JP2013177265A - Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device - Google Patents

Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device Download PDF

Info

Publication number
JP2013177265A
JP2013177265A JP2012041709A JP2012041709A JP2013177265A JP 2013177265 A JP2013177265 A JP 2013177265A JP 2012041709 A JP2012041709 A JP 2012041709A JP 2012041709 A JP2012041709 A JP 2012041709A JP 2013177265 A JP2013177265 A JP 2013177265A
Authority
JP
Japan
Prior art keywords
fine particles
light
solar cell
semiconductor device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041709A
Other languages
Japanese (ja)
Inventor
Hikari Kobayashi
光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012041709A priority Critical patent/JP2013177265A/en
Publication of JP2013177265A publication Critical patent/JP2013177265A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form Si fine particles having a particle size of at least one to several tens nm and high surface stability from chips of a silicon substrate, and to create a light emitting element, a solar cell or a semiconductor device using the same.SOLUTION: Si fine particles obtained by pulverizing chips of a silicon substrate by a bead mill method are dispersed into hydrofluoric acid, and subjected to a photochemical etching treatment, while being irradiated with light by a halogen lamp or the like, to thereby create Si fine crystal particles shown by Fig.1, having a particle size of at least 2-8 nm, capable of excitation light generation, and having an excellent light-emitting characteristic, and a light emitting element, a solar cell or a semiconductor device can be achieved by using the same.

Description

本発明は、シリコン(Si)ウェハ材料から、発光素子や薄膜の太陽電池やSi半導体装置に好適に利用可能なSi微細粒子として、粒径数百ナノメートル(nm)以下、とりわけ粒径100ナノメートル(nm)以下のSi微細粒子を得る場合に、低コストで実現するSi微細粒子の形成方法及びそれを用いた発光素子や太陽電池並びに半導体装置に関する。 In the present invention, Si fine particles that can be suitably used for light-emitting elements, thin-film solar cells, and Si semiconductor devices from silicon (Si) wafer materials have a particle size of several hundred nanometers (nm) or less, particularly 100 nanometers. The present invention relates to a method for forming Si fine particles that can be realized at a low cost when obtaining Si fine particles of a meter (nm) or less, and a light-emitting element, a solar cell, and a semiconductor device using the method.

従来、この種のSi微細粒子を得る場合に、例えば、粒径50〜1000μmに粉砕されたSi微細粒子を、フッ酸と硝酸との混合酸溶液により表面エッチングする,いわゆる混合酸溶液必須の酸エッチング工程が用いられているが、この酸エッチング工程では、Si表面を溶解してポーラスシリコンを得るのであり(例えば、特開平6−144822号公報参照)、粒径が数百ナノメートル(nm)以下のSi微細粒子を安定的に得ることが極めて難しかった。 Conventionally, in order to obtain this kind of Si fine particles, for example, a so-called mixed acid solution essential acid is used, in which, for example, Si fine particles pulverized to a particle size of 50 to 1000 μm are subjected to surface etching with a mixed acid solution of hydrofluoric acid and nitric acid. Although an etching process is used, in this acid etching process, the Si surface is dissolved to obtain porous silicon (see, for example, JP-A-6-144822), and the particle size is several hundred nanometers (nm). It was extremely difficult to stably obtain the following Si fine particles.

一方、薄膜電子材料として利用され得る粒径数百nm以下のSi微細粒子となると、そのような極微細サイズの粒子を製造するのは主としてレーザーアブレーション法、CVD法あるいは高周波スパッター法により行われているが、いずれも製造設備が高コストあるいは量産性に欠けるなどの製造性に難点がある。 On the other hand, when it becomes Si fine particles having a particle size of several hundred nm or less that can be used as a thin film electronic material, such ultrafine particles are produced mainly by laser ablation, CVD, or high-frequency sputtering. However, both have drawbacks in manufacturability such as high cost of production equipment and lack of mass productivity.

