JP2013184857A - Method for producing nitrite-type hydrocalumite composition - Google Patents

Method for producing nitrite-type hydrocalumite composition Download PDF

Info

Publication number
JP2013184857A
JP2013184857A JP2012051772A JP2012051772A JP2013184857A JP 2013184857 A JP2013184857 A JP 2013184857A JP 2012051772 A JP2012051772 A JP 2012051772A JP 2012051772 A JP2012051772 A JP 2012051772A JP 2013184857 A JP2013184857 A JP 2013184857A
Authority
JP
Japan
Prior art keywords
nitrite
composition
hydrocalumite
type hydrocalumite
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012051772A
Other languages
Japanese (ja)
Other versions
JP5875899B2 (en
Inventor
Hideki Kotaki
秀樹 小瀧
Hidenobu Tatematsu
英信 立松
Ayano Uema
綾乃 上間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR SOKEN ENGINEERING KK
Nippon Chemical Industrial Co Ltd
Original Assignee
JR SOKEN ENGINEERING KK
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR SOKEN ENGINEERING KK, Nippon Chemical Industrial Co Ltd filed Critical JR SOKEN ENGINEERING KK
Priority to JP2012051772A priority Critical patent/JP5875899B2/en
Publication of JP2013184857A publication Critical patent/JP2013184857A/en
Application granted granted Critical
Publication of JP5875899B2 publication Critical patent/JP5875899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nitrite-type hydrocalumite composition having more excellent chloride ion capturing ability and higher nitrite ion emission than the conventional nitrite-type hydrocalumite compositions.SOLUTION: A CaO-AlO-based compound and a soluble nitrite or a CaO-AlO-based compound, a soluble nitrite and slaked lime are reacted in a water medium to form a gel precipitate, the gel precipitate is aged at ≤70°C to obtain a crystallized product, and the crystallized product is heat treated at ≥90°C.

Description

本発明は、コンクリート構造物用の塩化物イオン捕集剤等として有用な亜硝酸型ハイドロカルマイト組成物の製造方法に関する。   The present invention relates to a method for producing a nitrite-type hydrocalumite composition useful as a chloride ion scavenger for concrete structures.

ハイドロカルマイトは一般式3CaO・Al・CaX2/m・nHOで示されるCa−Al系複合水酸化物である(Xは1価又は2価のアニオンであり、mはアニオンの価数を表し、nは20以下の自然数である。)。ハイドロカルマイトは層状結晶性化合物であり、アニオン交換性のあることが知られている。これらハイドロカルマイトの中、アニオンXとして亜硝酸イオンを含むハイドロカルマイト(以後、亜硝酸型ハイドロカルマイトと称する。)は、例えばコンクリート構造物における塩害等による鉄筋の腐食を抑制するための塩化物イオン捕集剤として有用であることが知られている(特許文献1)。 Hydrocalumite is a Ca—Al based composite hydroxide represented by the general formula 3CaO · Al 2 O 3 · CaX 2 / m · nH 2 O (X is a monovalent or divalent anion, and m is an anion. Where n is a natural number of 20 or less.) Hydrocalumite is a layered crystalline compound and is known to have anion exchange properties. Among these hydrocalumites, hydrocalumite containing nitrite ions as anions X (hereinafter referred to as nitrite-type hydrocalumite) is chloride for suppressing corrosion of reinforcing bars due to salt damage in concrete structures, for example. It is known to be useful as a product ion scavenger (Patent Document 1).

亜硝酸型ハイドロカルマイトは、その強力な陰イオン交換能により塩化物イオン等の腐食因子を捕捉すると同時に、亜硝酸イオンを放出する。更に、放出された亜硝酸イオンにより、金属表面に不動態膜が形成される。このように亜硝酸型ハイドロカルマイトは塩化物イオン捕捉機能と不動態膜形成機能を併せ持つため、コンクリート構造物の鉄筋に対し、優れた防錆効果を発揮する。 Nitrite-type hydrocalumite captures corrosive factors such as chloride ions due to its strong anion exchange ability and simultaneously releases nitrite ions. Furthermore, a passive film is formed on the metal surface by the released nitrite ions. Thus, since nitrite type hydrocalumite has both a chloride ion scavenging function and a passive film forming function, it exhibits an excellent rust prevention effect against reinforcing bars of concrete structures.

従来、亜硝酸型ハイドロカルマイトを製造する方法として、アルミン酸ナトリウムの溶液と、亜硝酸カルシウム及び/または亜硝酸ナトリウムと、消石灰とからなる原料液を反応させ、次いで結晶化させる方法(特許文献1、実施例1〜4)、CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰とからなる原料液を反応させ、次いで結晶化させる方法(特許文献2、実施例1〜5)が知られている。 Conventionally, as a method for producing nitrite-type hydrocalumite, a solution of sodium aluminate, a raw material solution composed of calcium nitrite and / or sodium nitrite, and slaked lime is reacted and then crystallized (patent document) 1, Examples 1-4), a CaO—Al 2 O 3 compound and a soluble nitrite, or a CaO—Al 2 O 3 compound and a raw material solution consisting of a soluble nitrite and slaked lime are reacted and then crystallized. A method (Patent Document 2, Examples 1 to 5) is known.

上記いずれの方法も、原料成分を水溶液中にて混合・反応させてゲル状沈殿物を得、次いで該ゲル状沈殿物のスラリーを所定温度にて熟成して結晶化させ、得られた結晶の沈殿物を濾過・回収する工程よりなり、その生成物は主成分たる亜硝酸型ハイドロカルマイトと他の副生物を含む組成物(以後、亜硝酸型ハイドロカルマイト組成物の用語を用いる。)である。   In any of the above methods, the raw material components are mixed and reacted in an aqueous solution to obtain a gel-like precipitate, and then the gel-like precipitate slurry is aged at a predetermined temperature to be crystallized. It consists of a step of filtering and recovering the precipitate, and the product is a composition containing nitrite hydrocalumite as a main component and other by-products (hereinafter, the term nitrite hydrocalumite composition is used). It is.

近年、コンクリート構造物における塩害の問題がより深刻化しており、副生物が少なく、かつ安価に亜硝酸型ハイドロカルマイト組成物を得ることのできる製造方法の確立が望まれている。この点、特許文献2の方法は原料が安価に入手できる利点を有していた。   In recent years, the problem of salt damage in concrete structures has become more serious, and it is desired to establish a production method that can obtain a nitrite-type hydrocalumite composition at a low cost with fewer by-products. In this respect, the method of Patent Document 2 has an advantage that the raw material can be obtained at low cost.

特開平04−154648号公報Japanese Patent Laid-Open No. 04-154648 特開平07−033431号公報JP 07-033431 A

従来、特許文献2の製造方法においては、副生物の生成抑制のため、結晶化及び乾燥処理は一貫して70℃以下の温度に保っておこなわれてきた。これは温度が70℃より大きくなるとハイドロカルマイトの層構造が崩れて、陰イオン交換能の低いものになり、また、Ca(OH)と3CaO・Alが生成する副反応が生じるとされていたためである(特許文献2、段落[0017])。しかし、最終的に得られる亜硝酸型ハイドロカルマイト組成物中には依然として副生物が含まれるものであることを本発明者らは確認した。 Conventionally, in the production method of Patent Document 2, crystallization and drying treatment have been consistently performed at a temperature of 70 ° C. or lower in order to suppress the formation of by-products. This is because when the temperature is higher than 70 ° C., the layer structure of hydrocalumite breaks down and the anion exchange ability is low, and a side reaction occurs in which Ca (OH) 2 and 3CaO · Al 2 O 3 are generated. (Patent Document 2, paragraph [0017]). However, the present inventors have confirmed that by-products are still contained in the finally obtained nitrite type hydrocalumite composition.

