JP2013184963A - Pathogenicity inhibitor for phytopathogenic bacteria - Google Patents
Pathogenicity inhibitor for phytopathogenic bacteria Download PDFInfo
- Publication number
- JP2013184963A JP2013184963A JP2012053897A JP2012053897A JP2013184963A JP 2013184963 A JP2013184963 A JP 2013184963A JP 2012053897 A JP2012053897 A JP 2012053897A JP 2012053897 A JP2012053897 A JP 2012053897A JP 2013184963 A JP2013184963 A JP 2013184963A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- amino
- pathogenicity
- inhibitor
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
本発明は、植物病原細菌に対して用いられる薬剤であって、病原細菌の病原性の発現を抑制することにより病原細菌による被害の発生を防止する病原性抑制剤に関するものである。 The present invention relates to a drug used for plant pathogenic bacteria, and relates to a pathogenicity inhibitor that prevents the occurrence of damage by pathogenic bacteria by suppressing the expression of pathogenicity of the pathogenic bacteria.
従来、植物における病原細菌による被害を防止するために、各種の殺菌剤が用いられている。昨今では、人畜や有益昆虫、あるいは環境等への害ができるだけ小さい殺菌剤が求められており、例えば、3−置換キノリン化合物又はその塩、及びそれを有効成分として含有する農薬などが提案されている(例えば、特許文献1参照。)。 Conventionally, various fungicides are used to prevent damage caused by pathogenic bacteria in plants. Recently, there has been a demand for fungicides with as little harm as possible to human livestock, beneficial insects, or the environment. For example, 3-substituted quinoline compounds or salts thereof, and agricultural chemicals containing them as active ingredients have been proposed. (For example, refer to Patent Document 1).
しかしながら、このような殺菌剤でも、その散布によって目的の病原細菌だけでなく、病原性を有しない微生物までも死に至らしめる不具合を解消するには至っておらず、環境微生物相の劇的な変動・縮小を引き起こすという問題が残っていた。特に、非病原菌の中には、植物に病害抵抗性を誘導する有益な微生物も存在しており、これらの微生物までも病原菌か否かの区別なく死滅させることは回避したいところであった。 However, even with such disinfectants, not only the target pathogenic bacteria but also the microorganisms that do not have pathogenicity due to the spraying have not been solved, and dramatic changes in environmental microbiota The problem of causing shrinkage remained. In particular, among non-pathogenic bacteria, there are beneficial microorganisms that induce disease resistance in plants, and it was desired to avoid killing these microorganisms regardless of whether they are pathogenic bacteria or not.
そこで、環境に対して比較的優しく、人体にたいしても安全な薬剤として、天然に存在する桂皮酸に着目した植物病原菌抑制剤も提案されている(例えば、特許文献2参照。)。ただし、この桂皮酸を用いた植物病原菌抑制剤は、一部の真菌に対してのみ効果的であり、病原細菌に適用できるものではなかった。 Accordingly, a phytopathogenic agent that focuses on the naturally occurring cinnamic acid has been proposed as a drug that is relatively gentle to the environment and safe for the human body (see, for example, Patent Document 2). However, this plant pathogen inhibitor using cinnamic acid is effective only for some fungi and was not applicable to pathogenic bacteria.
本発明者らは、このような現状を鑑みながら研究を行っていく中で、病原細菌を殺菌するのではなく、その病原細菌の病原性遺伝子の発現を抑制することで、発病を抑制できるのではないかという着想を得るに至った。 In the course of conducting research in view of such a current situation, the present inventors can suppress pathogenesis by suppressing the expression of a pathogenic gene of the pathogenic bacterium instead of sterilizing the pathogenic bacterium. I came up with the idea that it might be.
そこで、病原細菌の一つとして知られているタバコ野火病菌を供試菌とし、このタバコ野火病菌の鞭毛や線毛の合成を阻害することにより、あるいは鞭毛や線毛の運動性を阻害することにより、病原細菌の病原性を低減できるのではないかという観点から研究開発を行うことにより本発明を成すに至り、環境微生物相に優しい病害防除剤としての病原性抑制剤を提供するものである。 Therefore, tobacco wildfire fungus known as one of the pathogenic bacteria is used as a test bacterium, and the flagellar and pilus motility of this tobacco wildfire bacterium is inhibited or the motility of flagella and pilus is inhibited. Therefore, the present invention is achieved by conducting research and development from the viewpoint that pathogenicity of pathogenic bacteria can be reduced, and provides a pathogenicity inhibitor as an environmental microbe-friendly disease control agent. .
