JP2013181800A - Particle beam position detector - Google Patents

Particle beam position detector Download PDF

Info

Publication number
JP2013181800A
JP2013181800A JP2012045118A JP2012045118A JP2013181800A JP 2013181800 A JP2013181800 A JP 2013181800A JP 2012045118 A JP2012045118 A JP 2012045118A JP 2012045118 A JP2012045118 A JP 2012045118A JP 2013181800 A JP2013181800 A JP 2013181800A
Authority
JP
Japan
Prior art keywords
electrode
main surface
hole
opening
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012045118A
Other languages
Japanese (ja)
Inventor
Satoshi Kodama
智 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012045118A priority Critical patent/JP2013181800A/en
Publication of JP2013181800A publication Critical patent/JP2013181800A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To inhibit large current from flowing along the surface of a ceramic substrate between an electrode post and an electrode.SOLUTION: A particle beam position detector 10 is a detector including a ceramic substrate 11, a first electrode 12 arranged one principal plane of the ceramic substrate 11, a second electrode 14 arranged on the other principal plane, and a metal post 13 arranged in a through hole 20 arranged in the shape of a matrix and connected to the first electrode 12 to detect the position of a neutron beam made incident on a measuring target space by detecting electric charge made incident on the second electrode 14 and electric charge made incident on the first electrode 12 through the electrode post. The through hole 20 has a first diameter reduction part 21 reducing a diameter from an opening 20β toward an opening 20α at the one principal plane 11α in a partial area including the opening 20β of the other principal plane 11β of the through hole 20, the diameter of a part corresponding to the first diameter reduction part 21 of the electrode post 13 is smaller than the minimum inner diameter of the through hole of the first diameter reduction part 21, and the electrode post 13 and an inner circumferential surface of the through hole 20 are connected in an area other than the first diameter reduction part 21.

Description

本発明は、粒子線位置検出器に関する。   The present invention relates to a particle beam position detector.

測定対象空間内に入射した中性子の位置を高精度に計測するための装置として、近年、Micro PixelGas Chamber(マイクロピクセルガスチャンバー)シ
ステム(以降、MPGCシステムともいう)とよばれる装置が提案されている。下記特許文献1には、このMPGCシステムの一例が開示されている。図4(a)は、従来のMPGCシステムが備える粒子線位置検出器100の概略斜視図、図4(b)は従来のMPGCシステムの概略断面図である。MPGCシステムは、粒子線位置検出器100と、ドリフト電極117と、粒子線位置検出器100に接続された位置検出用信号線122および124と、図示しない位置検出用電子回路とを備えている。
In recent years, a device called a Micro PixelGas Chamber (micro pixel gas chamber) system (hereinafter also referred to as MPGC system) has been proposed as a device for measuring the position of a neutron incident in a measurement target space with high accuracy. . Patent Document 1 below discloses an example of this MPGC system. FIG. 4A is a schematic perspective view of the particle beam position detector 100 provided in the conventional MPGC system, and FIG. 4B is a schematic cross-sectional view of the conventional MPGC system. The MPGC system includes a particle beam position detector 100, a drift electrode 117, position detection signal lines 122 and 124 connected to the particle beam position detector 100, and a position detection electronic circuit (not shown).

粒子線位置検出器100は、絶縁性基板111と、絶縁性基板111の一方主面(図4(a)および(b)中の下側主面)に、第1方向(図4(a)におけるY方向)に沿って互いに隣接して配列された、第1方向と直交する第2方向(図4(a)におけるX方向)に沿って長尺な第1電極112と、絶縁性基板111の他方主面(図中上側の主面)に、第2方向に沿って互いに隣接して配列された、第1方向に沿って長尺な第2電極114と、第1方向および第2方向に沿ったマトリクス状に配列された、絶縁性基板111の一方主面と他方主面それぞれに開口を有する複数の貫通孔111Aと、複数の貫通孔111Aそれぞれに挿通され、貫通孔111Aそれぞれの内周面と接合して貫通孔111A内に固定された電極ポスト113とを備えている。複数の第1電極112それぞれは、第2方向に沿って一列に並んだ複数の貫通孔111Aの一方主面側の開口を閉塞するとともに、閉塞した貫通孔111Aに配置された電極ポスト113の一方主面側の端部と接合されており、複数の第2電極114それぞれは、第1方向に沿って一列に並んだ複数の開口部116を備え、他方主面に垂直な方向から見た際、複数の開口部116それぞれに、第1方向に沿って一列に並んだ複数の電極ポスト113の他方主面側の端部それぞれが配置されている。   The particle beam position detector 100 has a first direction (FIG. 4A) on the insulating substrate 111 and one main surface of the insulating substrate 111 (the lower main surface in FIGS. 4A and 4B). A first electrode 112 elongated along a second direction (X direction in FIG. 4A) orthogonal to the first direction, arranged adjacent to each other along the Y direction in FIG. The second electrodes 114 that are long along the first direction and are arranged adjacent to each other along the second direction on the other main surface (the main surface on the upper side in the figure), and the first direction and the second direction The plurality of through holes 111A having openings on each of the one main surface and the other main surface of the insulating substrate 111 and the plurality of through holes 111A are arranged in a matrix along each of the plurality of through holes 111A. An electrode post 113 bonded to the peripheral surface and fixed in the through hole 111A. Eteiru. Each of the plurality of first electrodes 112 closes one main surface side opening of the plurality of through-holes 111A arranged in a line along the second direction, and one of the electrode posts 113 arranged in the closed through-hole 111A. When joined to the end on the main surface side, each of the plurality of second electrodes 114 includes a plurality of openings 116 arranged in a line along the first direction, and when viewed from the direction perpendicular to the other main surface Each of the plurality of openings 116 has an end portion on the other main surface side of the plurality of electrode posts 113 arranged in a line along the first direction.

絶縁性基板111の他方主面の上方には、他方主面と所定間隔を隔ててドリフト電極117が配置されている。これらドリフト電極117と絶縁性基板111とは、図示しない筐体内に配置され、ドリフト電極117と絶縁性基板111との間は、アルゴンとエタン等からなるガスで満たされた状態となっている。このドリフト電極117と絶縁性基板111との間の空間が、中性子線の入射位置を特定するための測定対象空間となっている。第2電極114とドリフト電極117とは同じ大きさの負電位(例えば−250V)に設定され、第1電極112と電極ポスト113とは正電位(例えば+250V)に設定される。複数の第1電極112と複数の第2電極114とは、それぞれ個別の信号線122および124と接合され、信号線122および124は、図示しない電子回路と接続されている。   Above the other main surface of the insulating substrate 111, a drift electrode 117 is disposed at a predetermined interval from the other main surface. The drift electrode 117 and the insulating substrate 111 are disposed in a housing (not shown), and the space between the drift electrode 117 and the insulating substrate 111 is filled with a gas composed of argon, ethane, or the like. A space between the drift electrode 117 and the insulating substrate 111 is a measurement target space for specifying the incident position of the neutron beam. The second electrode 114 and the drift electrode 117 are set to the same negative potential (for example, −250 V), and the first electrode 112 and the electrode post 113 are set to the positive potential (for example, +250 V). The plurality of first electrodes 112 and the plurality of second electrodes 114 are respectively joined to individual signal lines 122 and 124, and the signal lines 122 and 124 are connected to an electronic circuit (not shown).