従って、本発明の目的は、CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰から、副生物の含量が低く、亜硝酸型ハイドロカルマイト含量の高い亜硝酸型ハイドロカルマイト組成物を得る新たな製造方法、その製造方法によって得られる亜硝酸型ハイドロカルマイト組成物、並びに従来の亜硝酸型ハイドロカルマイト組成物に比べて、亜硝酸イオンの放出量が多い新規な陰イオン交換体を提供することにある。 Therefore, the object of the present invention is to provide a low content of by-products from a CaO—Al 2 O 3 compound and a soluble nitrite, or a CaO—Al 2 O 3 compound and a soluble nitrite and slaked lime, and a nitrite type hydrokarma. Compared with a new production method for obtaining a nitrite-type hydrocalumite composition having a high yttrium content, a nitrite-type hydrocalumite composition obtained by the production method, and a conventional nitrite-type hydrocalumite composition, An object of the present invention is to provide a novel anion exchanger that releases a large amount of nitrate ions.

本発明者らは、上記実情に鑑みて、鋭意研究を重ねた結果、CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰から得られる亜硝酸型ハイドロカルマイト組成物の製造過程にて生成する特定の副生物(b’)に着目し、この副生物(b’)の生成が抑制された亜硝酸型ハイドロカルマイト組成物は、亜硝酸イオンの放出量及び塩化物イオン捕捉能に優れることを見出した。
更に、前記特定の副生物(b’)の生成は、70℃以下で結晶化処理を行って得られた結晶化処理物を、従来の上記予見に反し、90℃以上で更に加熱処理することにより、抑制されることを見出し、本発明を完成するに至った。
As a result of intensive studies in view of the above circumstances, the present inventors obtained CaO—Al 2 O 3 compounds and soluble nitrites, or CaO—Al 2 O 3 compounds, soluble nitrites and slaked lime. Focusing on a specific by-product (b ′) produced in the production process of the nitrite-type hydrocalumite composition, the production of this by-product (b ′) is suppressed, It was found that the release amount of nitrite ions and the ability to trap chloride ions were excellent.
Furthermore, the specific by-product (b ′) is produced by subjecting the crystallized product obtained by performing the crystallization treatment at 70 ° C. or lower to further heat treatment at 90 ° C. or higher, contrary to the conventional prediction. As a result, it was found to be suppressed, and the present invention was completed.

また、本発明者らは、亜硝酸イオン型ハイドロカルマイト粉末を亜硝酸イオン含有水溶液に浸漬した後、乾燥を行って得られるものは、亜硝酸イオン型ハイドロカルマイトとは、X線回折図において異なる回折ピークのパターンを示し、新規な陰イオン交換体になり、該陰イオン交換体は、従来の亜硝酸型ハイドロカルマイト組成物に比べて、特に亜硝酸イオンの放出量が多いものになることを見出し、本発明を完成するに到った。 In addition, the present inventors have soaked a nitrite ion-type hydrocalumite powder in an aqueous solution containing nitrite ions and then dried it. The nitrite ion-type hydrocalumite is an X-ray diffraction pattern. Shows a different diffraction peak pattern, and becomes a novel anion exchanger, which has a particularly large release amount of nitrite ions compared to the conventional nitrite type hydrocalumite composition. As a result, the present invention has been completed.

従って、本発明が提供しようとする第一の発明は、CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰とを水溶媒中で混合・反応させてゲル状沈殿物を生成させる沈殿生成工程と、
前記ゲル状沈殿物を70℃以下で熟成し、結晶化処理物を得る結晶化工程と、
前記結晶化処理物を90℃以上で加熱する加熱処理工程と、
を備える下記一般式(1)
3CaO・Al・Ca(NO・nHO ・・・・(1)
(式中、nは20以下の自然数を表す。)で表される亜硝酸型ハイドロカルマイトを主成分とする、亜硝酸型ハイドロカルマイト組成物の製造方法である。
Therefore, the first invention to be provided by the present invention is to mix a CaO—Al 2 O 3 compound and a soluble nitrite, or a CaO—Al 2 O 3 compound and a soluble nitrite and slaked lime in an aqueous solvent. A precipitation generating step of reacting to form a gel-like precipitate;
A crystallization step of aging the gel-like precipitate at 70 ° C. or lower to obtain a crystallized product;
A heat treatment step of heating the crystallized product at 90 ° C. or higher;
The following general formula (1)
3CaO · Al 2 O 3 · Ca (NO 2 ) 2 · nH 2 O (1)
(Wherein n represents a natural number of 20 or less). A method for producing a nitrite-type hydrocalumite composition comprising as a main component a nitrite-type hydrocalumite.

また、本発明が提供しようとする第二の発明は、X線回折分析したときに、2θ=11.0°付近の回折ピークの強度に対する2θ=29.4°付近の回折ピークの強度の相対強度比が0.3以下であることを特徴とする、第一の発明の方法により得られる亜硝酸型ハイドロカルマイト組成物である。 In addition, the second invention to be provided by the present invention is the relative intensity of the diffraction peak near 2θ = 29.4 ° to the intensity of the diffraction peak near 2θ = 11.0 ° when X-ray diffraction analysis is performed. It is a nitrous acid type hydrocalumite composition obtained by the method of the first invention, characterized in that the strength ratio is 0.3 or less.

また、本発明が提供しようとする第三の発明は、第一の発明の方法によって得られる亜硝酸型ハイドロカルマイト組成物を、亜硝酸イオンを含む水溶液に浸漬した後、乾燥して得られることを特徴とする陰イオン交換体である。   The third invention to be provided by the present invention is obtained by immersing the nitrite-type hydrocalumite composition obtained by the method of the first invention in an aqueous solution containing nitrite ions, followed by drying. An anion exchanger characterized by the above.

本発明によれば、従来の製造方法よりも副生物の生成を低減することができ、得られる亜硝酸型ハイドロカルマイト組成物は従来の亜硝酸型ハイドロカルマイト組成物よりも、防錆成分となる亜硝酸イオンの放出量が多く、かつ腐食因子となる塩化物イオンの捕捉能に優れる。
さらに、本発明の方法により得られる亜硝酸型ハイドロカルマイト組成物に基づき、亜硝酸イオンの放出量が多い新規な陰イオン交換体を得ることが出来る。
According to the present invention, the production of by-products can be reduced as compared with the conventional production method, and the obtained nitrite type hydrocalumite composition is more resistant to rust than the conventional nitrite type hydrocalumite composition. The amount of nitrite ions released is large, and the ability to trap chloride ions, which are corrosion factors, is excellent.
Furthermore, based on the nitrite type hydrocalumite composition obtained by the method of the present invention, a novel anion exchanger with a large amount of nitrite ion release can be obtained.

