JP2013179778A - Voltage regulating device - Google Patents

Voltage regulating device Download PDF

Info

Publication number
JP2013179778A
JP2013179778A JP2012042265A JP2012042265A JP2013179778A JP 2013179778 A JP2013179778 A JP 2013179778A JP 2012042265 A JP2012042265 A JP 2012042265A JP 2012042265 A JP2012042265 A JP 2012042265A JP 2013179778 A JP2013179778 A JP 2013179778A
Authority
JP
Japan
Prior art keywords
voltage
tap
tap switching
autotransformer
neutral point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012042265A
Other languages
Japanese (ja)
Other versions
JP5923341B2 (en
Inventor
Hideki Honda
秀樹 本田
Hiroshi Tawaraya
洋志 俵谷
Shinya Naito
慎也 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Tohoku Electric Manufacturing Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Tohoku Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Tohoku Electric Manufacturing Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2012042265A priority Critical patent/JP5923341B2/en
Publication of JP2013179778A publication Critical patent/JP2013179778A/en
Application granted granted Critical
Publication of JP5923341B2 publication Critical patent/JP5923341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a voltage regulating device which includes a tap switching portion by suppressing current during tap switching by controlling the timing of the tap switching.SOLUTION: A voltage regulating device includes an autotransformer 18 having a plurality of taps 4 and 5 provided symmetrically about a neutral point 7, first and second tap switching portions 19a and 19b which are connected to the autotransformer 18 and have the same configuration, and a control unit 12 which controls the tap switching portions. Each of the tap switching portions includes a switch 20 which connects one of the plurality of taps 4 and 5 to the neutral point 7, and a voltage sensor 11 which detects voltage between one end (d) of the autotransformer 18 and the neutral point 7. The control unit 12 independently controls the switches 20 and 20' to change the tap in timing (one of t2, t4, t6, ...) where currents flowing through the switches 20, 20' are close to 0 when voltages detected by the voltage sensors 11 and 11' are equal to or higher than a first reference voltage or when the voltages are equal to or lower than a second reference voltage lower than the first reference voltage.

Description

本発明は、配電系統の電圧調整に使用する電圧調整装置に関する。   The present invention relates to a voltage regulator used for voltage regulation of a distribution system.

太陽光発電に代表される分散電源が配電系統に多数連系されるようになってきており、この分散電源に起因する配電系統の電圧変動が課題になっている。特に電気事業法では標準電圧に応じて維持すべき電圧値が定められており、これに対応するため、柱上変圧器の一次側タップを手動または自動で変更して電圧を調節し、二次側電圧を維持しなければならない。   Many distributed power sources represented by photovoltaic power generation have been linked to the distribution system, and voltage fluctuations in the distribution system due to the distributed power source have become a problem. In particular, the Electricity Business Law defines the voltage value to be maintained according to the standard voltage, and in order to cope with this, the primary side tap of the pole transformer is changed manually or automatically to adjust the voltage, Side voltage must be maintained.

また、これらの柱上変圧器は、一般住宅地内に設置されることが多いため、景観的および設置スペース的にも小型軽量のものが必要となる。   In addition, since these pole transformers are often installed in general residential areas, they are required to be small and light in terms of landscape and installation space.

例えば特許文献1は、単巻変圧器の1次側に複数のタップを設け、二次側の電圧に応じてタップを自動で切替える方法を開示している。特許文献2は、分路変圧器と、誘起電圧が等しい2つの直列巻線及び励滋巻線を備えた直列変圧器から構成されている装置を開示している。   For example, Patent Document 1 discloses a method in which a plurality of taps are provided on the primary side of the autotransformer, and the taps are automatically switched according to the voltage on the secondary side. Patent document 2 is disclosing the apparatus comprised from the shunt transformer and the series transformer provided with two series windings and excitation windings with equal induced voltage.

特許第4224309号公報Japanese Patent No. 4224309 特許第3938903号公報Japanese Patent No. 3938903

上記したようなタップの切替えは、二次側の電圧を検出しタップ切替え指令を出力するタイミングによって、タップを切替える際に大電流が切替え機構部の電気的導通部に流れる場合がある。従って、切替え機構部の電気的導通部は、その大電流にも耐えうる特性を有する必要があった。また、タップの切替え時に発生する大電流からタップ切替え機構部を保護する為、タップの切替え時には一時的に抵抗を接続し電流を抑制する必要があり、タップ切替え機構部が複雑で尚且つ大型となり、装置全体も大きなものとなっている。   In the tap switching as described above, a large current may flow to the electrical conduction portion of the switching mechanism portion when switching the tap depending on the timing at which the secondary side voltage is detected and the tap switching command is output. Therefore, the electrical conduction portion of the switching mechanism portion needs to have characteristics that can withstand the large current. Also, in order to protect the tap switching mechanism from the large current that occurs when switching taps, it is necessary to temporarily connect a resistor to suppress the current when switching taps, and the tap switching mechanism is complex and large. The entire device is also large.

