JP2013183702A - Method for diagnosing growing state of plant and device used for the same - Google Patents

Method for diagnosing growing state of plant and device used for the same Download PDF

Info

Publication number
JP2013183702A
JP2013183702A JP2012052089A JP2012052089A JP2013183702A JP 2013183702 A JP2013183702 A JP 2013183702A JP 2012052089 A JP2012052089 A JP 2012052089A JP 2012052089 A JP2012052089 A JP 2012052089A JP 2013183702 A JP2013183702 A JP 2013183702A
Authority
JP
Japan
Prior art keywords
delayed
plant
emission amount
amount
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012052089A
Other languages
Japanese (ja)
Other versions
JP5938768B2 (en
Inventor
Masakazu Katsumata
政和 勝又
Yuko Kobayashi
祐子 小林
Junichi Imanishi
純一 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Kyoto University NUC
Original Assignee
Hamamatsu Photonics KK
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Kyoto University NUC filed Critical Hamamatsu Photonics KK
Priority to JP2012052089A priority Critical patent/JP5938768B2/en
Publication of JP2013183702A publication Critical patent/JP2013183702A/en
Application granted granted Critical
Publication of JP5938768B2 publication Critical patent/JP5938768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a convenient method for diagnosing the growing state of a plant, capable of performing objective determination, and a device used for the same.SOLUTION: As a method for diagnosing the growing state of a plant, the growing state is diagnosed by a delayed light emission-measuring step of measuring the delayed light emission of leaves of the plant under a prescribed temperature condition to obtain delayed light emission data, a chlorophyll-measuring step of measuring the amount of chlorophyll of the leaves of the plant to obtain chlorophyll data, a delayed light emission amount-correcting step of obtaining first and second delayed light emission amounts based on the delayed light emission data and chlorophyll data, and correcting each of them with the chlorophyll amount per the prescribed area of leaves of the plant to calculate the corrected first and second delayed light emission amounts and a determining step of determining the activity of the plant at the neighborhood part of leaves of the plant based on the comparison of the corrected first and second light emission amounts calculated by the delayed light emission amount-correcting step with the corrected first and second light emission amounts becoming the standard of the plant.

Description

本発明は、植物の生育状態を診断する方法及びこれに用いられる装置に関する。   The present invention relates to a method for diagnosing the growth state of a plant and an apparatus used therefor.

樹木、園芸植物、野菜等の農産品植物について、その生育状態を診断して、病変、老化又は枯死等の変異を早期に判別することが、環境保全、農業、農産加工業等にとって重要な課題になってきている。   It is important for environmental conservation, agriculture, agricultural processing industry, etc. to diagnose the growth state of agricultural products such as trees, horticultural plants, vegetables, etc., and to distinguish mutations such as lesions, aging, or death early. It is becoming.

特開2005−308733号公報JP 2005-308733 A

しかしながら、従来では、これら植物の生育状態を判別するには目視等の経験による主観的な手法が一般的であって、客観的な指標をもっての判別はほとんど実現されていないのが実情である。   However, conventionally, a subjective method based on visual observation is generally used to discriminate the growth state of these plants, and the actual situation is that discrimination with an objective index is hardly realized.

本発明は、上記事情に鑑みてなされたものであり、簡便で、客観的な判定が可能な、植物の生育状態を診断する方法及びこれに用いられる装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for diagnosing the growth state of a plant that can be easily and objectively determined, and an apparatus used therefor.

本発明は、植物の生育状態を診断する方法であって、
(a)所定の温度条件下で植物の葉の遅延発光を測定し、遅延発光データを取得する、遅延発光測定ステップと、
(b)上記植物の葉のクロロフィル量を測定し、クロロフィルデータを取得する、クロロフィル測定ステップと、
(c)上記遅延発光データ及び上記クロロフィルデータを基に、
木部圧ポテンシャルを下げた場合に、遅延発光量が増加する時間領域に対応する遅延発光量である第一の遅延発光量と、
木部圧ポテンシャルを下げた場合に、遅延発光量が減少する時間領域に対応する遅延発光量である第二の遅延発光量と、
を求め、それぞれ上記植物の葉の所定の面積あたりのクロロフィル量で補正して第一の補正遅延発光量と第二の補正遅延発光量とを算出する、遅延発光量補正ステップと、
(d)上記遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、上記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との比較に基づいて、上記植物の葉の近傍部分における植物の活力を判定する、判定ステップと、
を含む、方法を提供する。
The present invention is a method for diagnosing the growth state of a plant,
(A) a delayed luminescence measurement step of measuring delayed luminescence of a plant leaf under a predetermined temperature condition and acquiring delayed luminescence data;
(B) a chlorophyll measurement step of measuring the amount of chlorophyll in the leaves of the plant and obtaining chlorophyll data;
(C) Based on the delayed emission data and the chlorophyll data,
When the xylem pressure potential is lowered, a first delayed emission amount that is a delayed emission amount corresponding to a time region in which the delayed emission amount increases,
A second delayed emission amount that is a delayed emission amount corresponding to a time region in which the delayed emission amount decreases when the xylem pressure potential is lowered;
A delayed light emission amount correction step for calculating a first corrected delayed light emission amount and a second corrected delayed light emission amount by correcting each with a chlorophyll amount per predetermined area of the leaf of the plant,
(D) The first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, and the first corrected delayed emission amount and the second corrected delayed emission amount that serve as a reference for the plant. A determination step of determining the vitality of the plant in the vicinity of the plant leaf based on the comparison with
Providing a method.

本発明は、植物の葉の所定の面積あたりの第一の遅延発光量及び植物の葉の所定の面積あたりの第二の遅延発光量を、それぞれ葉の所定の面積あたりのクロロフィル量によって補正した第一の補正遅延発光量及び第二の補正遅延発光量を求め、上記第一の補正遅延発光量及び第二の補正遅延発光量を指標とすることによって、簡便で、客観的な判定が可能な、植物の生育状態を診断する方法を提供することが可能になる。   The present invention corrects the first delayed luminescence amount per predetermined area of the plant leaf and the second delayed luminescence amount per predetermined area of the plant leaf by the chlorophyll amount per predetermined area of the leaf, respectively. By determining the first corrected delayed emission amount and the second corrected delayed emission amount and using the first corrected delayed emission amount and the second corrected delayed emission amount as an index, simple and objective determination is possible. It becomes possible to provide a method for diagnosing the growth state of plants.

上記活力は渇水ストレスの影響を反映したものであることが好ましい。   The vitality preferably reflects the influence of drought stress.

上記遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、上記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との差が大きい程、上記植物の葉の近傍部分における植物の活力が低いと判定することが好ましい。   Difference between the first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, and the first corrected delayed emission amount and the second corrected delayed emission amount, which are the standard of the plant. It is preferable to determine that the greater the is, the lower the vitality of the plant in the vicinity of the leaves of the plant.

また本発明は、植物の葉に光を照射するための光源部と、
上記光源部が照射する光によって生じる上記植物の葉の遅延発光を検出する第一の検出部と、
所定の温度条件下で上記遅延発光を検出するための温度調節部と、
上記光源部が照射する光によって生じる上記植物の葉のクロロフィル量を反映する光を検出する第二の検出部と、
上記第一の検出部によって検出した上記遅延発光に対応する遅延発光データ及び上記第二の検出部によって検出した上記クロロフィル量を反映する光に対応するクロロフィルデータを記録する記録部と、
を備える、植物の生育状態を診断するための装置を提供する。
The present invention also includes a light source unit for irradiating the leaves of the plant with light,
A first detection unit for detecting delayed luminescence of the leaves of the plant caused by light emitted by the light source unit;
A temperature control unit for detecting the delayed light emission under a predetermined temperature condition;
A second detection unit for detecting light reflecting the amount of chlorophyll in the plant leaves caused by light emitted by the light source unit;
A recording unit for recording delayed emission data corresponding to the delayed emission detected by the first detection unit and chlorophyll data corresponding to light reflecting the chlorophyll amount detected by the second detection unit;
An apparatus for diagnosing the growth state of a plant is provided.

本発明によれば、このような構成をとることによって、簡便で、客観的な判定が可能な、植物の生育状態を診断する装置を提供することが可能になる。   According to the present invention, by adopting such a configuration, it is possible to provide a device for diagnosing the growth state of a plant that can be easily and objectively determined.

本発明によれば、簡便で、客観的な判定が可能な、植物の生育状態を診断する方法及びこれに用いられる装置を提供することが可能になる。   According to the present invention, it is possible to provide a method for diagnosing the growth state of a plant that can be easily and objectively determined, and an apparatus used therefor.