本発明の植物病原細菌の病原性抑制剤は、アミノ[(4−メチルベンジル)チオ]メタンイミンクロライドと、4−{[{[アミノ(イミノ)メチル]アミノ}(イミノ)メチル]アミノ}−1−ブロモ−2−メチルベンゼンと、アクリジン-9-アミンの少なくともいずれか1種を含有するものである。 The pathogenicity inhibitor for phytopathogenic bacteria of the present invention includes amino [(4-methylbenzyl) thio] methanimine chloride and 4-{[{[amino (imino) methyl] amino} (imino) methyl] amino}-. It contains at least one of 1-bromo-2-methylbenzene and acridine-9-amine.
本発明の植物病原細菌の病原性抑制剤では、病原細菌を死滅させずとも病原性遺伝子の発現を抑制することにより発病を抑えることが可能となる。特に、環境中に多く存在している有益な微生物への影響を抑制でき、環境微生物相に優しい病害防除剤を提供可能とすることができる。また、病原細菌を死滅させるまで至らないことから、耐性菌の発現も抑制されることが期待される。 With the pathogenicity inhibitor of phytopathogenic bacteria of the present invention, it is possible to suppress pathogenesis by suppressing the expression of pathogenic genes without killing the pathogenic bacteria. In particular, it is possible to suppress the effects on beneficial microorganisms that are present in large amounts in the environment, and to provide a disease control agent that is friendly to the environmental microflora. In addition, since the pathogenic bacteria are not killed, the expression of resistant bacteria is expected to be suppressed.
本発明の植物病原細菌の病原性抑制剤は、上述したように、病原細菌の一つとして知られているタバコ野火病菌を供試菌として見出されたものであり、その重要な病原性因子である鞭毛合成能、鞭毛運動能及び菌体密度感知機構(クオラムセンシング)等は阻害するが、その生育自体は阻害しないものである。 As described above, the pathogenicity inhibitor of phytopathogenic bacteria of the present invention has been found using tobacco wildfire fungus, which is known as one of pathogenic bacteria, as an important pathogenic factor. It inhibits flagellar synthesis ability, flagellar motility, cell density sensing mechanism (quorum sensing), etc., but does not inhibit its growth itself.
このような病原性抑制剤を見出すために、まずは、MicroHitFinder(Maybridge社)のケミカルライブラリを用い、目的とする化合物の検索を行った。 In order to find such a pathogenicity inhibitor, first, a target compound was searched using a chemical library of MicroHitFinder (Maybridge).
すなわち、ライブラリにおける14400品目/180プレートの各サンプルを、タバコ野火病菌の野生株に、それぞれ終濃度が100μMとなるように処理して、24時間培養を行って、一次スクリーニングを行った。 That is, each sample of 14400 items / 180 plates in the library was treated with wild strains of tobacco wildfire fungus to a final concentration of 100 μM, cultured for 24 hours, and subjected to primary screening.
一次スクリーニングは、
(1)鞭毛合成あるいは糖鎖修飾:Flagellin抗体によるWestern blotting、
(2)鞭毛運動能:0.25%agar含有MMMFプレートによるSwarmingアッセイ、
(3)AHL合成能:クロモバクテリウムによるビオラセイン呈色アッセイ、
(4)抗生物質感受性:Cm含有ディスクによる阻止円プレートアッセイ
の4項目で行った。
The primary screening is
(1) Flagella synthesis or sugar chain modification: Western blotting with Flagellin antibody,
(2) Flagellar motility: Swarming assay using MMMF plate containing 0.25% agar,
(3) AHL synthesis ability: Violasein color assay by Chromobacterium
(4) Antibiotic susceptibility: It was carried out in 4 items of the inhibition disk plate assay using a Cm-containing disk.
さらに、静菌剤として有望な化合物の候補として、
(1)菌の増殖を阻害しないこと、
(2)劇物でないこと、
(3)抗生物質耐性を付与しないこと、
の観点での選別を行い、最終的に、以下の8種類の化合物を、病原性抑制剤として有望な化合物として特定した。
(1) Do not inhibit the growth of bacteria,
(2) It is not a deleterious substance,
(3) Do not confer antibiotic resistance,
Finally, the following eight types of compounds were identified as promising compounds as pathogenicity inhibitors.