本発明の実施形態は、前述のようなタップ切替えのタイミングを制御することで、タップ切替え時の電流を抑制し、タップ切替え機構部のサイズを小さくすることを目的とする。   The embodiment of the present invention aims to suppress the current at the time of tap switching and to reduce the size of the tap switching mechanism by controlling the tap switching timing as described above.

上記の課題を解決するために、本発明の一実施形態に係る電圧調整装置は、中性点に対してそれぞれ対称に設けられた複数のタップを有する単巻変圧器と、前記単巻変圧器に接続され同一構成を有する第1及び第2タップ切替部と、該タップ切替部を制御する制御部とを具備し、各タップ切替部は、前記複数のタップのうち1つを前記中性点に接続するスイッチと、前記単巻変圧器の一端と前記中性点間の電圧を検出する電圧センサとを具備し、前記単巻変圧器の一端と前記中性点の間、及び前記単巻変圧器の他端と前記中性点の間にはそれぞれ異なる負荷が接続され、前記制御部は前記各電圧センサにて検出された電圧が、第1基準電圧を超えた場合あるいは第1基準電圧より低い第2基準電圧以下となった場合、前記スイッチを流れる電流が0付近のタイミングでタップが切替るよう前記各スイッチを独立に制御する。また本発明の実施形態による電圧調整装置は、タップ切替えのタイミングを前記励磁電流のゼロクロスポイント前後の位相角±30°以内の時点に制御する。     In order to solve the above-described problem, a voltage regulator according to an embodiment of the present invention includes a self-winding transformer having a plurality of taps provided symmetrically with respect to a neutral point, and the self-winding transformer. And a control unit that controls the tap switching unit, and each tap switching unit selects one of the plurality of taps as the neutral point. A voltage sensor for detecting a voltage between one end of the autotransformer and the neutral point, and between the one end of the autotransformer and the neutral point, and Different loads are connected between the other end of the transformer and the neutral point, and the control unit detects when the voltage detected by each voltage sensor exceeds the first reference voltage or the first reference voltage. When the voltage falls below the lower second reference voltage, the current flowing through the switch There taps to independently control switches so each switch at a timing near 0. In addition, the voltage regulator according to the embodiment of the present invention controls the tap switching timing to a time point within ± 30 ° before and after the zero cross point of the excitation current.

配電系統の電圧調整装置において、タップ切替えのタイミングを制御することで、タップ切替え時の電流を抑制し、タップ切替え機構部のサイズを小さくすることが可能となる。   In the voltage regulator of the distribution system, by controlling the tap switching timing, it is possible to suppress the current at the time of tap switching and to reduce the size of the tap switching mechanism.

本発明の第1実施形態が適用されるシステム例として、太陽光発電システムの構成を示す図である。It is a figure which shows the structure of a solar energy power generation system as an example of a system with which 1st Embodiment of this invention is applied. 図1のタップ切替機構部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the tap switching mechanism part of FIG. スイッチングにヒステリシスを持たせた場合の第1タップ切替部19aの動作を示す図である。It is a figure which shows operation | movement of the 1st tap switching part 19a at the time of giving a hysteresis to switching. 変圧器の電圧と鉄心励磁特性の相関関係(50Hzの揚合)を示す図である。It is a figure which shows the correlation (50Hz multiplication) of the voltage of a transformer, and an iron core excitation characteristic. 電圧ゼロクロスポイントを検出する回路をオペアンプ回路で実現する構成例を示す図である。It is a figure which shows the structural example which implement | achieves the circuit which detects a voltage zero cross point with an operational amplifier circuit. 本発明に係る励磁電流抑制型低圧電圧調整装置2’(18,19)を適用する太陽光発電システムの他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the solar power generation system to which the exciting current suppression type low voltage regulator 2 '(18, 19) which concerns on this invention is applied.

以下、実施形態に係る励磁電流抑制型低圧電圧調整装置について、図面を参照して説明する。   Hereinafter, an excitation current suppression type low voltage regulator according to an embodiment will be described with reference to the drawings.

図1は本発明の実施形態が適用されるシステム例として、太陽光発電システムの構成を示す。単相3線式変圧器11の一次側巻線17には所定の交流電圧、例えば商用交流電圧6600Vが印加され、単相3線式変圧器11の二次側巻線の出力端a、bに単巻変圧器18の一次側を接続し、単巻変圧器18の二次側端子d、eに負荷13、14と太陽光発電システムのインバータ15の交流端子が接続される。   FIG. 1 shows a configuration of a photovoltaic power generation system as an example of a system to which an embodiment of the present invention is applied. A predetermined AC voltage, for example, a commercial AC voltage 6600 V, is applied to the primary side winding 17 of the single-phase three-wire transformer 11, and the output terminals a and b of the secondary side winding of the single-phase three-wire transformer 11. The primary side of the autotransformer 18 is connected to the secondary side terminals d and e of the autotransformer 18, and the loads 13 and 14 and the AC terminal of the inverter 15 of the photovoltaic power generation system are connected to the primary side.