本実施形態に係る植物の生育状態を診断する方法を説明するフローチャートである。It is a flowchart explaining the method to diagnose the growth state of the plant which concerns on this embodiment. 木部圧ポテンシャルを変化させたときの植物の遅延発光パターンの変化を表したグラフである。It is a graph showing the change of the delayed light emission pattern of a plant when changing a xylem pressure potential. 遅延発光量と渇水ストレスとの相関関係を示すグラフである。It is a graph which shows correlation with the amount of delayed light emission, and drought stress. 遅延発光量と渇水ストレスとの相関関係を示すグラフである。It is a graph which shows correlation with the amount of delayed light emission, and drought stress. 野外に自生する植物の生育状態と遅延発光量との相関関係を示すグラフである。It is a graph which shows the correlation with the growth state of the plant which grows wild outdoors, and the amount of delayed luminescence. 植物の生育状態を診断するための装置の一実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a device for diagnosing the growth state of a plant. 植物の生育状態を診断するための装置の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the apparatus for diagnosing the growth state of a plant.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

図1は、本実施形態に係る植物の生育状態を診断する方法を説明するフローチャートである。本実施形態は、(a)遅延発光測定ステップと、(b)クロロフィル測定ステップと、(c)遅延発光量補正ステップと、(d)判定ステップと、を備える。   FIG. 1 is a flowchart illustrating a method for diagnosing the growth state of a plant according to the present embodiment. The present embodiment includes (a) a delayed luminescence measurement step, (b) a chlorophyll measurement step, (c) a delayed luminescence amount correction step, and (d) a determination step.

(a)遅延発光測定ステップでは、所定の温度条件下で植物の葉の遅延発光を測定し遅延発光データを取得する。葉は植物から採取したものを用いてもよいし、植物に生えている葉を直接用いてもよい。   (A) In the delayed luminescence measurement step, delayed luminescence of a plant leaf is measured under a predetermined temperature condition to obtain delayed luminescence data. The leaves collected from plants may be used, or the leaves growing on the plants may be used directly.

遅延発光の測定における所定の温度条件は、測定中一定であれば特に制限はないが、5〜35℃が好ましく、20〜30℃がより好ましい。   The predetermined temperature condition in the measurement of delayed luminescence is not particularly limited as long as it is constant during the measurement, but is preferably 5 to 35 ° C, more preferably 20 to 30 ° C.

遅延発光の測定は、公知の装置及び方法、例えば、国際公開第2005/062027
号に記載の装置及び方法により、行うことができる。より具体的には、例えば、植物の葉に暗処理を施し、励起光を照射した後、暗黒条件下で上記植物の葉が発する微弱発光を測定する方法が挙げられる。
The measurement of delayed luminescence is performed by a known apparatus and method, for example, WO 2005/062027.
Can be carried out by the apparatus and method described in No. 1. More specifically, for example, there is a method of measuring the weak luminescence emitted from the leaves of the plant under dark conditions after darkening the leaves of the plant and irradiating with excitation light.

上記植物の葉に暗処理を施す時間は、5〜1200秒間が好ましく、150〜600秒間がより好ましい。   The time for darkening the leaves of the plant is preferably 5 to 1200 seconds, and more preferably 150 to 600 seconds.

上記植物の葉に照射する励起光の波長は、280〜900nmが好ましく、400〜750nmがより好ましい。   The wavelength of the excitation light applied to the leaves of the plant is preferably 280 to 900 nm, and more preferably 400 to 750 nm.

上記植物の葉に励起光を照射する時間は、0.1〜60秒間が好ましく、0.5〜20秒間がより好ましい。   The time for which the leaves of the plant are irradiated with excitation light is preferably 0.1 to 60 seconds, and more preferably 0.5 to 20 seconds.

上記植物の葉から発する微弱発光を測定する時間は、0.01〜1200秒間が好ましく、5〜600秒間がより好ましい。
The time for measuring the weak luminescence emitted from the leaves of the plant is preferably 0.01 to 1200 seconds, more preferably 5 to 600 seconds.

遅延発光の測定において、遅延発光の検出器に対する葉の露出面積は、所定の面積であることが好ましい。このようにすることで、後述する(c)遅延発光量補正ステップがより簡便に行える。上記所定の面積は、特に制限はないが0.15〜80cmが好ましく、0.5〜10cmがより好ましい。 In the measurement of delayed luminescence, the exposed area of the leaves with respect to the delayed luminescence detector is preferably a predetermined area. By doing so, the later-described (c) delayed light emission amount correction step can be performed more simply. The predetermined area is not particularly limited preferably 0.15~80cm 2, 0.5~10cm 2 is more preferable.

(b)クロロフィル測定ステップでは、上記植物の葉のクロロフィル量を測定し、クロロフィルデータを取得する。   (B) In the chlorophyll measurement step, the amount of chlorophyll in the leaves of the plant is measured to obtain chlorophyll data.

上記クロロフィル量を測定する方法は公知の方法であれば特に制限はないが、特開2011−38879号公報に記載の、上記植物の葉に光を照射して得られる反射光を利用した方法やSPAD−502葉緑素計(コニカミノルタ社製)等の様な、上記植物の葉に光を照射して得られる透過光を利用した方法が好ましく用いられる。   The method for measuring the amount of chlorophyll is not particularly limited as long as it is a known method. However, as described in JP 2011-38879 A, a method using reflected light obtained by irradiating light on the plant leaves, A method using transmitted light obtained by irradiating light on the leaves of the plant such as SPAD-502 chlorophyll meter (manufactured by Konica Minolta) is preferably used.

反射光や透過光を利用してクロロフィル量の測定する場合、反射光や透過光の検出器に対する葉の露出面積は、所定の面積であることが好ましい。このようにすることで、後述する(c)遅延発光量補正ステップがより簡便に行える。上記所定の面積は、特に制限はないが0.06〜80cmが好ましく、0.5〜10cmがより好ましい。 When the amount of chlorophyll is measured using reflected light or transmitted light, the exposed area of the leaves with respect to the detector of reflected light or transmitted light is preferably a predetermined area. By doing so, the later-described (c) delayed light emission amount correction step can be performed more simply. The predetermined area is not particularly limited preferably 0.06~80cm 2, 0.5~10cm 2 is more preferable.

(c)遅延発光量補正ステップでは、上記遅延発光データ及び上記クロロフィルデータを基に、第一の遅延発光量と第二の遅延発光量とを求め、それぞれ前記植物の葉の所定の面積あたりのクロロフィル量で補正して第一の補正遅延発光量と第二の補正遅延発光量とを算出する。   (C) In the delayed emission amount correction step, a first delayed emission amount and a second delayed emission amount are obtained based on the delayed emission data and the chlorophyll data, The first corrected delayed emission amount and the second corrected delayed emission amount are calculated by correcting with the chlorophyll amount.

第一の遅延発光量は、木部圧ポテンシャルを下げた場合に、遅延発光量が増加する時間領域に対応する、上記植物の葉の所定の面積あたりの遅延発光量である。第二の遅延発光量は、木部圧ポテンシャルを下げた場合に、遅延発光量が減少する時間領域に対応する、上記植物の葉の所定の面積あたりの遅延発光量である。   The first delayed light emission amount is a delayed light emission amount per predetermined area of the plant leaf corresponding to a time region in which the delayed light emission amount increases when the xylem pressure potential is lowered. The second delayed light emission amount is a delayed light emission amount per predetermined area of the plant leaf corresponding to a time region in which the delayed light emission amount decreases when the xylem pressure potential is lowered.

例えば、図2に示すような、木部圧ポテンシャルを変化させてヤマザクラの葉の遅延発光パターンをみた場合、木部圧ポテンシャルを下げた場合に、遅延発光量が増加する時間領域は(A)の領域であり、木部圧ポテンシャルを下げた場合に、遅延発光量が減少する時間領域とは(B)の領域である。これらの時間領域は、植物の種類によって異なる。植物の種類に応じて、木部圧ポテンシャルを変化させることで、その植物に固有の時間領域を決めることが可能である。また、ストレスを受けていることが明確なサンプル群と、適正な生育であると判断できるサンプル群についてあらかじめ計測した結果を参考に、より最適な時間領域を設定することもできる。   For example, when the xylem pressure potential is changed as shown in FIG. 2 and the delayed light emission pattern of the cherry tree leaves is observed, the time region in which the delayed light emission amount increases when the xylem pressure potential is lowered is (A) When the xylem pressure potential is lowered, the time region where the delayed light emission decreases is the region (B). These time regions differ depending on the plant type. By changing the xylem pressure potential according to the type of plant, it is possible to determine the time domain unique to that plant. In addition, a more optimal time region can be set with reference to a sample group that has been clearly stressed and a sample group that can be determined to have appropriate growth.