実施例1で得られた亜硝酸型ハイドロカルマイト組成物のX線回折図。The X-ray diffraction pattern of the nitrite type hydrocalumite composition obtained in Example 1. 比較例1で得られた亜硝酸型ハイドロカルマイト組成物のX線回折図。The X-ray diffraction pattern of the nitrite type hydrocalumite composition obtained in Comparative Example 1. 比較例2で得られた亜硝酸型ハイドロカルマイト組成物のX線回折図。The X-ray diffraction pattern of the nitrite type hydrocalumite composition obtained in Comparative Example 2. 比較例3で得られた亜硝酸型ハイドロカルマイト組成物のX線回折図。The X-ray diffraction pattern of the nitrite type hydrocalumite composition obtained in Comparative Example 3. 実施例2で得られた陰イオン交換体のX線回折図。FIG. 3 is an X-ray diffraction pattern of the anion exchanger obtained in Example 2.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明に係る亜硝酸型ハイドロカルマイト組成物の製造方法は、
CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰とを水溶媒中で混合・反応させてゲル状沈殿物を生成させる沈殿生成工程と、
前記ゲル状沈殿物を70℃以下で熟成し、結晶化処理物を得る結晶化工程と、
前記結晶化処理物を90℃以上で加熱する加熱処理工程と、
を含む下記一般式(1)
3CaO・Al・Ca(NO・nHO ・・・・(1)
(式中、nは20以下の自然数を表す。)で表される亜硝酸型ハイドロカルマイトを主成分とする、亜硝酸型ハイドロカルマイト組成物の製造方法である。
以下、工程ごとに説明する。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The method for producing a nitrite-type hydrocalumite composition according to the present invention includes:
A precipitation generating step in which a CaO-Al 2 O 3 compound and a soluble nitrite, or a CaO—Al 2 O 3 compound and a soluble nitrite and slaked lime are mixed and reacted in an aqueous solvent to form a gel precipitate; ,
A crystallization step of aging the gel-like precipitate at 70 ° C. or lower to obtain a crystallized product;
A heat treatment step of heating the crystallized product at 90 ° C. or higher;
The following general formula (1) including
3CaO · Al 2 O 3 · Ca (NO 2 ) 2 · nH 2 O (1)
(Wherein n represents a natural number of 20 or less). A method for producing a nitrite-type hydrocalumite composition comprising as a main component a nitrite-type hydrocalumite.
Hereinafter, it demonstrates for every process.

<沈殿生成工程>
前記沈殿生成工程に係る原料のCaO−Al系化合物は、工業的に入手できるものであれば、いずれでもよいが、CaO−Al23系化合物としては、例えば化学式としてCaO・Al23、5CaO・3Al23、2CaO・Al23、3CaO・5Al23、12CaO・7Al23、3CaO・Al23等の鉱物組成を有する微粉末が挙げられる。本発明においては、特に、CaO・Al23、5CaO・3Al23、2CaO・Al23等の鉱物組成で構成されるアルミナセメントが安価であり好ましい。
<Precipitation generation process>
CaO-Al 2 O 3 based compound material according to the precipitation process, as long as it can industrially available, may be any, as the CaO-Al 2 O 3 compound, e.g., CaO · Al as Formula 2 O 3, 5CaO · 3Al 2 O 3, 2CaO · Al 2 O 3, 3CaO · 5Al 2 O 3, 12CaO · 7Al 2 O 3, powder and the like having a mineral composition such as 3CaO · Al 2 O 3. In the present invention, alumina cement composed of a mineral composition such as CaO · Al 2 O 3 , 5CaO · 3Al 2 O 3 , 2CaO · Al 2 O 3 is particularly inexpensive and preferable.

前記沈殿生成工程に係る原料の可溶性亜硝酸塩としては、亜硝酸カルシウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウムが挙げられる。本発明において、特に亜硝酸カルシウムを用いると、洗浄工程を省き、工程を簡素化できるので工業的に有利である。   Examples of the soluble nitrite as a raw material in the precipitation generation step include calcium nitrite, lithium nitrite, sodium nitrite, and potassium nitrite. In the present invention, the use of calcium nitrite is industrially advantageous because it eliminates the cleaning process and simplifies the process.

CaO−Al系化合物及び可溶性亜硝酸塩、又はCaO−Al系化合物、可溶性亜硝酸塩及び消石灰の添加割合は、CaO/Alのモル比が1.0〜3.5、好ましくは1.7〜2.3、亜硝酸イオン/Alのモル比が0.5〜3.0、好ましくは1.5〜2.5である。 The molar ratio of CaO / Al 2 O 3 is 1.0 to 3.5 in the addition ratio of CaO—Al 2 O 3 -based compound and soluble nitrite, or CaO—Al 2 O 3 -based compound, soluble nitrite and slaked lime. The molar ratio of nitrite ions / Al 2 O 3 is 0.5 to 3.0, preferably 1.5 to 2.5.

CaO/Alのモル比を上記範囲とする理由は、CaO/Alのモル比が1.0未満では目的物の収率が極端に低くなるばかりでなく、結晶化における熟成反応を行っても非晶質の割合が多くなり、結晶化度が低くなり、一方、CaO/Alのモル比が3.5より大きくなるとハイドロカルマイトが生成されず、Ca(OH)や3CaO・Al(以下、「CA」と呼ぶ)の不純物が生成されるからである。 Why the molar ratio of CaO / Al 2 O 3 within the above range not only yield of the desired product becomes extremely low in a molar ratio of CaO / Al 2 O 3 is less than 1.0, aging at crystallization Even if the reaction is carried out, the proportion of amorphous material increases and the degree of crystallinity decreases. On the other hand, when the molar ratio of CaO / Al 2 O 3 exceeds 3.5, hydrocalumite is not generated and Ca (OH This is because impurities of 2 and 3CaO.Al 2 O 3 (hereinafter referred to as “C 3 A”) are generated.

また、亜硝酸イオン/Alのモル比を上記範囲とする理由は、亜硝酸イオン/Alのモル比が0.5未満では最終的に得られる亜硝酸型ハイドロカルマイトの亜硝酸イオン放出量が低くなり、一方、亜硝酸イオン/Alのモル比が3.0より大きくなると亜硝酸型ハイドロカルマイトの結晶層間に亜硝酸イオンを担持することが困難となり、また担持された亜硝酸イオンが酸化して硝酸イオンへ変化するなど亜硝酸イオンとして長期保持することが困難になるためである。 The reason why the nitrite ion / Al 2 O 3 molar ratio of the above range, the molar ratio of nitrite / Al 2 O 3 is finally obtained nitrite type hydrocalumite is less than 0.5 On the other hand, if the molar ratio of nitrite ions / Al 2 O 3 is larger than 3.0, it becomes difficult to support nitrite ions between crystal layers of nitrite-type hydrocalumite, Moreover, it is because it becomes difficult to hold | maintain as nitrite ion for a long period of time, such as the nitrite ion carry | supported is oxidized and changes to nitrate ion.

沈殿生成工程に係る水溶媒は、水のほか、可溶性亜硝酸塩を溶解でき、生成物に対して不活性な水溶性有機溶媒と水との混合溶媒であってもよい。   The water solvent used in the precipitation generation step may be a mixed solvent of water and a water-soluble organic solvent that can dissolve soluble nitrite in addition to water and is inert to the product.

沈殿生成工程における水溶媒は、生成されるゲル状沈殿物を含むスラリーの固形分濃度が5〜30質量%の範囲となるように調整することが、反応を効率的に行う観点から好ましい。   It is preferable from the viewpoint of performing the reaction efficiently that the aqueous solvent in the precipitation generation step is adjusted so that the solid content concentration of the slurry containing the gel-like precipitate to be generated is in the range of 5 to 30% by mass.

なお、原料系の混合操作は、CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰が水溶媒中に存在していればよく、その添加方法及び添加順序は特に制限されるものではない。 The mixing operation of the stock system has only to CaO-Al 2 O 3 based compound and a soluble nitrite, or CaO-Al 2 O 3 based compound and a soluble nitrite and slaked lime present in the aqueous solvent, the The addition method and the addition order are not particularly limited.

沈殿生成工程に係る反応条件は、反応温度が60℃以下であればよく、好ましくは5〜40℃である。この理由は反応温度が60℃を超えると亜硝酸イオンが酸化されやすく、また層構造形成が阻害されるからである。また、反応時間は本製造方法において臨界的ではない。一般に5分以上、好ましくは10〜30分反応を行えば、ゲル状沈殿物が生成する。   The reaction conditions relating to the precipitation generation step may be a reaction temperature of 60 ° C. or lower, preferably 5 to 40 ° C. This is because when the reaction temperature exceeds 60 ° C., nitrite ions are easily oxidized and the formation of the layer structure is hindered. Also, the reaction time is not critical in this production method. In general, if the reaction is carried out for 5 minutes or longer, preferably 10 to 30 minutes, a gel-like precipitate is produced.

