JP2013181090A - Magnetic particle-containing composite viscoelastic body, and variable rigidity type dynamic vibration absorber using the viscoelastic body - Google Patents

Magnetic particle-containing composite viscoelastic body, and variable rigidity type dynamic vibration absorber using the viscoelastic body Download PDF

Info

Publication number
JP2013181090A
JP2013181090A JP2012045308A JP2012045308A JP2013181090A JP 2013181090 A JP2013181090 A JP 2013181090A JP 2012045308 A JP2012045308 A JP 2012045308A JP 2012045308 A JP2012045308 A JP 2012045308A JP 2013181090 A JP2013181090 A JP 2013181090A
Authority
JP
Japan
Prior art keywords
magnetic
viscoelastic body
dynamic vibration
vibration absorber
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012045308A
Other languages
Japanese (ja)
Other versions
JP6032727B2 (en
Inventor
Toshihiko Komatsuzaki
俊彦 小松▲崎▼
Yoshio Iwata
佳雄 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2012045308A priority Critical patent/JP6032727B2/en
Publication of JP2013181090A publication Critical patent/JP2013181090A/en
Application granted granted Critical
Publication of JP6032727B2 publication Critical patent/JP6032727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic particle-containing composite viscoelastic body excellent in changeability of viscoelasticity, and also to provide a variable rigidity type dynamic vibration absorber using the viscoelastic body.SOLUTION: A magnetic particle-containing composite viscoelastic body is formed by dispersing a magnetic particle having an average grain size of <50 μm in a viscoelastic material so as to become 20-70 vol% with respect to a composite elastic body, wherein after mixing the magnetic particle with the viscoelastic material, a magnetic flux having the intensity of a magnetic flux density of 50 mT or higher is applied to cure the mixture.

Description

本発明は外部磁場により粘弾性特性が可変する磁性粒子複合粘弾性体及びこの粘弾性体を用いた可変剛性型の動吸振器に関する。   The present invention relates to a magnetic particle composite viscoelastic body whose viscoelastic characteristics are variable by an external magnetic field, and a variable stiffness type dynamic vibration absorber using the viscoelastic body.

構造物の制振対策はパッシブ制振、セミアクティブ制振及びアクティブ制振の3つの方策に分類されている。
パッシブ制振は電力等のエネルギーの入力を一切必要としないものをいう。
セミアクティブ制振は構造物の振動を状態方程式で表したときに係数を動的に変化させるものをいう。
アクティブ制振は構造物の振動を状態方程式で表したときに新たな項を追加するものをいう。
このうち、セミアクティブ制振に分類される制振方法に磁性流体(Magneto Rheological Fluid)が知られている。
磁性流体はオイル等の分散媒中に磁性粒子を分散せるものである。
磁性粒子が凝集しないようにこの磁性粒子の表面を界面活性剤にて特殊処理することが行われているものの、やはり分散媒が流体であることから、磁性粒子が流体中に沈殿したり、二次凝集する問題があり、また所定の形状体に保持する際にその流体のシール性が問題となる。
特許文献1は平均粒子径約400nm以下の磁性粒子を鎖状に繋ぐことで二次凝集を防止した磁性流体を開示するが、分散媒が流体であることから生じる上記問題が充分に解決されたとは言えない。
特許文献2は磁性流体が特定の形状を持たないことを改善し賦形性を有するように、可撓性を有する高分子材料に磁場の作用により磁気分極する粒子を分散させた弾性率可変材料を開示する。
しかし、同公報に開示する弾性率可変材料は、粒径50μm,150μmの大きさの鉄粉を可撓性高分子材料に分散させたものである。
特許文献3は粘弾性材料に非球状の磁性粒子を分散させることで、外部磁場を印加すると弾性率が低く可変する磁気応答性材料を開示する。
しかし、同公報に開示する磁性粒子は針状、柱状、棒状、繊維状、長方形状、ウィスカー状でなければならず、外部磁場により弾性率が低下するものである。
Structural vibration control measures are classified into three measures: passive vibration control, semi-active vibration control and active vibration control.
Passive vibration control means something that does not require any input of energy such as electric power.
Semi-active damping means that the coefficient is dynamically changed when the vibration of a structure is expressed by a state equation.
Active vibration suppression means adding a new term when the vibration of a structure is represented by a state equation.
Among these, magnetic fluid (Magneto Rheological Fluid) is known as a vibration control method classified as semi-active vibration control.
The magnetic fluid disperses magnetic particles in a dispersion medium such as oil.
Although the surface of the magnetic particles is specially treated with a surfactant so that the magnetic particles do not aggregate, the dispersion medium is also a fluid. There is a problem of subsequent aggregation, and the fluid sealability becomes a problem when held in a predetermined shape.
Patent Document 1 discloses a magnetic fluid in which secondary aggregation is prevented by connecting magnetic particles having an average particle diameter of about 400 nm or less in a chain shape. However, the above problem caused by the dispersion medium being a fluid has been sufficiently solved. I can't say that.
Patent Document 2 discloses a variable elastic modulus material in which particles that are magnetically polarized by the action of a magnetic field are dispersed in a flexible polymer material so that the magnetic fluid does not have a specific shape and has formability. Is disclosed.
However, the elastic modulus variable material disclosed in the publication is obtained by dispersing iron powder having a particle size of 50 μm and 150 μm in a flexible polymer material.
Patent Document 3 discloses a magnetically responsive material in which a non-spherical magnetic particle is dispersed in a viscoelastic material so that the elastic modulus is variable when an external magnetic field is applied.
However, the magnetic particles disclosed in the publication must be in the form of needles, columns, rods, fibers, rectangles, or whiskers, and the elastic modulus is reduced by an external magnetic field.