図4(b)にはMPGCシステムの動作状態についても示している。ドリフト電極117と絶縁性基板111との間の測定対象空間に中性子が入射した場合、この中性子がガス分子と衝突することで、ガス分子から電子130が電離する。入射した中性子によりガス中で電離された電子130は、ドリフト電極板117と電極ポスト113との間の電場(ドリフト電場)により、電極ポスト113に向けてドリフトする。電極ポスト113の近傍では、電極ポスト113と、電極ポスト113の端面と近接して配置された、第2電極114との間に、例えば500Vの高電圧が印加された状態となっている。ドリフト電場
によって電極ポスト113の近傍に移動してきた電子130は、この電極ポスト113と第2電極114との間の強力な電場によって加速されてガス分子と衝突し、さらなる電子130がガス分子から電離する、いわゆる雪崩増幅を起こす。電離した電子130は、最終的に電極ポスト113に到達する。この雪崩増幅では、電子に加えてガス分子の陽イオン140も生じ、生じた陽イオン140は周囲の陰極電極(第2電極114)へ速やかに移動していく。このように、測定対象空間における中性子の入射位置では、このガス雪崩増幅に起因して、電極ポスト113と第2電極114との双方に、電気回路上で観測することができる程度の比較的多くの電荷が入射することになる。電極ポスト113と第2電極114とに入射した電荷に応じた電気信号が、信号線122および124を介して上述の図示しない電子回路に送られる。電子回路は、中性子線に起因した電子130および陽イオン140による電荷が入射した電極ポスト113と第2電極114とを特定することで、中性子線の入射位置を検出することができる。
FIG. 4B also shows the operating state of the MPGC system. When neutrons enter the measurement target space between the drift electrode 117 and the insulating substrate 111, the electrons 130 are ionized from the gas molecules by colliding with the gas molecules. The electrons 130 ionized in the gas by the incident neutrons drift toward the electrode post 113 by the electric field (drift electric field) between the drift electrode plate 117 and the electrode post 113. In the vicinity of the electrode post 113, a high voltage of, for example, 500 V is applied between the electrode post 113 and the second electrode 114 disposed in the vicinity of the end face of the electrode post 113. The electrons 130 that have moved to the vicinity of the electrode post 113 by the drift electric field are accelerated by the strong electric field between the electrode post 113 and the second electrode 114 and collide with gas molecules, and further electrons 130 are ionized from the gas molecules. The so-called avalanche amplification occurs. The ionized electrons 130 finally reach the electrode post 113. In this avalanche amplification, positive ions 140 of gas molecules are generated in addition to electrons, and the generated positive ions 140 move quickly to the surrounding cathode electrode (second electrode 114). Thus, at the incident position of neutrons in the measurement target space, due to this gas avalanche amplification, both the electrode post 113 and the second electrode 114 are relatively large so that they can be observed on the electric circuit. Will be incident. An electrical signal corresponding to the charges incident on the electrode post 113 and the second electrode 114 is sent to the above-described electronic circuit (not shown) via the signal lines 122 and 124. The electronic circuit can detect the incident position of the neutron beam by specifying the electrode post 113 and the second electrode 114 on which the charge due to the electrons 130 and the positive ions 140 caused by the neutron beam is incident.

特開2011−247602号公報JP 2011-247602 A

このようなMPGCシステムでは、高いガス増幅率を得るために、例えば50μm以下と小さい間隔の、電極ポスト113と第2電極114との間に、500V程度またはそれ以上の高い電圧をかける必要がある。従来の粒子線位置検出器では、この高電圧によって、絶縁性基板111の表面を介して、電極ポスト113と第2電極114との間に大きな電流が流れ、電流による熱で電極の形状が変化したり、電極自体が断線する等の問題が発生することもあった。また、瞬間的な大電流による熱でスパークした電極の破片が、絶縁性基板111表面の第2電極114に付着するなどして、隣接する2つの第2電極114の間が短絡するなどの問題が生じることがあった。本発明は、かかる問題を解決するためになされたものである。   In such an MPGC system, in order to obtain a high gas amplification factor, it is necessary to apply a high voltage of about 500 V or more between the electrode post 113 and the second electrode 114 with a small interval of, for example, 50 μm or less. . In the conventional particle beam position detector, a large current flows between the electrode post 113 and the second electrode 114 via the surface of the insulating substrate 111 due to the high voltage, and the shape of the electrode changes due to heat generated by the current. Or the electrode itself may be disconnected. In addition, there is a problem that, for example, a piece of electrode sparked by heat due to a momentary large current adheres to the second electrode 114 on the surface of the insulating substrate 111, thereby causing a short circuit between two adjacent second electrodes 114. Sometimes occurred. The present invention has been made to solve such problems.