単巻変圧器18は直列巻線18a、18a’と二次端子d、eとタップ付きの分路巻線18b、18b’を有し、この分路巻線18b、18b’のタップには、タップ切替機構部19が接続される。インバータ15の直流側端子は太陽電池16に接続され、交流側端子は負荷13及び14の直列回路、及び端子d、eに接続される。太陽電池16はソーラーパネル及びコンデンサあるいはバッテリから構成される。   The autotransformer 18 includes series windings 18a and 18a ′, secondary terminals d and e, and tapped shunt windings 18b and 18b ′. The taps of the shunt windings 18b and 18b ′ include: A tap switching mechanism 19 is connected. The DC side terminal of the inverter 15 is connected to the solar cell 16, and the AC side terminal is connected to the series circuit of the loads 13 and 14 and the terminals d and e. The solar cell 16 includes a solar panel and a capacitor or a battery.

インバータ15はソーラーパネル(太陽電池)16により発電された直流電力を交流に変換し、交流電圧を負荷13と14の負荷回路、及び単巻変圧器18の二次端子d、eに供給する。負荷13、14は例えば一般家庭で使用され交流100Vで動作する電気製品である。単巻変圧器18及びタップ切替機構部19は、励磁電流抑制型低圧電圧調整装置2を構成する。   The inverter 15 converts the DC power generated by the solar panel (solar cell) 16 into AC and supplies the AC voltage to the load circuit of the loads 13 and 14 and the secondary terminals d and e of the autotransformer 18. The loads 13 and 14 are, for example, electric products that are used in ordinary households and operate at 100 V AC. The autotransformer 18 and the tap switching mechanism 19 constitute an excitation current suppression type low voltage regulator 2.

図2は、図1の電圧調整装置2の構成例を示すブロック図である。   FIG. 2 is a block diagram illustrating a configuration example of the voltage regulator 2 of FIG.

単巻変圧器18は、二次ライン線3、3’で二次端子d,eに接続され、更に負荷13、14に接続される。二次端子d,eには、制御部12、電圧センサ11、11’のそれぞれ一方の電圧検出端子が接続される。電圧センサ11、11’のそれぞれ他方の電圧検出端子は中性線(中性点)7に接続され、中性線7は負荷13、14に接続される。この中性線7は、負荷電圧V1+V2の中性点である。   The autotransformer 18 is connected to the secondary terminals d and e through the secondary line wires 3 and 3 ′, and is further connected to the loads 13 and 14. One voltage detection terminal of each of the control unit 12 and the voltage sensors 11 and 11 ′ is connected to the secondary terminals d and e. The other voltage detection terminals of the voltage sensors 11 and 11 ′ are connected to a neutral wire (neutral point) 7, and the neutral wire 7 is connected to loads 13 and 14. The neutral line 7 is a neutral point of the load voltage V1 + V2.

スイッチ20のコンタクタ10は分路巻線18aのタップ5に接続され、コンタクタ9はタップ4に接続され、共通端子8は中性線7に接続される。同様にスイッチ20’のコンタクタ10’は分路巻線18bのタップ5’に接続され、コンタクタ9’はタップ4’に接続され、共通端子8’は中性線7に接続される。タップ4、5、4’、5’は、中性線7すなわち中性点に対してそれぞれ対称に設けられる。尚、各分路巻線に設けられるタップの数は、本例のように2つに限らず3以上でもよい。   The contactor 10 of the switch 20 is connected to the tap 5 of the shunt winding 18 a, the contactor 9 is connected to the tap 4, and the common terminal 8 is connected to the neutral wire 7. Similarly, the contactor 10 ′ of the switch 20 ′ is connected to the tap 5 ′ of the shunt winding 18 b, the contactor 9 ′ is connected to the tap 4 ′, and the common terminal 8 ′ is connected to the neutral wire 7. The taps 4, 5, 4 ', 5' are provided symmetrically with respect to the neutral line 7, that is, the neutral point. The number of taps provided in each shunt winding is not limited to two as in this example, but may be three or more.

次に、本実施形態に係る電圧調整装置2の動作を詳細に説明する。   Next, the operation of the voltage regulator 2 according to the present embodiment will be described in detail.