また、Si微細粒子では、粒子サイズが小さくなるほどバンドギャップエネルギーが大きくなる性質を持つ。これは量子サイズ効果と呼ばれ、粒子サイズとバンドギャップエネルギーの関係が、ブラス(Blus)の関係式で知られる次式で与えられるように変化することによる。 In addition, Si fine particles have the property that the band gap energy increases as the particle size decreases. This is called a quantum size effect, and is due to the fact that the relationship between the particle size and the band gap energy changes as given by the following equation known by the Brass equation.



ここで、E(R):バンドギャップエネルギー(eV),E:バルクバンドギャップエネルギー,R:粒子半径(nm),m: 電子の有効質量,m:ホールの有効質量,ε: 誘電係数,e : 電気素量である。
そして、この量子サイズ効果は約5nm以下の粒子で発現することが報告されている。


Here, E (R): Band gap energy (eV), E g : Bulk band gap energy, R: Particle radius (nm), m e : Effective mass of electron, m h : Effective mass of hole, ε: Dielectric Coefficient, e: Elementary quantity of electricity.
And it is reported that this quantum size effect is expressed by particles of about 5 nm or less.

ところが、粒径数百nm以下のSi微細粒子になると、粒径に対する表面積比率が著しく大で、上述のフッ酸と硝酸を同時に用いるような従来の酸エッチング工程では、表面溶出率が高いことから、表面からの溶出損が大きくて粒子径制御が難しく、工業的利用には現実的に利用困難であった。 However, when the Si fine particles have a particle size of several hundred nm or less, the surface area ratio to the particle size is remarkably large, and the conventional acid etching process using the above-described hydrofluoric acid and nitric acid simultaneously has a high surface elution rate. Since the elution loss from the surface is large, it is difficult to control the particle size, and it is practically difficult to use for industrial use.

特開平6-148822号公報Japanese Unexamined Patent Publication No. 6-148822

本発明の目的は、結晶性を維持したSi微細粒子の創製にあり、少なくとも粒径100nm以下のような一層の粒径微細化を実現する技術と共に、表面処理技術によって表面安定性の向上を図り、さらには、より低コストの製造方法を実現することおよびその製造方法で得たSi微細粒子を用いた,発光素子、太陽電池並びに半導体装置を提供することにある。 The object of the present invention is to create Si fine particles that maintain crystallinity, and to improve the surface stability by surface treatment technology as well as the technology to achieve further particle size refinement such as at least 100 nm in particle size. Furthermore, it is to provide a light emitting element, a solar cell, and a semiconductor device using a Si fine particle obtained by realizing a lower cost manufacturing method and the manufacturing method.

本発明は、固定砥粒切断法により生成したSiの切粉からビーズミル等の物理的粉砕法で得られたSi微細粒子を、フッ化水素(HF)の水溶液(以下、フッ酸という)中に分散させて光照射しながら表面エッチング処理する,いわゆる光化学的エッチング処理により、少なくとも粒径100nm以下で、紫外線等の励起光照射下において青色等に励起発光するSi微細粒子を創製する製造方法を提供する。 In the present invention, Si fine particles obtained by a physical grinding method such as a bead mill from Si chips produced by a fixed abrasive cutting method are placed in an aqueous solution of hydrogen fluoride (HF) (hereinafter referred to as hydrofluoric acid). Providing a manufacturing method for creating fine Si particles that emit light in blue or the like under the irradiation of excitation light such as ultraviolet rays, with a particle size of 100 nm or less, by so-called photochemical etching treatment, which is surface-etched while being dispersed and irradiated with light. To do.

本発明は、Si微細粒子を、室温程度の低温でフッ酸中に分散させて光照射しながら光化学的エッチング処理を行って、Siナノ結晶粒子として創製するSi微細粒子の製造方法を提供する。 The present invention provides a method for producing Si fine particles that are created as Si nanocrystal particles by dispersing Si fine particles in hydrofluoric acid at a low temperature of about room temperature and performing photochemical etching treatment while irradiating light.