本発明は、セラミック基板と、前記セラミック基板の一方主面に、第1方向に沿って互いに隣接して配列された、前記第1方向と直交する第2方向に沿って長尺な第1電極と、前記セラミック基板の他方主面に、前記第2方向に沿って互いに隣接して配列された、前記第1方向に沿って長尺な第2電極と、前記第1方向および前記第2方向に沿ったマトリクス状に配列された、前記セラミック基板の前記一方主面と前記他方主面それぞれに開口を有する複数の貫通孔と、複数の前記貫通孔それぞれに挿通され、前記貫通孔それぞれの内周面の一部と接合して前記貫通孔内に固定された電極ポストとを備え、複数の前記第1電極それぞれは、前記第2方向に沿って一列に並んだ複数の前記貫通孔の前記一方主面側の開口を閉塞するとともに、閉塞した前記貫通孔に配置された前記電極ポストの前記一方主面側の端部と接合されており、複数の前記第2電極それぞれは、前記第1方向に沿って一列に並んだ複数の開口部を備え、前記他方主面に垂直な方向から見た際、複数の前記開口部それぞれに、前記第1方向に沿って一列に並んだ複数の前記電極ポストの前記他方主面側の端部それぞれが配置された粒子線位置検出器であって、複数の前記貫通孔それぞれは、前記貫通孔の前記他方主面側の開口を含む一部の領域に、前記他方主面側の開口から前記一方主面側の開口に向かって縮径した第1縮径部を有し、前記電極ポストの前記第1縮径部に対応する部分の直径は、前記第1縮径部における前記貫通孔の最小内径よりも小さく、第1縮径部以外の領域において、前記電極ポストと前記貫通孔の前記内周面とが接合していることを特徴とする粒子線位置検出器を提供する。   The present invention relates to a ceramic substrate and a first electrode elongated along a second direction orthogonal to the first direction, arranged adjacent to each other along the first direction on one main surface of the ceramic substrate. A second electrode elongated along the first direction, arranged adjacent to each other along the second direction on the other main surface of the ceramic substrate, and the first direction and the second direction A plurality of through-holes having openings in each of the one main surface and the other main surface of the ceramic substrate and arranged in a matrix along the plurality of through-holes. An electrode post that is joined to a part of a peripheral surface and fixed in the through-hole, and each of the plurality of first electrodes is formed of the plurality of through-holes arranged in a line along the second direction. Meanwhile, the opening on the main surface side is closed and closed. The plurality of second electrodes are joined to end portions on the one main surface side of the electrode posts disposed in the through holes, and each of the plurality of second electrodes is arranged in a row along the first direction. When viewed from a direction perpendicular to the other main surface, each of the ends on the other main surface side of the plurality of electrode posts arranged in a line along the first direction in each of the plurality of openings. The plurality of through-holes are arranged in a part of the region including the opening on the other main surface side of the through-hole from the opening on the other main surface side. It has a first reduced diameter portion that is reduced in diameter toward the opening on the main surface side, and a diameter of a portion corresponding to the first reduced diameter portion of the electrode post is a minimum of the through hole in the first reduced diameter portion. Smaller than the inner diameter, in the region other than the first reduced diameter portion, the electrode post and the front To provide a particle beam position detector, characterized in that said inner peripheral surface of the through hole are joined.

本発明の粒子線位置検出器によれば、複数の貫通孔それぞれが、貫通孔の他方主面側の開口を含む一部の領域に、他方主面側の開口から一方主面側の開口に向かって縮径した第1縮径部を有し、電極ポストの第1縮径部に対応する部分の直径は、第1縮径部における貫通孔の最小内径よりも小さくされていることで、他方主面側に配置された電極と、この貫通孔に配置された電極ポストとの、セラミック基板の表面に沿った距離(沿面距離)が比較的長くなるので、電極ポストと電極との間で、セラミック基板の表面に沿って大電流が流れることを抑制することができる。   According to the particle beam position detector of the present invention, each of the plurality of through holes is formed in a partial region including the opening on the other main surface side of the through hole, from the opening on the other main surface side to the opening on the one main surface side. The diameter of the portion corresponding to the first reduced diameter portion of the electrode post is made smaller than the minimum inner diameter of the through hole in the first reduced diameter portion. Since the distance (creeping distance) along the surface of the ceramic substrate between the electrode disposed on the other main surface side and the electrode post disposed in the through hole is relatively long, between the electrode post and the electrode It is possible to suppress a large current from flowing along the surface of the ceramic substrate.

(a)は、本発明の粒子線位置検出器の一実施形態の例を示す概略斜視図、(b)は概略上面図である。(A) is a schematic perspective view which shows the example of one Embodiment of the particle beam position detector of this invention, (b) is a schematic top view. 図1に示す粒子線位置検出器を備えて構成されるMPGCシステムの一部を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows a part of MPGC system comprised including the particle beam position detector shown in FIG. 図1と異なる実施形態の粒子線位置検出器を備えて構成されるMPGCシステムの一部を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows a part of MPGC system comprised including the particle beam position detector of embodiment different from FIG. (a)は、従来のMPGCシステムが備える粒子線位置検出器の概略斜視図、(b)は従来のMPGCシステムの概略断面図である。(A) is a schematic perspective view of the particle beam position detector with which the conventional MPGC system is equipped, (b) is a schematic sectional drawing of the conventional MPGC system.

以下、本発明の粒子線位置検出器の一実施形態について説明する。図1(a)は、本発明の粒子線位置検出器の一実施形態の例である粒子線位置検出器10の概略斜視図、図1(b)は粒子線位置検出器10の概略上面図である。図2は、図1に示す粒子線位置検出器10を備えて構成されるMPGCシステム1の一部を拡大して示す概略断面図である。MPGCシステム1は、測定対象空間内に入射した中性子の位置を高精度に計測するための装置である。   Hereinafter, an embodiment of the particle beam position detector of the present invention will be described. FIG. 1A is a schematic perspective view of a particle beam position detector 10 which is an example of an embodiment of the particle beam position detector of the present invention, and FIG. 1B is a schematic top view of the particle beam position detector 10. It is. FIG. 2 is an enlarged schematic cross-sectional view showing a part of the MPGC system 1 configured to include the particle beam position detector 10 shown in FIG. The MPGC system 1 is a device for measuring the position of a neutron incident in a measurement target space with high accuracy.

粒子線位置検出器10は、例えばアルミナ(Al)を主成分とする、厚さ約0.2mm〜0.6mmのセラミック基板11と、セラミック基板11の一方主面11αに、第1方向(図におけるY方向)に沿って互いに隣接して配列された、第1方向と直交する第2方向(図におけるX方向)に沿って長尺な第1電極12と、絶縁性基板の他方主面11βに、第2方向に沿って互いに隣接して配列された、第1方向に沿って長尺な第2電極14と、第1方向および第2方向に沿ったマトリクス状に配列された、複数の貫通孔20とを有する。 The particle beam position detector 10 includes, for example, a ceramic substrate 11 mainly composed of alumina (Al 2 O 3 ) and having a thickness of about 0.2 mm to 0.6 mm, and a first main surface 11α of the ceramic substrate 11. A first electrode 12 elongated along a second direction (X direction in the drawing) perpendicular to the first direction, arranged adjacent to each other along the direction (Y direction in the drawing), and the other of the insulating substrate On the main surface 11β, adjacent to each other along the second direction, the second electrodes 14 elongated along the first direction, and arranged in a matrix along the first direction and the second direction And a plurality of through holes 20.

第1電極12の第2方向に沿った幅、および第2電極14の第1方向に沿った幅は、例えば0.2mm〜0.6mmであり、第1電極12同士の間隔、および第2電極14同士の間隔は、約0.05mm程度である。   The width along the second direction of the first electrode 12 and the width along the first direction of the second electrode 14 are, for example, 0.2 mm to 0.6 mm, and the interval between the first electrodes 12 and the second The distance between the electrodes 14 is about 0.05 mm.