<結晶化工程>
沈殿生成工程に次いで結晶化工程にて、ゲル状沈殿物を含むスラリーをそのまま熟成させハイドロカルマイトの結晶粒子を生成させる。
<Crystalling process>
In the crystallization step subsequent to the precipitation generation step, the slurry containing the gel-like precipitate is aged as it is to generate hydrocalumite crystal particles.

結晶化工程では、70℃以下、好ましくは40〜65℃で熟成反応を行う。熟成温度を上記範囲にする理由は、熟成温度が70℃を超えると、Ca(OH)とCaAを生成する副反応が生じ、若しくはハイドロカルマイトは生成するものの陰イオン交換能の低いものとなるからである。 In the crystallization step, an aging reaction is performed at 70 ° C. or lower, preferably 40 to 65 ° C. The reason for setting the aging temperature in the above range is that when the aging temperature exceeds 70 ° C., a side reaction that generates Ca (OH) 2 and Ca 3 A occurs, or hydrocalumite is generated but anion exchange ability is low. Because it becomes a thing.

結晶化工程で得られる結晶粒子を含む結晶化処理物は、得られた結晶化処理物をX線回折したときに、少なくとも2θ=11.0°付近と、2θ=13.1°付近に中乃至強の回折ピークが存在しているものであることが好ましい。この2θ=11.0°付近の回折ピーク(以下、回折ピーク(P1)と称することがある。)と、2θ=13.1°付近の回折ピークは、ハイドロカルマイトの層構造形成を示す一つの尺度となる。この2つの回折ピークが存在すると、亜硝酸イオンの放出量が多く、且つ、腐食因子となる塩化物イオンの捕捉能が高いハイドロカルマイト粉末が得られやすい。   The crystallized product containing crystal particles obtained in the crystallization step is at least about 2θ = 11.0 ° and 2θ = 13.1 ° when the obtained crystallized product is subjected to X-ray diffraction. It is preferable that a strong diffraction peak is present. The diffraction peak near 2θ = 11.0 ° (hereinafter sometimes referred to as diffraction peak (P1)) and the diffraction peak near 2θ = 13.1 ° indicate formation of a layer structure of hydrocalumite. It will be one measure. When these two diffraction peaks are present, a hydrocalumite powder that releases a large amount of nitrite ions and has a high ability to capture chloride ions that are corrosive factors can be easily obtained.

なお、前記2θ=11.0°付近及び2θ=13.1°付近とは、各々±0.5°の誤差範囲を含むことを意味する。   Incidentally, the vicinity of 2θ = 11.0 ° and the vicinity of 2θ = 13.1 ° mean that each includes an error range of ± 0.5 °.

前記結晶化工程に係る熟成時間は、特に制限はないが、前述した2θ=11.0°付近と、2θ=13.1°付近に中乃至強の回折ピークが存在するようになるまで行うことが肝要である。一般に熟成時間は2時間以上であれば良く、20〜48時間であることがより好ましい。   The aging time for the crystallization step is not particularly limited, but it is performed until the above-mentioned 2θ = 11.0 ° and the middle to strong diffraction peaks are present in the vicinity of 2θ = 13.1 °. Is essential. In general, the aging time may be 2 hours or more, and more preferably 20 to 48 hours.

結晶化工程の後、以下に述べる加熱処理前に、必要に応じ残余の可溶性亜硝酸塩を除去するべく水で洗浄しても良いが、可溶性亜硝酸塩として亜硝酸カルシウムを用いた場合には、洗浄操作を省略することが出来る。 After the crystallization step, before the heat treatment described below, if necessary, it may be washed with water to remove residual soluble nitrite, but if calcium nitrite is used as the soluble nitrite, washing is performed. Operation can be omitted.

<加熱処理工程>
結晶化工程終了後、加熱処理を行う。この加熱処理工程により、最終的に得られる亜硝酸型ハイドロカルマイト組成物中の副生物(b’)の含量が低減することが出来る。このため、亜硝酸イオン放出量が高く、かつ塩化物イオン等の陰イオン捕捉能に優れる亜硝酸型ハイドロカルマイト組成物を得ることができる。
<Heat treatment process>
After completion of the crystallization process, heat treatment is performed. By this heat treatment step, the content of by-product (b ′) in the finally obtained nitrite-type hydrocalumite composition can be reduced. For this reason, a nitrite type hydrocalumite composition having a high nitrite ion release amount and excellent in anion capturing ability such as chloride ions can be obtained.

加熱処理は、結晶化工程を経た結晶化処理物を含むスラリーをろ過等により固液分離した後に加熱する方法、または結晶化工程を経た結晶化処理物を含むスラリーを、固液分離すると同時に加熱する方法のいずれでも良い。後者の方法は、製品となる粉末が一気に得られる利点を有する。後者の方法は、例えば、(イ)減圧下に上記温度範囲で加熱処理する方法(以下、「加熱処理法(イ)」ということもある)、或いは、(ロ)上記温度範囲に加熱した空気を、スラリー状態、または湿潤状態の結晶化処理物に通気して接触させる方法(以下、「加熱処理法(ロ)」ということもある)等を用いることができる。 In the heat treatment, the slurry containing the crystallized product that has undergone the crystallization process is heated after solid-liquid separation by filtration or the like, or the slurry containing the crystallized product that has undergone the crystallization process is solid-liquid separated and heated at the same time. Either method can be used. The latter method has an advantage that a powder as a product can be obtained at once. The latter method is, for example, (a) a method in which heat treatment is performed in the above temperature range under reduced pressure (hereinafter also referred to as “heat treatment method (b)”), or (b) air heated to the above temperature range. And the like, and a method in which the crystallization treatment product in a slurry state or a wet state is aerated and brought into contact with the crystallization treatment product (hereinafter, also referred to as “heat treatment method (b)”) can be used.

このうち、本製造方法において、ムラ無く効率的に行うことができる観点から加熱処理法(ロ)により行うことが好ましい。
工業的規模で加熱処理法(ロ)を実施するための装置として、例えば、箱型乾燥機、パドルドライヤー、スラリードライヤー等の装置を用いることができる。
Among these, in this manufacturing method, it is preferable to perform by the heat processing method (b) from a viewpoint which can be performed efficiently without unevenness.
As an apparatus for carrying out the heat treatment method (b) on an industrial scale, for example, an apparatus such as a box-type dryer, a paddle dryer, or a slurry dryer can be used.

加熱処理に係る温度は90℃以上であることが必要であり、好ましくは90〜120℃、一層好ましくは90〜105℃である。加熱処理の温度が90℃より低い場合は、前記副生物(b’)の生成を抑制することが困難となるからである。   The temperature related to the heat treatment needs to be 90 ° C. or higher, preferably 90 to 120 ° C., more preferably 90 to 105 ° C. This is because when the temperature of the heat treatment is lower than 90 ° C., it is difficult to suppress the production of the by-product (b ′).

前記副生物(b’)の生成は、最終的に得られる亜硝酸型ハイドロカルマイト組成物をX線回折分析したときに、2θ=29.4°付近の回折ピーク(以下、回折ピーク(P2)と称することがある。)の有無により判定することが出来る。ここに、2θ=29.4°付近とは±0.5°の誤差範囲を含むことを意味する。   The by-product (b ′) is produced by a diffraction peak around 2θ = 29.4 ° (hereinafter referred to as diffraction peak (P2) when the finally obtained nitrite hydrocalumite composition is analyzed by X-ray diffraction. It can be determined by the presence or absence of. Here, the vicinity of 2θ = 29.4 ° means that an error range of ± 0.5 ° is included.