図2において、直列巻線18a、分路巻線18b、スイッチ20、電圧センサ11を含む上側回路(第1タップ切換え手段)19aの動作は、直列巻線18a’、分路巻線18b’、スイッチ20’、電圧センサ11’を含む下側回路(第2タップ切換え手段)19bの動作と同様である。説明を簡単にするため、両回路について特に説明する場合を除き、ここでは上側回路の動作のみについて説明する。   In FIG. 2, the operation of the upper circuit (first tap switching means) 19a including the series winding 18a, the shunt winding 18b, the switch 20, and the voltage sensor 11 includes the series winding 18a ′, the shunt winding 18b ′, The operation is the same as that of the lower circuit (second tap switching means) 19b including the switch 20 ′ and the voltage sensor 11 ′. For the sake of simplicity, only the operation of the upper circuit will be described here except for the case where both circuits are specifically described.

制御部12は電圧センサ11によって検出した二次側ラインの負荷電圧V1に基づいてスイッチ20の切り替え動作を制御する。すなわち制御部12は、負荷電圧V1が当初設定した基準電圧より高くなった場合、スイッチ20をタップ4側から5側へ切り替え、分路巻線の巻線数を少なくし電圧を下げる。また制御部12は、電圧V1が当初設定した基準電圧より低くなった場合、スイッチ20をタップ5側から4側へ切り替え、分路線の巻線数を多くし電圧を上げる。   The controller 12 controls the switching operation of the switch 20 based on the load voltage V1 of the secondary side line detected by the voltage sensor 11. That is, when the load voltage V1 becomes higher than the initially set reference voltage, the control unit 12 switches the switch 20 from the tap 4 side to the 5 side to decrease the number of shunt windings and lower the voltage. When the voltage V1 becomes lower than the initially set reference voltage, the control unit 12 switches the switch 20 from the tap 5 side to the 4 side to increase the number of shunt lines and increase the voltage.

このスイッチングの基準電圧は好適に、スイッチングにヒステリシスを持たせるために、タップ5側へ切り替えるときの基準電圧と、タップ4側へ切り替えるときの基準電圧を異なる電圧に設定する。例えばタップ5側へ切り替えるときの第1基準電圧を105Vと設定し、タップ4側へ切り替える第2基準電圧を第1基準電圧より低い100Vに設定する。   The reference voltage for switching is preferably set so that the reference voltage for switching to the tap 5 side and the reference voltage for switching to the tap 4 side are different from each other in order to give hysteresis to the switching. For example, the first reference voltage when switching to the tap 5 side is set to 105V, and the second reference voltage switching to the tap 4 side is set to 100V lower than the first reference voltage.

図3はこのようにスイッチングにヒステリシスを持たせた場合の第1タップ切替部19aの動作を示す図である。時刻T1のように、負荷電圧V1が第1基準電圧に到達あるいは第1基準電圧以上となった場合、制御部12はスイッチ20を制御して、接続タップをタップ5側へ切り替える。時刻T2のように、負荷電圧V1が第2基準電圧まで低下、あるいは第2基準電圧以下となった場合、制御部12はスイッチ20を制御して、接続タップをタップ4側へ切り替える。第2タップ切替部19bの動作は第1タップ切替部19aと同様である。尚、スイッチ20、20’の切替え動作は、電圧センサー11、11’で検出された電圧V1、V2に応じて独立して行われ、同時に行う必要はない。   FIG. 3 is a diagram illustrating the operation of the first tap switching unit 19a when switching is given hysteresis in this way. When the load voltage V1 reaches the first reference voltage or becomes equal to or higher than the first reference voltage as at time T1, the control unit 12 controls the switch 20 to switch the connection tap to the tap 5 side. When the load voltage V1 decreases to the second reference voltage or becomes equal to or lower than the second reference voltage as at time T2, the control unit 12 controls the switch 20 to switch the connection tap to the tap 4 side. The operation of the second tap switching unit 19b is the same as that of the first tap switching unit 19a. Note that the switching operation of the switches 20 and 20 'is performed independently according to the voltages V1 and V2 detected by the voltage sensors 11 and 11', and does not need to be performed simultaneously.

図4は、変圧器の電圧と鉄心励磁特性の相関関係(50Hzの場合)及びスイッチ20を切り替えるタイミングを説明する図である。   FIG. 4 is a diagram for explaining the correlation between the voltage of the transformer and the iron core excitation characteristics (in the case of 50 Hz) and the timing for switching the switch 20.