ちなみに、8種類のうち、化合物No.1が、amino[(4-methylbenzyl)thio]methaniminium chloride(アミノ[(4−メチルベンジル)チオ]メタンイミンクロライド)であり、化合物No.4が4-{[{[amino(imino)methyl]amino}(imino)methyl]amino}-1-bromo-2-methyl
benzene(4−{[{[アミノ(イミノ)メチル]アミノ}(イミノ)メチル]アミノ}−1−ブロモ−2−メチルベンゼン)であり、化合物No.8が、acridin-9-amine(アクリジン-9-アミン)である。
By the way, among the 8 types, compound No. 1 is amino [(4-methylbenzyl) thio] methaniminium chloride (amino [(4-methylbenzyl) thio] methanimin chloride), and compound No. 4 is 4- { [{[amino (imino) methyl] amino} (imino) methyl] amino} -1-bromo-2-methyl
benzene (4-{[{[amino (imino) methyl] amino} (imino) methyl] amino} -1-bromo-2-methylbenzene), and compound No. 8 is acridin-9-amine (acridine- 9-amine).
以下に説明する二次スクリーニングによって、先の8種類の化合物から、上記の3種類を特定した。なお、各化合物に対する溶媒には、ジメチルスルホキシド(DMSO)を用いた。 By the secondary screening described below, the above three types were identified from the previous eight types of compounds. In addition, dimethyl sulfoxide (DMSO) was used as a solvent for each compound.
まず、鞭毛合成に及ぼす各化合物の影響を再度調べた。
終夜培養したPtaを新しい培地で1/100に希釈し、各化合物を終濃度50μM、100μM、200μMとして48時間処理し、anti-Fla抗体のWestern blotting解析により合成阻害効果を評価した結果を図1に示す。
図1に示すように、すべての化合物処理で、濃度依存的な鞭毛合成阻害効果が認められた。特に、化合物No.1と化合物No.4が濃度依存的に強い鞭毛合成阻害効果を示した。
First, the effect of each compound on flagellar synthesis was examined again.
The Pta cultured overnight was diluted 1/100 with a new medium, and each compound was treated for 48 hours at final concentrations of 50 μM, 100 μM, and 200 μM. Shown in
As shown in FIG. 1, a concentration-dependent flagellar synthesis inhibitory effect was observed in all compound treatments. In particular, Compound No. 1 and Compound No. 4 showed strong flagellar synthesis inhibitory effects in a concentration-dependent manner.
次に、運動能に及ぼす各化合物の影響を再度調べた。
Ptaに各化合物を終濃度10μM及び100μMとして24時間処理し、軟寒天培地上でのSwarming運動能(0.45% agar)阻害効果を評価した結果を図2に示す。同様に、終濃度100μMとして24時間処理し、軟寒天培地上でのSwarming運動能(0.25% agar)阻害効果を評価した結果を図3に示す。
ほとんどの化合物処理によって、濃度依存的な運動能阻害効果が確認された。
Next, the effect of each compound on motility was examined again.
FIG. 2 shows the results of evaluating the inhibitory effect of Swarming motility (0.45% agar) on soft agar medium by treating each compound with Pta at a final concentration of 10 μM and 100 μM for 24 hours. Similarly, FIG. 3 shows the results of evaluating the inhibitory effect of Swarming motility (0.25% agar) on a soft agar medium after treatment at a final concentration of 100 μM for 24 hours.
Most compound treatments confirmed a concentration-dependent motility inhibitory effect.
次に、AHL合成に及ぼす各化合物の影響を再度調べた。
クロモバクテリウムCV026株を包埋したプレート上に、各化合物を終濃度50μM及び100μMとして24時間処理したPta培養液を直接接種し、ビオラセインの呈色を比較した結果を図4に示す。
この場合、化合物No.1と化合物No.4は強いAHL合成阻害効果を示したが、化合物No.8は高濃度処理時のみ効果を示した。
Next, the effect of each compound on AHL synthesis was examined again.
FIG. 4 shows the results of comparing the coloration of violacein by directly inoculating the Pta culture solution treated with each compound at a final concentration of 50 μM and 100 μM for 24 hours on a plate embedded with Chromobacterium CV026 strain.
In this case, Compound No. 1 and Compound No. 4 showed a strong AHL synthesis inhibitory effect, but Compound No. 8 showed an effect only at the time of high concentration treatment.