特開2005−41896号公報Japanese Patent Laid-Open No. 2005-41896 特開平4−266970号公報JP-A-4-266970 特開2008−195826号公報JP 2008-195826 A

本発明は、粘弾性特性の可変性に優れる磁性粒子複合粘弾性体の提供を目的とする。
また、本発明は、この磁性粒子複合粘弾性体を用いた可変剛性型の動吸振器の提供を目的とする。
An object of this invention is to provide the magnetic particle composite viscoelastic body which is excellent in the variability of a viscoelastic characteristic.
Another object of the present invention is to provide a variable stiffness type dynamic vibration absorber using the magnetic particle composite viscoelastic body.

本発明に係る磁性粒子複合粘弾性体は、粘弾性材料に平均粒子径が50μm未満の磁性粒子を複合弾性体に対して20〜70体積%になるように分散させたものであって、磁性粒子を粘弾性原材料に混合した後に、磁束密度50mT以上の強さの磁場を印加した状態で硬化させたことを特徴とする。   The magnetic particle composite viscoelastic body according to the present invention is obtained by dispersing magnetic particles having an average particle diameter of less than 50 μm in a viscoelastic material so as to be 20 to 70% by volume with respect to the composite elastic body. After mixing the particles with the viscoelastic raw material, the particles are cured in a state where a magnetic field having a magnetic flux density of 50 mT or more is applied.

ここで粘弾性材料は、熱硬化性エラストマー及び熱可塑性エラストマーの両方を含む。
磁性粒子を分散成形しやすい点からは、エラストマーを成形するための原料組成物が液状であり、磁性粒子を混合後に硬化成形できるものがよく、硬化後はゴム弾性を有するエラストマーがよい。
ゴム弾性を有するものであればゴム材料に特に限定はない。
電気特性、耐熱性、耐塞性、耐候性等に優れている点では、シリコーンゴムが好ましい。
シリコーンゴムには、一液型と二液型を有し、硬化反応が成形体の厚みや形状に関係なく表面及び内部とともに一様に硬化が進む点で二液型シリコーンゴムが好ましい。
また、シリコーンゴムには室温で硬化するRTVゴムを用いることができる。
本発明に係る粘弾性材料にはゲル化したものも含まれる。
Here, the viscoelastic material includes both a thermosetting elastomer and a thermoplastic elastomer.
In view of easy dispersion-molding of the magnetic particles, the raw material composition for molding the elastomer is liquid and can be cured and molded after mixing the magnetic particles, and an elastomer having rubber elasticity is desirable after curing.
The rubber material is not particularly limited as long as it has rubber elasticity.
Silicone rubber is preferable in terms of excellent electrical characteristics, heat resistance, block resistance, weather resistance, and the like.
The silicone rubber is preferably a two-pack type silicone rubber because it has a one-pack type and a two-pack type, and the curing reaction proceeds uniformly with the surface and inside regardless of the thickness and shape of the molded body.
Moreover, RTV rubber which hardens | cures at room temperature can be used for silicone rubber.
The viscoelastic material according to the present invention includes a gelled material.

磁性粒子は磁性を有する物質であれば限定がなく、鉄,窒化鉄,炭化鉄,カルボニル鉄,磁性酸化鉄類,フェライト類,ニッケル,コバルト、又はコバルト鉄の合金類,マグネタイト,ゲーサイト等が例として挙げられる。
本発明で磁性粒子の平均粒子径を50μm未満としたのは、粘弾性材料中に磁性粒子が分散しやすいようにするためである。
よって、磁性粒子は略球形であるのが好ましい。
The magnetic particles are not limited as long as they have magnetic properties, such as iron, iron nitride, iron carbide, carbonyl iron, magnetic iron oxides, ferrites, nickel, cobalt, or cobalt iron alloys, magnetite, goethite, etc. Take as an example.
The reason why the average particle diameter of the magnetic particles is set to be less than 50 μm in the present invention is to facilitate the dispersion of the magnetic particles in the viscoelastic material.
Therefore, the magnetic particles are preferably substantially spherical.

本発明で磁束密度50mT以上の強さの磁場を印加した状態で硬化させたのは、複数の磁性粒子が鎖状にクラスタを形成するようにするためである。   The reason for curing in the present invention in a state where a magnetic field having a magnetic flux density of 50 mT or more is applied is to allow a plurality of magnetic particles to form clusters in a chain shape.

