JP2013182740A - Method of observing reaction layer of fuel battery - Google Patents

Method of observing reaction layer of fuel battery Download PDF

Info

Publication number
JP2013182740A
JP2013182740A JP2012044809A JP2012044809A JP2013182740A JP 2013182740 A JP2013182740 A JP 2013182740A JP 2012044809 A JP2012044809 A JP 2012044809A JP 2012044809 A JP2012044809 A JP 2012044809A JP 2013182740 A JP2013182740 A JP 2013182740A
Authority
JP
Japan
Prior art keywords
reaction layer
group
electrolyte
fuel cell
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012044809A
Other languages
Japanese (ja)
Inventor
Taizo Yamamoto
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2012044809A priority Critical patent/JP2013182740A/en
Publication of JP2013182740A publication Critical patent/JP2013182740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To grasp a distribution state of hydrophilic group in a reaction layer of a fuel battery.SOLUTION: Sulfonic acid group bonded to hydrophilic group in a reaction layer is subjected to dying by allowing the sulfonic acid group to be bonded to the hydrophilic group (sulfone group) contained in the reaction layer of a fuel battery, and by loading into the reaction layer metal ions, such as ruthenium ions, capable of forming a nitrosyl complex together with the sulfonic acid group. When the hydrophilic group is aggregated, the sulfonic acid group bonded thereto is also aggregated. By subjecting the sulfonic acid group to dying with ruthenium, the ruthenium is also aggregated. This is observable with an electron microscope. The sulfonic acid group has an affinity for the hydrophilic group by bringing NOx gas into contact with the reaction layer.

Description

本発明は、燃料電池の反応層の観察方法に関する。   The present invention relates to a method for observing a reaction layer of a fuel cell.

燃料電池に用いられる膜電極接合体は固体高分子電解質膜を水素極と空気極とで挟んだ構成であり、水素極及び空気極はそれぞれ固体高分子電解質膜側から反応層と拡散層とを順次積層してなる。
反応層は触媒と電解質との混合物からなり、電子及びプロトンの伝導性と通気性が求められる。ここにプロトンは水を伴ってHのかたちで移動するので、反応層を湿潤状態に維持する必要がある。勿論、反応層に水分が過剰に存在すると通気性を阻害するので(いわゆるフラッディング現象)、反応層の水分は常に適当量に維持されなければならない。
かかる要求を満足すべく、本出願人は、特許文献1及び特許文献2において触媒と電解質との間に薄い水の膜を備える触媒ペーストを提案している。かかる触媒ペーストは、触媒と水とを予め混合したプレペーストを準備し、このプレペーストと電解質溶液とを混合し、適切な撹拌方法を採用することにより得られる。このように形成される触媒ペーストでは、電解質の親水基が触媒を覆う水膜に引き寄せられて対向し、電解質と触媒と間に親水性の領域が形成され、この親水性領域が水の膜となる。以下、触媒と電解質との混合物において触媒と電解質との間に親水性の領域を有する構造を「PFF構造」ということがある。
電解質と触媒との間の親水性の領域を連続させることにより(即ち、当該親水性の領域を斑状としないことにより)、反応層における水の偏在が防止される。また、燃料電池を低加湿環境下で運転するときにおいても、この親水性の領域に水がまとまって存在するので、過乾燥を防止できる。また、高加湿環境下での運転では、過剰な水がこの親水性の領域を介して外部(拡散層側)へ排出されるので、フラッティングを防止できる。
なお、本件発明に関連する技術を開示する文献として特許文献3及び非特許文献1〜3を参照されたい。
A membrane electrode assembly used in a fuel cell has a structure in which a solid polymer electrolyte membrane is sandwiched between a hydrogen electrode and an air electrode. The hydrogen electrode and the air electrode are each provided with a reaction layer and a diffusion layer from the solid polymer electrolyte membrane side. It is laminated sequentially.
The reaction layer is composed of a mixture of a catalyst and an electrolyte, and is required to have electron and proton conductivity and air permeability. Here, since protons move in the form of H 3 O + with water, it is necessary to maintain the reaction layer in a wet state. Of course, excessive moisture in the reaction layer inhibits air permeability (so-called flooding phenomenon), so the moisture in the reaction layer must always be maintained at an appropriate amount.
In order to satisfy this requirement, the present applicant has proposed a catalyst paste including a thin water film between the catalyst and the electrolyte in Patent Document 1 and Patent Document 2. Such a catalyst paste can be obtained by preparing a pre-paste in which a catalyst and water are mixed in advance, mixing the pre-paste and the electrolyte solution, and employing an appropriate stirring method. In the catalyst paste formed in this way, the hydrophilic group of the electrolyte is attracted to and opposed to the water film covering the catalyst, and a hydrophilic region is formed between the electrolyte and the catalyst. Become. Hereinafter, a structure having a hydrophilic region between the catalyst and the electrolyte in the mixture of the catalyst and the electrolyte may be referred to as a “PFF structure”.
By making the hydrophilic region between the electrolyte and the catalyst continuous (that is, by making the hydrophilic region not patchy), uneven distribution of water in the reaction layer is prevented. Further, even when the fuel cell is operated in a low humidified environment, water is present in this hydrophilic region, so that overdrying can be prevented. Further, in operation in a highly humidified environment, excess water is discharged to the outside (diffusion layer side) through this hydrophilic region, so that flatting can be prevented.
In addition, please refer to patent document 3 and nonpatent literatures 1-3 as literature which discloses the technique relevant to this invention.