本発明は、粒径100nm以下のSi微細粒子を用いることで、太陽電池の高効率化が可能な,少なくとも粒径100nm以下の青色発光可能となるSi極微細粒子を、シリコン切粉から物理的粉砕法と光化学的エッチング処理を用いて創製するSi微細粒子の形成方法およびそれにより得られたSi微細粒子を用いて、量子サイズ効果により広波長域に応答する発光素子や太陽電池あるいは半導体装置を提供する。 In the present invention, by using Si fine particles having a particle size of 100 nm or less, the Si ultrafine particles having a particle size of 100 nm or less and capable of emitting blue light can be physically obtained from silicon chips. A method for forming Si fine particles created using a pulverization method and a photochemical etching process, and a light emitting element, a solar cell, or a semiconductor device that responds to a wide wavelength region by a quantum size effect using the Si fine particles obtained thereby. provide.

本発明によると、例えばビーズミル法を用いて得られた,平均粒径百nm程度以下のSi微細粒子から、さらにフッ酸中に分散させて光照射しながら光化学的エッチング処理して,主として紫外線等の励起光照射下で青色等に励起発光するSi微細結晶粒子を得ることが可能となり、さらに、その微細粒子を用いた高性能な発光素子や太陽電池並びに半導体装置を実現することが可能となる。 According to the present invention, for example, by using a bead mill method, Si fine particles having an average particle size of about 100 nm or less are further dispersed in hydrofluoric acid and subjected to photochemical etching treatment while irradiating with light. It becomes possible to obtain Si fine crystal particles that emit light in blue or the like under irradiation of excitation light, and to realize high-performance light-emitting elements, solar cells, and semiconductor devices using the fine particles. .

また、本発明によると、Siの切粉から、ビーズミル法等で細粉砕して得たSi微細粒子を、さらに所定濃度のフッ酸中に分散して、かつ光照射しながら光化学的エッチング処理することにより、安定してSi微細粒子を得ることができる。 In addition, according to the present invention, Si fine particles obtained by finely pulverizing Si chips by a bead mill method or the like are further dispersed in a predetermined concentration of hydrofluoric acid and subjected to photochemical etching while irradiating with light. As a result, Si fine particles can be stably obtained.

本発明によると、Si微細粒子を、フッ酸中に分散して、かつ光照射しながら光化学的エッチング処理することにより、紫外線等の励起光照射下で青色等に励起発光するSi微細粒子を得て、これを用いた発光素子、太陽電池並びに半導体装置を実現することができる。 According to the present invention, Si fine particles that are excited in blue light under irradiation of excitation light such as ultraviolet rays are obtained by dispersing Si fine particles in hydrofluoric acid and performing photochemical etching treatment while irradiating light. Thus, a light emitting element, a solar cell, and a semiconductor device using the same can be realized.

また、本発明によると、粉砕して得たSi微細粒子を、所定濃度のフッ酸中に分散させて光照射しながら光化学的エッチング処理するSi微細粒子の形成方法により、例えば薄膜形成プリンタブル材料として利用して、光電変換層の厚みを0.01〜100μmの薄膜層に成した,量子サイズ効果により広波長域で動作の高変換効率の発光素子あるいは太陽電池が達成可能である。 In addition, according to the present invention, the Si fine particles obtained by pulverization are dispersed in a predetermined concentration of hydrofluoric acid and subjected to photochemical etching while being irradiated with light. Utilizing this, it is possible to achieve a light-emitting element or a solar cell having a high conversion efficiency operating in a wide wavelength region by a quantum size effect, in which a photoelectric conversion layer is formed as a thin film layer having a thickness of 0.01 to 100 μm.

本発明の実施例で得られたSi微細粒子の透過電子顕微鏡(TEM)による観察図である。It is an observation figure by the transmission electron microscope (TEM) of the Si fine particle obtained in the Example of this invention. 本発明の実施で得られたSi微細粒子のエタノール中でのフォトルミネッセンス(PL)特性図である。It is a photoluminescence (PL) characteristic view in ethanol of Si fine particles obtained by carrying out the present invention.