次に、病原性に及ぼす各化合物の影響を調べるため、宿主のタバコ葉での病徴進展阻害の状況を確認した。
Ptaに各化合物を終濃度100μMで24時間処理した培養液を1/10に希釈し、10μlの希釈液を針で傷を付けた葉上に摂取し、その後10日間23℃で培養した結果を図5に示す。また、希釈液に切り葉を20分間浸漬させた後、10日間23℃で培養した結果を図6に示す。
各化合物が、DMSO処理区と比較して、病徴の進展を阻害していることが確認された。
Next, in order to investigate the effect of each compound on the pathogenicity, the state of inhibition of symptom progression in the tobacco leaves of the host was confirmed.
The culture solution obtained by treating each compound with Pta at a final concentration of 100 μM for 24 hours was diluted to 1/10, and 10 μl of the diluted solution was ingested on the leaves damaged by the needle, and then cultured at 23 ° C. for 10 days. As shown in FIG. Further, FIG. 6 shows the result of culturing at 23 ° C. for 10 days after immersing the cut leaves in the diluted solution for 20 minutes.
It was confirmed that each compound inhibited the progression of disease symptoms as compared with the DMSO-treated section.
次に、線毛合成に及ぼす各化合物の影響を調べた。
終夜培養したPtaを新しい培地で1/100に希釈し、各化合物を終濃度100μMとして24時間処理し、anti-pili抗体のWestern blotting解析により合成阻害効果を評価した結果を図7に示す。
図7に示すように、鞭毛合成を阻害する化合物が、線毛合成も阻害することが確認できた。
Next, the effect of each compound on pili synthesis was examined.
The Pta cultured overnight is diluted 1/100 with a new medium, each compound is treated at a final concentration of 100 μM for 24 hours, and the results of evaluating the synthesis inhibitory effect by Western blotting analysis of anti-pili antibody are shown in FIG.
As shown in FIG. 7, it was confirmed that a compound that inhibits flagellar synthesis also inhibits pili synthesis.
ここまで、タバコ野火病菌(Pseudomonas syringae pv. tabaci6605)を用いて各化合物の効果の確認を行ってきたが、タバコ野火病菌以外に、ダイズ斑点細菌病菌(Pseudomonas syringae pv. glycinea rece4)、トマト斑葉細菌病菌(Pseudomonas syringae pv. tomato DC3000)、シロクローバ葉枯細菌病菌(Pseudomonas cichorii KN52)、イネ内穎褐変病菌(Pantoea ananatis NARCB200120, AZ200124)、アブラナ科植物黒腐病菌(Xanthomonas campestris pv. campestris XcA)、ジャガイモ輪紋病菌(Erwinia chrysanthemi 92-31)、イネもみ枯細菌病菌(Burkholderia glumae Pg-10)に対して、同様にWestern blotting解析により鞭毛合成の阻害効果を評価した結果を図8に示す。
多くの病原菌に対して、鞭毛合成の阻害効果が確認された。
So far, the effect of each compound has been confirmed using tobacco wildfire fungus (Pseudomonas syringae pv. Tabaci6605). In addition to tobacco wildfire fungus, soybean spot bacterial fungus (Pseudomonas syringae pv. Glycinea rece4), tomato leafy leaves Bacterial fungus (Pseudomonas syringae pv. Tomato DC3000), white clover leaf bacterial fungus (Pseudomonas cichorii KN52), rice brown rot fungus (Pantoea ananatis NARCB200120, AZ200124), cruciferous plant black rot fungus (Xanthomonas campestris pv. Campestris pv. FIG. 8 shows the results of evaluating the flagellar synthesis inhibitory effect by Western blotting analysis on the potato ring-rot fungus (Erwinia chrysanthemi 92-31) and the rice blast fungus (Burkholderia glumae Pg-10).
The inhibitory effect on flagellar synthesis was confirmed against many pathogenic bacteria.