特開2006−140061号公報JP 2006-140061 A 特開2006−140062号公報JP 2006-140062 JP 特開2009−104905号公報JP 2009-104905 A

Journal of Electrochemical Society 2005, vol.152,No.5,PP.A970-A977 MAKHARIA Rohit ; MATHIAS Mark F. ; BAKER Daniel R. “Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemicalimpedance spectroscopy”Journal of Electrochemical Society 2005, vol.152, No.5, PP.A970-A977 MAKHARIA Rohit; MATHIAS Mark F.; BAKER Daniel R. “Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemicalimpedance spectroscopy” Journal of Electroanalytical Chemistry 475, 107-123(1999) M.Eikerling and A.A.kornyshev “electrochemical impedance of Cathode Catalyst Layer of Polymer Electrolyte Fuel Cells”Journal of Electroanalytical Chemistry 475, 107-123 (1999) M.Eikerling and A.A.kornyshev “electrochemical impedance of Cathode Catalyst Layer of Polymer Electrolyte Fuel Cells” 「電気化学インピーダンス法」(丸善 板垣 昌幸) 8 分布定数型等価回路を用いた電気化学インピーダンス解析(pp133〜146)"Electrochemical Impedance Method" (Maruzen, Masayuki Itagaki) 8 Electrochemical Impedance Analysis Using Distributed Constant Type Equivalent Circuit (pp133-146) J. Power Sources, Vol.138, No 1/2 216(2004)J. Power Sources, Vol.138, No 1/2 216 (2004)

PFF構造に限らず、プロトンの伝導性を確保するには水のパスが形成されていなければならない。反応層を構成する物質において本質的に親水性であるのは、電解質の親水基(例えばスルホン基)であり、反応層において水のパスを形成するにはこの親水基が凝集し、かつその凝集体が連続していることが必要である。
なお、既述のPFF構造は触媒の表面に親水基の凝集体を集め、当該触媒表面に水のパスを形成したものである。
例えば、親水基が分散していると、当該親水基に吸着された水が相互に離隔して水のパスが形成されない。よって、外部から供給されるプロトンを受け渡しすることができない。また、過剰な生成水を排水する観点からも好ましくない。
このように、燃料電池の反応層の特性を知る上で、電解質の親水基の分布状態を把握することは重要である。しかしながら、従来技術において、これを把握する方法は何ら提供されていない。
Not only the PFF structure but also a water path must be formed to ensure proton conductivity. It is the hydrophilic group (for example, sulfone group) of the electrolyte that is essentially hydrophilic in the material constituting the reaction layer, and this hydrophilic group aggregates and forms the aggregate in order to form a water path in the reaction layer. The collection must be continuous.
The PFF structure described above is one in which aggregates of hydrophilic groups are collected on the surface of the catalyst and a water path is formed on the surface of the catalyst.
For example, when hydrophilic groups are dispersed, water adsorbed on the hydrophilic groups is separated from each other, and a water path is not formed. Therefore, protons supplied from outside cannot be delivered. Moreover, it is not preferable also from a viewpoint of draining excess generated water.
Thus, in order to know the characteristics of the reaction layer of the fuel cell, it is important to grasp the distribution state of the hydrophilic group of the electrolyte. However, the conventional technology does not provide any method for grasping this.