つぎに、本発明を、実施の形態である実施例により、図面を参照して詳細に述べる。 Next, the present invention will be described in detail by way of examples which are embodiments with reference to the drawings.

p型の単結晶Siのインゴットから固定砥粒切断法を用いてSiウェハを切出す際に生じるSiの切粉を、直径50μmのZrOビーズを用いたビーズミル法で、イソプロピールアルコール(IPA)中で粉砕して細粒子化処理したのち、減圧で乾燥処理してSi微細粒子を取出し、次いで、そのSi微細粒子の0.2グラムをフッ素樹脂容器内で99.5%濃度のエタノール20ミリリットル中に分散した。そして、このフッ素樹脂容器内へ室温で0.5wt%濃度のフッ酸(薬液)50ミリリットルを投入して、さらに、フッ素樹脂容器上に配置した250ワットのハロゲンランプから、選択色フィルター使用での波長λ>560nmの光を照射しながらの光化学的エッチング処理を、6,20,42時間、それぞれ、継続して実施した。このとき、0.5wt%濃度のフッ酸(薬液)によると、光照射しない場合にはエッチングが進行せず、光照射時にのみエッチングが行われることを確認した。 Si chips generated when a Si wafer is cut out from a p-type single crystal Si ingot using a fixed abrasive cutting method is isopropyl alcohol (IPA) by a bead mill method using ZrO 2 beads having a diameter of 50 μm. After pulverizing and finely pulverizing in, dry processing is performed under reduced pressure to take out Si fine particles, and then 0.2 gram of the Si fine particles is placed in a fluororesin container in 20 ml of 99.5% strength ethanol. Dispersed in. Then, 50 ml of 0.5 wt% hydrofluoric acid (chemical solution) is introduced into the fluororesin container at room temperature, and a 250 watt halogen lamp placed on the fluororesin container is used to use a selective color filter. The photochemical etching process while irradiating light having a wavelength λ> 560 nm was continuously performed for 6, 20, and 42 hours, respectively. At this time, according to the hydrofluoric acid (chemical solution) having a concentration of 0.5 wt%, it was confirmed that etching does not proceed when light is not irradiated, and etching is performed only at the time of light irradiation.

ついで、孔径0.1μmのフッ素樹脂製フィルター(メンブレンフィルター)に通して分留した。なお、この段階では、微細な粒子が相互に凝集して、見かけ上は外径数百nmの凝集体(塊)になっていた。
同フィルター上に残ったSiの微細粒(凝集体)を超純水でリンスしてヘラにより、別のガラス瓶に約0.05グラム取り込むとともに、それに99.5wt%のエタノールを40ミリリットル入れ、超音波で分散し、遠心分離して茶色の上澄み液を得た。そしてさらに、同上澄み液を上述のメンブレンフィルターに再度通して濾過することで、Siの微細粒子を含む無色透明な液で約20ミリリットルを得た。
Subsequently, it was fractionated by passing through a fluororesin filter (membrane filter) having a pore diameter of 0.1 μm. At this stage, fine particles aggregated with each other, and apparently became aggregates (lumps) having an outer diameter of several hundred nm.
Rinse fine Si particles (aggregates) remaining on the filter with ultrapure water and use a spatula to take about 0.05 grams into another glass bottle, and add 40 milliliters of 99.5 wt% ethanol to it. The mixture was dispersed with sonic waves and centrifuged to obtain a brown supernatant. Further, the supernatant was again passed through the membrane filter and filtered to obtain about 20 ml of a colorless and transparent liquid containing fine Si particles.

図1は上述の光化学的エッチング処理を42時間行った処理後における透明なエタノール中に存在するSi微細粒子の透過型電子顕微鏡(TEM)観察図であり、図中の中央部に丸囲いで示すSi微細粒子が認められる。このTEM観察により、42時間光照射後のサンプル中には粒子径5nm以下、最小2.2nmのSi微細粒子が含まれていることが確認できた。 FIG. 1 is a transmission electron microscope (TEM) observation of Si fine particles present in transparent ethanol after the above-described photochemical etching treatment for 42 hours, and is shown by a circle in the center of the figure. Si fine particles are observed. This TEM observation confirmed that the sample after 42 hours of light irradiation contained Si fine particles having a particle diameter of 5 nm or less and a minimum of 2.2 nm.