上述のようにして定まった第一の遅延発光量及び第二の遅延発光量は、例えば、植物の葉の所定の面積あたりのクロロフィル量で、それぞれ除することによって補正する。また、第一の補正遅延発光量及び第二の補正遅延発光量(S)は以下の式から算出してもよい。   The first delayed luminescence amount and the second delayed luminescence amount determined as described above are corrected, for example, by dividing by the chlorophyll amount per predetermined area of the plant leaf. The first corrected delayed emission amount and the second corrected delayed emission amount (S) may be calculated from the following equations.

Figure 2013183702
Figure 2013183702

T:第一の遅延発光量及び第二の遅延発光量
U:所定の面積あたりのクロロフィル量
e,g:遅延発光量とクロロフィル量の値の重み付けを表す
f,h:遅延発光の測定値及びクロロフィル量の測定値のベースラインである。
T: first delayed emission amount and second delayed emission amount U: chlorophyll amount e, g per predetermined area, f: weighting of delayed emission amount and chlorophyll amount, f, h: measured value of delayed emission, and It is a baseline of the measured value of the amount of chlorophyll.

以下、補正後のそれぞれの遅延発光量を、第一の補正遅延発光量、第二の補正遅延発光量という。補正によって第一の補正遅延発光量及び第二の補正遅延発光量を求めることによって、後述の(d)判定ステップにおいて、植物の活力の判定が明確に行える。   Hereinafter, the respective delayed emission amounts after correction are referred to as a first corrected delayed emission amount and a second corrected delayed emission amount. By determining the first corrected delayed emission amount and the second corrected delayed emission amount by correction, the vitality of the plant can be clearly determined in the determination step (d) described later.

(d)判定ステップでは、上記遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、上記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との比較に基づいて、上記植物の葉の近傍部分における植物の活力を判定する。   (D) In the determination step, the first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, the first corrected delayed emission amount and the second correction emission amount serving as the plant reference Based on the comparison with the corrected delayed light emission amount, the vitality of the plant in the vicinity of the plant leaf is determined.

上記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量は、適宜設定が可能であるが、例えば、標準的な生育状態を示している上記植物の葉から得られた第一の補正遅延発光量及び第二の補正遅延発光量の平均値が挙げられる。   The first corrected delayed luminescence amount and the second corrected delayed luminescence amount serving as a reference for the plant can be set as appropriate. For example, the first corrected delayed luminescence amount was obtained from the leaves of the plant showing a standard growth state. Examples include the average value of the first corrected delayed emission amount and the second corrected delayed emission amount.

上記遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、上記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との比較は、第一の補正遅延発光量及び第二の補正遅延発光量をそれぞれ直接比較してもよいし、第一の補正遅延発光量及び第二の補正遅延発光量に基づいて他のパラメータを算出し、得られた他のパラメータ同士を比較してもよい。他のパラメータとしては、例えば、以下に示す距離パラメータ及び角度パラメータが挙げられる。   Comparison between the first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, and the first corrected delayed emission amount and the second corrected delayed emission amount that serve as a reference for the plant May directly compare the first corrected delayed emission amount and the second corrected delayed emission amount, or calculate other parameters based on the first corrected delayed emission amount and the second corrected delayed emission amount. Then, the obtained other parameters may be compared with each other. Examples of other parameters include distance parameters and angle parameters shown below.

基準サンプルの基準位置座標からの距離パラメータの算出
基準位置座標は、基準となる植物の葉の第一の補正遅延発光量の平均値xと、第二の補正遅延発光量の平均値yとによって定める。対象となる植物の葉の距離パラメータdは、基準位置座標(x,y)と、対象となる植物の葉の遅延発光量座標(a,b)から以下の式に従って求める。ここで、aは第一の補正遅延発光量を示し、bは第二の補正遅延発光量を示す。
Calculation of the distance parameter from the reference position coordinate of the reference sample The reference position coordinate is determined by the average value x of the first corrected delayed luminescence amount of the leaf of the reference plant and the average value y of the second corrected delayed luminescence amount. Determine. The distance parameter d of the target plant leaf is obtained from the reference position coordinate (x, y) and the delayed light emission amount coordinate (a, b) of the target plant leaf according to the following equation. Here, a indicates the first corrected delayed emission amount, and b indicates the second corrected delayed emission amount.

Figure 2013183702
Figure 2013183702

基準サンプルの基準位置座標からの角度パラメータの算出
基準位置座標(x,y)と対象となる植物の葉の遅延発光量座標(a,b)を結ぶ線の角度を求める。角度は例えば、以下の式に示すようなアークタンジェント関数を用いて(x,y)と(a,b)とを結ぶ線のラジアンθを求めそこから角度を算出することができる。
Calculation of angle parameter from reference position coordinate of reference sample The angle of the line connecting the reference position coordinate (x, y) and the delayed light emission amount coordinate (a, b) of the leaf of the target plant is obtained. For example, the angle can be calculated from the radian θ of a line connecting (x, y) and (a, b) using an arctangent function as shown in the following equation.

Figure 2013183702
Figure 2013183702

上記植物の葉の近傍部分とは、例えば、上記植物の葉が着いている枝や茎等が挙げられる。しかし、植物は、土壌の水や養分を吸い上げて枝、茎及び葉に送っているため、植物の葉の近傍部分は根、幹、枝、茎等、植物全体の状態を反映する。植物の生育状態をより適切に診断するために、上記植物の葉はストレスを受けやすい部位、例えば、植物体の上部に位置し光のよく当たる部位の葉等を測定することが好ましい。   Examples of the vicinity of the leaves of the plant include branches and stems on which the leaves of the plant are attached. However, since plants absorb soil water and nutrients and send them to branches, stems and leaves, the vicinity of the leaves of the plant reflects the state of the whole plant such as roots, trunks, branches and stems. In order to more appropriately diagnose the growth state of a plant, it is preferable to measure a site where the leaves of the plant are susceptible to stress, for example, a leaf located on the top of a plant body and exposed to light.

植物の活力はストレスの影響を受けて低下するが、ストレスとしては、渇水、高温、凍結、貧栄養、微量元素欠乏、塩類障害、病虫害等が挙げられる。本実施形態における方法では、上記活力が渇水ストレスの影響を反映したものであることが好ましい。   The vitality of plants decreases under the influence of stress, and examples of the stress include drought, high temperature, freezing, poor nutrition, trace element deficiency, salt damage, and pest damage. In the method according to the present embodiment, the vitality preferably reflects the influence of drought stress.

上記比較に基づく上記植物の葉の近傍部分における植物の活力の判定は、例えば、遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との差が大きい程、植物の葉の近傍部分における植物の活力が低いと判定することが挙げられる。   The determination of the vitality of the plant in the vicinity of the plant leaf based on the comparison is, for example, the first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, and the plant standard. It can be determined that the greater the difference between the first corrected delayed emission amount and the second corrected delayed emission amount, the lower the vitality of the plant in the vicinity of the plant leaf.

また、上述の距離パラメータ及び角度パラメータを用いた場合、角度パラメータを評価することによって、渇水ストレスを特異的に検出することができる。植物としてヤマザクラを用いた場合、基準位置に対してマイナスの角度パラメータを示すものは、渇水ストレスを受けていると判定できる。   Moreover, when the above-mentioned distance parameter and angle parameter are used, drought stress can be specifically detected by evaluating the angle parameter. When a wild cherry is used as a plant, it can be determined that the one showing a negative angle parameter with respect to the reference position is subjected to drought stress.

次に本実施形態に係る植物の生育状態を診断するための装置について説明する。本実施形態に係る装置は、植物の葉に光を照射するための光源部と、光源部が照射する光によって生じる植物の葉の遅延発光を検出する第一の検出部と、所定の温度条件下で遅延発光を検出するための温度調節部と、光源部が照射する光によって生じる植物の葉のクロロフィル量を反映する光を検出する第二の検出部と、第一の検出部によって検出した遅延発光に対応する遅延発光データ及び第二の検出部によって検出したクロロフィル量を反映する光に対応するクロロフィルデータを記録する記録部と、を備える。以下、詳細に説明する。   Next, the apparatus for diagnosing the growth state of the plant which concerns on this embodiment is demonstrated. The apparatus according to the present embodiment includes a light source unit for irradiating light on a plant leaf, a first detection unit for detecting delayed luminescence of a plant leaf caused by light irradiated by the light source unit, and a predetermined temperature condition Detected by a temperature control unit for detecting delayed luminescence below, a second detection unit for detecting light reflecting the amount of chlorophyll in plant leaves caused by light emitted by the light source unit, and a first detection unit A recording unit that records the delayed emission data corresponding to the delayed emission and the chlorophyll data corresponding to the light reflecting the amount of chlorophyll detected by the second detection unit. Details will be described below.