貫通孔20は、一方主面11α側に設けられた開口20αと、他方主面11β側に設けられた開口20βとを備える。開口20αおよび開口20βの直径は、約0.1mm〜0.5mm程度である。   The through hole 20 includes an opening 20α provided on the one main surface 11α side and an opening 20β provided on the other main surface 11β side. The diameters of the opening 20α and the opening 20β are about 0.1 mm to 0.5 mm.

また、複数の貫通孔20それぞれに挿通され、貫通孔20それぞれの内周面の一部と接合して貫通孔20内に固定された電極ポスト13を備えている。電極ポスト13は、セラミック基板11の厚さと同じ高さとし、電極ポスト13の高さは約0.1mm〜0.5mm程度である。   In addition, an electrode post 13 that is inserted into each of the plurality of through holes 20 and joined to a part of the inner peripheral surface of each of the through holes 20 is fixed in the through hole 20. The electrode post 13 has the same height as the thickness of the ceramic substrate 11, and the height of the electrode post 13 is about 0.1 mm to 0.5 mm.

電極ポスト13は、金(Au)または銅(Cu)からなる、貫通孔20内に配置される前に予め成型された金属部材であり、例えばアルミナからなるセラミック基板11に設けられた貫通孔20の内周面と、接合層40(図2参照)を介して接合されている。接合層
40は、例えばAg−Cu−Tiロウ材と、Niメッキ層とを備えてなる、公知のメタライズ技術を用いて形成されたものである。本実施形態において接合層40は、後述する第2縮径部22に対応する領域にのみ形成されている。
The electrode post 13 is a metal member made of gold (Au) or copper (Cu) and formed in advance before being placed in the through hole 20. The through hole 20 provided in the ceramic substrate 11 made of alumina, for example. Are joined to each other through a joining layer 40 (see FIG. 2). The bonding layer 40 is formed using a known metallization technique including, for example, an Ag—Cu—Ti brazing material and a Ni plating layer. In the present embodiment, the bonding layer 40 is formed only in a region corresponding to a second reduced diameter portion 22 described later.

複数の第1電極12それぞれは、第2方向に沿って一列に並んだ複数の貫通孔20の一方主面11α側の開口21αを閉塞するとともに、閉塞した貫通孔20に配置された電極ポスト13の、一方主面11α側の端部13αと接合されている。複数の第2電極14それぞれは、第1方向に沿って一列に並んだ複数の開口部16を備え、他方主面11βに垂直な方向から見た際、複数の開口部16それぞれに、第1方向に沿って一列に並んだ複数の電極ポスト13の他方主面11β側の端部13βそれぞれが配置されている。貫通孔20および開口13は、中心軸を同じとし、貫通孔20の開口20αおよび20βの直径に対し、開口13の直径が約0.01〜0.05mm程度大きくされている。貫通孔20および開口13は、中心軸同士の間隔を約0.3mm〜0.5mmとして、第1方向および第2方向に沿ってマトリクス状に複数配列している。   Each of the plurality of first electrodes 12 closes the opening 21α on the one main surface 11α side of the plurality of through holes 20 arranged in a line along the second direction, and the electrode posts 13 disposed in the closed through holes 20. Are joined to the end 13α on the one main surface 11α side. Each of the plurality of second electrodes 14 includes a plurality of openings 16 arranged in a line along the first direction. When viewed from the direction perpendicular to the other main surface 11β, each of the plurality of openings 16 has a first Each of the end portions 13β on the other main surface 11β side of the plurality of electrode posts 13 arranged in a line along the direction is arranged. The through hole 20 and the opening 13 have the same central axis, and the diameter of the opening 13 is about 0.01 to 0.05 mm larger than the diameters of the openings 20α and 20β of the through hole 20. A plurality of through-holes 20 and openings 13 are arranged in a matrix along the first direction and the second direction with the interval between the central axes being about 0.3 mm to 0.5 mm.

MPGCシステム1では、セラミック基板11の他方主面11βの上方には、他方主面11βと所定間隔を隔ててドリフト電極17が配置されている。これらドリフト電極17と絶縁性基板11とは、図示しない筐体内に配置され、ドリフト電極17と絶縁性基板11との間は、アルゴンとエタン等からなるガスで満たされた状態となっている。このドリフト電極17と絶縁性基板11との間の空間が、中性子線の入射位置を特定するための測定対象空間となっている。貫通孔20および開口13の配列の数は、測定対象空間の大きさに応じて適宜設定すればよい。   In the MPGC system 1, a drift electrode 17 is disposed above the other main surface 11β of the ceramic substrate 11 with a predetermined distance from the other main surface 11β. The drift electrode 17 and the insulating substrate 11 are disposed in a housing (not shown), and the space between the drift electrode 17 and the insulating substrate 11 is filled with a gas composed of argon, ethane, or the like. A space between the drift electrode 17 and the insulating substrate 11 is a measurement target space for specifying the incident position of the neutron beam. What is necessary is just to set suitably the number of the arrangement | sequence of the through-hole 20 and the opening 13 according to the magnitude | size of measurement object space.

第2電極14とドリフト電極17とは同じ大きさの負電位(例えば−250V)に設定され、第1電極12と電極ポスト13とは正電位(例えば+250V)に設定される。複数の第1電極12と複数の第2電極14とは、それぞれ個別の信号線32および34と接合され、信号線32および34は図示しない電子回路と接続なっている。   The second electrode 14 and the drift electrode 17 are set to the same negative potential (for example, −250 V), and the first electrode 12 and the electrode post 13 are set to the positive potential (for example, +250 V). The plurality of first electrodes 12 and the plurality of second electrodes 14 are respectively joined to individual signal lines 32 and 34, and the signal lines 32 and 34 are connected to an electronic circuit (not shown).