また、図2は、得られた無色透明のエタノール溶液中のSi微細粒子についてのフォトルミネッセンス(PL)特性図である。フッ酸(薬液)中でのハロゲンランプ(250W,波長λ>560nm)の光を照射した光化学的エッチング処理、および99.5wt%のエタノール中で超音波により分散して、さらに遠心分離して、その上澄み液から得たSi粒子は、そのエタノール中観察で、図2中の特性(a)に示すように、波長λex=365nmの励起紫外線照射下で410nm(3.0eV)に発光ビークを持つ良好な青色発光のスペクトル分布特性が得られた。 FIG. 2 is a photoluminescence (PL) characteristic diagram of Si fine particles in the colorless and transparent ethanol solution obtained. Photochemical etching treatment with irradiation of a halogen lamp (250 W, wavelength λ> 560 nm) in hydrofluoric acid (chemical solution), and ultrasonic dispersion in 99.5 wt% ethanol, followed by centrifugation, When observed in ethanol, the Si particles obtained from the supernatant liquid show a luminescence beak at 410 nm (3.0 eV) under excitation ultraviolet irradiation with a wavelength λ ex = 365 nm as shown in the characteristic (a) in FIG. A good spectral distribution characteristic of blue light emission was obtained.

なお、図2の特性(a)に見られるような励起発光は、光化学的エッチング処理を6時間の実施でも確認することができた。 In addition, the excitation light emission as seen in the characteristic (a) of FIG. 2 could be confirmed even when the photochemical etching treatment was performed for 6 hours.

一方、光化学的エッチング処理を行わなかった場合には、図2中の特性(b)に示すように、紫外線照射下での励起発光は見られなかった。 On the other hand, when the photochemical etching treatment was not performed, excitation light emission under ultraviolet irradiation was not observed as shown in the characteristic (b) in FIG.

これらの結果から、Siの切粉からのビーズミル法による粉砕と光化学的エッチング処理とにより得られるS微細粒子は、3eV程度のバンドギャップの広いSi微細粒子を創製できることを実証した。 From these results, it was proved that S fine particles obtained by pulverization from Si chips by a bead mill method and photochemical etching treatment can create Si fine particles having a wide band gap of about 3 eV.

本実施例では、Siの微細粒子化に当たって、単結晶Siや多結晶Siから固定砥粒切断法でウェハを切出す際に生じるSi切粉を利用したが、単結晶のSi基材(インゴット)から薄板の基板(ウェハ)を切出す際の,切出し工法に限らず,切粉と称されるSi粒子を素材として、これをボールミル法、ビーズミル法、衝撃波法あるいはジェットミル法で微細化処理したものも利用可能であり、そこで生じる切粉は、通常は廃棄対象であり、物として扱われるような低廉価な素材コストとしては極めて低価であり、よって、Si微細粒子を極めて低コストで製造できる。 In this example, in order to make Si fine particles, Si chips generated when a wafer was cut from single crystal Si or polycrystalline Si by a fixed abrasive cutting method was used. However, a single crystal Si base material (ingot) was used. In addition to the cutting method when cutting a thin substrate (wafer) from the substrate, Si particles called chips are used as a raw material, and this is refined by the ball mill method, bead mill method, shock wave method or jet mill method Can be used, and the resulting chips are usually subject to disposal and are very low cost for low-cost materials that can be handled as goods, thus producing Si fine particles at very low cost it can.

なお、ここで利用されるSiの切粉は、p型に限らず、用途に合わせて、i型やn型でもよく、また導電度も任意に選択することが可能である。 The Si chips used here are not limited to p-type, but may be i-type or n-type according to the application, and the conductivity can be arbitrarily selected.