本発明に係る磁性粒子複合粘弾性体(以下必要に応じてMREと称する。)は、外部磁場により見かけ上の剛性が変化することから、この磁性粒子複合体とこれに磁場を印加する磁場発生手段とでセミアクティブ型の制振装置を得ることができる。
この場合に磁性粒子複合粘弾性体と磁場発生手段とで、可動質量体としての機能を付与させることで、可変剛性型の動吸振器を得ることができる。
ここで動吸振器とは、主系構造物において問題となる振動数付近にその固有振動数を調整することで、主系構造物の振動を低減するものである。
本発明に係る磁性粒子複合粘弾性体は、外部磁場により剛性を可変することができるので、主系構造物に非定常外乱や設計範囲から外れた振動数の外乱に対しても外部磁場の強さを可変することで、動吸振器の固有振動数を外乱に対応する方向に調整可能である。
The magnetic particle composite viscoelastic body according to the present invention (hereinafter referred to as MRE as required) changes its apparent rigidity by an external magnetic field, so that the magnetic particle composite and magnetic field generation for applying a magnetic field thereto A semi-active vibration damping device can be obtained with the means.
In this case, a variable stiffness type dynamic vibration absorber can be obtained by providing a function as a movable mass body with the magnetic particle composite viscoelastic body and the magnetic field generating means.
Here, the dynamic vibration absorber is intended to reduce the vibration of the main system structure by adjusting its natural frequency in the vicinity of the problematic frequency in the main system structure.
Since the magnetic particle composite viscoelastic body according to the present invention can vary its rigidity by an external magnetic field, the external magnetic field is strong against unsteady disturbances or disturbances with a frequency outside the design range. By changing the height, the natural frequency of the dynamic vibration absorber can be adjusted in a direction corresponding to the disturbance.

本発明に係る磁性粒子複合粘弾性体は、外部磁場により粘弾性特性が変化し磁束密度50mT以上の強さの磁界内で成形体に硬化させたものは剛性変化が大きい。
このような磁性粒子複合粘弾性体と磁場発生手段を組み合せることで、構造が簡単で信頼性の高い可変剛性型動吸振器を得ることができる。
The magnetic particle composite viscoelastic body according to the present invention has a large change in rigidity when the viscoelastic characteristics are changed by an external magnetic field and the molded body is cured in a magnetic field having a magnetic flux density of 50 mT or more.
By combining such a magnetic particle composite viscoelastic body and a magnetic field generating means, it is possible to obtain a variable rigidity dynamic vibration absorber having a simple structure and high reliability.

MREサンプルの製作方法を示し、(a)は無磁場、(b)は磁場を印加した状態を示す。The manufacturing method of a MRE sample is shown, (a) shows no magnetic field, (b) shows the state which applied the magnetic field. (a)は無磁場の状態で製作したサンプルの断面写真、(b)は磁場を印加した状態で製作したサンプルの断面写真を示す。(A) shows the cross-sectional photograph of the sample manufactured in the state without a magnetic field, (b) shows the cross-sectional photograph of the sample manufactured in the state which applied the magnetic field. 静的試験の評価システムを示す。An evaluation system for static tests is shown. せん断力に対する変位及び剛性変化率を示す。The displacement and stiffness change rate with respect to shear force are shown. サンプルの厚みを変えた場合の剛性変化率を示す。The stiffness change rate when the thickness of the sample is changed is shown. 鉄粉の配合割合を変えた場合の剛性変化率を示す。The rigidity change rate when the blending ratio of iron powder is changed is shown. 動的試験の評価システムを示す。An evaluation system for a dynamic test is shown. 磁場の印加の有無によるばね定数変化を示す。The spring constant change by the presence or absence of the application of a magnetic field is shown. 鉄粉の配合割合を変えた場合のばね定数変化を示す。The spring constant change at the time of changing the mixture ratio of iron powder is shown. 可変剛性制御モデルを示す。A variable stiffness control model is shown. シミュレーションパラメータの設定値を示す。Indicates the setting value of the simulation parameter. シミュレーション結果を示す。The simulation result is shown. セミアクティブ制振評価システムを示す。A semi-active vibration suppression evaluation system is shown. セミアクティブ制振評価結果を示す。The semi-active vibration suppression evaluation results are shown. 1自由度の主振動系及び可変剛性型動吸振器からなる2自由度の振動系の数値モデルを示す。A numerical model of a two-degree-of-freedom vibration system including a one-degree-of-freedom main vibration system and a variable stiffness type dynamic vibration absorber is shown. MREをばね要素として用いた可変剛性型動振器の模式図を示す。The schematic diagram of the variable rigidity type vibration vibrator which used MRE as a spring element is shown. (a)は印加電流に対する動吸振器の固有振動数の変化の測定結果を示し、(b)は減衰比を示す。(A) shows the measurement result of the change of the natural frequency of the dynamic vibration absorber with respect to the applied current, and (b) shows the damping ratio. 各質量比における各パラメータを示す。Each parameter at each mass ratio is shown. 質量比0.3について動吸振器の固有振動数を外乱振動数に同調させた場合の主系の振幅応答を示す。The amplitude response of the main system when the natural frequency of the dynamic vibration absorber is tuned to the disturbance frequency for a mass ratio of 0.3 is shown. 各質量比についての動吸振器の応答比較を示す。The response comparison of the dynamic vibration absorber for each mass ratio is shown. 可変剛性型動吸振器のシステム例を示す。The system example of a variable-rigidity type dynamic vibration absorber is shown.