加熱処理を行うことにより、最終的に得られる亜硝酸型ハイドロカルマイト組成物をX線回折分析したときに回折ピーク(P1)の強度(a)に対する回折ピーク(P2)の強度(b)の相対強度比(b/a)は0.3以下、好ましくは0.2以下となる。ここにピーク強度比は、各々のピーク高さの比率である。   When the nitrite-type hydrocalumite composition finally obtained by performing heat treatment is subjected to X-ray diffraction analysis, the intensity (b) of the diffraction peak (P2) with respect to the intensity (a) of the diffraction peak (P1) The relative intensity ratio (b / a) is 0.3 or less, preferably 0.2 or less. Here, the peak intensity ratio is the ratio of each peak height.

また、加熱処理の時間は、前記温度条件にて一般に10時間以上、好ましくは20〜28時間である。 The heat treatment time is generally 10 hours or longer, preferably 20 to 28 hours under the above temperature conditions.

なお、前記加熱処理は、断続的に行うと、前記回折ピークの相対強度比(b/a)を上記範囲にすることが難しくなる。従って前記回折ピークの相対強度比(b/a)が上記範囲となるまで加熱処理を一気に行うことが好ましい。   In addition, when the heat treatment is intermittently performed, it is difficult to set the relative intensity ratio (b / a) of the diffraction peaks within the above range. Therefore, it is preferable to perform the heat treatment all at once until the relative intensity ratio (b / a) of the diffraction peaks is within the above range.

従来は結晶化工程終了後、固液分離して湿潤状態の結晶化処理物を70℃以下の温度で長時間乾燥処理を行って亜硝酸型ハイドロカルマイト組成物を得ていたが、本発明の加熱処理工程を行うことにより短期間で乾燥品を得ることができるので、トータルの製造時間を短縮できるという工業的な利点も有する。   Conventionally, after completion of the crystallization process, a nitrite hydrocalumite composition was obtained by solid-liquid separation and drying the wet crystallization product at a temperature of 70 ° C. or lower for a long time. Since the dried product can be obtained in a short period of time by performing the heat treatment step, there is an industrial advantage that the total production time can be shortened.

加熱処理終了後は、そのまま洗浄及び乾燥することなく製品とすることができるが、使用する用途に合わせて、粉砕、分級等を行って粒度を調整することもできる。   After completion of the heat treatment, it can be made into a product without washing and drying as it is, but the particle size can be adjusted by pulverization, classification or the like according to the intended use.

粉砕処理を行う場合には、所望により分散剤を添加し、乾式で機械的手段により粉砕処理を行うことができる。前記乾式粉砕装置としては、例えばジェットミル、アトマイザー、バンタムミル、乾式ボールミル、乾式ビーズミル等の装置を用いることができる。   When the pulverization is performed, a dispersant can be added as desired, and the pulverization can be performed by dry mechanical means. Examples of the dry pulverizer include a jet mill, an atomizer, a bantam mill, a dry ball mill, and a dry bead mill.

本製造方法で得られる亜硝酸型ハイドロカルマイト組成物は、従来の亜硝酸型ハイドロカルマイト組成物に比べて、防錆成分となる亜硝酸イオンの放出量が多く、かつ、腐食因子となる塩化物イオン等の陰イオンの捕捉能が高いので、例えば、塩化物イオン捕集剤、防錆用塗料やコンクリート組成物等の添加剤として好適に用いることができる。   The nitrite-type hydrocalumite composition obtained by this production method has a higher release amount of nitrite ions as a rust-preventive component than the conventional nitrite-type hydrocalumite composition, and becomes a corrosion factor. Since it has a high ability to capture anions such as chloride ions, it can be suitably used as an additive for, for example, chloride ion scavengers, rust preventive paints and concrete compositions.

また、亜硝酸イオンを含む水溶液に本発明の方法により得られる亜硝酸イオン型ハイドロカルマイト組成物を浸漬した後、乾燥を行うことにより新規な陰イオン交換体を得ることができる。   Moreover, a novel anion exchanger can be obtained by immersing the nitrite ion-type hydrocalumite composition obtained by the method of the present invention in an aqueous solution containing nitrite ions, followed by drying.

図1及び図5から明らかなように、当該陰イオン交換体はX線回折図において、亜硝酸イオン型ハイドロカルマイト組成物とは異なる回折ピークのパターンを示す。当該陰イオン交換体は、特に亜硝酸イオンの放出量が多いものになる。   As apparent from FIGS. 1 and 5, the anion exchanger shows a diffraction peak pattern different from the nitrite ion-type hydrocalumite composition in the X-ray diffraction pattern. In particular, the anion exchanger has a large release amount of nitrite ions.

当該陰イオン交換体を得るために用いる前記亜硝酸イオン源としては、亜硝酸カルシウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸リチウム等を用いることができる。   As the nitrite ion source used for obtaining the anion exchanger, calcium nitrite, sodium nitrite, potassium nitrite, lithium nitrite and the like can be used.

亜硝酸イオン源を溶解した水溶液中の亜硝酸イオン濃度は、亜硝酸イオンの溶解度の範囲内であれば、特に制限されるものではないが、多くの場合、亜硝酸イオンとして10〜40質量%、好ましくは30〜35質量%とすることが好ましい。   The nitrite ion concentration in the aqueous solution in which the nitrite ion source is dissolved is not particularly limited as long as it is within the solubility range of nitrite ions, but in many cases, 10 to 40% by mass as nitrite ions. , Preferably 30 to 35% by mass.

亜硝酸イオン源を溶解した水溶液への亜硝酸イオン型ハイドロカルマイト組成物の添加量は、特に制限されるものではなく、一般には、亜硝酸イオン源を溶解した水溶液100重量部に亜硝酸イオン型ハイドロカルマイト粉末を50〜200重量部、好ましくは100〜150重量部添加することが好ましい。   The amount of the nitrite ion-type hydrocalumite composition added to the aqueous solution in which the nitrite ion source is dissolved is not particularly limited. Generally, nitrite ions are added to 100 parts by weight of the aqueous solution in which the nitrite ion source is dissolved. It is preferable to add 50 to 200 parts by weight, preferably 100 to 150 parts by weight of the type hydrocalumite powder.

亜硝酸イオン型ハイドロカルマイト組成物の亜硝酸イオン源を溶解した水溶液への混合時間は、一般には、5分以上、好ましくは10分以上であればよい。また、浸漬させる温度は、5〜40℃、好ましくは15〜30℃である。   The mixing time of the nitrite ion type hydrocalumite composition into the aqueous solution in which the nitrite ion source is dissolved is generally 5 minutes or longer, preferably 10 minutes or longer. Moreover, the temperature to immerse is 5-40 degreeC, Preferably it is 15-30 degreeC.

浸漬処理終了後、常法により固液分離して浸漬処理品を回収し乾燥処理を行ってもよく、また、固液分離することなくそのまま溶液ごと乾燥処理してもよい。   After completion of the immersion treatment, the solution may be subjected to solid-liquid separation by an ordinary method, and the immersion-treated product may be collected and dried, or the solution may be dried as it is without solid-liquid separation.

乾燥処理は、乾燥温度が20℃以上、好ましくは60〜105℃であり、前記した(イ)の加熱処理方法又は(ロ)の加熱処理方法の何れかで行うことが好ましい。   The drying treatment has a drying temperature of 20 ° C. or higher, preferably 60 to 105 ° C., and is preferably performed by either the heat treatment method (A) or the heat treatment method (B) described above.

乾燥時間は、臨界的ではなく、一般に20時間以上、好ましくは48時間以上行えば、亜硝酸イオン放出能に優れる陰イオン交換体が得られる。   The drying time is not critical. In general, an anion exchanger having an excellent ability to release nitrite ions can be obtained by performing the treatment for 20 hours or longer, preferably 48 hours or longer.