実線波形は電圧センサー11の検出電圧値(二次側負荷電圧)V1、破線波形はスイッチ20に流れる励磁電流Iを示す。制御部12は検出電圧値V1に基づいて、スイッチ20を切り替えるタイミングを、励磁電流Iが、0(ゼロ)となるゼロクロスポイント(t2、t4、t6、t8…)前後(位相角±30°以内)になるように調整する。これにより、タップを切替えることにより発生するタップ切替え時の大きな励磁電流を抑制することができる。また、図2のコンタクタ9および10には大電流が流れないため、コンタクタの小型化を図り低圧電圧調整装置全体の軽量小型化を実現することができる。 The solid line waveform is detected voltage value (the secondary side load voltage) V1, the broken line waveform of voltage sensor 11 showing the excitation current I 0 flowing through the switch 20. The controller 12 switches the switch 20 based on the detected voltage value V1 before and after the zero cross point (t2, t4, t6, t8...) At which the excitation current I 0 becomes 0 (phase angle ± 30 °). Within the range). Thereby, it is possible to suppress a large excitation current at the time of tap switching that occurs by switching the tap. Further, since a large current does not flow through the contactors 9 and 10 in FIG. 2, the contactor can be downsized and the entire low voltage regulator can be reduced in size and weight.

以上のように本発明に係る電圧調整装置は、中性点に対してそれぞれ対称に設けられた複数のタップを有する単巻変圧器18と、前記単巻変圧器に接続され同一構成を有する第1及び第2タップ切替部19a、19bと、該タップ切替部を制御する制御部12とを具備し、各タップ切替部は、前記複数のタップ4、5のうち1つを前記中性点7に接続するスイッチ20と、前記単巻変圧器18の一端dと前記中性点7間の電圧を検出する電圧センサ11とを具備する。前記単巻変圧器18の一端dと前記中性点7の間、及び前記単巻変圧器の他端eと前記中性点7の間にはそれぞれ異なる負荷13,14が接続され、前記制御部12は前記各電圧センサ11,11’にて検出された電圧が、第1基準電圧以上となった場合あるいは第1基準電圧より低い第2基準電圧以下となった場合、前記スイッチ20,20’を流れる電流が0付近のタイミングでタップが切替るよう前記各スイッチを独立に制御する。   As described above, the voltage regulator according to the present invention includes the autotransformer 18 having a plurality of taps provided symmetrically with respect to the neutral point, and the first configuration having the same configuration connected to the autotransformer. 1 and the 2nd tap switch part 19a, 19b, and the control part 12 which controls this tap switch part, and each tap switch part sets one of the said some taps 4 and 5 to the said neutral point 7 And a voltage sensor 11 for detecting a voltage between one end d of the autotransformer 18 and the neutral point 7. Different loads 13 and 14 are connected between one end d of the autotransformer 18 and the neutral point 7 and between the other end e of the autotransformer and the neutral point 7, respectively. When the voltage detected by each of the voltage sensors 11, 11 ′ becomes equal to or higher than the first reference voltage or equal to or lower than the second reference voltage lower than the first reference voltage, the unit 12 switches the switches 20, 20 The switches are controlled independently so that the taps are switched at a timing when the current flowing through 'is near zero.

次に、スイッチ20を切り替えるタイミングの調整方法の具体例を説明する。   Next, a specific example of a timing adjustment method for switching the switch 20 will be described.

図2に示す装置の二次側負荷電圧V1に対し、励磁電流Iは位相角が90°遅れて発生する。従って図4のように、二次側負荷電圧V1のゼロクロスポイント(t1、t3、t5、t7…のいずれか)付近を検出し、そのポイントから位相角90°、270°、以降180°増加する毎に、励磁電流Iのゼロポイント(t2、t4、t6、t8…)が存在する。商用周波数が50Hzの場合は、1周期が20ms(=1/周波数)であることから、二次側負荷電圧V1のゼロポイント検出から5ms(90°)、15ms(270°)、以降10ms(180°)加算したいずれかの時点の±1.7ms(30°)の範囲内でスイッチを切替えることにより、コンタクタの大電流を防止できる。 The excitation current I 0 is generated with a phase angle delayed by 90 ° with respect to the secondary load voltage V 1 of the apparatus shown in FIG. Therefore, as shown in FIG. 4, the vicinity of the zero cross point (any one of t1, t3, t5, t7...) Of the secondary side load voltage V1 is detected, and the phase angle is increased by 90 °, 270 °, and thereafter 180 ° from that point. every zero point of the excitation current I 0 (t2, t4, t6 , t8 ...) is present. When the commercial frequency is 50 Hz, since one cycle is 20 ms (= 1 / frequency), 5 ms (90 °), 15 ms (270 °) from the zero point detection of the secondary load voltage V1, and thereafter 10 ms (180 °) A large current in the contactor can be prevented by switching the switch within a range of ± 1.7 ms (30 °) at any time of addition.

また、30°の範囲以内であれば、sin30°=0.5であるから、最大ピーク電流の1/2の電流容量で済む。この時間調整部は、図2の制御部12に組込まれる。   Also, if it is within the range of 30 °, since sin 30 ° = 0.5, a current capacity that is ½ of the maximum peak current is sufficient. This time adjustment unit is incorporated in the control unit 12 of FIG.