本発明に係る磁性粒子複合粘弾性体を試作し評価したので以下説明するが、本発明はこれに限定されるものではない。   The magnetic particle composite viscoelastic body according to the present invention was prototyped and evaluated, and will be described below. However, the present invention is not limited to this.

二液型のシリコーンRTVゴムに平均粒子径約10μmの鉄粉を混合し、25mm×25mm×H(10,15,20mm)の内容量を容器に封入し、室温で24時間保持することで硬化した。
得られた磁性粒子複合粘弾性体(MRE)の模式図を図1(b)に示す。
粘弾性材料中に磁性粒子2の分散状態を模式的に示した。
この硬化反応の進行中を図1(a)に示すように磁場を印加しない状態と図1(b)に示すようにコイルを用いて磁場を印加した状態の両方で行った。
図1(a)の状態、即ち無磁場の状態で得られた磁性粒子複合粘弾性体(以下MREと称する)の内部顕微鏡写真を図2(a)に示し、磁界的で硬化させたMREの内部顕微鏡写真を図2(b)に示す。
磁界内で硬化させたものは鉄粉が磁場を印加した方向に鎖状のクラスタを形成していた。
磁場の印加方法として永久磁石で行うと、永久磁石側に磁性粒子が引き寄せられてしまう問題がある。
そこで本実施例に示したようにコイルの内側に成形容器を配置した状態で、磁場を印加し、磁束密度は50mT〜1Tの強さがよい。
また、二液型のシリコーンRTVゴムに鉄粉を混合する手順として、主剤と鉄粉を撹拌混合し、次に硬化剤を加えてさらに混合した後に成形容器に入れ、真空チャンバー等の減圧装置を用いて原料組成物中に混入した気泡の脱泡処理するのが好ましい。
MRE中に気泡が残留すると、剛性可変制御に影響を与えるからである。
Two-part silicone RTV rubber is mixed with iron powder with an average particle size of about 10 μm, and the contents of 25 mm x 25 mm x H (10, 15, 20 mm) are sealed in a container and cured by holding at room temperature for 24 hours. did.
A schematic diagram of the obtained magnetic particle composite viscoelastic body (MRE) is shown in FIG.
The dispersion state of the magnetic particles 2 in the viscoelastic material is schematically shown.
During the progress of this curing reaction, both the state where no magnetic field was applied as shown in FIG. 1A and the state where a magnetic field was applied using a coil as shown in FIG. 1B were performed.
FIG. 2A shows an internal micrograph of a magnetic particle composite viscoelastic body (hereinafter referred to as MRE) obtained in the state of FIG. 1A, that is, in the absence of a magnetic field, and shows a magnetically cured MRE. An internal micrograph is shown in FIG.
What hardened | cured in the magnetic field formed the chain | strand-shaped cluster in the direction where the iron powder applied the magnetic field.
When a permanent magnet is used as a magnetic field application method, there is a problem that magnetic particles are attracted to the permanent magnet side.
Therefore, as shown in the present embodiment, a magnetic field is applied in a state where the forming container is disposed inside the coil, and the magnetic flux density is preferably 50 mT to 1 T.
In addition, as a procedure for mixing iron powder with two-pack type silicone RTV rubber, the main agent and iron powder are stirred and mixed, then added with a curing agent and further mixed, and then placed in a molding container, and a decompression device such as a vacuum chamber is installed. It is preferable to use and defoam the bubbles mixed in the raw material composition.
This is because if bubbles remain in the MRE, the stiffness variable control is affected.

上記の方法で得られたサンプルを評価したので、以下説明する。
<静的試験>
図3に示すような評価システムを用いて、磁場に対するせん断方向の復元力の変化特性を評価した。
印加電流を0〜2.0A変化させた。
なお、この変化は磁束密度で0〜62mTに相当する。
その結果を図4のグラフに示す。
図4(a),(b)は磁場の有無によるせん断方向のウエイトに対する変位をグラフにしたもので、図4(c)に剛性の変化をグラフに示した。
この結果、磁界内で硬化させたものは最大で約3倍に剛性が増加していた。
図5はサンプルの厚みによる変化の調査結果をグラフに示した。
この結果、サンプル厚みの影響は小さいことが明らかになった。
図6は鉄粉の配合割合による影響を調査した結果を示す。
この結果、鉄粉の体積含有率44%(基質:鉄粉=10:8)のサンプルが最も大きい剛性変化を示した。
このグラフから鉄粉の体積含有率は40〜70%の範囲がよいことが分かった。
<動的試験>
図7に示すような評価システムを用いて磁場に対するせん断方向の粘弾性特性変化を評価した。
その結果を図8のグラフに示す。
磁界内で硬化させた磁場ありの場合に無次元ばね定数が約1.5倍変化した。
図9に鉄粉の配合割合による変化を調査した結果のグラフを示す。
この結果、鉄粉体積含有率44%のサンプルが最も大きい剛性変化を示した。
Since the sample obtained by the above method was evaluated, it will be described below.
<Static test>
Using the evaluation system as shown in FIG. 3, the change characteristic of the restoring force in the shear direction with respect to the magnetic field was evaluated.
The applied current was changed from 0 to 2.0 A.
This change corresponds to a magnetic flux density of 0 to 62 mT.
The result is shown in the graph of FIG.
4 (a) and 4 (b) are graphs showing the displacement with respect to the weight in the shearing direction depending on the presence or absence of a magnetic field, and FIG. 4 (c) shows the change in rigidity in a graph.
As a result, the rigidity of the material cured in the magnetic field increased about three times at maximum.
FIG. 5 is a graph showing the results of investigation of changes due to the thickness of the sample.
As a result, it became clear that the influence of the sample thickness was small.
FIG. 6 shows the results of investigating the influence of the mixing ratio of iron powder.
As a result, the sample with a volume content of iron powder of 44% (substrate: iron powder = 10: 8) showed the largest change in rigidity.
From this graph, it was found that the volume content of iron powder should be in the range of 40 to 70%.
<Dynamic test>
A change in viscoelastic properties in the shear direction with respect to the magnetic field was evaluated using an evaluation system as shown in FIG.
The result is shown in the graph of FIG.
The dimensionless spring constant changed about 1.5 times when there was a magnetic field hardened in the magnetic field.
FIG. 9 shows a graph of the results of investigating changes due to the iron powder blending ratio.
As a result, the sample with an iron powder volume content of 44% showed the largest change in rigidity.