本発明によると、励起発光の可能なSiナノ結晶粒子を含むSi微細粒子を低コストで創製することができ、本発明は工業的利用上の貢献度が真に大である。また、このSi微細粒子にバインダー材料や分散材を適宜調合して、有効なSiインク材料(塗布用シリコンペースト)を製造すること、さらには、同塗布用シリコンペーストを所定の結晶基板上やプラスチック基板上に塗布被膜形成して、Si微細粒子の機能に依拠した発光素子やpn接合構造の光電変換層を持つ太陽電池あるいはpn接合構造を有する半導体装置が創製可能である。 According to the present invention, Si fine particles including Si nanocrystal particles capable of exciting light emission can be created at low cost, and the present invention has a great contribution to industrial use. In addition, an effective Si ink material (silicon paste for application) is manufactured by appropriately mixing a binder material and a dispersing material with the Si fine particles, and further, the silicon paste for application is applied to a predetermined crystal substrate or plastic. It is possible to create a light emitting element based on the function of Si fine particles, a solar cell having a pn junction structure photoelectric conversion layer, or a semiconductor device having a pn junction structure by forming a coating film on the substrate.

本発明は、Siの切粉等の粒子から、さらなる粉砕及び/又は光化学的エッチング処理して得られる、粒径100nm以下、少なくとも粒径1nm〜数十nmのSi微細粒子を低コストで創製することができ、このSi微細粒子を用いて広波長域の発光素子や太陽電池等の光電変換装置、さらには、半導体デバイスや表示用デバイス等に適する薄膜形成の素材として利用することもできる。
The present invention creates, at low cost, Si fine particles having a particle size of 100 nm or less and at least a particle size of 1 nm to several tens of nm, which are obtained by further pulverization and / or photochemical etching treatment from particles such as Si chips. The Si fine particles can be used as a material for forming a thin film suitable for a light-emitting element in a wide wavelength range, a photoelectric conversion device such as a solar cell, a semiconductor device, a display device, and the like.

Claims (6)

Siの微細粒子を、フッ酸中に分散し、かつ光照射しながら光化学的エッチング処理して微細化する工程をそなえたSi微細粒子の形成方法。 A method for forming Si fine particles, comprising a step of dispersing Si fine particles in hydrofluoric acid and miniaturizing them by photochemical etching while irradiating with light. シリコン切粉を粉砕して得た,粒径100nm以下のSiの微細粒子を、フッ酸中に分散し、かつ光照射しながら光化学的エッチング処理して微細化する工程をそなえたSi微細粒子の形成方法。 Si fine particles obtained by pulverizing silicon chips and having a process of dispersing fine particles of Si having a particle size of 100 nm or less in hydrofluoric acid and performing photochemical etching treatment while irradiating with light. Forming method. Siの粉砕に、ビーズミル法、ボールミル法、ジェットミル法、衝撃波粉砕法のいずれかまたはそれらの組み合わせ工程そなえた請求項1〜2のいずれか1つに記載のSi微細粒子の形成方法。 The method for forming Si fine particles according to any one of claims 1 to 2, wherein any of a bead mill method, a ball mill method, a jet mill method, a shock wave pulverization method, or a combination thereof is provided for the pulverization of Si. 請求項1〜3のいずれか1つに記載のSi微細粒子の形成方法で得られた,Si微細粒子をそなえた発光素子。 A light emitting device comprising Si fine particles obtained by the method for forming Si fine particles according to claim 1. 請求項1〜3のいずれか1つに記載のSi微細粒子の形成方法で得られた,Si微細粒子による光電変換層をそなえた太陽電池。 The solar cell which provided the photoelectric converting layer by the Si fine particle obtained with the formation method of Si fine particle as described in any one of Claims 1-3. 請求項1〜3のいずれか1つに記載のSi微細粒子の形成方法で得られた,Si微細粒子をそなえた半導体装置。

A semiconductor device comprising Si fine particles obtained by the method for forming Si fine particles according to claim 1.