また、各化合物のトマト斑葉細菌病菌(Pseudomonas syringae pv. tomato DC3000)、ダイズ斑点細菌病菌(Pseudomonas syringae pv. glycinea rece4)、ジャガイモ輪紋病菌(Erwinia chrysanthemi 92-31)、イネ内穎褐変病菌(Pantoea ananatis NARCB200120, AZ200124)、シロクローバ葉枯細菌病菌(Pseudomonas cichorii KN52)に対するSwarming運動能の抑制効果を同様に評価した結果を図9に示す。
各化合物において、多くの病原菌に対して、Swarming運動能の抑制効果が確認された。
In addition, the tomato spotted bacterial fungus (Pseudomonas syringae pv. Tomato DC3000), soybean spot bacterial fungus (Pseudomonas syringae pv. Glycinea rece4), potato ring-rot fungus (Erwinia chrysanthemi 92-31), Pantoea ananatis NARCB200120, AZ200124) and white clover leaf bacteriomycetes (Pseudomonas cichorii KN52) are evaluated in the same manner as shown in FIG.
In each compound, the inhibitory effect of Swarming motility was confirmed against many pathogenic bacteria.
また、各化合物のイネ内穎褐変病菌(Pantoea ananatis NARCB200120, AZ200124)、イネもみ枯細菌病菌(Burkholderia glumae Pg-10)に対して、同様にAHL合成の阻害効果を評価した結果を図10に示す。
化合物No.1、化合物No.4、化合物No.8においてAHL合成阻害効果を確認できた。
In addition, FIG. 10 shows the results of similarly evaluating the inhibitory effect of AHL synthesis on rice brown rot fungus (Pantoea ananatis NARCB200120, AZ200124) and rice blast fungus (Burkholderia glumae Pg-10) of each compound. .
In Compound No. 1, Compound No. 4, and Compound No. 8, the AHL synthesis inhibitory effect could be confirmed.
以上の結果から、
化合物No.1:amino[(4-methylbenzyl)thio]methaniminium chloride(アミノ[(4−メチルベンジル)チオ]メタンイミンクロライド)、
化合物No.4:4-{[{[amino(imino)methyl]amino}(imino)methyl]amino}-1-bromo-2-
methylbenzene(4−{[{[アミノ(イミノ)メチル]アミノ}(イミノ)メチル]アミノ}−1−ブロモ−2−メチルベンゼン)、
化合物No.8:acridin-9-amine(アクリジン-9-アミン)が、病原性抑制剤として有望であることが判明した。
From the above results,
Compound No. 1: amino [(4-methylbenzyl) thio] methaniminium chloride (amino [(4-methylbenzyl) thio] methanimine chloride),
Compound No. 4: 4-{[{[amino (imino) methyl] amino} (imino) methyl] amino} -1-bromo-2-
methylbenzene (4-{[{[amino (imino) methyl] amino} (imino) methyl] amino} -1-bromo-2-methylbenzene),
Compound No. 8: acridin-9-amine (acridine-9-amine) proved promising as a pathogenicity inhibitor.
なお、それぞれの化合物の類縁体において、より有望な化合物が存在する可能性があることから、それぞれの化合物の類縁体に対して、鞭毛合成とSwarming運動能の評価を行った結果を図11〜13に示す。
図11〜13より、いずれにおいても類縁体よりも、当初の化合物の方が効果的であることが確認された。
In addition, since there is a possibility that more promising compounds exist in the analogs of the respective compounds, the results of evaluation of flagellar synthesis and Swarming motility on the analogs of the respective compounds are shown in FIGS. It is shown in FIG.
From FIGS. 11 to 13, it was confirmed that the original compound was more effective than the analog in any case.