ドリフト電極17と絶縁性基板11との間の測定対象空間に中性子が入射した場合、この中性子によってガス分子から電子e(図示せず)が電離する。入射した中性子によりガス中で電離された電子eは、ドリフト電極板17と電極ポスト13との間の電場(ドリフト電場)によって、電極ポスト13に向けてドリフトする。電極ポスト13の近傍では、電極ポスト13と、電極ポスト13の端面と近接して配置された第2電極14との間に、例えば500Vの高電圧が印加された状態とされている。ドリフト電場によって電極ポスト13の近傍に移動してきた電子eには、この電極ポスト13と第2電極114との間の強力な電場によって加速されてさらにガス分子と衝突し、いわゆる雪崩増幅を起こす。この結果、電子に加えてガス分子の陽イオンも生じ、生じた陽イオンは周囲の陰極電極(第2電極14)へ速やかに移動していく。このように、測定対象空間における中性子の入射位置では、この雪崩増幅に起因して、電極ポスト13と第2電極14との双方に、電気回路上で観測することができる程度の比較的多くの電荷が入射することになる。電極ポスト13と第2電極14とに入射した電荷に応じた電気信号は、信号線32および34を介して上述の図示しない電子回路に到達する。この図示しない電子回路が、中性子線に起因した電子eに起因した電荷が入射した電極ポスト13および第2電極14を特定することで、測定対象空間における中性子の入射位置を検出することができる。 When neutrons enter the measurement target space between the drift electrode 17 and the insulating substrate 11, electrons e (not shown) are ionized from the gas molecules by the neutrons. Electrons e ionized in the gas by incident neutrons drift toward the electrode post 13 by an electric field (drift electric field) between the drift electrode plate 17 and the electrode post 13. In the vicinity of the electrode post 13, a high voltage of, for example, 500 V is applied between the electrode post 13 and the second electrode 14 disposed close to the end face of the electrode post 13. Electrons e that have moved to the vicinity of the electrode post 13 by the drift electric field are accelerated by a strong electric field between the electrode post 13 and the second electrode 114 and collide with gas molecules, causing so-called avalanche amplification. . As a result, cations of gas molecules are generated in addition to electrons, and the generated cations move quickly to the surrounding cathode electrode (second electrode 14). Thus, at the neutron incident position in the measurement target space, due to this avalanche amplification, both the electrode post 13 and the second electrode 14 can be observed in a relatively large amount on the electric circuit. Charges are incident. An electrical signal corresponding to the charge incident on the electrode post 13 and the second electrode 14 reaches the above-described electronic circuit (not shown) via the signal lines 32 and 34. This electronic circuit (not shown) can identify the incident position of the neutron in the measurement target space by specifying the electrode post 13 and the second electrode 14 to which the charge caused by the electron e caused by the neutron beam is incident. .

本実施形態の粒子線位置検出器10は、複数の貫通孔20それぞれが、貫通孔20の他方主面11β側の開口20βを含む一部の領域に、他方主面11β側の開口20βから一方主面11α側の開口20βに向かって縮径した第1縮径部21を有している。加えて、電極ポスト13の第1縮径部21に対応する部分の直径は、第1縮径部21における貫通孔20の最小内径よりも小さくなっており、第1縮径部21以外の領域において、電極ポ
スト13と貫通孔20の内周面とが接合している。
In the particle beam position detector 10 of the present embodiment, each of the plurality of through-holes 20 is arranged in a partial region including the opening 20β on the other main surface 11β side of the through-hole 20 from the opening 20β on the other main surface 11β side. It has a first reduced diameter portion 21 that is reduced in diameter toward the opening 20β on the main surface 11α side. In addition, the diameter of the portion corresponding to the first reduced diameter portion 21 of the electrode post 13 is smaller than the minimum inner diameter of the through hole 20 in the first reduced diameter portion 21, and a region other than the first reduced diameter portion 21. , The electrode post 13 and the inner peripheral surface of the through hole 20 are joined.

第1縮径部21は、例えば、セラミック基板11の他方主面11βの側から、セラミック基板11の厚さの中間部分まで延在している。本実施形態では、セラミック基板11の他方主面11βの側から、セラミック基板11の厚さの中間まで第1縮径部21が配置され、セラミック基板11の一方主面11αの側から、セラミック基板11の厚さの中間まで第2縮径部22が配置されている。例えば、セラミック基板11の厚さが約0.1mm〜0.6mmである本実施形態では、第1縮径部21の厚さと第2縮径部22の厚さとが、それぞれ約0.05〜0.3mmとなっている。第1縮径部21における貫通孔20の最小内径の大きさの下限は特に限定されないが、例えば、開口20βの直径に対して約0.01〜0.05mm程度小さい。本実施形態では、この貫通孔20の最小内径の大きさを、約0.1mm〜0.45mm程度の範囲としている。   The first reduced diameter portion 21 extends, for example, from the other main surface 11β side of the ceramic substrate 11 to an intermediate portion of the thickness of the ceramic substrate 11. In the present embodiment, the first reduced diameter portion 21 is arranged from the other main surface 11β side of the ceramic substrate 11 to the middle of the thickness of the ceramic substrate 11, and from the one main surface 11α side of the ceramic substrate 11, the ceramic substrate The second reduced diameter portion 22 is arranged up to the middle of the 11th thickness. For example, in the present embodiment in which the thickness of the ceramic substrate 11 is about 0.1 mm to 0.6 mm, the thickness of the first reduced diameter portion 21 and the thickness of the second reduced diameter portion 22 are about 0.05 to respectively. 0.3 mm. Although the minimum of the magnitude | size of the minimum internal diameter of the through-hole 20 in the 1st reduced diameter part 21 is not specifically limited, For example, it is about 0.01-0.05 mm small with respect to the diameter of opening 20 (beta). In the present embodiment, the size of the minimum inner diameter of the through hole 20 is set to a range of about 0.1 mm to 0.45 mm.

上述の貫通孔20は、一方主面11α側ならびに他方主面11β側のそれぞれの表面において、例えば、開口20αならびに開口20βのセラミック基板11が露出するようにマスキングを施した後、アルミナ微粒子を衝突させることでセラミック基板11の露出部分を削るサンドブラスト工法によって形成すればよい。サンドブラスト工法においては、加工深さが深くなるにつれて加工径が小さくなる傾向があり、一方主面11α側からの加工において第2縮径部22が、また他方主面11β側からの加工において第一縮径部21が形成される。   The through-hole 20 described above is subjected to masking on the respective surfaces on the one main surface 11α side and the other main surface 11β side so that, for example, the opening 20α and the ceramic substrate 11 in the opening 20β are exposed, and then collides with alumina fine particles. Thus, it may be formed by a sandblasting method in which the exposed portion of the ceramic substrate 11 is shaved. In the sandblasting method, the machining diameter tends to decrease as the machining depth increases, and the second diameter-reduced portion 22 is processed in the machining from the main surface 11α side, and the first in the machining from the other main surface 11β side. A reduced diameter portion 21 is formed.