このように本発明に係る電圧調整装置では、タップ切替えするタイミングは、励磁電流Iのゼロクロスポイント前後の位相角±30°以内の時点である。すなわち、タップ切替えするタイミングは、電圧センサ11又は11’にて検出された電圧のゼロクロスポイントから90°位相が遅れた時点前後の位相角±30°以内の時点である。 As described above, in the voltage regulator according to the present invention, the tap switching timing is within the phase angle of ± 30 ° before and after the zero cross point of the excitation current I 0 . That is, the tap switching timing is a time within a phase angle of ± 30 ° before and after the time when the phase is delayed by 90 ° from the zero cross point of the voltage detected by the voltage sensor 11 or 11 ′.

次に、励磁電流Iのゼロポイントを検出する構成について説明する。前述したように、装置の二次側負荷電圧V1に対し励磁電流Iは位相が90°遅れて発生する。従て、電圧V1と電流I両者の相関関係により、電圧ゼロクロスポイントをオペアンプを使用した回路により検出し、その後、遅延回路によって励磁電流Iのゼロクロスポイントの位相角±30°以内の範囲で図2のスイッチ20を切り替える。 Next, a configuration for detecting the zero point of the excitation current I 0 will be described. As described above, the excitation current I 0 is generated with a phase delay of 90 ° with respect to the secondary load voltage V 1 of the apparatus. Therefore, the voltage zero cross point is detected by a circuit using an operational amplifier based on the correlation between the voltage V1 and the current I 0 , and then the phase angle of the zero cross point of the excitation current I 0 is within ± 30 ° by the delay circuit. The switch 20 in FIG. 2 is switched.

電圧ゼロクロスポイントを検出する回路をオペアンプ回路で実現する構成例を図5に示す。この電圧ゼロクロスポイント検出回路は、電圧V1が1次側に入力されるトランスVTの二次側電圧Vsが、マイナスからプラスに変化する電圧ゼロクロスポイントで、オペアンプ6の出力電圧がHレベルからLレベルに立ち下がる。制御部12は電圧センサ11の検出電圧値に応じて、例えばこの立ち下がり時点を基に、励磁電流Iのゼロクロスポイントを演算しスイッチ20を切り替える。 FIG. 5 shows a configuration example in which a circuit for detecting a voltage zero cross point is realized by an operational amplifier circuit. This voltage zero cross point detection circuit is a voltage zero cross point where the secondary voltage Vs of the transformer VT to which the voltage V1 is input to the primary side changes from minus to plus, and the output voltage of the operational amplifier 6 is from H level to L level. To fall. The control unit 12 calculates the zero cross point of the exciting current I 0 and switches the switch 20 based on the detected voltage value of the voltage sensor 11, for example, based on the falling point.

尚、電圧ゼロクロスポイントの検出は本実施形態によらず、マイコンなどを使用したデジタル回路によっても実現可能である。   The detection of the voltage zero cross point can be realized not only in this embodiment but also by a digital circuit using a microcomputer or the like.

図2のタップ付き分路巻線18bを含む直列巻線18aで構成される単巻変圧器の鉄心は、小型化を図るために鉄心形状を小さくすることにより、鉄心の磁束密度が大きくなり、従来のものは分路巻線のタップの切替え時に発生する励磁電流Iも一時的に大電流が流れる。しかし、実施形態に係る図2のスイッチ20、20’を切り替えるタイミングを調整することで、タップ切替え時の励磁電流Iを小さくし、鉄心形状の小さなものが適用可能となり、低圧電圧調整装置の小型化が図れる。 The iron core of the single-winding transformer composed of the series winding 18a including the tapped shunt winding 18b of FIG. 2 increases the magnetic flux density of the iron core by reducing the iron core shape in order to reduce the size. In the conventional one, a large current also temporarily flows as the excitation current I 0 generated when the tap of the shunt winding is switched. However, by adjusting the timing of switching the switches 20, 20 '2 according to the embodiment, to reduce the excitation current I 0 at the time of switching the tap, small things become applicable iron core shape, the low voltage regulator Miniaturization can be achieved.

上記の実施形態で使用されるスイッチは電磁式コンタクタのみならず、GTOやIGBTなどパワー半導体で構成したものでも同じ効果が得られる。   The same effect can be obtained even if the switch used in the above embodiment is constituted by not only an electromagnetic contactor but also a power semiconductor such as GTO or IGBT.