JP2012041709A 2012-02-28 2012-02-28 Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device Pending JP2013177265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041709A JP2013177265A (en) 2012-02-28 2012-02-28 Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041709A JP2013177265A (en) 2012-02-28 2012-02-28 Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device

Publications (1)

Publication Number Publication Date
JP2013177265A true JP2013177265A (en) 2013-09-09

Family

ID=49269356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041709A Pending JP2013177265A (en) 2012-02-28 2012-02-28 Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device

Country Status (1)

Country Link
JP (1) JP2013177265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106744672A (en) * 2016-12-15 2017-05-31 盐城工学院 A kind of preparation facilities and preparation system of three-D nano-porous silicon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
JP2008019114A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon fine particle
JP2010168255A (en) * 2009-01-23 2010-08-05 Sharp Corp Method for removing metal-containing material and method for refining silicon
JP2010195637A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Method for manufacturing silicon fine particle illuminant
JP2011132105A (en) * 2009-12-25 2011-07-07 Mitsubishi Electric Corp Method for producing fine silicon particle, and apparatus for producing fine silicon particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
JP2008019114A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon fine particle
JP2010168255A (en) * 2009-01-23 2010-08-05 Sharp Corp Method for removing metal-containing material and method for refining silicon
JP2010195637A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Method for manufacturing silicon fine particle illuminant
JP2011132105A (en) * 2009-12-25 2011-07-07 Mitsubishi Electric Corp Method for producing fine silicon particle, and apparatus for producing fine silicon particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106744672A (en) * 2016-12-15 2017-05-31 盐城工学院 A kind of preparation facilities and preparation system of three-D nano-porous silicon
CN106744672B (en) * 2016-12-15 2019-01-04 盐城工学院 A kind of preparation facilities and preparation system of three-D nano-porous silicon

Similar Documents

Publication Publication Date Title
Wang et al. Controlled synthesis of composition tunable formamidinium cesium double cation lead halide perovskite nanowires and nanosheets with improved stability
van Dijken et al. Influence of adsorbed oxygen on the emission properties of nanocrystalline ZnO particles
van Vugt et al. Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation
Zhang et al. 2D group-VA fluorinated antimonene: synthesis and saturable absorption
Vadavalli et al. Optical properties of germanium nanoparticles synthesized by pulsed laser ablation in acetone
Yu et al. Growth of dumbbell-like ZnO microcrystals under mild conditions and their photoluminescence properties
Ramizy et al. Porous silicon nanowires fabricated by electrochemical and laser-induced etching
WO2015178553A1 (en) Method for producing boron nitride quantum dot
Omar et al. Stiffness properties of porous silicon nanowires fabricated by electrochemical and laser-induced etching
Li et al. Solution‐growth strategy for large‐scale “CuGaO2 nanoplate/ZnS microsphere” heterostructure arrays with enhanced UV adsorption and optoelectronic properties
Li et al. Doping effect in Si nanocrystals
Jemsson et al. Polarized single photon emission and photon bunching from an InGaN quantum dot on a GaN micropyramid
JP2012229146A (en) METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE
Tang et al. Formation and photoluminescence of “cauliflower” silicon nanoparticles
Hu et al. Room-temperature irradiation route to synthesize a large-scale single-crystalline ZnO hexangular prism
Smerdov et al. Nanostructured porous silicon and graphene-based materials for PETE electrode synthesys
Kale et al. Synthesis of si nanoparticles from freestanding porous silicon (PS) film using ultrasonication
Sheng et al. Layer‐Dependent Exciton Modulation Characteristics of 2D MoS2 Driven by Acoustic Waves
Li et al. Physical and electrical performance of vapor–solid grown ZnO straight nanowires
Chen et al. Scalable production of p-MoTe2/n-MoS2 heterostructure array and its application for self-powered photodetectors and CMOS inverters
Fakhri et al. Synthesis and characterization of GaN/quartz nanostructure using pulsed laser ablation in liquid
Kartopu et al. Can chemically etched germanium or germanium nanocrystals emit visible photoluminescence?
JP2013177265A (en) Method for forming silicon fine particle, light emitting element using the same, solar cell and semiconductor device
Chang et al. The differences in optical characteristics of TiO2 and TiO2/AAO nanotube arrays fabricated by atomic layer deposition
CN104242053A (en) Implementation and enhancement method for ZnO single-mode ultraviolet lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517