上述のように、複数の第2電極14それぞれは、第1方向に沿って一列に並んだ複数の貫通孔20と重なった複数の開口部16を備え、他方主面11βに垂直な方向から見た際に、複数の開口部16それぞれに、第1方向に沿って一列に並んだ複数の貫通孔20の他方主面側の開口20β、および電極ポスト13の他方主面11β側の端部13βそれぞれが配置されている。第2電極14と電極ポスト13との空間的な最短距離は、図2にAで示す距離となるが、本例では、他方主面11β側の開口20βから一方主面11α側の開口20βに向かって縮径した第1縮径部21を有し、電極ポスト13の第1縮径部21に対応する部分の直径は、よりも小さくなっているとともに、第1縮径部21以外の領域(本実施形態では、後述する第2縮径部22のみ)において、電極ポスト13と貫通孔20の内周面とが接合しているので、セラミック基板11の表面に沿ったいわゆる沿面距離は、図2にBで示す距離となっている。   As described above, each of the plurality of second electrodes 14 includes the plurality of openings 16 that overlap with the plurality of through holes 20 arranged in a line along the first direction, and is viewed from the direction perpendicular to the other main surface 11β. The openings 20β on the other main surface side of the plurality of through-holes 20 arranged in a line along the first direction and the end portions 13β on the other main surface 11β side of the electrode posts 13 in the openings 16 respectively. Each is arranged. The shortest spatial distance between the second electrode 14 and the electrode post 13 is the distance indicated by A in FIG. 2, but in this example, the opening 20β on the other main surface 11β side is changed to the opening 20β on the one main surface 11α side. The diameter of the portion corresponding to the first reduced diameter portion 21 of the electrode post 13 is smaller than the first reduced diameter portion 21, and the region other than the first reduced diameter portion 21. In the present embodiment (only the second reduced diameter portion 22 described later), the electrode post 13 and the inner peripheral surface of the through hole 20 are joined, so the so-called creepage distance along the surface of the ceramic substrate 11 is The distance is indicated by B in FIG.

第1縮径部21は、他方主面20βに垂直な方向の高さが、セラミック基板11の厚さの半分程度とされている。第1縮径部21の高さは、約0.1〜0.3mmである。第2縮径部22の一方主面20αに垂直な方向の高さも、セラミック基板11の厚さの約半分程度とされており、第2縮径部22の高さは、約0.1〜0.3mmである。第1縮径部21における貫通孔20の最小内径は、開口20αの直径よりも0.2〜0.7mm程度小さい。第1縮径部21における最小内径は、開口20αよりも、例えば0.5mm程度小さい。沿面距離Bは、例えば0.1〜0.3mm程度である。   The first reduced diameter portion 21 has a height in the direction perpendicular to the other main surface 20β of about half the thickness of the ceramic substrate 11. The height of the first reduced diameter portion 21 is about 0.1 to 0.3 mm. The height of the second reduced diameter portion 22 in the direction perpendicular to the one main surface 20α is also about half the thickness of the ceramic substrate 11, and the height of the second reduced diameter portion 22 is about 0.1 to 0.1. 0.3 mm. The minimum inner diameter of the through hole 20 in the first reduced diameter portion 21 is smaller by about 0.2 to 0.7 mm than the diameter of the opening 20α. The minimum inner diameter of the first reduced diameter portion 21 is, for example, about 0.5 mm smaller than the opening 20α. The creepage distance B is, for example, about 0.1 to 0.3 mm.

本発明では、セラミック基板11の表面に沿った沿面距離を長くすることで、セラミック基板11の表面に沿った大電流の発生を抑制し、このセラミック基板11の表面に沿った大電流に起因した第2電極14や電極ポスト13の劣化が抑制されている。   In the present invention, by increasing the creepage distance along the surface of the ceramic substrate 11, the generation of a large current along the surface of the ceramic substrate 11 is suppressed, and this is caused by the large current along the surface of the ceramic substrate 11. Deterioration of the second electrode 14 and the electrode post 13 is suppressed.

また、貫通孔20は、貫通孔20の一方主面11α側の開口20αを含む一部の領域に、一方主面11α側の開口20αから他方主面11β側の開口20βに向かって縮径した第2縮径部22を有している。加えて、電極ポスト13は、貫通孔20の一方主面11α側の開口20αの直径よりも小さく、かつ第2縮径部22における最小内径よりも大きな直径部分を備える位置決め用土台部31と、位置決め用土台部31から突出した、第2縮
径部22における最小内径、および第1縮径部21における最小内径よりも小さい直径を有する突出部32とを備えている。粒子線位置検出器10では、位置決め用土台部31の一部が第2縮径部22の内周面と当接するとともに、突出部32が第1縮径部21に配置されている。この状態で、位置決め用土台部31の周面と、第2縮径部22の内周面とが、接合部材40を介して接合されている。
The through hole 20 is reduced in diameter in a part of the through hole 20 including the opening 20α on the one main surface 11α side from the opening 20α on the one main surface 11α side toward the opening 20β on the other main surface 11β side. A second reduced diameter portion 22 is provided. In addition, the electrode post 13 includes a positioning base portion 31 having a diameter portion smaller than the diameter of the opening 20α on the one main surface 11α side of the through hole 20 and larger than the minimum inner diameter of the second reduced diameter portion 22; A protrusion 32 protruding from the positioning base 31 and having a minimum inner diameter in the second reduced diameter portion 22 and a diameter smaller than the minimum inner diameter in the first reduced diameter portion 21 is provided. In the particle beam position detector 10, a part of the positioning base portion 31 is in contact with the inner peripheral surface of the second reduced diameter portion 22, and the protruding portion 32 is disposed on the first reduced diameter portion 21. In this state, the peripheral surface of the positioning base portion 31 and the inner peripheral surface of the second reduced diameter portion 22 are joined via the joining member 40.