次に第2実施形態を説明する。
図6は、本発明に係る励磁電流抑制型低圧電圧調整装置2’(18,19)を適用する太陽光発電システムの他の構成例を示すブロック図である。図1と同一の構成要素には同一の参照符号を付し、詳細な説明は省略する。
Next, a second embodiment will be described.
FIG. 6 is a block diagram showing another configuration example of the photovoltaic power generation system to which the excitation current suppression type low voltage regulator 2 ′ (18, 19) according to the present invention is applied. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

電圧調整装置2’は、図2の構成すなわち、分路巻線18a、18bを含む直列巻線18とタップ切替機構部19から構成される。直列巻線18の端子a、bには所定の交流電圧が印加され、本システムは図1のシステムと同様に動作する。   The voltage adjusting device 2 ′ includes the configuration shown in FIG. 2, that is, the series winding 18 including the shunt windings 18 a and 18 b and the tap switching mechanism 19. A predetermined AC voltage is applied to the terminals a and b of the series winding 18, and this system operates in the same manner as the system of FIG.

図1の第1実施形態に係る電圧調整装置2に比べ、第2実施形態に係る電圧調整装置2’は、単相3線式変圧器11が省略されているので、システムの更なる小型、軽量化を実現できる。   Compared with the voltage regulator 2 according to the first embodiment of FIG. 1, the voltage regulator 2 ′ according to the second embodiment omits the single-phase three-wire transformer 11, so that the system can be further reduced in size, Light weight can be realized.

以上のように、本発明によれば、単巻変圧器分路巻線のタップの切替え時に発生する励磁電流が、従来に比べ小さくなる(0付近となる)タイミングでタップを切替える。これにより、コンタクタを小型なものにでき、更に単相3線式単巻変圧器の鉄心の小型化も図れた低圧電圧調整装置を提供することができる。また、低圧電圧調整装置の小型化により低圧電圧調整装置を安価で提供できるようになり、例えば一般家庭用太陽光発電の普及拡大に伴う高圧配電系統への連系による設備工事費の削減にも貢献できる。   As described above, according to the present invention, the tap is switched at a timing at which the excitation current generated when the tap of the single-turn transformer shunt winding is switched becomes smaller (around 0) than in the prior art. As a result, it is possible to provide a low voltage regulator capable of reducing the size of the contactor and further reducing the size of the iron core of the single-phase three-wire autotransformer. In addition, the low voltage regulator can be provided at low cost by downsizing the low voltage regulator, for example, to reduce facility construction costs by connecting to the high voltage distribution system with the spread of general household solar power generation. Can contribute.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。また、上記実施形態では本発明を太陽光発電システムの送配電系に適用した例を示したが、これに限らず風力発電等、自然エネルギを利用したシステムあるいは利用しない他の発電システムの送配電系にも適用可能である。また、上記した新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. Moreover, although the example which applied this invention to the power transmission / distribution system of the solar power generation system was shown in the said embodiment, it is not restricted to this, Power transmission / distribution of the system using natural energy, such as wind power generation, or other power generation systems which are not used It can also be applied to systems. The novel embodiments described above can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

2…電圧調整装置、3、3’…2次ライン、4、4’、5、5’…タップ、6…オペアンプ、9、10…コンタクタ、20、20’…スイッチ、7…中性線、11、11’…電圧センサ、12…制御部、18a、18a’…直列巻線、18b、18b’…分路巻線、19…タップ切換え機構、VT…変圧器、R…抵抗器、D…ダイオード。   2 ... Voltage regulator 3, 3 '... Secondary line 4, 4' 5, 5 '... Tap, 6 ... Operational amplifier, 9, 10 ... Contactor, 20, 20' ... Switch, 7 ... Neutral wire, DESCRIPTION OF SYMBOLS 11, 11 '... Voltage sensor, 12 ... Control part, 18a, 18a' ... Series winding, 18b, 18b '... Shunt winding, 19 ... Tap switching mechanism, VT ... Transformer, R ... Resistor, D ... diode.

Claims (3)