上記結果をふまえて、セミアクティブ制振への応用を検討した。
図10に可変剛性制御モデルを示す。
シミュレーションパラメータを図11に示すように設定した結果を図12のグラフに示す。
LowとHighの状態の剛性にon−off可変制御することで、制振作用があることが分かる。
そこで次に図13に示すような評価システムを用いて、制振評価実験を実施した。
ここで変位加振に〜50Hzランダムノイズを入力し、通電offの状態を剛性Low、2.0A通電onの状態を剛性Highとした。
この評価結果を図14のグラフに示す。
これからon/off controlにて制振作用があることが確認できた。
Based on the above results, application to semi-active vibration control was examined.
FIG. 10 shows a variable stiffness control model.
The result of setting the simulation parameters as shown in FIG. 11 is shown in the graph of FIG.
It can be understood that there is a vibration control effect by performing on-off variable control on the rigidity of the Low and High states.
Therefore, a vibration suppression evaluation experiment was performed using an evaluation system as shown in FIG.
Here, ~ 50 Hz random noise was input to the displacement excitation, the state of energization off was defined as rigidity Low, and the state of 2.0 A energization on was defined as rigidity High.
The evaluation results are shown in the graph of FIG.
From this, it was confirmed that there was a vibration control action by on / off control.

次に動吸振器への応用を検討した。
まず初めに、2自由度系の数値計算モデルを構築した。
図15に1自由度の主振動系及び可変剛性型動吸振器から成る2自由度振動系の数値モデルを示す。
動吸振器のばね要素kに関して、後述する実測値に基づき可変性を与える。
ばね定数kを一定とした場合、振動系の運動方程式は図に示す記号を用いて以下のように記述される。
ここで、動吸振器固有振動数の可変範囲を定めるにあたり、質量やばね定数等について個別に数値を与えて検討するよりも、無次元化運動方程式を用いたほうが定性的に理解しやすいため、式(1)を時間及び変位に関して次のように無次元化する。
ただし、式(2)の各パラメータは次の通りである。
Next, the application to the dynamic vibration absorber was examined.
First, a two-degree-of-freedom numerical calculation model was constructed.
FIG. 15 shows a numerical model of a two-degree-of-freedom vibration system including a one-degree-of-freedom main vibration system and a variable stiffness type dynamic vibration absorber.
Regard spring element k 2 of the dynamic vibration reducer, provide a variable resistance based on the measured value to be described later.
When the spring constant k 2 is constant, the equation of motion of the vibration system with the symbol shown in Figure is described as follows.
Here, in defining the variable range of the dynamic vibration absorber natural frequency, it is easier to understand qualitatively using the non-dimensionalized equation of motion than to consider individually giving numerical values for mass, spring constant, etc. Equation (1) is made dimensionless with respect to time and displacement as follows.
However, each parameter of Formula (2) is as follows.

幅広く制振効果を得るための動吸振器の設計方法として、最適同調及び最適減衰条件式はよく知られている。
そこで可変剛性型動吸振器の性能評価の目安として、これらの設計理論に基づく動吸振器の応答を比較対象として利用した。
固有振動数比を定める最適同調条件は、質量比をμとして次のように表される。
また、動吸振器に付与する減衰比ζoptは、最適減衰条件として次のように決定される。
As a method for designing a dynamic vibration absorber to obtain a wide range of vibration damping effects, optimum tuning and optimum damping conditional expressions are well known.
Therefore, the response of the dynamic vibration absorber based on these design theories was used as a comparison object as a guideline for evaluating the performance of the variable stiffness dynamic vibration absorber.
The optimum tuning condition for determining the natural frequency ratio is expressed as follows, where the mass ratio is μ.
Further, the damping ratio ζ opt applied to the dynamic vibration absorber is determined as follows as the optimum damping condition.