第2縮径部22は、一方主面11α側の開口20αから他方主面11β側の開口20βに向かって縮径しており、位置決め用土台部31の外周面の一部がこの第2縮径部22に当接することで、貫通孔20に対する位置決め用土台部31の位置が決められる構成となっている。図2に示す実施例では、位置決め用土台部31の外周面の一部が、貫通孔20の第2縮径部22の一部に対応する形状とされており、この位置決め用土台部31の周面の一部と、第2縮径部22の内面の一部とが当接することで、貫通孔20に対する位置決め用土台部31の位置が決められている。第1縮径部21を設け、電極ポスト13の一部の直径を小さくすると、第1縮径部21の内周面と電極ポスト13とが離れるので、上述の沿面距離が長くなる一方で、第1縮径部21の内周面によって電極ポスト13の位置を規定することができない。しかしながら、第2縮径部22を設けるとともに、電極ポスト13の一部に位置決め用土台部31を設けることで、位置決め用土台部31に対しても比較的大きい径を有する開口20αから、電極ポスト13を貫通孔20内に容易に挿入することができるとともに、第1縮径部21の内周面と電極ポスト13とが離れていながら、貫通孔20に対する電極ポスト13の位置を高精度に規定することができる。位置決め用土台部の断面の直径は0.1〜0.5mmであり、突出部22の直径は、第1縮径部21の最小内径に対し、0.05〜0.2mm程度小さくなっている。   The second reduced diameter portion 22 is reduced in diameter from the opening 20α on the one main surface 11α side toward the opening 20β on the other main surface 11β side, and a part of the outer peripheral surface of the positioning base portion 31 is the second reduced diameter portion. The position of the positioning base portion 31 with respect to the through hole 20 is determined by contacting the diameter portion 22. In the embodiment shown in FIG. 2, a part of the outer peripheral surface of the positioning base portion 31 has a shape corresponding to a part of the second reduced diameter portion 22 of the through hole 20. The position of the positioning base portion 31 with respect to the through hole 20 is determined by a part of the peripheral surface and a part of the inner surface of the second reduced diameter portion 22 abutting each other. When the first reduced diameter portion 21 is provided and the diameter of a part of the electrode post 13 is reduced, the inner peripheral surface of the first reduced diameter portion 21 and the electrode post 13 are separated from each other. The position of the electrode post 13 cannot be defined by the inner peripheral surface of the first reduced diameter portion 21. However, by providing the second diameter-reduced portion 22 and providing the positioning base portion 31 in a part of the electrode post 13, the electrode post can be opened from the opening 20α having a relatively large diameter with respect to the positioning base portion 31. 13 can be easily inserted into the through hole 20, and the position of the electrode post 13 with respect to the through hole 20 is defined with high accuracy while the inner peripheral surface of the first reduced diameter portion 21 and the electrode post 13 are separated. can do. The diameter of the cross section of the positioning base portion is 0.1 to 0.5 mm, and the diameter of the protruding portion 22 is about 0.05 to 0.2 mm smaller than the minimum inner diameter of the first reduced diameter portion 21. .

なお、図2に示す実施例では、位置決め用土台部31の外周面の一部を、貫通孔20の第2縮径部22の一部に対応する形状としたが、図3に示す実施例のように、位置決め用土台部31を、一定の径を有する円柱状としてもよい。この場合も、この一定の径に対応する直径(内周径)となる第2縮径部22の位置に、位置決め用土台部31の上面の周縁線が当接した状態で、貫通孔20内に電極ポスト13が位置決めされて固定される。貫通孔20の形状や、電極ポスト13の形状などは特に限定されない。   In the embodiment shown in FIG. 2, a part of the outer peripheral surface of the positioning base portion 31 has a shape corresponding to a part of the second reduced diameter portion 22 of the through hole 20, but the embodiment shown in FIG. As described above, the positioning base 31 may be formed in a columnar shape having a certain diameter. Also in this case, the inside of the through hole 20 is in a state in which the peripheral line on the upper surface of the positioning base portion 31 is in contact with the position of the second reduced diameter portion 22 having a diameter (inner peripheral diameter) corresponding to this constant diameter. The electrode post 13 is positioned and fixed to the surface. The shape of the through hole 20 and the shape of the electrode post 13 are not particularly limited.

以上、本発明の実施形態について説明したが、本発明は上述の各種実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよいのはもちろんである。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned various embodiment, In the range which does not deviate from the summary of this invention, it is possible to perform various improvements and changes. Of course.

10 粒子線位置検出器
11 セラミック基板
11α 一方主面
11β 他方主面
12 第1電極
13 電極ポスト
14 第2電極
16 開口部
17 ドリフト電極
20 貫通孔
20α、20β 開口
21 第1縮径部
22 第2縮径部
31 位置決め用土台部
40 接合層
10 Particle beam position detector 11 Ceramic substrate 11α One main surface 11β Other main surface 12 First electrode 13 Electrode post 14 Second electrode 16 Opening 17 Drift electrode 20 Through-hole 20α, 20β Opening 21 First reduced diameter portion 22 Second Reduced diameter part 31 Positioning base part 40 Bonding layer

Claims (2)

セラミック基板と、
前記セラミック基板の一方主面に、第1方向に沿って互いに隣接して配列された、前記第1方向と直交する第2方向に沿って長尺な第1電極と、
前記セラミック基板の他方主面に、前記第2方向に沿って互いに隣接して配列された、前記第1方向に沿って長尺な第2電極と、
前記第1方向および前記第2方向に沿ったマトリクス状に配列された、前記セラミック基板の前記一方主面と前記他方主面それぞれに開口を有する複数の貫通孔と、
複数の前記貫通孔それぞれに挿通され、前記貫通孔それぞれの内周面の一部と接合して前記貫通孔内に固定された電極ポストとを備え、
複数の前記第1電極それぞれは、前記第2方向に沿って一列に並んだ複数の前記貫通孔の前記一方主面側の開口を閉塞するとともに、閉塞した前記貫通孔に配置された前記電極ポストの前記一方主面側の端部と接合されており、
複数の前記第2電極それぞれは、前記第1方向に沿って一列に並んだ複数の開口部を備え、
前記他方主面に垂直な方向から見た際、複数の前記開口部それぞれに、前記第1方向に沿って一列に並んだ複数の前記電極ポストの前記他方主面側の端部それぞれが配置された粒子線位置検出器であって、
複数の前記貫通孔それぞれは、前記貫通孔の前記他方主面側の開口を含む一部の領域に、前記他方主面側の開口から前記一方主面側の開口に向かって縮径した第1縮径部を有し、前記電極ポストの前記第1縮径部に対応する部分の直径は、前記第1縮径部における前記貫通孔の最小内径よりも小さく、第1縮径部以外の領域において、前記電極ポストと前記貫通孔の前記内周面とが接合していることを特徴とする粒子線位置検出器。
A ceramic substrate;
A first electrode elongated along a second direction orthogonal to the first direction, arranged adjacent to each other along the first direction on one main surface of the ceramic substrate;
A second electrode elongated along the first direction, arranged adjacent to each other along the second direction on the other main surface of the ceramic substrate;
A plurality of through holes arranged in a matrix along the first direction and the second direction, each having an opening on each of the one main surface and the other main surface of the ceramic substrate;
An electrode post that is inserted into each of the plurality of through holes, joined to a part of the inner peripheral surface of each of the through holes, and fixed in the through hole;
Each of the plurality of first electrodes closes the openings on the one main surface side of the plurality of through holes arranged in a line along the second direction, and the electrode posts disposed in the closed through holes Are joined to the end of the one main surface side of
Each of the plurality of second electrodes includes a plurality of openings arranged in a line along the first direction,
When viewed from a direction perpendicular to the other main surface, each of the plurality of openings is provided with an end on the other main surface side of the plurality of electrode posts arranged in a line along the first direction. A particle beam position detector,
Each of the plurality of through holes has a first diameter that is reduced in diameter from the opening on the other main surface side toward the opening on the one main surface side in a partial region including the opening on the other main surface side of the through hole. A diameter of a portion corresponding to the first reduced diameter portion of the electrode post having a reduced diameter portion is smaller than a minimum inner diameter of the through hole in the first reduced diameter portion, and a region other than the first reduced diameter portion. The particle beam position detector according to claim 1, wherein the electrode post and the inner peripheral surface of the through hole are joined.
前記貫通孔は、前記貫通孔の前記一方主面側の開口を含む一部の領域に、前記一方主面側の開口から前記他方主面側の開口に向かって縮径した第2縮径部を有し、
前記電極ポストは、
前記貫通孔の前記一方主面側の開口の直径よりも小さく、かつ前記第2縮径部における最小内径よりも大きな直径部分を備える位置決め用土台部と、
前記位置決め用土台部から突出した、前記第2縮径部における最小内径、および前記第1縮径部における最小内径よりも小さい直径を有する小径部とを備え、
前記位置決め用土台部の一部が前記第2縮径部の内面と当接するとともに、前記突出部の少なくとも一部が前記第1縮径部に配置された状態で、前記位置決め用土台部の少なくとも一部と前記第2縮径部の内周面の少なくとも一部とが接合されていることを特徴とする請求項1記載の粒子線位置検出器。
The through hole has a second reduced diameter portion that is reduced in diameter from the opening on the one main surface side toward the opening on the other main surface side in a partial region including the opening on the one main surface side of the through hole. Have
The electrode post is
A positioning base portion having a diameter portion smaller than the diameter of the opening on the one main surface side of the through hole and larger than the minimum inner diameter of the second reduced diameter portion;
A minimum diameter portion protruding from the positioning base portion, having a minimum inner diameter in the second reduced diameter portion, and a smaller diameter portion having a diameter smaller than the minimum inner diameter in the first reduced diameter portion,
At least a part of the positioning base part is in contact with an inner surface of the second reduced diameter part, and at least a part of the protruding part is disposed on the first reduced diameter part. The particle beam position detector according to claim 1, wherein a part and at least a part of an inner peripheral surface of the second reduced diameter part are joined.
JP2012045118A 2012-03-01 2012-03-01 Particle beam position detector Pending JP2013181800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045118A JP2013181800A (en) 2012-03-01 2012-03-01 Particle beam position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045118A JP2013181800A (en) 2012-03-01 2012-03-01 Particle beam position detector