図6は、植物の生育状態を診断するための装置の一実施形態を示す模式図である。上記植物の生育状態を診断するための装置100は、植物の葉等の試料3に光を照射するための光源部6と、光源部6が照射する光によって生じる植物の葉等の試料3の遅延発光を検出する第一の検出部1と、所定の温度条件下で遅延発光を検出するための温度調節部19と、光源部6が照射する光によって生じる植物の葉等の試料3のクロロフィル量を反映する光を検出する第二の検出部8と、第一の検出部1によって検出した遅延発光に対応する遅延発光データ及び第二の検出部8によって検出したクロロフィル量を反映する光に対応するクロロフィルデータを記録する記録部15とを備えている。   FIG. 6 is a schematic diagram showing an embodiment of an apparatus for diagnosing the growth state of a plant. The apparatus 100 for diagnosing the growth state of the plant includes a light source unit 6 for irradiating the sample 3 such as a plant leaf with light, and a sample 3 such as a plant leaf generated by the light irradiated by the light source unit 6. A chlorophyll of a sample 3 such as a plant leaf generated by light emitted from the first detection unit 1 for detecting delayed luminescence, a temperature adjusting unit 19 for detecting delayed luminescence under a predetermined temperature condition, and the light source unit 6 A second detector 8 for detecting light reflecting the amount, delayed light emission data corresponding to the delayed light emission detected by the first detector 1, and light reflecting the amount of chlorophyll detected by the second detector 8. And a recording unit 15 for recording corresponding chlorophyll data.

光源6は、複数の波長が照射可能な単一または複数の光源から構成されている。すなわち、ハロゲンランプのように多波長の光源やそれに波長選択フィルターを組み合わせたもの、また異なるピーク波長のLEDの集合体などである。   The light source 6 is composed of a single light source or a plurality of light sources capable of emitting a plurality of wavelengths. That is, a multi-wavelength light source such as a halogen lamp, a combination of a wavelength selection filter and a set of LEDs having different peak wavelengths, and the like.

光源部6は、試料3に所定の波長の光を照射するものであって、その波長は、400nm〜1000nmである。ここで、光源部6は、単色光源であっても、複数の光源を組み合せた光源であってもよい。光源部6の発光は、所定時間連続してもよいし、任意のパターンでパルス点灯させてもよい。また、同一または異なる波長特性を有する複数の光源を順番に発光させたり、複数の光源を同時に発光させたりしてもよい。また、光源の残光をカットするため光源部6の点灯及び消灯と同期して開閉するにシャッター2を組み合わせても良い。   The light source unit 6 irradiates the sample 3 with light having a predetermined wavelength, and the wavelength is 400 nm to 1000 nm. Here, the light source unit 6 may be a monochromatic light source or a light source in which a plurality of light sources are combined. The light emission of the light source unit 6 may be continued for a predetermined time or may be pulsed in an arbitrary pattern. In addition, a plurality of light sources having the same or different wavelength characteristics may be sequentially emitted, or a plurality of light sources may be simultaneously emitted. In order to cut off the afterglow of the light source, the shutter 2 may be combined to open and close in synchronization with turning on and off of the light source unit 6.

第一の検出部1は、励起光が照射されたことによって試料3から生じる遅延発光量を検出するものであり、遅延発光を検知する光センサーと、光センサーに入射する光を制限するためのフィルター、光センサーが検知して出力する信号に基づいて遅延発光量を算出する遅延発光量算出部を有している。   The first detection unit 1 detects the amount of delayed light emission generated from the sample 3 by being irradiated with the excitation light, and is used to limit the light incident on the light sensor and the light sensor that detects the delayed light emission. A delay light emission amount calculation unit that calculates a delay light emission amount based on a signal detected and output by the filter and the optical sensor is provided.

第一の検出部1にはたとえば、光電子増倍管を用いたフォトンカウンターや、アバランシェフォトダイオードを用いた微弱光計測装置などを用いる事ができる。   For example, a photon counter using a photomultiplier tube or a faint light measuring device using an avalanche photodiode can be used as the first detection unit 1.

第二の検出部8は光源部6から発せられた光が試料3の開口部7で露出した部分で反射した反射光の分光情報を得るために小型の分光器や波長選択フィルターと複数の受光器を組み合わせた構造となっている。   The second detection unit 8 has a small spectroscope, a wavelength selection filter, and a plurality of light receiving units in order to obtain spectral information of the reflected light reflected from the portion of the sample 3 exposed by the opening 7 of the sample 3. The structure is a combination of vessels.

第二の検出部8には光電子増倍管やアバランシェフォトダイオード、シリコンフォトダイオードなどを用いることができる。   For the second detector 8, a photomultiplier tube, an avalanche photodiode, a silicon photodiode, or the like can be used.

記録部15は、後述するように解析装置11に備えられてもよい。   The recording unit 15 may be provided in the analysis device 11 as described later.

更に上記装置100は、第一の検出部1に入射する光を制御するシャッター2と、試料3から発せられる遅延発光を第一の検出部1に導く第一の集光部4と、試料3を設置する試料設置部5と、試料設置部5に収納した試料3のうち所定の形状、面積のみを露出させる開口部7と、試料3から反射した反射光を第二の検出部8に導く第二の集光部9と、第一の検出部1および第二の検出部8によって得られたデータを後述する解析装置11に電気的に送信する通信部10が設けられている。   Further, the apparatus 100 includes a shutter 2 that controls light incident on the first detection unit 1, a first light collecting unit 4 that guides delayed light emission emitted from the sample 3 to the first detection unit 1, and a sample 3. Of the sample 3 placed in the sample placement unit 5, the opening 7 exposing only a predetermined shape and area of the sample 3 stored in the sample placement unit 5, and the reflected light reflected from the sample 3 is guided to the second detection unit 8. The communication part 10 which electrically transmits the data obtained by the 2nd condensing part 9, and the 1st detection part 1 and the 2nd detection part 8 to the analyzer 11 mentioned later is provided.

第一の検出部1および第二の検出部8、シャッター2、試料3、第一の集光部4、第二の集光部9、試料設置部5及び光源部6は、外部からの光が遮断可能な遮光部13に格納されている。遮光部13は例えば暗箱である。   The first detection unit 1 and the second detection unit 8, the shutter 2, the sample 3, the first light collection unit 4, the second light collection unit 9, the sample installation unit 5, and the light source unit 6 are light from the outside. Is stored in the light shielding portion 13 that can be blocked. The light shielding unit 13 is, for example, a dark box.

試料設置部5は試料3を入れた容器を設置したり、あらかじめ固定されている試料設置部5に試料3を挿入したりする事ができるようになっている。試料設置部5はハッチ14によって外部と隔てられており、必要に応じてハッチ14を開閉し試料3の交換を行うことができる。   The sample setting unit 5 can set a container containing the sample 3 or insert the sample 3 into the sample setting unit 5 fixed in advance. The sample placement unit 5 is separated from the outside by a hatch 14, and the sample 3 can be exchanged by opening and closing the hatch 14 as necessary.

第一の検出部1および第二の検出器8、シャッター2、光源部6、通信部10及び温度調節部19は、解析装置11と電気的に接続されており、解析装置11内にある制御部12によってその機能が制御されている。   The first detection unit 1 and the second detector 8, the shutter 2, the light source unit 6, the communication unit 10, and the temperature adjustment unit 19 are electrically connected to the analysis device 11 and are in the analysis device 11. The function is controlled by the unit 12.

解析装置11には、通信部10から伝達されてきた測定データや解析に必要な情報を記録するための記録部15、計測結果の演算解析を行う演算部16、解析結果の表示を行う表示部17、制御に必要な情報を入力するため入力部18を備えている。   The analysis device 11 includes a recording unit 15 for recording measurement data transmitted from the communication unit 10 and information necessary for analysis, a calculation unit 16 for performing calculation analysis of measurement results, and a display unit for displaying analysis results. 17. An input unit 18 is provided for inputting information necessary for control.

制御部12は装置100の作動状況を所定の手順に従って制御可能な制御装置であり、コンピュータやタイマーとリレー等を組み合わせたものなどが使用できる。   The control unit 12 is a control device that can control the operating status of the device 100 according to a predetermined procedure, and a combination of a computer, a timer, a relay, and the like can be used.