次に図16に示すような動吸振器を試作し、評価した。
幅70mm×高さ60mm×奥行20mmのフレーム部には鋼材を利用し、閉磁路を形成した。
また、中央のコイルは磁場を生成するとともに、動吸振器の可動質量(約350g)とした。
コイルの上下には直径20mm、厚さ10mmの本発明に係るMRE2つを配置し、MRE内を磁束が通過することによって、見かけの剛性が変化する。
MREには、平均粒子径約10μmの鉄粉体積割合50%のものを用いた。
可変剛性型動吸振器の基本性能評価として、コイルへの電流印加時における動吸振器の固有振動数及び減衰比の変化を調べた。
図16の動吸振器を土台に剛結合し、コイル部にインパクト力を加えた際の自由振動波形を計測した。
得られた波形の隣り合うピークから周期と振幅比を複数読み取り、固有振動数と減衰比を平均値として求めた。
コイルに印加する電流値は0.5A刻みで0〜4Aとした。
印加電流に対する動吸振器固有振動数及び減衰比の値をプロットしたものを図17に示す。
固有振動数については、無磁場時の15Hzに対して4A印加時に29Hzまで増加しており(約1.9倍)、なおかつ電流にほぼ比例して直線的に変化している。
一方、減衰比については電流に対して増加傾向にあるが、磁場依存性は小さく、ほぼ0.15付近で一定とみなせる。
これらの計測結果を踏まえて、以後の数値的検討においては動吸振器の減衰比に一定値0.15を与え、固有振動数比については基準値の1.9倍まで変化するものとして取り扱うこととした。
Next, a dynamic vibration absorber as shown in FIG. 16 was prototyped and evaluated.
A steel part was used for a frame portion having a width of 70 mm, a height of 60 mm, and a depth of 20 mm to form a closed magnetic circuit.
The central coil generates a magnetic field and has a movable mass (about 350 g) of the dynamic vibration absorber.
Two MREs according to the present invention having a diameter of 20 mm and a thickness of 10 mm are arranged above and below the coil, and the apparent rigidity changes when magnetic flux passes through the MRE.
As the MRE, an iron powder having a mean particle size of about 10 μm and an iron powder volume ratio of 50% was used.
In order to evaluate the basic performance of the variable stiffness type dynamic vibration absorber, changes in the natural frequency and damping ratio of the dynamic vibration absorber when current was applied to the coil were investigated.
The free vibration waveform when the dynamic vibration absorber of FIG. 16 was rigidly coupled to the base and an impact force was applied to the coil portion was measured.
A plurality of periods and amplitude ratios were read from adjacent peaks of the obtained waveform, and the natural frequency and damping ratio were obtained as average values.
The current value applied to the coil was set to 0 to 4 A in 0.5 A steps.
FIG. 17 is a plot of the dynamic vibration absorber natural frequency and the damping ratio with respect to the applied current.
The natural frequency increases to 29 Hz when 4 A is applied to 15 Hz in the absence of a magnetic field (approximately 1.9 times), and changes linearly in proportion to the current.
On the other hand, the damping ratio tends to increase with respect to the current, but the dependence on the magnetic field is small, and can be regarded as being constant at about 0.15.
Based on these measurement results, a constant value of 0.15 is given to the damping ratio of the dynamic vibration absorber in the following numerical studies, and the natural frequency ratio is to be treated as changing up to 1.9 times the reference value. It was.

次に無次元化方程式(2)及び上記計測結果に基づき、可変剛性型動吸振器の制振特性について数値的に検討を行った。
主系と動吸振器との質量比は0.1,0.3及び0.5の3通りに設定した。
各々の質量比について可変剛性範囲に対応する振動数比変域を、最適同調・最適減衰の値と併せて図18の表に示す。
可変範囲は可変倍率1.9倍を踏まえつつ、動吸振器質量を主系に固定した場合の振動数比が変域の中央になるように定めた。
可変型動吸振器の剛性切り替え規則としては、可変振動数範囲よりも低域では最低値,高域では最高値を保持し、可変範囲では外力振動数に同期して固有振動数を変化させることとした。
Next, based on the dimensionless equation (2) and the above measurement results, numerically examined the damping characteristics of the variable stiffness type dynamic vibration absorber.
The mass ratio between the main system and the dynamic vibration absorber was set at three levels of 0.1, 0.3, and 0.5.
The frequency ratio range corresponding to the variable stiffness range for each mass ratio is shown in the table of FIG. 18 together with the values of optimum tuning and optimum damping.
The variable range was determined such that the frequency ratio when the dynamic vibration absorber mass was fixed to the main system was at the center of the variable range, taking into consideration the variable magnification of 1.9 times.
As a rigidity switching rule for variable dynamic vibration absorbers, the lowest value is maintained in the low range and the maximum value in the high range, and the natural frequency is changed in synchronization with the external force frequency in the variable range. It was.

可変剛性型動吸振器の固有振動数を外乱振動数に同調させた場合の主系の振幅応答を、質量比0.3について数値的に求めた結果を図19に示す。
比較のために、最適同調時の在来型動吸振器の応答も示す。
最適同調・減衰を適用した動吸振器では定点の高さで規定される制振効果に留まるが、可変剛性型では振動数可変範囲において反共振点に追従するような応答曲線を描き、前者と比べ明らかに振動を低減できていることがわかる。
FIG. 19 shows the result of numerically determining the amplitude response of the main system when the natural frequency of the variable stiffness type dynamic vibration absorber is synchronized with the disturbance frequency with respect to a mass ratio of 0.3.
For comparison, the response of a conventional dynamic vibration absorber during optimum tuning is also shown.
With a dynamic vibration absorber that applies optimum tuning and damping, the damping effect is limited by the height of the fixed point, but with the variable rigidity type, a response curve that follows the antiresonance point in the variable frequency range is drawn. It can be seen that the vibration can be clearly reduced.