中性点に対してそれぞれ対称に設けられた複数のタップを有する単巻変圧器と、前記単巻変圧器に接続され同一構成を有する第1及び第2タップ切替部と、該タップ切替部を制御する制御部とを具備し、
各タップ切替部は、前記複数のタップのうち1つを前記中性点に接続するスイッチと、前記単巻変圧器の一端と前記中性点間の電圧を検出する電圧センサとを具備し、前記単巻変圧器の一端と前記中性点の間、及び前記単巻変圧器の他端と前記中性点の間にはそれぞれ異なる負荷が接続され、
前記制御部は前記各電圧センサにて検出された電圧が、第1基準電圧以上となった場合あるいは第1基準電圧より低い第2基準電圧以下となった場合、前記スイッチを流れる電流が0付近のタイミングでタップが切替るよう前記各スイッチを独立に制御することを特徴とする電圧調整装置。
A self-winding transformer having a plurality of taps provided symmetrically with respect to the neutral point, first and second tap switching sections connected to the single-winding transformer and having the same configuration, and the tap switching section A control unit for controlling,
Each tap switching unit includes a switch that connects one of the plurality of taps to the neutral point, and a voltage sensor that detects a voltage between one end of the autotransformer and the neutral point, Different loads are connected between one end of the autotransformer and the neutral point, and between the other end of the autotransformer and the neutral point,
When the voltage detected by each of the voltage sensors becomes equal to or higher than the first reference voltage or equal to or lower than the second reference voltage lower than the first reference voltage, the current flowing through the switch is near zero. A voltage regulator that controls each of the switches independently so that the taps are switched at the timing.
タップ切替えするタイミングは、前記励磁電流のゼロクロスポイント前後の位相角±30°以内の時点であることを特徴とする請求項1記載の電圧調整装置。   2. The voltage regulator according to claim 1, wherein the tap switching timing is a time point within a phase angle of ± 30 ° before and after the zero cross point of the excitation current. タップ切替えするタイミングは、前記電圧センサにて検出された電圧のゼロクロスポイントから90°位相が遅れた時点前後の位相角±30°以内の時点であることを特徴とする請求項1記載の電圧調整装置。   2. The voltage adjustment according to claim 1, wherein the tap switching timing is a time within a phase angle of ± 30 ° before and after the time when the phase is delayed by 90 ° from the zero cross point of the voltage detected by the voltage sensor. apparatus.
JP2012042265A 2012-02-28 2012-02-28 Voltage regulator Active JP5923341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042265A JP5923341B2 (en) 2012-02-28 2012-02-28 Voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042265A JP5923341B2 (en) 2012-02-28 2012-02-28 Voltage regulator

Publications (2)

Publication Number Publication Date
JP2013179778A true JP2013179778A (en) 2013-09-09
JP5923341B2 JP5923341B2 (en) 2016-05-24

Family

ID=49270910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042265A Active JP5923341B2 (en) 2012-02-28 2012-02-28 Voltage regulator

Country Status (1)

Country Link
JP (1) JP5923341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165798B1 (en) 2021-09-27 2022-11-04 株式会社ダイヘン Voltage output device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206014A (en) * 1985-03-11 1986-09-12 Nippon Electric Ind Co Ltd Automatic voltage adjusting device
JPH10333758A (en) * 1997-06-02 1998-12-18 Kawamura Electric Inc Voltage adjusting device
JPH11332239A (en) * 1998-05-15 1999-11-30 Fuji Electric Co Ltd Power conversion device for single-phase three-wire power supply
US20110316498A1 (en) * 2009-03-25 2011-12-29 Pmd Networks Inc. Power regulator and remote power control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206014A (en) * 1985-03-11 1986-09-12 Nippon Electric Ind Co Ltd Automatic voltage adjusting device
JPH10333758A (en) * 1997-06-02 1998-12-18 Kawamura Electric Inc Voltage adjusting device
JPH11332239A (en) * 1998-05-15 1999-11-30 Fuji Electric Co Ltd Power conversion device for single-phase three-wire power supply
US20110316498A1 (en) * 2009-03-25 2011-12-29 Pmd Networks Inc. Power regulator and remote power control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165798B1 (en) 2021-09-27 2022-11-04 株式会社ダイヘン Voltage output device
JP2023047825A (en) * 2021-09-27 2023-04-06 株式会社ダイヘン Voltage output device

Also Published As

Publication number Publication date
JP5923341B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US10014791B2 (en) Distribution transformer
EP2733809B1 (en) Power quality control
US9541930B2 (en) System and method for reducing power consumption in a power supply circuit
US20200153354A1 (en) Controlling voltage in ac power lines
Klavsuts et al. New method for regulating voltage an ac current
KR101925182B1 (en) Inductive Power Supply based on Current Transformer
US9136776B2 (en) Current supply arrangement for the rectifying three-phase AC current into multi-pulse DC current
JP5731143B2 (en) Voltage regulator
EA028401B1 (en) Shunt reactor controlled by biasing (variants)
JP5923341B2 (en) Voltage regulator
GB2520336A (en) Voltage regulation
US20130293010A1 (en) Current supply arrangement with a first and a second current supply device, wherein the second current supply device is connected to the first current supply device
WO1997002518A1 (en) Voltage regulator
RU2531389C1 (en) Line voltage control unit
RU2340975C1 (en) Three-phase electric reactor with magnetisation
RU2245600C1 (en) Step-by-step ac voltage regulation device
RU2788078C1 (en) Phase converter with adjustable power
KR20150110047A (en) Electric power saver with automatic tap adjustment function
KR20180015840A (en) Electric power saver with automatic tap adjustment function
KR20060118930A (en) Linear AC Power Control Device Using Phase Comparison Control
KR20180016099A (en) Linear power control device
KR20180015834A (en) Linear household electricity saver with bypass function
RU142476U1 (en) NETWORK VOLTAGE REGULATOR
KR20090085011A (en) Linear household electrical saving device with bypass function
RU2549377C1 (en) Mains voltage control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5923341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250