解析装置11と制御部12は双方の機能を備えた1つのコンピュータを使用しても良いし、制御部12、記録部15、演算部16、表示部17、入力部18に相当する機能を備えたコンピュータなどを用いてもよい。   The analysis device 11 and the control unit 12 may use a single computer having both functions, or have functions corresponding to the control unit 12, the recording unit 15, the calculation unit 16, the display unit 17, and the input unit 18. A computer may be used.

図7は、植物の生育状態を診断するための装置の他の実施形態を示す模式図である。基本的な装置の構成要素は、図6に示す装置100と同一であるが、第二の検出部8と第二の集光部9とが、光源部6から発せられた光が試料3の開口部7で露出した部分で試料3を透過した透過光を検出するように配置されている点で異なる。第二の検出部8および第二の集光部9は、試料設置部5の開口部7aを挟んで光源部6の反対側に設置されている。たとえば、第二の検出部8および第二の集光部9は、ハッチ14内に設置することができる。このような構成では光源部6から発せられた光が試料設置部5の開口部7aから、第二の検出器8に向かって透過できるように開口部7aから試料3を挟んで反対側に第二の集光部9とつながった開口部7bが設けられる。   FIG. 7 is a schematic view showing another embodiment of an apparatus for diagnosing the growth state of a plant. The basic components of the device are the same as those of the device 100 shown in FIG. 6, but the light emitted from the light source unit 6 is emitted from the light source unit 6 by the second detection unit 8 and the second light collection unit 9. It differs in that it is arranged so as to detect the transmitted light that has passed through the sample 3 at the portion exposed at the opening 7. The second detection unit 8 and the second light collection unit 9 are installed on the opposite side of the light source unit 6 with the opening 7 a of the sample installation unit 5 interposed therebetween. For example, the second detection unit 8 and the second light collection unit 9 can be installed in the hatch 14. In such a configuration, the light emitted from the light source unit 6 can be transmitted through the opening 7a of the sample setting unit 5 toward the second detector 8 so that the sample 3 is sandwiched from the opening 7a on the opposite side. An opening 7b connected to the second condensing part 9 is provided.

以下、本発明について、実施例を挙げて更に詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

試験1:ヤマザクラの葉の脱水試験(渇水ストレス実験)
健全な生育状態を示すヤマザクラ(Cerasus jamasakura var. jamasakura)の葉を採取し、直ちに実験室に運搬し、次のプロトコールに従って測定を行った。まず、葉をプレッシャーチャンバー(大起理化社製、商品名:DIK−7000)に入れ、高圧窒素ガスにより自然状態の木部圧ポテンシャルを測定した。次に、葉を微弱発光測定装置(浜松ホトニクス社製、TYPE−6100A、マスク付きリーフアダプター)に入れ、300秒間の暗処理を施し、10秒間励起光(680nm、10μmol/m/s)を照射した後、暗黒条件下で400秒間微弱発光を測定した。このとき、検出器に対して露出する葉の面積が直径7mmの円形部分2個が葉の中央の葉脈(主脈)を挟んで対称に露出するようにした。その後、葉緑素計値(SPAD)、分光反射率の測定を順次行った。同様に、プレッシャーチャンバーで−1.0MPa〜−3.0MPaの範囲で脱水して、上記のプロトコールに従い測定を繰り返した。
Test 1: Mountain cherry leaf dehydration test (drought stress experiment)
Yamazakura (Cerasus jamasakura var. Jamasakura) leaves showing a healthy growth state were collected, immediately transported to the laboratory, and measured according to the following protocol. First, the leaves were placed in a pressure chamber (trade name: DIK-7000, manufactured by Daikai Chemical Co., Ltd.), and the xylem pressure potential in a natural state was measured with high-pressure nitrogen gas. Next, the leaves are put into a weak light emission measuring device (Hamamatsu Photonics, TYPE-6100A, a leaf adapter with a mask), subjected to dark treatment for 300 seconds, and excited light (680 nm, 10 μmol / m 2 / s) for 10 seconds. After irradiation, weak luminescence was measured for 400 seconds under dark conditions. At this time, two circular portions having a diameter of 7 mm, which are exposed to the detector, were exposed symmetrically across the central vein (main vein) of the leaf. Thereafter, the chlorophyll meter value (SPAD) and the spectral reflectance were measured sequentially. Similarly, it dehydrated in the range of -1.0MPa--3.0MPa in the pressure chamber, and the measurement was repeated according to said protocol.

木部圧ポテンシャルと遅延発光パターンとの相関
ヤマザクラの葉に渇水ストレスを与えていない対照群(control)と、木部圧ポテンシャルが−3.0MPaになるまでヤマザクラの葉に渇水ストレスを与えたストレス群とのヤマザクラの葉の遅延発光パターン図2に示す。脱水により木部圧ポテンシャルが下がると遅延発光パターンは変化し、自然状態(対照群)の遅延発光パターンと木部圧ポテンシャル−3.0MPaの遅延発光パターンが交わる点(クロスポイント)ができる。木部圧ポテンシャル−3.0MPaでは、クロスポイントより前の時間領域(Aの領域)では自然状態に比べて遅延発光量が増加した(すなわち、第一の遅延発光量)。また、クロスポイントより後の時間領域(Bの領域)では自然状態に比べて遅延発光量は減少した(すなわち、第二の遅延発光量)。つまり、クロスポイントの時間を第一の遅延発光量と第二の遅延発光量とを、区別する基準とすることができる。例えば計測後1〜5秒(Aの領域)の遅延発光量を第一の遅延発光量、計測後20〜300秒(Bの領域)の遅延発光量を第二の遅延発光量とすることができる。なお、図2では二つサンプルの遅延発光パターンの比較のためクロスポイントは一つとなる。複数のサンプルの遅延発光パターンを比較する場合でも、このクロスポイントが複数のサンプルで一致すれば1点に設定できる。また、クロスポイントが複数のサンプルで一致しない場合は1点に設定できないが、全てまたは一部のクロスポイントが含まれる時間領域を第一の遅延発光量と第二の遅延発光量とを区別する基準とすることができる。
Correlation between xylem pressure potential and delayed luminescence pattern A control group that did not give drought stress to the leaves of Yamazakura, and stress that gave drought stress to the leaves of Yamazakura until the xylem pressure potential was -3.0 MPa. Delayed luminescence pattern of leaves of wild cherry with group is shown in FIG. When the xylem pressure potential decreases due to dehydration, the delayed emission pattern changes, and a point (cross point) where the delayed emission pattern in the natural state (control group) and the delayed emission pattern of the xylem pressure potential of −3.0 MPa intersect is formed. At the xylem pressure potential of −3.0 MPa, the delayed emission amount increased in the time region (A region) before the cross point compared to the natural state (that is, the first delayed emission amount). In addition, in the time region (region B) after the cross point, the delayed light emission amount decreased compared to the natural state (that is, the second delayed light emission amount). That is, the cross point time can be used as a reference for distinguishing between the first delayed emission amount and the second delayed emission amount. For example, the delayed light emission amount of 1 to 5 seconds (A region) after the measurement may be the first delayed light emission amount, and the delayed light emission amount of 20 to 300 seconds (B region) after the measurement may be the second delayed light emission amount. it can. In FIG. 2, there is one cross point for comparison of the delayed light emission patterns of two samples. Even when the delayed light emission patterns of a plurality of samples are compared, it can be set to one point if the cross points coincide with each other in the plurality of samples. In addition, if the cross points do not match in a plurality of samples, it cannot be set to one point, but the first delayed emission amount and the second delayed emission amount are distinguished in a time region including all or some of the cross points. It can be a standard.