3種の質量比について、可変剛性型動吸振器の応答を比較したものを図20に示す。
質量比がμ=0.1の場合、最適条件を適用した動吸振器の応答と比較すると全体的に振幅は下回るものの、主系応答にはピークが目立つ。
同じ減衰比でも質量が小さいと反共振点付近の振幅は十分低減できないことが大きく影響していると考えられる。
一方、動吸振器の質量が大きいほど制振効果は高まるが、実用上、質量比を大きく設定することは難しいため、MRE自体の減衰を小さくするか、減衰比がこのままの値であれば質量比は0.2〜0.3あたりが適当と考えられる。
FIG. 20 shows a comparison of the responses of variable stiffness type dynamic vibration absorbers for the three mass ratios.
When the mass ratio is μ = 0.1, the amplitude is generally lower than the response of the dynamic vibration absorber to which the optimum condition is applied, but the peak is conspicuous in the main system response.
If the mass is small even with the same damping ratio, it is considered that the amplitude near the antiresonance point cannot be sufficiently reduced.
On the other hand, the damping effect increases as the mass of the dynamic vibration absorber increases. However, since it is difficult to set a large mass ratio in practice, the mass of the MRE itself can be reduced or the mass can be reduced if the attenuation ratio remains as it is. A suitable ratio is considered to be around 0.2 to 0.3.

図21に本発明に係る動吸振器10を用いた制振装置のシステム例を示す。
主振動体に動吸振器10を取り付け、主振動体の振動を加速度センサー等にて検知し、制御手段にて信号変換することでMREに印加する電流値を制御する例である。
本発明に係る動吸振器は構造物のみならず、車両等の移動体の制振にも広く応用可能である。
FIG. 21 shows a system example of a vibration damping device using the dynamic vibration absorber 10 according to the present invention.
In this example, the dynamic vibration absorber 10 is attached to the main vibration body, the vibration of the main vibration body is detected by an acceleration sensor or the like, and the signal value is converted by the control means to control the current value applied to the MRE.
The dynamic vibration absorber according to the present invention can be widely applied not only to structures but also to vibration control of moving bodies such as vehicles.

1 粘弾性材料
2 磁性粒子
10 動吸振器
1 Viscoelastic material 2 Magnetic particle 10 Dynamic vibration absorber

Claims (3)

粘弾性材料に平均粒子径が50μm未満の磁性粒子を複合弾性体に対して20〜70体積%になるように分散させたものであって、磁性粒子を粘弾性原材料に混合した後に、磁束密度50mT以上の強さの磁場を印加した状態で硬化させたものであることを特徴とする磁性粒子複合粘弾性体。   Magnetic particles having an average particle diameter of less than 50 μm dispersed in a viscoelastic material so as to be 20 to 70% by volume with respect to the composite elastic body, and after mixing the magnetic particles with the viscoelastic raw material, the magnetic flux density A magnetic particle composite viscoelastic body which is cured in a state where a magnetic field having a strength of 50 mT or more is applied. 請求項1記載の磁性粒子複合粘弾性体と当該磁性粒子複合粘弾性体に磁場を印加する磁場発生手段とを備えたことを特徴とする制振装置。   A vibration damping device comprising: the magnetic particle composite viscoelastic body according to claim 1; and a magnetic field generating means for applying a magnetic field to the magnetic particle composite viscoelastic body. 前記磁性粒子複合粘弾性体と磁場発生手段とで、可動質量体としての機能を付与したことを特徴とする可変剛性型動吸振器。   A variable stiffness type dynamic vibration absorber, wherein the magnetic particle composite viscoelastic body and the magnetic field generating means have a function as a movable mass body.
JP2012045308A 2012-03-01 2012-03-01 Magnetic particle composite viscoelastic body and variable stiffness type dynamic vibration absorber using the same Active JP6032727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045308A JP6032727B2 (en) 2012-03-01 2012-03-01 Magnetic particle composite viscoelastic body and variable stiffness type dynamic vibration absorber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045308A JP6032727B2 (en) 2012-03-01 2012-03-01 Magnetic particle composite viscoelastic body and variable stiffness type dynamic vibration absorber using the same

Publications (2)

Publication Number Publication Date
JP2013181090A true JP2013181090A (en) 2013-09-12
JP6032727B2 JP6032727B2 (en) 2016-11-30

Family

ID=49271989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045308A Active JP6032727B2 (en) 2012-03-01 2012-03-01 Magnetic particle composite viscoelastic body and variable stiffness type dynamic vibration absorber using the same

Country Status (1)

Country Link
JP (1) JP6032727B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121254A (en) * 2013-12-23 2015-07-02 本田技研工業株式会社 Torque rod vibration reducer
JP2016093883A (en) * 2014-11-07 2016-05-26 国立大学法人金沢大学 Multi-articulated manipulator
DE102017002367A1 (en) 2016-03-25 2017-09-28 Fuji Polymer Industries Co., Ltd. Magneto-rheological elastomer composition, process for its preparation, and vibration-absorbing apparatus containing the same
JP2017223291A (en) * 2016-06-15 2017-12-21 本田技研工業株式会社 Torsion damper
WO2021144873A1 (en) * 2020-01-15 2021-07-22 シャープ株式会社 Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127605A (en) * 1984-07-18 1986-02-07 Bridgestone Corp Flexible permanent magnet
JPH03194238A (en) * 1989-12-22 1991-08-23 Mitsubishi Heavy Ind Ltd Vibration controller using magnetic elastic body
JPH0525316A (en) * 1991-07-24 1993-02-02 Toyota Central Res & Dev Lab Inc Material having magnetic response
JP2001316502A (en) * 2000-04-28 2001-11-16 Jsr Corp Heat transfer sheet, heating structure, heat radiation structure, electric examination method and apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127605A (en) * 1984-07-18 1986-02-07 Bridgestone Corp Flexible permanent magnet
JPH03194238A (en) * 1989-12-22 1991-08-23 Mitsubishi Heavy Ind Ltd Vibration controller using magnetic elastic body
JPH0525316A (en) * 1991-07-24 1993-02-02 Toyota Central Res & Dev Lab Inc Material having magnetic response
JP2001316502A (en) * 2000-04-28 2001-11-16 Jsr Corp Heat transfer sheet, heating structure, heat radiation structure, electric examination method and apparatus using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121254A (en) * 2013-12-23 2015-07-02 本田技研工業株式会社 Torque rod vibration reducer
JP2016093883A (en) * 2014-11-07 2016-05-26 国立大学法人金沢大学 Multi-articulated manipulator
DE102017002367A1 (en) 2016-03-25 2017-09-28 Fuji Polymer Industries Co., Ltd. Magneto-rheological elastomer composition, process for its preparation, and vibration-absorbing apparatus containing the same
US10662316B2 (en) 2016-03-25 2020-05-26 Fuji Polymer Industries Co., Ltd. Magneto-rheological elastomer composition, method for producing same, and vibration absorbing device including same
DE102017002367B4 (en) 2016-03-25 2024-03-14 Fuji Polymer Industries Co., Ltd. Magneto-rheological elastomer composition, process for its preparation, and vibration-absorbing device containing the same
JP2017223291A (en) * 2016-06-15 2017-12-21 本田技研工業株式会社 Torsion damper
WO2021144873A1 (en) * 2020-01-15 2021-07-22 シャープ株式会社 Display device
CN114930434A (en) * 2020-01-15 2022-08-19 夏普株式会社 Display device
CN114930434B (en) * 2020-01-15 2024-02-27 夏普株式会社 Display device

Also Published As

Publication number Publication date
JP6032727B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
Morillas et al. Magnetorheology: a review
Dargahi et al. On the properties of magnetorheological elastomers in shear mode: Design, fabrication and characterization
Bastola et al. A new type of vibration isolator based on magnetorheological elastomer
Li et al. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control
Ju et al. A novel porous magnetorheological elastomer: preparation and evaluation
Sun et al. Horizontal vibration reduction of a seat suspension using negative changing stiffness magnetorheological elastomer isolators
Kallio The elastic and damping properties of magnetorheological elastomers
JP6113351B1 (en) Magnetic viscoelastic elastomer composition, method for producing the same, and vibration absorbing device incorporating the same
Aloui et al. Magneto-rheological response of elastomer composites with hybrid-magnetic fillers
JP6032727B2 (en) Magnetic particle composite viscoelastic body and variable stiffness type dynamic vibration absorber using the same
Zhu et al. Investigations on response time of magnetorheological elastomer under compression mode
Agirre-Olabide et al. A new magneto-dynamic compression technique for magnetorheological elastomers at high frequencies
Jaafar et al. Review of current research progress related to magnetorheological elastomer material
Collette et al. On magnetorheologic elastomers for vibration isolation, damping, and stress reduction in mass-varying structures
Jung et al. Dynamic characterization of magneto-rheological elastomers in shear mode
Alam et al. Magnetic response properties of natural-rubber-based magnetorhelogical elastomers with different-structured iron fillers
Liu et al. Development and control of magnetorheological elastomer-based semi-active seat suspension isolator using adaptive neural network
Albanese et al. Properties of a magnetorheological semi-active vibration absorber
Zhao et al. Novel magnetorheological plastomer filled with NdFeB particles: preparation, characterization, and magnetic–mechanic coupling properties
Shu et al. High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chains
Opie et al. Design and control of a real-time variable stiffness vibration isolator
Sandesh et al. Investigation of tensile properties of RTV Silicone based Isotropic Magnetorheological Elastomers.
Fu et al. A new magnetorheological elastomer isolator in shear-compression mixed mode
Mat Song et al. Semi-active controllable stiffness engine mount utilizing natural rubber-based magnetorheological elastomers
Sapouna Modelling, characterization and development of new magnetorheological elastomers with enhanced vibration control performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161020

R150 Certificate of patent or registration of utility model

Ref document number: 6032727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250