このようにして得られる陰イオン交換体は従来の亜硝酸型ハイドロカルマイト組成物に比べて、防錆成分となる亜硝酸イオンの放出量が高いので、例えば、塩素イオン捕集材だけでなく、特に防錆用の添加剤として好適に用いることができる。   The anion exchanger thus obtained has a higher release amount of nitrite ions as rust preventive components than conventional nitrite-type hydrocalumite compositions. In particular, it can be suitably used as an additive for rust prevention.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるわけでない。
{実施例1}
<沈殿生成工程>
Al23:54.89重量%、CaO:34.59重量%を含有するアルミナセメント17.5kgと、亜硝酸カルシウム1水塩39kg、消石灰12kg、水100kgを加え、室温(25℃)で10分間、攪拌下に反応を行ったところ、ゲル状の沈澱物が生成した。
<結晶化工程>
次いで、このスラリーを60℃に加温して常圧で50分撹拌を続けながら結晶化処理を行った。
得られた結晶化処理物を固液分離して反応液から回収し、湿潤状態の結晶化処理物を得た。
X線回折分析するため、得られた湿潤状態の結晶化処理物の一部を60℃で48時間乾燥処理し、線源としてCuKα線を用いてX線回折分析(X線回折装置;理学製RINT2400型)を行ったところ、2θ=11.1°(強)の回折ピーク(P1)と2θ=13.1°(中)の回折ピークが観察された。
<加熱処理工程>
次いで、湿潤状態の結晶化処理物を箱型乾燥機で105℃に加温した空気を通気しながら24時間、加熱処理を行い50kgの白色固体を得た。得られた白色固体を粉砕し、150メッシュ以下の白色粉末を得た。CuKα線を線源として当該白色粉末のX線回折分析(X線回折装置;理学製RINT2400型)を行い、また、化学分析、赤外線吸収スペクトル、電子顕微鏡写真で解析した結果、亜硝酸型ハイドロカルマイト(3CaO・Al・Ca(NO・nHO、nは20以下の自然数)を主成分とする層状亜硝酸型ハイドロカルマイト組成物であることを確認した。得られたX線回折図を図1に示す。
また、得られた亜硝酸型ハイドロカルマイト組成物の2θ=11.0°付近の回折ピーク(P1)の強度(a)に対する2θ=29.4°付近の回折ピーク(P2)の強度(b)の相対強度比(b/a)は0.16であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not necessarily limited to these Examples.
{Example 1}
<Precipitation generation process>
Add 17.5 kg of alumina cement containing Al 2 O 3 : 54.89 wt%, CaO: 34.59 wt%, 39 kg of calcium nitrite monohydrate, 12 kg of slaked lime, and 100 kg of water, and at room temperature (25 ° C.) When the reaction was carried out for 10 minutes with stirring, a gel-like precipitate was formed.
<Crystalling process>
Next, the slurry was heated to 60 ° C. and subjected to crystallization treatment while continuing stirring at normal pressure for 50 minutes.
The obtained crystallized product was solid-liquid separated and recovered from the reaction solution to obtain a wet crystallized product.
In order to perform X-ray diffraction analysis, a part of the obtained wet crystallized product was dried at 60 ° C. for 48 hours, and X-ray diffraction analysis (X-ray diffractometer; manufactured by Rigaku Corp.) using CuKα rays as a radiation source. RINT2400 type), a diffraction peak (P1) of 2θ = 11.1 ° (strong) and a diffraction peak of 2θ = 13.1 ° (medium) were observed.
<Heat treatment process>
The wet crystallization product was then heat-treated for 24 hours while ventilating air heated to 105 ° C. with a box dryer to obtain 50 kg of a white solid. The obtained white solid was pulverized to obtain a white powder of 150 mesh or less. X-ray diffraction analysis (X-ray diffractometer; RINT2400 model made by Rigaku) using CuKα ray as a radiation source, and analysis by chemical analysis, infrared absorption spectrum, and electron micrograph. It was confirmed that the composition was a layered nitrite-type hydrocalumite composition containing as a main component thereof (3CaO.Al 2 O 3 .Ca (NO 2 ) 2 .nH 2 O, n is a natural number of 20 or less). The obtained X-ray diffraction pattern is shown in FIG.
In addition, the intensity of the diffraction peak (P2) near 2θ = 29.4 ° with respect to the intensity (a) of the diffraction peak (P1) near 2θ = 11.0 ° of the obtained nitrous acid type hydrocalumite composition (b) ) Relative intensity ratio (b / a) was 0.16.

{比較例1}
<沈殿生成工程>
Al23:54.89重量%、CaO:34.59重量%を含有するアルミナセメント17.5kgと、亜硝酸カルシウム1水塩39kg、消石灰12kg、水100kgを加え、室温(25℃)で10分、攪拌下に反応を行ったところ、ゲル状の沈澱物が生成した。
<結晶化工程>
次いで、このスラリーを60℃に加温して常圧で50分撹拌を続けながら結晶化処理を行った。
得られた結晶化処理物を固液分離して反応液から回収し、湿潤状態の結晶化処理物を得た。
次いで、湿潤状態の結晶化処理物を26日間、室温で自然乾燥を行い得られた白色固体を粉砕し、150メッシュ以下の白色粉末を得た。CuKα線を線源として白色粉末のX線回折分析(X線回折装置;理学製RINT2400型)を行い、また、化学分析、赤外線吸収スペクトル、電子顕微鏡写真で解析した結果、亜硝酸型ハイドロカルマイト(3CaO・Al・Ca(NO・nHO、nは20以下の自然数)を含有する層状亜硝酸型ハイドロカルマイト組成物であることを確認した。得られたX線回折図を図2に示す。
また、得られた亜硝酸型ハイドロカルマイト組成物の2θ= 11.1°の回折ピーク(P1)の強度(a)に対する2θ=29.4°の回折ピーク(P2)の強度(b)の相対強度比(b/a)は2.22であった。
{Comparative Example 1}
<Precipitation generation process>
Add 17.5 kg of alumina cement containing Al 2 O 3 : 54.89 wt%, CaO: 34.59 wt%, 39 kg of calcium nitrite monohydrate, 12 kg of slaked lime, and 100 kg of water, and at room temperature (25 ° C.) When the reaction was carried out with stirring for 10 minutes, a gel-like precipitate was formed.
<Crystalling process>
Next, the slurry was heated to 60 ° C. and subjected to crystallization treatment while continuing stirring at normal pressure for 50 minutes.
The obtained crystallized product was solid-liquid separated and recovered from the reaction solution to obtain a wet crystallized product.
Next, the white solid obtained by naturally drying the crystallized product in a wet state for 26 days at room temperature was pulverized to obtain a white powder of 150 mesh or less. X-ray diffraction analysis (X-ray diffractometer; RINT2400, manufactured by Rigaku Corp.) of white powder using CuKα ray as a radiation source, and analysis by chemical analysis, infrared absorption spectrum, electron micrograph, nitrite type hydrocalumite It was confirmed to be a layered nitrite type hydrocalumite composition containing (3CaO.Al 2 O 3 .Ca (NO 2 ) 2 .nH 2 O, n is a natural number of 20 or less). The obtained X-ray diffraction pattern is shown in FIG.
Further, the intensity (b) of the diffraction peak (P2) at 2θ = 29.4 ° with respect to the intensity (a) of the diffraction peak (P1) at 2θ = 11.1 ° of the obtained nitrite type hydrocalumite composition. The relative intensity ratio (b / a) was 2.22.