遅延発光量と渇水ストレスとの相関
試験1のサンプルの遅延発光の計測結果について、上述の方法によって選択した第一の遅延発光量(計測後1〜5秒の時間領域)を横軸に、第二の遅延発光量(計測後20〜300秒の時間領域)を縦軸にとりプロットすることで、ヤマザクラの葉に渇水ストレスを与えていない対照群と、木部圧ポテンシャルが−3.0MPaになるまでヤマザクラの葉に渇水ストレスを与えたストレス群とを比較した(図3(a))。また、第一の遅延発光量をクロロフィル量で除した第一の補正遅延発光量を横軸に、第二の遅延発光量をクロロフィル量で除した第二の補正遅延発光量を縦軸にとったプロットでも、上記対照群と上記ストレス群とを比較した(図3(b))。図3(b)では、対照群、ストレス群ともに、第一の補正遅延発光量を横軸に、第二の補正遅延発光量を縦軸にとったプロットとすることで、各群のバラツキが抑えられ、それぞれ異なる位置に分布が集まることがわかった。
Correlation between delayed luminescence amount and drought stress Regarding the measurement result of delayed luminescence of the sample of test 1, the first delayed luminescence amount (1-5 seconds after measurement) selected by the above method is plotted on the horizontal axis. By plotting the second delayed luminescence amount (time region of 20 to 300 seconds after measurement) on the vertical axis, the control group not giving drought stress to the leaves of Yamazakura and the xylem pressure potential becomes −3.0 MPa. A comparison was made with a stress group in which drought stress was applied to the leaves of Yamazakura (FIG. 3 (a)). Also, the first corrected delayed emission amount obtained by dividing the first delayed emission amount by the chlorophyll amount is plotted on the horizontal axis, and the second corrected delayed emission amount obtained by dividing the second delayed emission amount by the chlorophyll amount is plotted on the vertical axis. Also in the plot, the control group and the stress group were compared (FIG. 3B). In FIG. 3 (b), both the control group and the stress group are plotted with the first corrected delayed emission amount on the horizontal axis and the second corrected delayed emission amount on the vertical axis. It was suppressed and the distribution gathered in different positions.

図3(a)、(b)のプロットを描いた場合の評価をより明確にするため、以下の方法によって、再度対照群とストレス群とを比較検討した。   In order to clarify the evaluation when the plots of FIGS. 3A and 3B are drawn, the control group and the stress group were again compared and examined by the following method.

1.基準サンプルの基準位置座標からの距離パラメータの算出
基準位置座標は、基準サンプルの第一の遅延発光量の平均値xと、第二の遅延発光量の平均値yとによって定めた。この場合の基準サンプルは、木部圧ポテンシャルの80〜100パーセンタイル群とした。ここで、80パーセンタイルとは、全サンプルを木部圧ポテンシャルの小さい順に並べたとき、木部圧ポテンシャルが最小のサンプルから数えて、サンプル全体の80%に相当する位置にある葉のサンプルである。したがって、80〜100パーセンタイル群は、対照群の中でも特にストレスの小さいサンプルと推定される。各サンプルの距離パラメータdは、基準位置座標(x,y)と、各サンプルの遅延発光量座標(a,b)から以下の式に従って求めた。ここで、aは第一の遅延発光量を示し、bは第二の遅延発光量を示す。
1. Calculation of the distance parameter from the reference position coordinates of the reference sample The reference position coordinates were determined by the average value x of the first delayed emission amount of the reference sample and the average value y of the second delayed emission amount. The reference sample in this case was the 80 to 100th percentile group of the xylem pressure potential. Here, the 80th percentile is a leaf sample at a position corresponding to 80% of the whole sample, counting from the sample with the lowest xylem pressure potential when all the samples are arranged in ascending order of xylem pressure potential. . Therefore, the 80 to 100th percentile group is estimated to be a sample with particularly low stress among the control group. The distance parameter d of each sample was obtained from the reference position coordinates (x, y) and the delayed emission amount coordinates (a, b) of each sample according to the following formula. Here, a represents the first delayed emission amount, and b represents the second delayed emission amount.

Figure 2013183702
Figure 2013183702

2.基準サンプルの基準位置座標からの角度パラメータの算出
基準位置座標(x,y)と各サンプルの遅延発光量座標(a,b)を結ぶ線の角度を求める。角度は例えば、以下の式に示すようなアークタンジェント関数を用いて(x,y)と(a,b)とを結ぶ線のラジアンθを求めそこから角度を算出することができる。
2. Calculation of the angle parameter from the reference position coordinates of the reference sample The angle of the line connecting the reference position coordinates (x, y) and the delayed emission amount coordinates (a, b) of each sample is obtained. For example, the angle can be calculated from the radian θ of a line connecting (x, y) and (a, b) using an arctangent function as shown in the following equation.

Figure 2013183702
Figure 2013183702

図3(a)及び(b)のプロットを描いたときに用いた各サンプルのデータを用いて、上述の方法に従い、距離パラメータと角度パラメータとを求め、プロットを行った。その結果を図3(c)に示す。渇水ストレスを受けた葉のサンプルの遅延発光量座標は、基準位置に対して離れた位置に分布して、一定の範囲の角度パラメータ(−30°〜−60°)を有したが、ストレス群の中に分布する対照群のサンプルがあり、対照群の中に分布するストレス群のサンプルもあった。このため、このAの領域とBの領域は対照群とストレス群を大まかに区別することができるが、一部は判別不能であることがわかった。そこで第一の遅延発光量の代わりに第一の補正遅延発光量を、第二の遅延発光量の代わりに第二の補正遅延発光量を用いた。その結果を(図3(d)に示す。図3(d)からわかるように、図3(c)に比べて分布のバラツキが抑えられた。   Using the data of each sample used when the plots of FIGS. 3A and 3B were drawn, the distance parameter and the angle parameter were obtained and plotted according to the method described above. The result is shown in FIG. Although the delayed light emission amount coordinates of the leaf sample subjected to drought stress were distributed at positions apart from the reference position and had a certain range of angle parameters (-30 ° to -60 °), the stress group There was a sample of the control group distributed within, and there was also a sample of the stress group distributed within the control group. For this reason, it was found that the area A and the area B can roughly distinguish the control group and the stress group, but some are indistinguishable. Therefore, the first corrected delayed emission amount is used instead of the first delayed emission amount, and the second corrected delayed emission amount is used instead of the second delayed emission amount. The result is shown in FIG. 3 (d). As can be seen from FIG. 3 (d), the variation in distribution was suppressed compared to FIG. 3 (c).

さらに解析精度を上げるために、Aの領域とBの領域の範囲をそれぞれ計測後0.5〜1.5秒、計測後20〜100秒に狭めて解析をやり直した。その結果を図4に示す。図4(a)は、補正なしの結果、すなわち、第一の遅延発光量を横軸、第二の遅延発光量を縦軸にとったプロットによってヤマザクラの葉に渇水ストレスを与えていない対照群と、木部圧ポテンシャルが−3.0MPaになるまでヤマザクラの葉に渇水ストレスを与えたストレス群とを比較した結果である。図4(b)は、クロロフィル量で補正した結果、すなわち、第一の遅延発光量をクロロフィル量で除した第一の補正遅延発光量を横軸に、第二の遅延発光量をクロロフィル量で除した第二の補正遅延発光量を縦軸にプロットして上記対照群と上記ストレス群とを比較した結果である。図4(b)では、対照群、ストレス群ともに、第一の補正遅延発光量を横軸に、第二の補正遅延発光量を縦軸にとったプロットとすることで、各群のバラツキが抑えられ、それぞれ異なる位置に分布が集まることがわかる。図4(a)及び(b)のプロットを描いたときに用いた各サンプルのデータを用いて、上述の方法に従い、距離パラメータと角度パラメータとを求め、プロットを行った。その結果を図4(c)に示す。いずれのプロットでも、渇水ストレスを受けた葉のサンプルの遅延発光量座標は、基準位置に対して離れた位置に分布して、ある一定の範囲の角度パラメータ(−30°〜−60°)を有し、Aの領域、Bの領域の範囲の広い図3(c)、図3(d)で見られたストレス群の中に分布する対照群のサンプルや、対照群の中に分布するストレス群のサンプルが大幅に減少した。このようにAの領域、Bの領域について最適な時間領域を設定することによって、対照群とストレス群の区別が容易になった。また、第一の遅延発光量の代わりに第一の補正遅延発光量を、第二の遅延発光量の代わりに第二の補正遅延発光量を用いて得られた場合のプロットを示した図4(d)でも図4(c)と同様に分布した。   In order to further improve the analysis accuracy, the range of the region A and the region B was narrowed to 0.5 to 1.5 seconds after measurement and 20 to 100 seconds after measurement, and the analysis was performed again. The result is shown in FIG. FIG. 4 (a) shows a control group in which drought stress is not applied to the leaves of Yamazakura by plotting the results without correction, that is, the first delayed luminescence amount on the horizontal axis and the second delayed luminescence amount on the vertical axis. And the stress group in which drought stress was applied to the leaves of the cherry tree until the xylem pressure potential became −3.0 MPa. FIG. 4B shows the result of correction by the chlorophyll amount, that is, the first corrected delayed emission amount obtained by dividing the first delayed emission amount by the chlorophyll amount on the horizontal axis, and the second delayed emission amount by the chlorophyll amount. This is a result of comparing the control group and the stress group by plotting the second corrected delayed luminescence amount divided by the vertical axis. In FIG. 4B, in both the control group and the stress group, the variation of each group is obtained by plotting the first corrected delayed emission amount on the horizontal axis and the second corrected delayed emission amount on the vertical axis. It can be seen that the distribution is concentrated at different positions. Using the data of each sample used when the plots of FIGS. 4A and 4B were drawn, the distance parameter and the angle parameter were obtained and plotted according to the method described above. The result is shown in FIG. In any plot, the delayed luminescence coordinates of the drought-stressed leaf sample are distributed at positions away from the reference position, and a certain range of angle parameters (−30 ° to −60 °) is obtained. A sample of the control group distributed in the stress group seen in FIG. 3 (c) and FIG. 3 (d) and a stress distributed in the control group. The group sample was significantly reduced. Thus, by setting the optimal time region for the A region and the B region, the control group and the stress group can be easily distinguished. FIG. 4 shows a plot obtained when the first corrected delayed emission amount is used instead of the first delayed emission amount and the second corrected delayed emission amount is used instead of the second delayed emission amount. The distribution in (d) was the same as in FIG. 4 (c).