Publications (1)

Publication Number Publication Date
JP2013181800A true JP2013181800A (en) 2013-09-12

Family

ID=49272559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045118A Pending JP2013181800A (en) 2012-03-01 2012-03-01 Particle beam position detector

Country Status (1)

Country Link
JP (1) JP2013181800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191108A (en) * 2017-06-08 2017-10-19 大日本印刷株式会社 Radiation detector using gas amplification and method for manufacturing the radiation detector
JP2019148552A (en) * 2018-02-28 2019-09-05 大日本印刷株式会社 Detection element, method for manufacturing the same, and detector
JP2019148553A (en) * 2018-02-28 2019-09-05 大日本印刷株式会社 Detection element, method for manufacturing the same, and detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006047A (en) * 2000-06-27 2002-01-09 Japan Science & Technology Corp Particle beam image detector using gas multiplication by pixel-type electrode
JP2009264997A (en) * 2008-04-28 2009-11-12 Dainippon Printing Co Ltd Radiation detector using gas amplification, and manufacturing method of radiation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006047A (en) * 2000-06-27 2002-01-09 Japan Science & Technology Corp Particle beam image detector using gas multiplication by pixel-type electrode
JP2009264997A (en) * 2008-04-28 2009-11-12 Dainippon Printing Co Ltd Radiation detector using gas amplification, and manufacturing method of radiation detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191108A (en) * 2017-06-08 2017-10-19 大日本印刷株式会社 Radiation detector using gas amplification and method for manufacturing the radiation detector
JP2019148552A (en) * 2018-02-28 2019-09-05 大日本印刷株式会社 Detection element, method for manufacturing the same, and detector
JP2019148553A (en) * 2018-02-28 2019-09-05 大日本印刷株式会社 Detection element, method for manufacturing the same, and detector
WO2019168040A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Detection element, production method for detection element, and detection device
WO2019168016A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Detection element, production method for detection element, and detection device
CN111771143A (en) * 2018-02-28 2020-10-13 大日本印刷株式会社 Detection element, method for manufacturing detection element, and detection device
EP3761066A4 (en) * 2018-02-28 2021-11-10 Dai Nippon Printing Co., Ltd. Detection element, production method for detection element, and detection device
US11181647B2 (en) 2018-02-28 2021-11-23 Dai Nippon Printing Co., Ltd. Detection element, production method for detection element, and detection device
EP4235227A3 (en) * 2018-02-28 2023-10-04 Dai Nippon Printing Co., Ltd. Detection element, production method for detection element, and detection device

Similar Documents

Publication Publication Date Title
JP3354551B2 (en) Particle beam image detector using gas amplification with pixel electrodes
TWI626448B (en) Method for manufacturing probe card guide plate and probe card guide plate
US20080290267A1 (en) MCP unit, MCP detector and time of flight mass spectrometer
US7402799B2 (en) MEMS mass spectrometer
JP5082096B2 (en) Gas radiation detector with pixel electrode structure
JP2014078388A (en) Mcp unit, mcp detector and time-of-flight mass spectrometer
JP5540471B2 (en) Radiation detector using gas amplification
JP2013181800A (en) Particle beam position detector
EP3091563B1 (en) Corona discharge component and method for performing corona discharge
JP2009230999A (en) Time-of-flight mass spectrometer and charged particle detector used for it
JPWO2017038169A1 (en) Ion mobility analyzer
JP2010519687A (en) Mass spectrometer
JP2012013483A (en) Radioactive ray detector using gas amplification and manufacturing method for the same
US10042059B2 (en) Radiation detector using gas amplification, manufacturing method for radiation detector using gas amplification, and method for detecting radiation by radiation detector using gas amplification
US10192715B2 (en) Measurement of the electric current profile of particle clusters in gases and in a vacuum
TWI755544B (en) Multi-column scanning electron microscopy system
JP6623900B2 (en) Detection element and radiation detection device
JP2013239314A (en) Charged particle beam lens
KR101357364B1 (en) Electron multiplying section and photoelectron multiplier having the same
JP6428318B2 (en) Radiation detector using gas amplification
JP5951203B2 (en) Detector
JP6696162B2 (en) Radiation detecting element and radiation detecting apparatus
US20210239857A1 (en) Radiation detection element
JP6977807B2 (en) Radiation detection element
JP6645528B2 (en) Detection element, method for manufacturing detection element, and detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013