本発明者は反応層中の電解質の親水基の分布状態について検討を重ね、電解質の親水基に官能基を親和させ、この官能基を金属イオンで染色することにより親水基の分布状態を顕微鏡で観察可能であることに気づき、特願2010−195090に記載の発明を完成するに至った。
即ち、燃料電池の反応層を構成する電解質の親水基に官能基を親和させるステップと、
前記官能基と錯体を形成可能な金属イオンを前記反応層へ導入し、該金属イオンにより前記官能基を染色するステップと、を含むことを特徴とする燃料電池反応層の観察方法。
かかる観察方法によれば、電解質の親水基が、官能基を介しての間接的にではあるが、金属イオンで染色されるので、当該親水基の分布状態を顕微鏡により目視観察可能となる。
The present inventor has repeatedly investigated the distribution state of hydrophilic groups of the electrolyte in the reaction layer, and made the functional group affinity to the hydrophilic group of the electrolyte, and stained the functional group with a metal ion to observe the distribution state of the hydrophilic group with a microscope. It was noticed that it was observable, and the invention described in Japanese Patent Application No. 2010-195090 was completed.
That is, the step of making the functional group affinitize with the hydrophilic group of the electrolyte constituting the reaction layer of the fuel cell;
Introducing a metal ion capable of forming a complex with the functional group into the reaction layer, and staining the functional group with the metal ion.
According to such an observation method, since the hydrophilic group of the electrolyte is dyed with the metal ion indirectly through the functional group, the distribution state of the hydrophilic group can be visually observed with a microscope.

燃料電池の反応層に用いられる電解質は高分子化合物からなり、例えばナフィオン(デュポン社商標名、以下同じ)等のフッ素系ポリマーが一般的に用いられる。この高分子化合物は、図1に示すように、疎水性の主鎖100と親水性のイオン交換基を持つ側鎖101を有する。親水性のイオン交換基は、例えばスルホン基(SO -)からなる。
かかる電解質は溶媒に溶解される。この溶媒は水と有機溶剤との混合物からなる。電解質溶液は触媒と混合され触媒ペーストとなる。
電解質溶液において電解質と水分量との間には次の関係がある。
電解質溶液中の水分の濃度を低減させると、電解質溶液における電解質の濃度が同じ場合においても電解質溶液の粘度が高くなり、逆に水分の濃度を高くすると電解質溶液の粘度が低くなる。この理由は次のように推定される。
即ち、電解質溶液の水分の濃度が高い場合、図1(A)に示す通り、電解質82の側鎖101に水が吸着し電解質溶液中で電解質82の固形分が凝集した状態となり、電解質溶液の粘度が低下する。また、電解質溶液の水分濃度がやや低くなれば、電解質溶液に含有されている有機溶媒の作用によって、図1の(B)に示すように、電解質溶液中で電解質82の固形分が開き、相互に絡むため電解質溶液の粘度が上昇する。
The electrolyte used for the reaction layer of the fuel cell is made of a polymer compound, and for example, a fluorine-based polymer such as Nafion (trade name of DuPont, the same applies hereinafter) is generally used. As shown in FIG. 1, the polymer compound has a hydrophobic main chain 100 and a side chain 101 having a hydrophilic ion exchange group. The hydrophilic ion exchange group is composed of, for example, a sulfone group (SO 3 ).
Such an electrolyte is dissolved in a solvent. This solvent consists of a mixture of water and an organic solvent. The electrolyte solution is mixed with a catalyst to form a catalyst paste.
There is the following relationship between the electrolyte and the amount of water in the electrolyte solution.
When the concentration of water in the electrolyte solution is reduced, the viscosity of the electrolyte solution increases even when the concentration of the electrolyte in the electrolyte solution is the same. Conversely, when the concentration of water is increased, the viscosity of the electrolyte solution decreases. The reason for this is estimated as follows.
That is, when the concentration of water in the electrolyte solution is high, as shown in FIG. 1A, water is adsorbed on the side chain 101 of the electrolyte 82 and the solid content of the electrolyte 82 is aggregated in the electrolyte solution. Viscosity decreases. Further, when the water concentration of the electrolyte solution is slightly lowered, the solid content of the electrolyte 82 is opened in the electrolyte solution by the action of the organic solvent contained in the electrolyte solution, as shown in FIG. As a result, the viscosity of the electrolyte solution increases.

凝集が進行した電解質82(図1A)の固形分を含む電解質溶液を混合して反応層を形成した場合、この反応層では、図2に示すような状態となっていると考えられる。すなわち、電解質82の固形分が凝集していることから、側鎖101が多方向に向かって延びることとなる。そして、この側鎖101と反応層中の水とが吸着することにより、反応層中で親水性の領域83が分散して形成されることとなる。このため、この反応層において電解質82の固形分が凝集している箇所では、反応層中のイオン抵抗により、プロトン及び水が反応層内を移動し難い。このため、低加湿状態では、電解質膜及び各触媒層中の電解質82の乾燥による性能低下を引き起こし、過加湿状態では、フラッディングによる性能低下が生じる要因となる。
換言すれば、電解質の親水基(側鎖101)を触媒へ対向させて両者の間に親水性の領域を確実に形成するためには、電解質溶液中において電解質は図1(B)の状態にすることが好ましい。そのためには、既述のとおり、電解質溶液に含まれる水分量を電解質溶液の10重量%以下とする。
When the reaction solution is formed by mixing the electrolyte solution containing the solid content of the electrolyte 82 (FIG. 1A) in which the aggregation has progressed, it is considered that the reaction layer is in a state as shown in FIG. That is, since the solid content of the electrolyte 82 is aggregated, the side chain 101 extends in multiple directions. Then, the side chains 101 and the water in the reaction layer are adsorbed, so that hydrophilic regions 83 are dispersed and formed in the reaction layer. For this reason, in the reaction layer where the solid content of the electrolyte 82 is aggregated, protons and water hardly move in the reaction layer due to ionic resistance in the reaction layer. For this reason, in a low humidification state, the performance degradation by drying of the electrolyte membrane and the electrolyte 82 in each catalyst layer is caused, and in the excessive humidification state, a performance degradation by flooding is caused.
In other words, in order to make the hydrophilic region (side chain 101) of the electrolyte face the catalyst and to reliably form a hydrophilic region between the two, the electrolyte is in the state of FIG. It is preferable to do. For this purpose, as described above, the amount of water contained in the electrolyte solution is set to 10% by weight or less of the electrolyte solution.

図1(B)の状態の電解質を用いたときのカソード触媒層は図3の状態になると考えられる。
電解質82の側鎖101は、一方向に延びた状態にあり、このため、触媒ペースト、すなわち燃料電池用反応層では、親水性のイオン交換基(スルホン基)がプレペースト中の水を吸着することとなる。このため、図3に示すように、この反応層では、触媒81の表面に電解質82の親水基101が対向した状態となり、電解質82と触媒81との間に親水性の領域83が形成される。そして、上記のようにスルホン基がプレペースト中の水と吸着することで、触媒81周りに親水領域83が連続して形成され、かつ互いに連通した状態で形成されると考えられる。このため、この触媒ペーストを用いた反応層では、図3に示すように、プロトン及び水が移動し易く、電気化学的反応が円滑に進行される。かかる反応層を有する燃料電池は低加湿状態及び過加湿状態のいずれであっても、発電能力を高くすること可能となる。
詳細は特願2010−002362号を参照されたい。
The cathode catalyst layer when the electrolyte in the state of FIG. 1B is used is considered to be in the state of FIG.
The side chain 101 of the electrolyte 82 extends in one direction. Therefore, in the catalyst paste, that is, the fuel cell reaction layer, hydrophilic ion exchange groups (sulfone groups) adsorb water in the pre-paste. It will be. For this reason, as shown in FIG. 3, in this reaction layer, the hydrophilic group 101 of the electrolyte 82 faces the surface of the catalyst 81, and a hydrophilic region 83 is formed between the electrolyte 82 and the catalyst 81. . Then, it is considered that the hydrophilic region 83 is continuously formed around the catalyst 81 and is in a state of communicating with each other as the sulfone group adsorbs with the water in the pre-paste as described above. For this reason, in the reaction layer using this catalyst paste, as shown in FIG. 3, protons and water easily move, and the electrochemical reaction proceeds smoothly. A fuel cell having such a reaction layer can have a high power generation capacity regardless of whether it is in a low humidified state or an excessively humidified state.
For details, refer to Japanese Patent Application No. 2010-002362.

電解質の親水基に親和する官能基として、先の出願(特願2010−195090)では硝酸基、アミノ基、スルホン酸基、水酸基及びハロゲン基から選ばれる少なくとも1種を例示している。電解質の親水基がスルホン基の場合、好ましい官能基は硝酸基、アミノ基若しくはスルホン酸基であり、更に好ましくは硝酸基である。
電解質の親水基の状態を観察する目的は、燃料電池の特性を把握し、向上させるためである。従って、電解質の親水基へ官能基を親和させる際に、燃料電池の特性にできる限り影響が出ないようにすることが好ましい。換言すれば、燃料電池の反応層を観察する際には、その使用状態から大きな環境変化を与えないことが好ましい。
As the functional group having an affinity for the hydrophilic group of the electrolyte, the previous application (Japanese Patent Application No. 2010-195090) exemplifies at least one selected from a nitrate group, an amino group, a sulfonic acid group, a hydroxyl group and a halogen group. When the hydrophilic group of the electrolyte is a sulfone group, the preferred functional group is a nitrate group, an amino group or a sulfonic acid group, and more preferably a nitrate group.
The purpose of observing the state of the hydrophilic group of the electrolyte is to grasp and improve the characteristics of the fuel cell. Therefore, it is preferable that the characteristics of the fuel cell are not affected as much as possible when the functional group is made to affinity for the hydrophilic group of the electrolyte. In other words, when observing the reaction layer of the fuel cell, it is preferable not to give a large environmental change from the usage state.

本発明者は上記課題を解決すべく鋭意検討を重ねてきた結果、気相環境において官能基を反応層の電解質へ親和できれば、当該反応層に大きなストレスを与えず、即ち燃料電池における使用時の状態を維持して反応層を観察できるのではないかと考えた。そして、含水状態の反応層へNOxガスを供給するとこのNOxガスが水に溶解して硝酸イオンとなることに着目し、この発明に想到した。
即ち、この発明の第1の局面は次のように規定される。
燃料電池の反応層を構成する電解質の親水基に硝酸基を親和させるステップと、
前記官能基と錯体を形成可能な金属イオンを前記反応層へ導入し、該金属イオンにより前記官能基を染色するステップと、を含む燃料電池反応層の観察方法において、前記硝酸基を親和させるステップは、含水状態の前記反応層へNOxガスを接触させる、ことを特徴とする燃料電池反応層の観察方法。
As a result of intensive studies to solve the above problems, the present inventor does not give a large stress to the reaction layer if the functional group can be compatible with the electrolyte of the reaction layer in a gas phase environment, that is, when used in a fuel cell. We thought that the reaction layer could be observed while maintaining the state. Then, when NOx gas is supplied to the reaction layer in a water-containing state, the present invention is conceived by focusing on the fact that this NOx gas dissolves in water and becomes nitrate ions.
That is, the first aspect of the present invention is defined as follows.
A step of making a nitrate group affinity with a hydrophilic group of an electrolyte constituting a reaction layer of a fuel cell;
Introducing a metal ion capable of forming a complex with the functional group into the reaction layer, and dyeing the functional group with the metal ion. Is a method for observing a fuel cell reaction layer, characterized in that NOx gas is brought into contact with the reaction layer in a water-containing state.

このように規定される第1の局面の観察方法によれば、NOxガスを接触させるという気相環境において反応層の電解質へ官能基である硝酸基を親和させることができる。従って、使用時の状態を維持して、若しくは使用時からの環境変化を小さくした状態で反応層における電解質の染色が可能となる。
反応層に対するNOxガスの供給方法は特に限定されるものではないが、空気や窒素ガス等の不活性ガスをキャリアガスとして用いることが好ましい。キャリアガスに対するNOxガスの混合量は、反応層の湿潤条件、環境温度、キャリアガスの流量等に応じて任意に設定可能である。例えば空気をキャリアガスとしたときは、NOxガスの混合量は 5 〜 100ppmとすることが好ましい。
According to the observation method of the first aspect thus defined, nitrate groups as functional groups can be made to affinity for the electrolyte of the reaction layer in a gas phase environment in which NOx gas is brought into contact. Therefore, it is possible to dye the electrolyte in the reaction layer while maintaining the state at the time of use or reducing the environmental change from the time of use.
The method for supplying NOx gas to the reaction layer is not particularly limited, but it is preferable to use an inert gas such as air or nitrogen gas as the carrier gas. The amount of NOx gas mixed with the carrier gas can be arbitrarily set according to the wet conditions of the reaction layer, the environmental temperature, the flow rate of the carrier gas, and the like. For example, when air is used as the carrier gas, the amount of NOx gas mixed is preferably 5 to 100 ppm.

電解質の親水基に硝酸基を親和させた後、硝酸基と錯体を形成可能な金属イオンを反応層へ導入する。具体的にはルテニウムイオン、オスミウムイオンを用いることができ、それぞれニトロシル錯体を形成する。
金属イオンの導入方法は特に限定されるものではないが、当該金属イオンの水溶液へ反応層を浸漬する方法を採用できる。
他の官能基の場合もそれぞれ適切な金属イオンを採用する。
金属イオンの導入量はその当量を、反応層に含まれる電解質の硝酸基の当量以上とする。
After making the nitrate group affinity with the hydrophilic group of the electrolyte, a metal ion capable of forming a complex with the nitrate group is introduced into the reaction layer. Specifically, ruthenium ions and osmium ions can be used, each forming a nitrosyl complex.
The method for introducing metal ions is not particularly limited, but a method of immersing the reaction layer in an aqueous solution of the metal ions can be employed.
In the case of other functional groups, an appropriate metal ion is adopted.
The amount of metal ions introduced is equal to or greater than the equivalent of the nitrate group of the electrolyte contained in the reaction layer.

図1は電解質溶液中の電解質の形態を示す模式図である。FIG. 1 is a schematic diagram showing the form of the electrolyte in the electrolyte solution. 図2は図1(A)に対応したPFF構造を説明する模式図である。FIG. 2 is a schematic diagram for explaining a PFF structure corresponding to FIG. 図3は図1(B)に対応したPFF構造を説明する模式図である。FIG. 3 is a schematic diagram for explaining the PFF structure corresponding to FIG. 図4はMEA評価装置の模式図である。FIG. 4 is a schematic diagram of the MEA evaluation apparatus. 図5は反応層における硝酸基の分布モデルと、その硝酸基のルテニウムイオンによる染色を示す模式図である。FIG. 5 is a schematic diagram showing a distribution model of nitrate groups in the reaction layer and staining of the nitrate groups with ruthenium ions.

原料触媒としてカーボン担持触媒1gを準備する。この原料触媒はカーボンブラック粒子を担体として、これに触媒白金粒子を周知の方法で担持させたものである(白金担持量:50%)。
次に、この触媒を粉砕する。粉砕した触媒を水100mLとともに容器へ投入し、ハイブリッドミキサー(キーエンス社製、型番HM−500)を用いて脱泡処理を行う。脱泡処理の時間は4分とする。
脱泡処理を行なった後、一晩放置し、上澄み液を捨て、電解質(ナフィオンの5%水溶液)を10g添加し、撹拌(ハイブリッドミキサーにより遠心撹拌(4分))する。
1 g of carbon supported catalyst is prepared as a raw material catalyst. This raw material catalyst has carbon black particles as a carrier and catalyst platinum particles supported thereon by a well-known method (platinum supported amount: 50%).
Next, the catalyst is pulverized. The pulverized catalyst is put into a container together with 100 mL of water, and defoamed using a hybrid mixer (manufactured by Keyence Corporation, model number HM-500). The defoaming time is 4 minutes.
After the defoaming treatment, the mixture is allowed to stand overnight, the supernatant is discarded, 10 g of electrolyte (5% aqueous solution of Nafion) is added, and the mixture is stirred (centrifugation with a hybrid mixer (4 minutes)).

このようにして得られたペーストを水素極側、酸素極側のそれぞれの拡散層へ塗布し、乾燥して反応層とする。この反応層を固体高分子電解質膜へホットプレスにより張り合わせる。
このようにして得られた反応層はPFF構造をとる。
電解質層と触媒との間に形成される親水性領域がPFF構造の本体であるが、電解質層中にも触媒側に配向しきれなかったスルホン基が固まって、クラスターを形成していると考えられる。
The paste thus obtained is applied to each diffusion layer on the hydrogen electrode side and oxygen electrode side, and dried to form a reaction layer. This reaction layer is bonded to the solid polymer electrolyte membrane by hot pressing.
The reaction layer thus obtained has a PFF structure.
The hydrophilic region formed between the electrolyte layer and the catalyst is the main body of the PFF structure, but the sulfone groups that could not be fully oriented to the catalyst side in the electrolyte layer are solidified to form clusters. It is done.

このようにして得られる膜電極接合体(MEA)を、図4に示す標準的なMEA評価装置に組み込み、燃料電池反応を実行する。
なお、図4において、符号201はMEA、203は空気極側の拡散層、205は水素極側の拡散層、211、213は支持プレートである。
燃料電池反応は高加湿条件として、MEAの反応層の電解質中に生成水が十分に含まれている状態とする。
その後、高加湿条件の燃料電池反応の実行を維持しつつ、空気極側へ供給される空気に二酸化窒素(NO2)を 5〜 100ppmの濃度で1〜24時間導入する。
これにより、反応層の電解質の親水基へ硝酸基が親和する。この現象につき、非特許文献4を参照されたい。
燃料電池反応を実行することにより、生成水の生成及び移動が行われるので、硝酸基が反応層全体に拡散する。
The membrane electrode assembly (MEA) thus obtained is incorporated into a standard MEA evaluation apparatus shown in FIG. 4, and a fuel cell reaction is performed.
In FIG. 4, reference numeral 201 denotes an MEA, 203 denotes an air electrode side diffusion layer, 205 denotes a hydrogen electrode side diffusion layer, and 211 and 213 denote support plates.
The fuel cell reaction is performed under high humidification conditions in which the produced water is sufficiently contained in the electrolyte of the MEA reaction layer.
Thereafter, nitrogen dioxide (NO2) is introduced into the air supplied to the air electrode side at a concentration of 5 to 100 ppm for 1 to 24 hours while maintaining the execution of the fuel cell reaction under high humidification conditions.
Thereby, the nitrate group has an affinity for the hydrophilic group of the electrolyte in the reaction layer. Refer to Non-Patent Document 4 for this phenomenon.
By performing the fuel cell reaction, the generated water is generated and moved, so that nitrate groups diffuse throughout the reaction layer.

上記の実施の形態では、未使用のMEAを燃料電池評価装置に組み込み、燃料電池反応を実行した後、燃料電池反応を維持した状態でそのとき供給される空気へNOxガスを混入し、もってNOxガスを反応層へ接触させる。
また、燃料電池反応の停止した状態でNOxガスを反応層へ接触させることもできる。
In the above embodiment, unused MEA is incorporated into the fuel cell evaluation apparatus, and after the fuel cell reaction is performed, NOx gas is mixed into the air supplied at that time while maintaining the fuel cell reaction, and thus NOx Gas is brought into contact with the reaction layer.
Further, NOx gas can be brought into contact with the reaction layer while the fuel cell reaction is stopped.

次に、膜電極接合体から反応層を切り出して、酸化ルテニウム溶液へ浸漬し若しくは四酸化ルテニウムガスと接触させて、図5に示すように、親水基に親和している硝酸基(硝酸イオン)をルテニウムで染色する。
このとき、親水基であるスルホン基が凝集していると(PFF構造やクラスター等)、硝酸基も凝集する。従って、ルテニウムイオンで染色された硝酸基を顕微鏡(電子顕微鏡)で観察可能となる。
Next, the reaction layer is cut out from the membrane electrode assembly and immersed in a ruthenium oxide solution or brought into contact with a ruthenium tetroxide gas, as shown in FIG. 5, nitrate groups (nitrate ions) having affinity for hydrophilic groups. Is dyed with ruthenium.
At this time, if the sulfone group which is a hydrophilic group is aggregated (PFF structure, cluster, etc.), the nitrate group is also aggregated. Accordingly, the nitrate group stained with ruthenium ions can be observed with a microscope (electron microscope).

本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

81 触媒
81a 担体
81b 白金触媒微粒子
82 電解質
83 親水性領域
81 catalyst 81a carrier 81b platinum catalyst fine particle 82 electrolyte 83 hydrophilic region

Claims (4)

燃料電池の反応層を構成する電解質の親水基に官能基を親和させるステップと、
前記官能基と錯体を形成可能な金属イオンを前記反応層に導入し、該金属イオンにより前記官能基を染色するステップと、
を含む燃料電池反応層の観察方法において、
前記親水基に前記官能基を親和させるステップは、前記反応層を含水させ、該水にNOxを付加させて硝酸基を親和させることを特徴とする燃料電池反応層の観察方法。
A step of making the functional group affinity with the hydrophilic group of the electrolyte constituting the reaction layer of the fuel cell;
Introducing a metal ion capable of forming a complex with the functional group into the reaction layer, and staining the functional group with the metal ion;
In the method of observing the fuel cell reaction layer containing
The method for observing a fuel cell reaction layer is characterized in that the step of making the functional group affinity to the hydrophilic group comprises adding water to the reaction layer and adding NOx to the water to make the nitrate group affinity.
前記硝酸基を親和させるステップは、前記燃料電池の空気供給系へ空気を供給しつつ、該空気へNOxガスを混入させることにより行う、ことを特徴とする燃料電池反応層の観察方法。   The method for observing a fuel cell reaction layer is characterized in that the step of making the nitric acid group compatible is performed by mixing NOx gas into the air while supplying air to the air supply system of the fuel cell. 前記金属イオンはニトロシル錯体を形成可能な金属イオンである、ことを特徴とする請求項1〜2のいずれかに記載の観察方法。   The observation method according to claim 1, wherein the metal ion is a metal ion capable of forming a nitrosyl complex. 前記金属イオンはルテニウムイオン及び又はオスミウムイオンである、ことを特徴とする請求項3に記載の観察方法。   The observation method according to claim 3, wherein the metal ions are ruthenium ions and / or osmium ions.
JP2012044809A 2012-02-29 2012-02-29 Method of observing reaction layer of fuel battery Pending JP2013182740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044809A JP2013182740A (en) 2012-02-29 2012-02-29 Method of observing reaction layer of fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044809A JP2013182740A (en) 2012-02-29 2012-02-29 Method of observing reaction layer of fuel battery

Publications (1)

Publication Number Publication Date
JP2013182740A true JP2013182740A (en) 2013-09-12

Family

ID=49273276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044809A Pending JP2013182740A (en) 2012-02-29 2012-02-29 Method of observing reaction layer of fuel battery

Country Status (1)

Country Link
JP (1) JP2013182740A (en)

Similar Documents

Publication Publication Date Title
Zhao et al. Experimental observations of microstructure changes in the catalyst layers of proton exchange membrane fuel cells under wet-dry cycles
Kim et al. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure
Berber et al. Remarkably durable high temperature polymer electrolyte fuel cell based on poly (vinylphosphonic acid)-doped polybenzimidazole
Lou et al. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery
Li et al. Durability of PEM fuel cell cathode in the presence of Fe3+ and Al3+
Ohguri et al. Detection of OH radicals as the effect of Pt particles in the membrane of polymer electrolyte fuel cells
US7419732B2 (en) Method for reducing degradation in a fuel cell
US10505197B2 (en) Unitized electrode assembly with high equivalent weight ionomer
JP6571655B2 (en) Method of manufacturing a PBI-based membrane electrode assembly (MEA) with improved fuel cell performance and stability
CN106252670B (en) Roll-to-roll manufacture using the electrode added with crystal seed by nucleocapsid catalyst to high performance fuel cell electrode
Han et al. A modified cathode catalyst layer with optimum electrode exposure for high current density and durable proton exchange membrane fuel cell operation
EP4261955A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2011119208A (en) Catalyst layer for fuel cell and membrane electrode assembly
Liu et al. Recent progress of catalyst ink for roll-to-roll manufacturing paired with slot die coating for proton exchange membrane fuel cells
JP6007389B2 (en) Catalyst production method and catalyst
CN101978536B (en) Membrane electrode assembly and fuel cell
Liu et al. Optimizing proton exchange membrane fuel cell performance at low-humidity via constructing additional anodic water-retaining membrane layer containing sulfonated multi-walled carbon nanotubes
US20190074522A1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
Watanabe et al. The role of carbon blacks as catalyst supports and structural elements in polymer electrolyte fuel cells
Lee et al. Dual exchange membrane fuel cell with sequentially aligned cation and anion exchange membranes for non-humidified operation
JP2013182740A (en) Method of observing reaction layer of fuel battery
JP5644277B2 (en) Method for observing the reaction layer of a fuel cell
Choi et al. Optimization of hydrophobic additives content in microporous layer for air breathing PEMFC
Yang et al. Effect of LiCl content on pore structure of catalyst layer and cell performance in high temperature polymer electrolyte membrane fuel cell
WO2013046380A1 (en) Method for examining reaction layer for fuel cell