試験2:フィールドでの計測(ヤマザクラ)
フィールド(野外)に生育するヤマザクラ(Cerasus jamasakura var. jamasakura)の樹頂枝を採取し、傷つけないよう注意して計測場所まで運搬し、次のプロトコールに従って測定を行った。運搬された樹頂枝の頂枝成長量を測定し、その樹頂枝の葉の中で外見上代表的である葉2枚を選定し、その2枚を直ちに微弱発光を測定した。計測時間が300秒である点は試験1と異なるが、その他の条件は試験1の条件と同一にした。その後、葉緑素計値(SPAD)、分光反射率の測定を順次行った。また、樹勢、樹形、枝の伸長量、梢端の枯損、枝葉の密度、葉の形・大きさ、葉色、樹皮の8項目について、樹木の診断について熟練した者2名が目視判定によって樹木の活力評価を行った。
Test 2: Field measurement (Yamazakura)
A tree branch of a cherry tree (Cerasus jamasakura var. Jamasakura) growing in the field (outdoor) was collected, transported to a measurement site with care not to damage it, and measured according to the following protocol. The amount of top branch growth of the transported tree branch was measured, and two leaves that were representative in appearance were selected from the leaves of the tree branch, and the weak light emission was immediately measured for the two leaves. Although the measurement time is 300 seconds, it is different from Test 1, but the other conditions are the same as those of Test 1. Thereafter, the chlorophyll meter value (SPAD) and the spectral reflectance were measured sequentially. In addition, two persons skilled in the diagnosis of trees in eight items of tree vigor, tree shape, amount of branch elongation, withering of treetops, branch leaf density, leaf shape / size, leaf color, and bark were visually judged by two trees. The vitality evaluation was performed.

得られた各葉のサンプルは、その葉が生えていた枝の伸長量に応じて、0〜20パーセンタイル群と80〜100パーセンタイル群との2群に分けた。例えば、各葉のサンプルをその葉が生えていた枝の伸長量の小さい順に並べたとき、枝の伸長量が最小のサンプルから数えて、サンプル全体の20%に相当する位置にある葉のサンプルを20パーセンタイルに位置するサンプルという。ここでは、0〜20パーセンタイル群を「生育不良群」とし、80〜100パーセンタイル群を「基準サンプル群」とした。この2群について、第一の遅延発光量(計測後0.5〜1.5秒)及び第二の遅延発光量(計測後20〜100秒)に基づいて、距離パラメータと角度パラメータとを求めプロットを行った。このとき、基準位置は、基準サンプル群のサンプルを基準サンプルとして求めた。その結果を図5(a)に示す。また、第一の遅延発光量の代わりに第一の補正遅延発光量を、第二の遅延発光量の代わりに第二の補正遅延発光量を用いて得られた場合のプロットを図5(b)に示す。   The obtained sample of each leaf was divided into two groups of 0 to 20th percentile group and 80 to 100th percentile group according to the extension amount of the branch where the leaf grew. For example, when the samples of each leaf are arranged in the order of the extension amount of the branch where the leaf grew, the leaf sample located at a position corresponding to 20% of the whole sample, counting from the sample with the smallest extension amount of the branch Is called the sample located at the 20th percentile. Here, the 0-20th percentile group was defined as a “growth failure group”, and the 80-100th percentile group was defined as a “reference sample group”. For these two groups, a distance parameter and an angle parameter are obtained based on the first delayed emission amount (0.5 to 1.5 seconds after measurement) and the second delayed emission amount (20 to 100 seconds after measurement). A plot was made. At this time, the reference position was obtained using a sample of the reference sample group as a reference sample. The result is shown in FIG. FIG. 5B shows a plot obtained using the first corrected delayed emission amount instead of the first delayed emission amount and the second corrected delayed emission amount instead of the second delayed emission amount. ).

図5(a)では、生育不良群の距離パラメータは基準位置から分離する傾向は見られたが、角度パラメータは基準位置から±90°の方向に分散していた。これに対し、遅延発光量をクロロフィル量で補正したデータ(第一の補正遅延発光量及び第二の補正遅延発光量)を用いることによって、生育不良群の距離パラメータが基準位置から分離する傾向が見られたのに加え、試験1の渇水ストレス実験(理想条件)の場合と同様に、生育不良群の角度パラメータが−30°〜−60°に向かっていた(図5(b))。この結果は、クロロフィル濃度による遅延発光量の補正が植物の生育状態の診断に対して有効であることを示している。   In FIG. 5A, the distance parameter of the poor growth group tended to be separated from the reference position, but the angle parameter was dispersed in the direction of ± 90 ° from the reference position. On the other hand, the distance parameter of the growth failure group tends to be separated from the reference position by using the data (first corrected delayed emission amount and second corrected delayed emission amount) obtained by correcting the delayed emission amount with the chlorophyll amount. In addition to the observation, as in the case of the drought stress experiment (ideal condition) of Test 1, the angle parameter of the poorly grown group was directed to −30 ° to −60 ° (FIG. 5B). This result shows that the correction of the delayed luminescence amount by the chlorophyll concentration is effective for diagnosis of the growth state of the plant.

従って、第一の補正遅延発光量及び第二の補正遅延発光量を使って、樹木のストレス(特に渇水ストレス)を診断しようとする場合には、あらかじめ設定した対照群の基準位置に基づいてフィールドで計測した各植物の葉の角度パラメータと距離パラメータとを算出し、距離パラメータが基準位置から遠ざかっているものがストレスを受けているサンプルであると推定することができる。また、試験1(理想条件)の実験から、渇水ストレスを受けているヤマザクラは、基準位置に対して特定の角度(−30°〜−60°)で分離していくことがわかっているので、角度パラメータを評価することによって、渇水ストレスを特異的に検出することができる。   Therefore, when trying to diagnose tree stress (especially drought stress) using the first corrected delayed emission amount and the second corrected delayed emission amount, the field is based on the reference position of the preset control group. The angle parameter and the distance parameter of each plant measured in step (1) are calculated, and it can be estimated that the sample whose distance parameter is far from the reference position is a stressed sample. Moreover, from the experiment of Test 1 (ideal condition), it is known that the Yamazakura subjected to drought stress is separated at a specific angle (−30 ° to −60 °) with respect to the reference position. By evaluating the angle parameter, drought stress can be specifically detected.

1…第一の検出部、3…試料(植物の葉)、6…光源部、8…第二の検出部、15…記録部、19…温度調節部、100…植物の生育状態を診断するための装置。 DESCRIPTION OF SYMBOLS 1 ... 1st detection part, 3 ... Sample (plant leaf), 6 ... Light source part, 8 ... 2nd detection part, 15 ... Recording part, 19 ... Temperature control part, 100 ... Diagnosing the growth state of a plant Equipment for.

Claims (4)

植物の生育状態を診断する方法であって、
(a)所定の温度条件下で植物の葉の遅延発光を測定し、遅延発光データを取得する、遅延発光測定ステップと、
(b)前記植物の葉のクロロフィル量を測定し、クロロフィルデータを取得する、クロロフィル測定ステップと、
(c)前記遅延発光データ及び前記クロロフィルデータを基に、
木部圧ポテンシャルを下げた場合に、遅延発光量が増加する時間領域に対応する遅延発光量である第一の遅延発光量と、
木部圧ポテンシャルを下げた場合に、遅延発光量が減少する時間領域に対応する遅延発光量である第二の遅延発光量と、
を求め、それぞれ前記植物の葉の所定の面積あたりのクロロフィル量で補正して第一の補正遅延発光量と第二の補正遅延発光量とを算出する、遅延発光量補正ステップと、
(d)前記遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、前記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との比較に基づいて、前記植物の葉の近傍部分における植物の活力を判定する、判定ステップと、
を含む、方法。
A method for diagnosing the growth state of a plant,
(A) a delayed luminescence measurement step of measuring delayed luminescence of a plant leaf under a predetermined temperature condition and acquiring delayed luminescence data;
(B) measuring the amount of chlorophyll in the leaves of the plant, and obtaining chlorophyll data;
(C) Based on the delayed emission data and the chlorophyll data,
When the xylem pressure potential is lowered, a first delayed emission amount that is a delayed emission amount corresponding to a time region in which the delayed emission amount increases,
A second delayed emission amount that is a delayed emission amount corresponding to a time region in which the delayed emission amount decreases when the xylem pressure potential is lowered;
Determining the amount of chlorophyll per predetermined area of the leaves of the plant and calculating a first corrected delayed emission amount and a second corrected delayed emission amount, respectively, a delayed emission amount correction step,
(D) The first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, and the first corrected delayed emission amount and the second corrected delayed emission amount that serve as a reference for the plant. A determination step of determining the vitality of the plant in the vicinity of the plant leaf based on the comparison with
Including a method.
前記活力が渇水ストレスの影響を反映したものである、請求項1に記載の方法。   The method of claim 1, wherein the vitality reflects the effects of drought stress. 前記遅延発光量補正ステップで算出した第一の補正遅延発光量及び第二の補正遅延発光量と、前記植物の基準となる第一の補正遅延発光量及び第二の補正遅延発光量との差が大きい程、前記植物の葉の近傍部分における植物の活力が低いと判定する、請求項1又は2に記載の方法。   Difference between the first corrected delayed emission amount and the second corrected delayed emission amount calculated in the delayed emission amount correction step, and the first corrected delayed emission amount and the second corrected delayed emission amount, which are the standard of the plant. The method according to claim 1, wherein the larger the is, the lower the vitality of the plant in the vicinity of the leaf of the plant is. 植物の葉に光を照射するための光源部と、
前記光源部が照射する光によって生じる前記植物の葉の遅延発光を検出する第一の検出部と、
所定の温度条件下で前記遅延発光を検出するための温度調節部と、
前記光源部が照射する光によって生じる前記植物の葉のクロロフィル量を反映する光を検出する第二の検出部と、
前記第一の検出部によって検出した前記遅延発光に対応する遅延発光データ及び前記第二の検出部によって検出した前記クロロフィル量を反映する光に対応するクロロフィルデータを記録する記録部と、
を備える、植物の生育状態を診断するための装置。
A light source for irradiating the leaves of the plant with light;
A first detection unit for detecting delayed light emission of the leaves of the plant caused by light emitted by the light source unit;
A temperature control unit for detecting the delayed light emission under a predetermined temperature condition;
A second detection unit that detects light reflecting the amount of chlorophyll in the leaves of the plant produced by light emitted by the light source unit;
A recording unit for recording delayed emission data corresponding to the delayed emission detected by the first detection unit and chlorophyll data corresponding to light reflecting the amount of chlorophyll detected by the second detection unit;
A device for diagnosing the growth state of a plant.
JP2012052089A 2012-03-08 2012-03-08 Method for diagnosing plant growth state and apparatus used therefor Active JP5938768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052089A JP5938768B2 (en) 2012-03-08 2012-03-08 Method for diagnosing plant growth state and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052089A JP5938768B2 (en) 2012-03-08 2012-03-08 Method for diagnosing plant growth state and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2013183702A true JP2013183702A (en) 2013-09-19
JP5938768B2 JP5938768B2 (en) 2016-06-22

Family

ID=49385720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052089A Active JP5938768B2 (en) 2012-03-08 2012-03-08 Method for diagnosing plant growth state and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP5938768B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152206A1 (en) * 2014-04-03 2015-10-08 株式会社椿本チエイン Cultivation system
JP2017044531A (en) * 2015-08-25 2017-03-02 浜松ホトニクス株式会社 Photosynthesis sample evaluation system, photosynthesis sample evaluation method, and photosynthesis sample evaluation program
JP2017051118A (en) * 2015-09-08 2017-03-16 国立研究開発法人農業・食品産業技術総合研究機構 Apparatus and method for generating characteristic estimation model and apparatus and method for estimating characteristics of analysis object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101196A (en) * 2002-09-04 2004-04-02 Hamamatsu Photonics Kk Apparatus and method for measuring cultured state of plant cell
JP2004301638A (en) * 2003-03-31 2004-10-28 Shizuoka Prefecture Device and method for judging keeping period of flowering plant
JP2007218863A (en) * 2006-02-20 2007-08-30 Hamamatsu Photonics Kk Method, device and program for evaluating environmental factor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101196A (en) * 2002-09-04 2004-04-02 Hamamatsu Photonics Kk Apparatus and method for measuring cultured state of plant cell
JP2004301638A (en) * 2003-03-31 2004-10-28 Shizuoka Prefecture Device and method for judging keeping period of flowering plant
JP2007218863A (en) * 2006-02-20 2007-08-30 Hamamatsu Photonics Kk Method, device and program for evaluating environmental factor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152206A1 (en) * 2014-04-03 2015-10-08 株式会社椿本チエイン Cultivation system
JP2015195786A (en) * 2014-04-03 2015-11-09 株式会社椿本チエイン cultivation system
CN106163262A (en) * 2014-04-03 2016-11-23 株式会社椿本链条 Cultivation system
EP3127420A4 (en) * 2014-04-03 2017-11-15 Tsubakimoto Chain Co. Cultivation system
JP2017044531A (en) * 2015-08-25 2017-03-02 浜松ホトニクス株式会社 Photosynthesis sample evaluation system, photosynthesis sample evaluation method, and photosynthesis sample evaluation program
JP2017051118A (en) * 2015-09-08 2017-03-16 国立研究開発法人農業・食品産業技術総合研究機構 Apparatus and method for generating characteristic estimation model and apparatus and method for estimating characteristics of analysis object

Also Published As

Publication number Publication date
JP5938768B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6485850B2 (en) Plant vitality diagnostic method, and measurement system and diagnostic system used therefor
EP2638797B1 (en) Plant health diagnostic method and plant health diagnostic device
Ciganda et al. Non-destructive determination of maize leaf and canopy chlorophyll content
Genc et al. Determination of water stress with spectral reflectance on sweet corn (Zea mays L.) using classification tree (CT) analysis
Kipp et al. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity
CN103250043B (en) For determining sensing system and the method for plant optical characteristics
EP1924839B1 (en) Method and apparatus for determining quality of fruit and vegetable products
Steele et al. Nondestructive estimation of leaf chlorophyll content in grapes
JP2006226775A (en) Method and apparatus for evaluating eating taste component of fruit
Amatya et al. Hyperspectral imaging for detecting water stress in potatoes
Páscoa et al. Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves
JP5938768B2 (en) Method for diagnosing plant growth state and apparatus used therefor
Yang et al. In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiber-optic visible—near-infrared (vis-nir) spectroscopy
Süß et al. Measuring leaf chlorophyll content with the Konica Minolta SPAD-502Plus
GomezChova et al. Solar induced fluorescence measurements using a field spectroradiometer
Šebela et al. Temporal chlorophyll fluorescence signals to track changes in optical properties of maturing rice panicles exposed to high night temperature
JP4839441B2 (en) Method and apparatus for detecting pollen soot
Panneton et al. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra
Katsoulas et al. Calibration methodology of a hyperspectral imaging system for greenhouse plant water status assessment
KR102433570B1 (en) Method for calculating the salt resistance evaluation index of lettuce genetic resources
Li et al. Chlorophyll assessment and sensitive wavelength exploration for tea (Camellia sinensis) based on reflectance spectral characteristics
Mistele et al. Assessing water status in wheat under field conditions using laser induced chlorophyll fluorescence and hyperspectral measurements
Ding et al. Simple linear regression and reflectance sensitivity analysis used to determine the optimum wavelengths for the nondestructive assessment of chlorophyll in fresh leaves using spectral reflectance
Ngo et al. Determination of the sample number for optical reflectance measurement of vegetable leaf
Spáčilová et al. Potential of chlorophyll fluorescence and VIS/NIR spectroscopy measurement use for the detection of nitrogen content and disease infection of apple leaves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5938768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250