{比較例2}
加熱処理工程で、湿潤状態の結晶化処理物を箱型乾燥機で105℃に加温した空気を通気しながら1.5時間、次いで26日間、室温で自然乾燥を行った以外は、実施例1と同様な条件にて白色粉末を得た。CuKα線を線源として白色粉末のX線回折分析(X線回折装置;理学製RINT2400型)を行い、また、化学分析、赤外線吸収スペクトル、電子顕微鏡写真で解析した結果、亜硝酸型ハイドロカルマイト(3CaO・Al・Ca(NO・nHO、nは20以下の自然数)を含有する層状亜硝酸型ハイドロカルマイト組成物であることを確認した。得られたX線回折図を図3に示す。
また、得られた亜硝酸型ハイドロカルマイト組成物の2θ=11.0の回折ピーク(P1)の強度(a)に対する2θ=29.4°の回折ピーク(P2)の強度(b)の相対強度比(b/a)は1.30であった。
{Comparative Example 2}
Example except that in the heat treatment step, the wet crystallized product was naturally dried at room temperature for 1.5 hours and then 26 days while ventilating air heated to 105 ° C. with a box dryer. A white powder was obtained under the same conditions as in 1. X-ray diffraction analysis (X-ray diffractometer; RINT2400, manufactured by Rigaku Corp.) of white powder using CuKα ray as a radiation source, and analysis by chemical analysis, infrared absorption spectrum, electron micrograph, nitrite type hydrocalumite It was confirmed to be a layered nitrite type hydrocalumite composition containing (3CaO.Al 2 O 3 .Ca (NO 2 ) 2 .nH 2 O, n is a natural number of 20 or less). The obtained X-ray diffraction pattern is shown in FIG.
Further, the relative intensity (b) of the diffraction peak (P2) at 2θ = 29.4 ° with respect to the intensity (a) of the diffraction peak (P1) at 2θ = 11.0 of the obtained nitrous acid type hydrocalumite composition. The intensity ratio (b / a) was 1.30.

{比較例3}
加熱処理工程で、湿潤状態の結晶化処理物を箱型乾燥機で105℃に加温した空気を通気しながら5時間、次いで17日間、室温で自然乾燥を行った以外は、実施例1と同様な条件にて白色粉末を得た。CuKα線を線源として白色粉末のX線回折分析(X線回折装置;理学製RINT2400型)を行い、また、化学分析、赤外線吸収スペクトル、電子顕微鏡写真で解析した結果、亜硝酸型ハイドロカルマイト(3CaO・Al・Ca(NO・nHO、nは20以下の自然数)を含有する層状亜硝酸型ハイドロカルマイト組成物であることを確認した。得られたX線回折図を図4に示す。
また、得られた亜硝酸型ハイドロカルマイト組成物の2θ=11.0の回折ピーク(P1)の強度(a)に対する2θ=29.4°の回折ピーク(P2)の強度(b)の相対強度比(b/a)は0.89であった。
{Comparative Example 3}
Example 1 except that in the heat treatment step, the wet crystallized product was naturally dried at room temperature for 5 hours and then for 17 days while ventilating air heated to 105 ° C. with a box-type dryer. A white powder was obtained under similar conditions. X-ray diffraction analysis (X-ray diffractometer; RINT2400, manufactured by Rigaku Corp.) of white powder using CuKα ray as a radiation source, and analysis by chemical analysis, infrared absorption spectrum, electron micrograph, nitrite type hydrocalumite It was confirmed to be a layered nitrite type hydrocalumite composition containing (3CaO.Al 2 O 3 .Ca (NO 2 ) 2 .nH 2 O, n is a natural number of 20 or less). The obtained X-ray diffraction pattern is shown in FIG.
Further, the relative intensity (b) of the diffraction peak (P2) at 2θ = 29.4 ° with respect to the intensity (a) of the diffraction peak (P1) at 2θ = 11.0 of the obtained nitrous acid type hydrocalumite composition. The intensity ratio (b / a) was 0.89.

<物性評価>
(1)亜硝酸イオン放出量
前記の実施例1及び比較例1〜3で得られた亜硝酸型ハイドロカルマイト組成物5gをガラス瓶に入れ、0.2モル/Lの塩化ナトリウム水溶液100mLを加え、300rpm、25℃、4時間攪拌後のろ液中の亜硝酸イオン濃度をイオンクロマトグラフ法で求めた。その結果を表1に示す。
(2)塩化物イオン吸着量
塩化物イオン吸着量は上記のろ液をイオンクロマトグラフ法で濃度を測定し,初期濃度から差し引いた値をサンプル量1g当たりに換算して求めた。
<Physical property evaluation>
(1) Amount of nitrite ion released 5 g of the nitrite-type hydrocalumite composition obtained in Example 1 and Comparative Examples 1 to 3 was placed in a glass bottle, and 100 mL of a 0.2 mol / L sodium chloride aqueous solution was added. The concentration of nitrite ions in the filtrate after stirring for 4 hours at 300 rpm, 25 ° C. was determined by ion chromatography. The results are shown in Table 1.
(2) Chloride ion adsorption amount Chloride ion adsorption amount was obtained by measuring the concentration of the above filtrate by ion chromatography and subtracting it from the initial concentration per 1 g of sample amount.

{実施例2}
亜硝酸カルシウム15gを水に溶解し亜硝酸イオン濃度が30質量%の亜硝酸イオン源を溶解した水溶液を調製した。
次いで、実施例1で得られた亜硝酸型ハイドロカルマイト組成物15gを亜硝酸イオン源を溶解した水溶液を調製に添加し、攪拌下に10分間室温(25℃)で浸漬処理を行った。
浸漬処理終了後、ろ過して浸漬処理品を回収し、次いで、湿潤状態の浸漬処理品を箱型乾燥機で105℃に加温した空気を通気しながら24時間、乾燥処理を行い20gの白色固体を得た。得られた白色固体を粉砕し、150メッシュ以下の陰イオン交換体粉末を得た。CuKα線を線源として当該陰イオン交換体のX線回折分析(X線回折装置;理学製RINT2400型)を行った。そのX線回折図を図5に示す。
また、実施例1と同様に亜硝酸イオン放出量と塩化物イオン吸着量を測定したところ、亜硝酸イオン放出量は274.3mg/gであり、塩化物イオン吸着量は33.1mg/gであった。
{Example 2}
An aqueous solution was prepared by dissolving 15 g of calcium nitrite in water and dissolving a nitrite ion source having a nitrite ion concentration of 30% by mass.
Next, an aqueous solution in which a nitrite ion source was dissolved in 15 g of the nitrite-type hydrocalumite composition obtained in Example 1 was added to the preparation, and immersion treatment was performed at room temperature (25 ° C.) for 10 minutes with stirring.
After the immersion treatment is completed, the immersion treatment product is recovered by filtration, and then the wet immersion treatment product is dried for 24 hours while ventilating air heated to 105 ° C. with a box-type dryer, and 20 g of white A solid was obtained. The obtained white solid was pulverized to obtain an anion exchanger powder of 150 mesh or less. The anion exchanger was subjected to X-ray diffraction analysis (X-ray diffractometer; RINT 2400 model made by Rigaku) using CuKα rays as a radiation source. The X-ray diffraction pattern is shown in FIG.
Moreover, when the amount of nitrite ions released and the amount of chloride ions adsorbed were measured in the same manner as in Example 1, the amount of nitrite ions released was 274.3 mg / g, and the amount of chloride ions adsorbed was 33.1 mg / g. there were.

Claims (6)

CaO−Al系化合物と可溶性亜硝酸塩、又はCaO−Al系化合物と可溶性亜硝酸塩及び消石灰とを水溶媒中で混合・反応させてゲル状沈殿物を生成させる沈殿生成工程と、
前記ゲル状沈殿物を70℃以下で熟成し、結晶化処理物を得る結晶化工程と、
前記結晶化処理物を90℃以上で加熱する加熱処理工程と、
を備えることを特徴とする下記一般式(1)
3CaO・Al・Ca(NO・nHO ・・・・(1)
(式中、nは20以下の自然数を表す。)で表される亜硝酸型ハイドロカルマイトを主成分とする、亜硝酸型ハイドロカルマイト組成物の製造方法。
A precipitation generating step in which a CaO-Al 2 O 3 -based compound and a soluble nitrite, or a CaO-Al 2 O 3 -based compound and a soluble nitrite and slaked lime are mixed and reacted in an aqueous solvent to form a gel-like precipitate; ,
A crystallization step of aging the gel-like precipitate at 70 ° C. or lower to obtain a crystallized product;
A heat treatment step of heating the crystallized product at 90 ° C. or higher;
The following general formula (1)
3CaO · Al 2 O 3 · Ca (NO 2 ) 2 · nH 2 O (1)
(In the formula, n represents a natural number of 20 or less.) A method for producing a nitrite-type hydrocalumite composition, the main component of which is nitrite-type hydrocalumite.
X線回折分析したときに、2θ=11.0°付近の回折ピーク(P1)の強度(a)に対する2θ=29.4°付近の回折ピーク(P2)の強度(b)の相対強度比(b/a)が 0.3以下であることを特徴とする、請求項1に記載の方法により得られる亜硝酸型ハイドロカルマイト組成物。 When the X-ray diffraction analysis is performed, the relative intensity ratio of the intensity (b) of the diffraction peak (P2) near 2θ = 29.4 ° to the intensity (a) of the diffraction peak (P1) near 2θ = 11.0 ° ( The nitrous acid type hydrocalumite composition obtained by the method according to claim 1, wherein b / a) is 0.3 or less. 前記沈殿生成工程に係る反応温度は、60℃以下である請求項1に記載の亜硝酸型ハイドロカルマイト組成物の製造方法。   The method for producing a nitrite-type hydrocalumite composition according to claim 1, wherein a reaction temperature in the precipitation generation step is 60 ° C or lower. CaO−Al系化合物は、アルミナセメントであることを特徴とする請求項1又は3に記載の亜硝酸型ハイドロカルマイト組成物の製造方法。 The method for producing a nitrite-type hydrocalumite composition according to claim 1 or 3, wherein the CaO-Al 2 O 3 -based compound is alumina cement. 可溶性亜硝酸塩は、亜硝酸カルシウムであることを特徴とする請求項1、3又は4のいずれかに記載の亜硝酸型ハイドロカルマイト組成物の製造方法。   The method for producing a nitrite-type hydrocalumite composition according to any one of claims 1, 3 and 4, wherein the soluble nitrite is calcium nitrite. 請求項1に記載の製造方法によって得られる亜硝酸型ハイドロカルマイト組成物を、亜硝酸イオンを含む水溶液に浸漬した後、乾燥して得られることを特徴とする陰イオン交換体。

An anion exchanger obtained by immersing the nitrite-type hydrocalumite composition obtained by the production method according to claim 1 in an aqueous solution containing nitrite ions, followed by drying.

JP2012051772A 2012-03-08 2012-03-08 Method for producing nitrite-type hydrocalumite composition Active JP5875899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051772A JP5875899B2 (en) 2012-03-08 2012-03-08 Method for producing nitrite-type hydrocalumite composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051772A JP5875899B2 (en) 2012-03-08 2012-03-08 Method for producing nitrite-type hydrocalumite composition

Publications (2)

Publication Number Publication Date
JP2013184857A true JP2013184857A (en) 2013-09-19
JP5875899B2 JP5875899B2 (en) 2016-03-02

Family

ID=49386621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051772A Active JP5875899B2 (en) 2012-03-08 2012-03-08 Method for producing nitrite-type hydrocalumite composition

Country Status (1)

Country Link
JP (1) JP5875899B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016494A (en) * 2016-07-25 2018-02-01 株式会社奥村組 Concrete composition for controlling salt damage
CN110668480A (en) * 2019-11-07 2020-01-10 南通海星电子股份有限公司 Method for producing Fred salt by using aluminum-containing waste hydrochloric acid and aluminum-containing sludge in electrode foil industry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733431A (en) * 1993-07-21 1995-02-03 Nippon Chem Ind Co Ltd Production of hydrocalmite
JPH09241019A (en) * 1996-03-11 1997-09-16 Denki Kagaku Kogyo Kk Method of synthesis of carbonated hydrocarmite
JPH1149980A (en) * 1997-07-31 1999-02-23 Nippon Chem Ind Co Ltd Rustproof pigment composition and rustproof coating material containing same
JP2001520162A (en) * 1997-10-20 2001-10-30 インターキャット−サバナー,インコーポレイティド Production and use of anionic clay materials
JP2007191385A (en) * 2005-12-20 2007-08-02 Hiroko Ishikuri Hydrocalumite, its manufacturing method, chlorine ion capturing reagent, heavy metal-containing ion capturing material and coating material composition and cement composition containing these
WO2011065825A1 (en) * 2009-11-25 2011-06-03 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Corrosion inhibition of reinforced concrete

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733431A (en) * 1993-07-21 1995-02-03 Nippon Chem Ind Co Ltd Production of hydrocalmite
JPH09241019A (en) * 1996-03-11 1997-09-16 Denki Kagaku Kogyo Kk Method of synthesis of carbonated hydrocarmite
JPH1149980A (en) * 1997-07-31 1999-02-23 Nippon Chem Ind Co Ltd Rustproof pigment composition and rustproof coating material containing same
JP2001520162A (en) * 1997-10-20 2001-10-30 インターキャット−サバナー,インコーポレイティド Production and use of anionic clay materials
JP2007191385A (en) * 2005-12-20 2007-08-02 Hiroko Ishikuri Hydrocalumite, its manufacturing method, chlorine ion capturing reagent, heavy metal-containing ion capturing material and coating material composition and cement composition containing these
WO2011065825A1 (en) * 2009-11-25 2011-06-03 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Corrosion inhibition of reinforced concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016494A (en) * 2016-07-25 2018-02-01 株式会社奥村組 Concrete composition for controlling salt damage
CN110668480A (en) * 2019-11-07 2020-01-10 南通海星电子股份有限公司 Method for producing Fred salt by using aluminum-containing waste hydrochloric acid and aluminum-containing sludge in electrode foil industry

Also Published As

Publication number Publication date
JP5875899B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5317293B2 (en) Method for producing anion-exchange layered double hydroxide
JP2004531448A5 (en)
JP5424562B2 (en) Method for producing cesium hydroxide solution
JP5202514B2 (en) Carbonate group-containing magnesium hydroxide particles and method for producing the same
JP4984362B2 (en) Method for producing hydrotalcite compound crystals
KR101647747B1 (en) Surface modification method of aluminum oxide carrier
JP5875899B2 (en) Method for producing nitrite-type hydrocalumite composition
JP5992646B2 (en) Method for producing alkali metal 9 titanate
EP3354621A1 (en) Hydrotalcite and method for producing same
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP4938318B2 (en) Boehmite production method and boehmite
CN108689427A (en) It is a kind of to produce the method and its application that feed grade zinc oxide is recycled in mother liquor from basic zinc chloride
US20140187411A1 (en) Preparation of silica-alumina composition
JP4746853B2 (en) High purity metal hydroxide, purification method and production method thereof, hydroxide and oxide obtained by these methods, and synthetic resin composition and synthetic resin molded article
JP6814433B2 (en) Method for producing beta-type zeolite
JP2787974B2 (en) Method for producing hydrocalumite
JP2005008445A (en) Method for manufacturing barium titanate powder
JP2820592B2 (en) Method for producing hydrocalumite
US9725361B2 (en) Method for the wet slaking of calcium and magnesium oxides from calcomagnesian compounds
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JPH1043609A (en) Ion exchanger
JP2010189241A (en) Method for producing complex of hydroxyapatite and zeolite
JP2004329989A (en) Method for manufacturing fluorine adsorbing agent and waste liquid treating method
JP2009242165A (en) High-purity magnesium hydroxide powder and high-purity magnesium oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5875899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250