Claims (1)
4−{[{[アミノ(イミノ)メチル]アミノ}(イミノ)メチル]アミノ}−1−ブロモ−2−メチルベンゼンと、
アクリジン-9-アミン
の少なくともいずれか1種を含有する植物病原細菌の病原性抑制剤。 Amino [(4-methylbenzyl) thio] methanimine chloride;
4-{[{[amino (imino) methyl] amino} (imino) methyl] amino} -1-bromo-2-methylbenzene;
A virulence inhibitor for phytopathogenic bacteria containing at least one of acridine-9-amine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053897A JP5950333B2 (en) | 2012-03-11 | 2012-03-11 | Pathogenicity inhibitors of plant pathogenic bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053897A JP5950333B2 (en) | 2012-03-11 | 2012-03-11 | Pathogenicity inhibitors of plant pathogenic bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013184963A true JP2013184963A (en) | 2013-09-19 |
JP5950333B2 JP5950333B2 (en) | 2016-07-13 |
Family
ID=49386712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012053897A Active JP5950333B2 (en) | 2012-03-11 | 2012-03-11 | Pathogenicity inhibitors of plant pathogenic bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5950333B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004217581A (en) * | 2003-01-16 | 2004-08-05 | Takao Washimi | Composition having antimicrobial or microbicidal activity |
US20060241185A1 (en) * | 2005-02-10 | 2006-10-26 | The Board Of Trustees Of The Leland Stanford Junior University | Antibiotics targeting MreB |
JP2006290872A (en) * | 2005-03-15 | 2006-10-26 | Hirosaki Univ | Functional isoprenoid assuming anti-microbial activity against gram-negative bacterium and gram-positive bacterium or the like |
-
2012
- 2012-03-11 JP JP2012053897A patent/JP5950333B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004217581A (en) * | 2003-01-16 | 2004-08-05 | Takao Washimi | Composition having antimicrobial or microbicidal activity |
US20060241185A1 (en) * | 2005-02-10 | 2006-10-26 | The Board Of Trustees Of The Leland Stanford Junior University | Antibiotics targeting MreB |
JP2006290872A (en) * | 2005-03-15 | 2006-10-26 | Hirosaki Univ | Functional isoprenoid assuming anti-microbial activity against gram-negative bacterium and gram-positive bacterium or the like |
Non-Patent Citations (1)
Title |
---|
JPN7015003599; '化学大辞典' 化学大辞典1 縮刷版大36刷, 19970920, 248, 共立出版株式会社 * |
Also Published As
Publication number | Publication date |
---|---|
JP5950333B2 (en) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Passera et al. | Not just a pathogen? Description of a plant-beneficial Pseudomonas syringae strain | |
Wang et al. | An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence | |
Semenyuk et al. | Spore formation and toxin production in Clostridium difficile biofilms | |
Pulavarty et al. | Plant parasitic nematodes: A review on their behaviour, host interaction, management approaches and their occurrence in two sites in the republic of Ireland | |
Pieterse et al. | Induced systemic resistance by beneficial microbes | |
Teplitski et al. | Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety | |
Dulla et al. | Interference of quorum sensing in Pseudomonas syringae by bacterial epiphytes that limit iron availability | |
Hu et al. | Molecular signatures between citrus and Candidatus Liberibacter asiaticus | |
Augustine et al. | Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm | |
Casteel et al. | Evaluating insect-microbiomes at the plant-insect interface | |
Wang et al. | Role of the type VI secretion system in the pathogenicity of Pseudomonas syringae pv. actinidiae, the causative agent of kiwifruit bacterial canker | |
Oh et al. | Nematicidal and plant growth-promoting activity of Enterobacter asburiae HK169: genome analysis provides insight into its biological activities | |
Lovato et al. | Inhibition of virulence-related traits in Pseudomonas syringae pv. actinidiae by gunpowder green tea extracts | |
He et al. | Fengycin produced by Bacillus subtilis XF‐1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation | |
Nie et al. | Biofilm: New insights in the biological control of fruits with Bacillus amyloliquefaciens B4 | |
Ray et al. | Molecular insights into enhanced resistance of Papaver somniferum against downy mildew by application of endophyte bacteria Microbacterium sp. SMR1 | |
Xiao et al. | Exploiting natural maltol for synthesis of novel hydroxypyridone derivatives as promising anti-virulence agents in bactericides discovery | |
Chathalingath et al. | Elucidating the physiological and molecular characteristics of bacterial blight incitant Xanthomonas auxonopodis pv. punicae; a life threatening phytopathogen of pomegranate (Punica granatum. L) and assessment of H2O2 accumulation during host-pathogen interaction | |
JP5950333B2 (en) | Pathogenicity inhibitors of plant pathogenic bacteria | |
Doni et al. | Leaf blight disease of rice caused by Pantoea: profile of an increasingly damaging disease in rice | |
Cornelison et al. | Contact-independent antagonism of Ophidiomyces ophiodiicola, the causative agent of snake fungal disease by Rhodococcus rhodochrous DAP 96253 and select volatile organic compounds | |
Wang et al. | Biocontrol of bacterial fruit blotch by seed priming with Bacillus amyloliquefaciens and Pseudomonas fluorescens | |
La et al. | Protective role of native root-associated bacterial consortium against root-knot nematode infection in susceptible plants | |
Jiang et al. | p‐Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity | |
Herman et al. | Fighting for their lives: plants and pathogens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160602 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5950333 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |