JP2013183094A - Mounting method for electronic component, and semiconductor device - Google Patents

Mounting method for electronic component, and semiconductor device Download PDF

Info

Publication number
JP2013183094A
JP2013183094A JP2012046966A JP2012046966A JP2013183094A JP 2013183094 A JP2013183094 A JP 2013183094A JP 2012046966 A JP2012046966 A JP 2012046966A JP 2012046966 A JP2012046966 A JP 2012046966A JP 2013183094 A JP2013183094 A JP 2013183094A
Authority
JP
Japan
Prior art keywords
electronic component
particles
solder ball
mounting method
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012046966A
Other languages
Japanese (ja)
Inventor
Masafumi Yano
雅史 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2012046966A priority Critical patent/JP2013183094A/en
Publication of JP2013183094A publication Critical patent/JP2013183094A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mounting method for an electronic component that has high reliability of joining while making a joining temperature low.SOLUTION: A mounting method for an electronic component includes a dispersion procedure for dispersing and arranging Bi particles on a table, a press-contacting procedure for bringing the Bi particles into press contact with a solder ball by pressing the solder ball containing much tin against the table, a pressing procedure for pressing the solder ball having the Bi particles in press contact against a terminal, and a joining procedure for performing a heat treatment for joining the terminal and solder ball together at a temperature of 160-200°C while the terminal and solder ball are pressed by the pressing procedure.

Description

本発明は、電子部品の実装方法及び半導体装置に関する。   The present invention relates to an electronic component mounting method and a semiconductor device.

電子部品をプリント基板等の回路基板に実装する方法として、半田付けによる実装方法が広く用いられている。このとき、例えばLSI(Large Scale Integration )のように端子が複数、かつ、狭ピッチで設けられている電子部品を回路基板に半田付けするために半田バンプが用いられている。   As a method for mounting an electronic component on a circuit board such as a printed board, a mounting method by soldering is widely used. At this time, for example, a solder bump is used to solder an electronic component having a plurality of terminals and a narrow pitch, such as an LSI (Large Scale Integration), to a circuit board.

半田バンプを用いた半田付け処理(以下、バンプ接合処理)は、電子部品の端子に予め接続された半田バンプを、回路基板に形成された端子に押し付け、この状態を維持しながら熱処理することにより行われる(特許文献1〜5)。なお、バンプ接合処理には、Sn(錫)リッチなSn−3.0mass%Ag−0.5mass%Cuの組成を持つ半田が多く用されている。   Soldering processing using solder bumps (hereinafter referred to as bump bonding processing) is performed by pressing a solder bump previously connected to a terminal of an electronic component against a terminal formed on a circuit board and performing a heat treatment while maintaining this state. (Patent Documents 1 to 5). Note that a solder having a Sn (tin) -rich Sn-3.0 mass% Ag-0.5 mass% Cu composition is often used for the bump bonding process.

バンプ接合処理に関する関連技術としては、特許文献1には、半田の濡れ性が良好な金属粉を含んだフラックスの薄膜に半田ボールを押付け、この半田ボールの表面に形成されている酸化膜を突き破って金属粉を食い込ませる技術が開示されている。   As a related technique related to bump bonding processing, Patent Document 1 discloses that a solder ball is pressed against a thin film of flux containing metal powder with good solder wettability, and breaks through an oxide film formed on the surface of the solder ball. Thus, a technique for biting metal powder is disclosed.

また、特許文献2には、錫、銅、亜鉛、銀、アンチモン、鉛、インジウム、ビスマス、ニッケル、アルミニウム、金及びゲルマニウムの1つ以上を含む半田ペースト用フラックスが開示されている。   Patent Document 2 discloses a solder paste flux containing one or more of tin, copper, zinc, silver, antimony, lead, indium, bismuth, nickel, aluminum, gold, and germanium.

さらに、特許文献3には、半田ボールを機械的研磨または化学的研磨により平坦に研磨する技術が開示されている。特許文献4には、所定温度で熱処理することによりバンプ接合を行うことが開示されている。特許文献5には、Sn−Bi−Ag組成の半田バンプを用いて接合温度を下げる技術が開示されている。   Further, Patent Document 3 discloses a technique for polishing a solder ball flatly by mechanical polishing or chemical polishing. Patent Document 4 discloses that bump bonding is performed by heat treatment at a predetermined temperature. Patent Document 5 discloses a technique for lowering the bonding temperature using a solder bump having a Sn—Bi—Ag composition.

特開2006−073976号公報JP 2006-073976 A 特開2011−121059号公報JP 2011-121059 A 特開2007−110104号公報JP 2007-110104 A 特開2011−210819号公報JP 2011-210819 A 特開2006−128493号公報JP 2006-128493 A

しかしながら、関連技術にかかるバンプ接合においては、後述するようにバンプ接合の信頼性が低い問題があった。
即ち、接合温度を低温化すると、半田バンプは完全に溶融状態とならず、ビスマスリッチな組織が発生する場合がある。ところが、ビスマスは硬く、脆い金属であるため、ビスマスリッチな領域は衝撃に対して弱くなる。従って、接合箇所に外部振動等が加わると、接合不良が発生し易く、高い信頼性のバンプ接合ができない。
However, the bump bonding according to the related art has a problem that the reliability of the bump bonding is low as described later.
That is, when the bonding temperature is lowered, the solder bumps are not completely melted and a bismuth-rich structure may be generated. However, since bismuth is a hard and brittle metal, the bismuth rich region is vulnerable to impact. Therefore, when external vibration or the like is applied to the joining portion, a joining failure is likely to occur, and highly reliable bump joining cannot be performed.

そこで、本発明の主目的は、接合温度の低温化を図りながらバンプ接合の信頼性が高い電子部品の実装方法及び半導体装置を提供することである。   Accordingly, a main object of the present invention is to provide an electronic component mounting method and a semiconductor device with high bump bonding reliability while reducing the bonding temperature.

上記課題を解決するため、端子同士を接続する電子部品の実装方法は、テーブルにBi粒子を分散配置させる分散手順と、テーブルに錫を多く含む半田ボールを押付けて、当該半田ボールに所定割合の前記Bi粒子を圧着させる圧着手順と、Bi粒子が圧着した半田ボールを端子に押付ける押付手順と、押付手順により端子と半田ボールとが押付けられた状態で、端子と半田ボールとを160℃〜200℃の温度で接合させる熱処理を行う接合手順と、を含むことを特徴とする。   In order to solve the above-described problem, a mounting method of an electronic component for connecting terminals to each other includes a dispersing procedure for dispersing and arranging Bi particles on a table, and pressing a solder ball containing a large amount of tin on the table so that a predetermined ratio is applied to the solder ball. The crimping procedure for crimping the Bi particles, the pressing procedure for pressing the solder balls crimped with Bi particles to the terminals, and the terminals and the solder balls are pressed between 160 ° C. and 160 ° C. in a state where the terminals and the solder balls are pressed by the pressing procedure. And a joining procedure for performing a heat treatment for joining at a temperature of 200 ° C.

また、接続端子を備える電子部品が半田バンプにより回路基板の端子に実装された半導体装置は、上記に記載の電子部品の実装方法により、電子部品の端子と回路基板の端子とが接合されていることを特徴とする。   Further, in the semiconductor device in which the electronic component having the connection terminal is mounted on the terminal of the circuit board by the solder bump, the terminal of the electronic component and the terminal of the circuit board are joined by the electronic component mounting method described above. It is characterized by that.

本発明によれば、Bi粒子を散配置させて半田ボールに圧着させるので、バンプ接合に必要なBi粒子が接合箇所に偏在するようになり、接合時における接合温度の低温化を図りながら信頼性が高いバンプ接合が可能になる。   According to the present invention, Bi particles are scattered and pressed against a solder ball, so that Bi particles necessary for bump bonding are unevenly distributed at the bonding portion, and reliability is reduced while reducing the bonding temperature at the time of bonding. High bump bonding is possible.

本発明の第1の実施形態にかかる半田バンプの断面図である。It is sectional drawing of the solder bump concerning the 1st Embodiment of this invention. 電子部品の実装方法を示すフローチャートである。It is a flowchart which shows the mounting method of an electronic component. Bi粒子を分散したテーブルの側面図である。It is a side view of the table which disperse | distributed Bi particle | grains. テーブルにBi粒子を分散配置する際の様子を示す図で、(a)はBi粒子を分散配置したテーブルの上面図、(b)はマスクを用いてBi粒子を分散配置する際のテーブルの断面図、(c)はマスクを除去した際のテーブルの断面図であるIt is a figure which shows the mode at the time of carrying out dispersion | distribution arrangement | positioning of Bi particle | grains on a table, (a) is a top view of the table which carried out dispersion | distribution arrangement | positioning of Bi particle | grains, (b) is the cross section of the table at the time of carrying out dispersion | distribution arrangement | positioning of Bi particle | grains using a mask. FIG. 4C is a cross-sectional view of the table when the mask is removed. 半田ボールにBi粒子を圧着させる様子を示した図で、(a)は電子部品をテーブルに対向させた際の断面図、(b)は半田ボールをBi粒子に押付けた際の断面図、(c)は半田ボールをBi粒子に圧着させた際の断面図である。FIG. 2 is a diagram showing a state in which Bi particles are pressure-bonded to a solder ball, where (a) is a cross-sectional view when an electronic component is opposed to a table, (b) is a cross-sectional view when a solder ball is pressed against Bi particles, c) is a cross-sectional view of a solder ball when bonded to Bi particles. 半田バンプを用いて接合する際の様子を示す図で、(a)電子部品を回路基板に対向させた際の断面図、(b)は半田ボールを回路基板の端子に押付けた際の断面図、(c)は接合状態を示す断面図である。It is a figure which shows the mode at the time of joining using a solder bump, (a) Sectional drawing at the time of making an electronic component oppose a circuit board, (b) is sectional drawing at the time of pressing a solder ball on the terminal of a circuit board (C) is sectional drawing which shows a joining state. 本発明の第2の実施形態にかかる電子部品の実装方法を示す図で、(a)は略正方形の凹部を備えるテーブルの上面図、(b)はBiペーストを凹部に埋込む際のテーブルの断面図、(c)はBiペーストを凹部に埋込んだ後のテーブルの断面図を示す。It is a figure which shows the mounting method of the electronic component concerning the 2nd Embodiment of this invention, (a) is a top view of the table provided with a substantially square recessed part, (b) is the table at the time of embedding Bi paste in a recessed part. Sectional drawing, (c) shows a sectional view of the table after Bi paste is embedded in the recess. 第2の実施形態にかかる長方形の凹部を備えるテーブルの上面図である。It is a top view of a table provided with the rectangular recessed part concerning 2nd Embodiment.

次に、本発明の実施形態を説明する。図1は、本実施形態にかかる半田バンプ2の断面図である。この半田バンプ2は、半田ボール3と、この半田ボール3に圧着されたBi粒子4とにより形成されている。半田ボール3は、Sn−3.0mass%Ag−0.5mass%Cuを主材料とする半田で、概略球体を押し潰した饅頭形状を有している。そして、その上下の面は、電子部品10が接続される製品側面3a、近傍領域にBi粒子4が圧着している基板側面3bをなしている。   Next, an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a solder bump 2 according to the present embodiment. The solder bump 2 is formed by a solder ball 3 and Bi particles 4 pressed onto the solder ball 3. The solder ball 3 is a solder whose main material is Sn-3.0 mass% Ag-0.5 mass% Cu, and has a truncated crushed shape in which a sphere is roughly crushed. The upper and lower surfaces form a product side surface 3a to which the electronic component 10 is connected, and a substrate side surface 3b to which Bi particles 4 are pressure-bonded in the vicinity region.

このような半田バンプ2の製造方法を、図2〜図5を参照して説明する。図2は、半田バンプ2の製造方法を示すフローチャートである。また、図3〜図5は製造途中の様子を示す半田バンプ2等の側面図である。   A method of manufacturing such a solder bump 2 will be described with reference to FIGS. FIG. 2 is a flowchart showing a method for manufacturing the solder bump 2. 3 to 5 are side views of the solder bumps 2 and the like showing a state during the production.

ステップS1:先ず、図3及び図4(a)に示すように、Bi粒子4を半田ボール3に対して以下の関係を満たすように作業台等のテーブル6に分散配置する。なお、テーブル6にBi粒子4を含有したBiペーストを分散配置することも可能である。   Step S1: First, as shown in FIGS. 3 and 4A, the Bi particles 4 are distributed and arranged on the table 6 such as a work table so as to satisfy the following relationship with respect to the solder balls 3. It is also possible to disperse and arrange Bi paste containing Bi particles 4 on the table 6.

いま、使用するBi粒子4の平均直径D2と半田ボール3の平均直径D1とは、式1の関係を満たすとき良好な接合が行える。
D2=n×D1 …(1)
ここで、nは比例係数で、下記の式2の関係を満たすように設定する。
0.02≦n≦0.2 …(2)
なお、比例係数nの範囲が、0.06≦n≦0.1の範囲のとき、より良好なバンプ接合が行える。
Now, when the average diameter D2 of the Bi particles 4 to be used and the average diameter D1 of the solder balls 3 satisfy the relationship of Formula 1, good bonding can be performed.
D2 = n × D1 (1)
Here, n is a proportional coefficient, and is set so as to satisfy the relationship of the following Expression 2.
0.02 ≦ n ≦ 0.2 (2)
In addition, when the range of the proportional coefficient n is in the range of 0.06 ≦ n ≦ 0.1, better bump bonding can be performed.

例えば、半田ボール3の直径D1が500μm、n=0.06のとき、Bi粒子4の平均直径D2は、D2=n×D1=0.06*500=30μmとなる。従って、平均粒径が30μm(20〜40μm)のBi粒子4を使用すれば、良好なバンプ接合が行えるようになる。無論、Bi粒子4の粒径ばらつきは、小さいほうが好ましい。   For example, when the diameter D1 of the solder ball 3 is 500 μm and n = 0.06, the average diameter D2 of the Bi particles 4 is D2 = n × D1 = 0.06 * 500 = 30 μm. Therefore, if the Bi particles 4 having an average particle size of 30 μm (20 to 40 μm) are used, good bump bonding can be performed. Of course, it is preferable that the particle size variation of the Bi particles 4 is small.

このとき、半田ボール3に圧着させるBi粒子4の数mは、n=0.06としたとき、1≦m≦0.2/n=0.2/(0.062)≒55となる。圧着させるBi粒子4の数が少なすぎると、溶融するBi粒子4の量が少なくなるため良好なバンプ接合が困難となる。一方、Bi粒子4の量が多くなると、接合完了時に接合領域に残存するBi粒子4の量が多くなり、バンプ接合の信頼性低下を招く恐れがある。 At this time, the number m of Bi particles 4 to be pressure-bonded to the solder ball 3 is 1 ≦ m ≦ 0.2 / n 2 = 0.2 / (0.062) ≈55 when n = 0.06. . If the number of Bi particles 4 to be pressure-bonded is too small, the amount of Bi particles 4 to be melted will be small, making it difficult to achieve good bump bonding. On the other hand, when the amount of Bi particles 4 increases, the amount of Bi particles 4 remaining in the bonding region at the time of completion of bonding increases, and the reliability of bump bonding may be reduced.

しかし、比例係数nが式2を満たすように設定することで、Bi粒子4の量に過不足が発生しなくなり、バンプ接合の信頼性低下が防止できる。   However, by setting the proportionality coefficient n so as to satisfy Equation 2, excess or deficiency in the amount of Bi particles 4 does not occur, and a decrease in the reliability of bump bonding can be prevented.

このように決定されたBi粒子4の量をテーブル6に分散配置する方法として、例えば図4に示すような方法が可能である。   For example, a method as shown in FIG. 4 can be used as a method for distributing the amount of Bi particles 4 thus determined in the table 6.

先ず、一定ピッチで開口41が複数形成されたマスク40をテーブル6に載置する(図4(a)参照)。このマスク40として、厚みが30μm、開口径が40μm、ピッチが50μmのマスクが例示できる。   First, a mask 40 having a plurality of openings 41 formed at a constant pitch is placed on the table 6 (see FIG. 4A). Examples of the mask 40 include a mask having a thickness of 30 μm, an opening diameter of 40 μm, and a pitch of 50 μm.

そして、マスク40の上にBi粒子4を含有するBiペースト5を投入し、スキージ42を用いてBiペースト5をスキージングする(図4(b)参照)。これにより、Biペースト5は、開口41に埋込まれる。なお、Biペースト5でなく、Bi粒子4だけでもよい。   Then, a Bi paste 5 containing Bi particles 4 is put on the mask 40, and the Bi paste 5 is squeezed using a squeegee 42 (see FIG. 4B). Thereby, the Bi paste 5 is embedded in the opening 41. Note that only the Bi particles 4 may be used instead of the Bi paste 5.

その後、マスク40を剥離すると、図4(c)に示すように一定量のBiペースト5がテーブル6の上に分散配置された状態となる。   Thereafter, when the mask 40 is peeled off, a certain amount of Bi paste 5 is dispersedly arranged on the table 6 as shown in FIG.

ステップS2:電子部品10をテーブル6に対して位置合せして、これらを対向させる(図5(a)参照)。   Step S2: The electronic component 10 is aligned with the table 6 so as to face each other (see FIG. 5A).

ステップS3: この状態で、電子部品10をテーブル6に近づけて、半田ボール3をBi粒子島4aに押し付ける。このとき、半田ボール3の表面に酸化膜が形成されている場合があるので、スクラブしながら押し付ける。このスクラブ動作により酸化膜が除去される。   Step S3: In this state, the electronic component 10 is brought close to the table 6 and the solder ball 3 is pressed against the Bi particle island 4a. At this time, since an oxide film may be formed on the surface of the solder ball 3, it is pressed while scrubbing. The oxide film is removed by this scrubbing operation.

以上により、所定量のBi粒子4を半田ボール3に圧着させた半田バンプ2を形成することができる(図5(c)参照)。   As described above, it is possible to form the solder bump 2 in which a predetermined amount of Bi particles 4 are pressure-bonded to the solder ball 3 (see FIG. 5C).

このようにして半田バンプ2が形成された電子部品10は、回路基板31に形成された端子32に対して位置合せされ(図6(a)参照)、押し当てられる(図6(b)参照)。   The electronic component 10 on which the solder bumps 2 are thus formed is aligned with the terminals 32 formed on the circuit board 31 (see FIG. 6A) and pressed (see FIG. 6B). ).

そして、この状態で接合のための熱処理が行われる(図6(c)参照)。接合のための熱処理は、160℃〜200℃の範囲、例えば180℃で行う。Bi粒子4は、回路基板31との基板側面3bの近傍領域に偏在するため、たとえ低温で接合しても、略全てのBi粒子4が接合に寄与する。即ち、接合に寄与しない残留Bi粒子の発生が抑制できるので、この残留Bi粒子による耐衝撃力の低下が防止できる。従って、接合温度の低温化を図りながら接合の信頼性を高めることが可能になる。   And the heat processing for joining is performed in this state (refer FIG.6 (c)). The heat treatment for bonding is performed in a range of 160 ° C. to 200 ° C., for example, 180 ° C. Since the Bi particles 4 are unevenly distributed in the vicinity of the substrate side surface 3b with the circuit board 31, even if they are bonded at a low temperature, almost all of the Bi particles 4 contribute to the bonding. That is, since the generation of residual Bi particles that do not contribute to the bonding can be suppressed, a reduction in impact resistance due to the residual Bi particles can be prevented. Therefore, it is possible to increase the reliability of the bonding while reducing the bonding temperature.

<第2の実施形態>
次に、本発明の第2の実施形態を説明する。なお、第1の実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. In addition, about the same structure as 1st Embodiment, description is abbreviate | omitted suitably using the same code | symbol.

第1の実施形態においては、マスクの開口にBi粒子を埋込むことにより、所定量のBi粒子を半田ボールに圧着させた。   In the first embodiment, a predetermined amount of Bi particles is pressed onto a solder ball by embedding Bi particles in the opening of the mask.

これに対して、本実施形態では所定ピッチで形成された凹部を有するテーブルにBi粒子を埋込むことで、所定量のBi粒子を分散配置する。   On the other hand, in this embodiment, Bi particles of a predetermined amount are dispersed and arranged by embedding Bi particles in a table having concave portions formed at a predetermined pitch.

図7は、略正方形の凹部33を備えるテーブル6を示し、図8は長方形の凹部33を備えるテーブル6を示している。このような長方形の凹部33は、複数設けられている。なお、凹部33の形状は、これらに限定するものではなく、例えば円形状であっても良い。   FIG. 7 shows the table 6 having a substantially square recess 33, and FIG. 8 shows the table 6 having a rectangular recess 33. A plurality of such rectangular recesses 33 are provided. In addition, the shape of the recessed part 33 is not limited to these, For example, circular shape may be sufficient.

そして、凹部33にBiペースト5を投入し、スキージ42等により掻きならす。これにより、各凹部33に所定量のBiペースト5を埋込むことができ、所定量のBi粒子4を半田ボール3に埋込むことができる。   Then, the Bi paste 5 is put into the recess 33 and is stirred by the squeegee 42 or the like. Thereby, a predetermined amount of Bi paste 5 can be embedded in each recess 33, and a predetermined amount of Bi particles 4 can be embedded in the solder balls 3.

2 半田バンプ
3 半田ボール
4 Bi粒子
5 Biペースト
6 テーブル
10 電子部品
31 回路基板
32 端子
33 凹部
40 マスク
41 開口
42 スキージ
2 Solder bump 3 Solder ball 4 Bi particle 5 Bi paste 6 Table 10 Electronic component 31 Circuit board 32 Terminal 33 Recess 40 Mask 41 Opening 42 Squeegee

Claims (8)

端子同士を接続する半田バンプにより接合して電子部品を実装する電子部品の実装方法であって、
テーブルに、Bi粒子を分散配置させる分散手順と、
前記テーブルに錫を多く含む半田ボールを押付けて、当該半田ボールに所定割合の前記Bi粒子を圧着させる圧着手順と、
前記Bi粒子が圧着した前記半田ボールを前記端子に押付ける押付手順と、
前記押付手順により前記端子と前記半田ボールとが押付けられた状態で、前記端子と前記半田ボールとを160℃〜200℃の温度で接合させる熱処理を行う接合手順と、
を含むことを特徴とする電子部品の実装方法。
An electronic component mounting method for mounting an electronic component by bonding with solder bumps connecting terminals,
A dispersion procedure for dispersing and arranging Bi particles on the table;
A pressing procedure in which a solder ball containing a large amount of tin is pressed against the table, and a predetermined proportion of the Bi particles are pressed onto the solder ball;
A pressing procedure for pressing the solder balls to which the Bi particles are pressed against the terminals;
A joining procedure for performing a heat treatment for joining the terminal and the solder ball at a temperature of 160 ° C. to 200 ° C. in a state where the terminal and the solder ball are pressed by the pressing procedure;
A method for mounting an electronic component, comprising:
請求項1に記載の電子部品の実装方法であって、
前記分散手順は、所定形状の開口を有するマスクを前記テーブルに載置し、前記Bi粒子又はBi粒子を含有するBiペーストを前記開口に埋込む手順を含むことを特徴とする電子部品の実装方法。
The electronic component mounting method according to claim 1,
The dispersion procedure includes a procedure of placing a mask having an opening of a predetermined shape on the table and embedding the Bi particles or Bi paste containing Bi particles in the openings. .
請求項1に記載の電子部品の実装方法であって、
前記分散手順は、前記テーブルに形成された所定形状の凹部に前記Bi粒子又はBi粒子を含有するBiペーストを埋込む手順を含むことを特徴とする電子部品の実装方法。
The electronic component mounting method according to claim 1,
The electronic component mounting method, wherein the dispersing step includes a step of embedding the Bi particles or Bi paste containing Bi particles in a recessed portion having a predetermined shape formed on the table.
請求項1に記載の電子部品の実装方法であって、
前記押付手順により、前記Bi粒子が圧着した側の前記半田ボールは、平面に成形されることを特徴とする電子部品の実装方法。
The electronic component mounting method according to claim 1,
According to the pressing procedure, the solder ball on the side to which the Bi particles are pressed is formed into a flat surface.
請求項1乃至4のいずれか1項に記載の電子部品の実装方法であって、
前記テーブルに前記半田ボールを押付ける際に、前記半田ボールをスクラブさせながら押付ける手順を含むことを特徴とする電子部品の実装方法。
The electronic component mounting method according to any one of claims 1 to 4,
An electronic component mounting method comprising: a step of pressing the solder ball while scrubbing the solder ball when pressing the solder ball against the table.
請求項1乃至5のいずれか1項に記載の電子部品の実装方法であって、
前記半田ボールの直径をD1、Bi粒子の平均直径をD2としたとき、前記Bi粒子の平均直径D2は、前記半田ボールの直径D1に比例係数nを掛けて得られ、かつ、当該比例係数nは0.02≦n≦0.2を満たすことを特徴とする電子部品の実装方法。
An electronic component mounting method according to any one of claims 1 to 5,
When the diameter of the solder ball is D1 and the average diameter of Bi particles is D2, the average diameter D2 of the Bi particles is obtained by multiplying the diameter D1 of the solder ball by a proportional coefficient n, and the proportional coefficient n Satisfies 0.02 ≦ n ≦ 0.2. A method for mounting an electronic component, wherein:
請求項6に記載の電子部品の実装方法であって、
前記半田ボールに押し込むBi粒子の数をmとしたとき、Bi粒子の数は、1≦m≦0.2/nの範囲を満たすことを特徴とする電子部品の実装方法。
The electronic component mounting method according to claim 6,
An electronic component mounting method characterized in that the number of Bi particles satisfies a range of 1 ≦ m ≦ 0.2 / n 2 where m is the number of Bi particles pushed into the solder ball.
接続端子を備える電子部品が半田バンプにより回路基板の端子に実装された半導体装置であって、
請求項1乃至7のいずれか1項に記載の電子部品の実装方法により、前記電子部品の端子と前記回路基板の端子とが接合されていることを特徴とする半導体装置。
A semiconductor device in which an electronic component including a connection terminal is mounted on a terminal of a circuit board by a solder bump,
8. A semiconductor device, wherein a terminal of the electronic component and a terminal of the circuit board are joined by the electronic component mounting method according to claim 1.
JP2012046966A 2012-03-02 2012-03-02 Mounting method for electronic component, and semiconductor device Pending JP2013183094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012046966A JP2013183094A (en) 2012-03-02 2012-03-02 Mounting method for electronic component, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046966A JP2013183094A (en) 2012-03-02 2012-03-02 Mounting method for electronic component, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2013183094A true JP2013183094A (en) 2013-09-12

Family

ID=49273525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046966A Pending JP2013183094A (en) 2012-03-02 2012-03-02 Mounting method for electronic component, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2013183094A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210773A (en) * 2010-03-29 2011-10-20 Panasonic Corp Structure and semiconductor device manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210773A (en) * 2010-03-29 2011-10-20 Panasonic Corp Structure and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
US8794502B2 (en) Method of forming solder on pad on fine pitch PCB and method of flip chip bonding semiconductor using the same
US8686299B2 (en) Electronic element unit and reinforcing adhesive agent
US20090090543A1 (en) Circuit board, semiconductor device, and method of manufacturing semiconductor device
JP5656144B2 (en) Method of joining metal members
JP2008218643A (en) Semiconductor device and its manufacturing method
EP0751847A1 (en) A method for joining metals by soldering
KR102006637B1 (en) Method Of Forming Bump And Semiconductor device including The Same
US8701281B2 (en) Substrate metallization and ball attach metallurgy with a novel dopant element
TWI242866B (en) Process of forming lead-free bumps on electronic component
JP4022139B2 (en) Electronic device, electronic device mounting method, and electronic device manufacturing method
US20120224331A1 (en) Low profile solder grid array technology for printed circuit board surface mount components
US9780067B2 (en) Semiconductor chip metal alloy thermal interface material
KR20180114558A (en) Anisotropic conductive film using solder coated metal conducting particles
JP6182877B2 (en) Solder paste, conductive adhesive, manufacturing method thereof, and manufacturing method of semiconductor device
JP7480789B2 (en) Connection structure and method for manufacturing the same
JP6784053B2 (en) Manufacturing method of electronic device
JP2013183094A (en) Mounting method for electronic component, and semiconductor device
JP5113390B2 (en) Wiring connection method
US9793232B1 (en) All intermetallic compound with stand off feature and method to make
JP2012061508A (en) Joining material
KR20140056668A (en) Method for manufacturing solder on pad and flip chip bonding method used the same
JP5056674B2 (en) Bump formation method without defective bonding
JPH11254185A (en) Flex joining material
KR20240034511A (en) Solder paste comprising minute particle and electronic device comprising thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913