
Lim et al. Self-assembled supramolecular clusters based on phosphines and coinage metals: tetrahedra, helicates, and mesocates
He et al. Palladium dichloride adduct of N, N-bis-(diphenylphosphanylmethyl)-2-aminopyridine: synthesis, structure and catalytic performance in the decarboxylative cross-coupling of 4-picolinic acid with aryl bromide
Chen et al. Highly efficient direct a larger-scale aldol reactions catalyzed by a flexible prolinamide based-metal Lewis acid bifunctional catalyst in the presence of water
Jumde et al. Deoxycholic acid derived monophosphites as chiral ligands in the asymmetric Suzuki–Miyaura cross-coupling
Markad et al. Synthesis and structural characterization of a novel dinuclear Cu (II) complex: an efficient and recyclable bifunctional heterogeneous catalyst for the diastereoselective Henry reaction
CN104151364A (en) O-pyrazolyl phenyl functionalized nitrogen heterocyclic carbene palladium complex and preparation method and application thereof
CN102659622B (en) Large steric hindrance ligand Pd complex catalyst as well as preparation method and application thereof
CN113817174B (en) Preparation method and application of in-situ hydrazide three-dimensional MOFs material
CN105131044B (en) Three core N-heterocyclic carbine palladium compounds and synthetic method and application
JP6011769B2 (en) Polystyrene-supported pyridine bisoxazoline derivative-calcium catalyst
Jiang et al. Manganese-organic framework assembled by 5-((4′-(tetrazol-5 ″-yl) benzyl) oxy) isophthalic acid: A solvent-free catalyst for the formation of carbon–carbon bond
Mešková et al. Highly sterically hindered binaphthalene-based monophosphane ligands: synthesis and application in stereoselective Suzuki–Miyaura reactions
CN105669746A (en) Method for synthesizing diaryl phosphate ester compound
CN106866986B (en) Pd/Ln dissimilar metal organic framework and preparation method and application thereof
CN104710255A (en) Application of palladium-phosphine compound to catalysis of Suzuki reaction
CN112979523B (en) Preparation method of chiral 1, 4-diphenyl-2-hydroxy-1, 4-dibutyl ketone compound
JP4413507B2 (en) Pincer metal complex, method for producing the same, and pincer metal complex catalyst
CN110627831A (en) Bibiaryl acetal phosphines, their preparation and use in coupling reactions
CN111548269A (en) Preparation method of diarylmethane structure compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6011769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250