JP2013175154A - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
JP2013175154A
JP2013175154A JP2012199911A JP2012199911A JP2013175154A JP 2013175154 A JP2013175154 A JP 2013175154A JP 2012199911 A JP2012199911 A JP 2012199911A JP 2012199911 A JP2012199911 A JP 2012199911A JP 2013175154 A JP2013175154 A JP 2013175154A
Authority
JP
Japan
Prior art keywords
radio
station
wireless
transmission
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012199911A
Other languages
Japanese (ja)
Inventor
Keitaro Hoshiba
圭太郎 干場
Masanori Kurita
昌典 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012199911A priority Critical patent/JP2013175154A/en
Publication of JP2013175154A publication Critical patent/JP2013175154A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wireless communication system capable of preventing a situation that a radio station cannot receive a radio signal due to a variation of the strength of received signal.SOLUTION: The wireless communication system includes plural fire alarms TR0 (radio station). Each of the fire alarms TR0 includes: an antenna 1; a radio transmission/reception part 2 that transmits and receives radio signals; and a control section 6 that controls the transmission and reception of radio signals. A control section 6 of a master station TR1 as one of the radio stations causes each of slave stations TR2,... as the other radio stations to periodically transmit a synchronizing signal including a regular monitor message. The control section 6 of the master station TR1 sets at least either one of a transmission timing of the synchronizing signal and transmission frequency per cycle of the synchronizing signal based on the strength of the received signal of the radio signal at each slave stations TR2, ....

Description

本発明は、複数の無線局から構成される無線通信システムに関する。   The present invention relates to a wireless communication system including a plurality of wireless stations.

近年、住宅火災による犠牲者を減らすことを目的として住宅への火災警報器の設置義務が法制化されたため、既存住宅への施工性の観点から無線信号を利用して複数の火災警報器を連動させる火災警報システムが望まれている。かかる火災警報システムは、多箇所に設置された複数台の火災警報器(無線局)がそれぞれに火災を感知する機能と警報音を鳴動する機能を有している。そして、何れかの火災警報器が火災を感知すると、当該火災警報器が警報音を鳴動するとともに火災感知を知らせる情報(火災感知情報)を無線信号で他の火災警報器に伝送する。これにより、火元の火災警報器だけでなく複数台の火災警報器が連動して一斉に警報音を鳴動することにより、火災の発生を迅速且つ確実に知らせることができる。このような火災警報器は、火災感知情報を無線信号で伝送するという特性を活かすために電池を電源として駆動される。しかも、通常は室内の天井のようにメンテナンス(電池交換)のし難い場所に設置されることから、例えば数年といった長期間にわたってメンテナンス無しに使用できることが望ましい。   In recent years, the obligation to install fire alarms in houses has been legislated to reduce the number of victims of house fires, so multiple fire alarms can be linked using wireless signals from the viewpoint of workability in existing houses. A fire alarm system is desired. Such a fire alarm system has a function in which a plurality of fire alarms (wireless stations) installed in many places sense a fire and sound a warning sound. When any of the fire alarms senses a fire, the fire alarm sounds an alarm sound and transmits information (fire detection information) for notifying the fire detection to another fire alarm with a wireless signal. Thereby, not only the fire source fire alarm device but also a plurality of fire alarm devices are interlocked to sound an alarm sound all at once, so that the occurrence of a fire can be notified quickly and reliably. Such a fire alarm is driven using a battery as a power source in order to take advantage of the characteristic of transmitting fire detection information by radio signals. Moreover, since it is usually installed in a place where maintenance (battery replacement) is difficult, such as an indoor ceiling, it is desirable that it can be used without maintenance for a long period of time, such as several years.

ここで、上述のような火災警報システムでは、火災が感知されると複数の火災警報器の間で相互に無線信号が伝送されるのであるが、その際、各火災警報器が勝手に(非同期に)無線信号を送信すると無線信号が衝突してしまうことになる。このような衝突を回避するものとして、例えば、特許文献1には複数の火災警報器がTDMA(時分割多重アクセス)方式で無線信号を伝送するようにした火災警報システムが記載されている。   Here, in the fire alarm system as described above, when a fire is detected, a wireless signal is transmitted between a plurality of fire alarms. B) If radio signals are transmitted, the radio signals will collide. In order to avoid such a collision, for example, Patent Document 1 describes a fire alarm system in which a plurality of fire alarm devices transmit radio signals by a TDMA (Time Division Multiple Access) method.

特開2009−251903号公報JP 2009-251903 A

ところで、特許文献1に記載の火災警報システムのような無線通信システムでは、無線局から他の無線局に対して定期的に監視メッセージを送信することで、各無線局が正常に動作しているか否かを確認する動作を行なっている。ここで、無線通信システムが構築される空間において、人の動き等によりフェージングが生じ、各無線局における無線信号の受信信号強度が変動する虞がある。従来、特定の無線局は、受信信号強度の変動に依らず定期的に監視メッセージを送信する。このため、監視メッセージの送信時において他の無線局の受信信号強度が変動している場合、他の無線局が無線信号を受信できずに動作確認を正常に行えない虞がある。このフェージングによる受信信号強度の変動は、上記のように動作確認を行う場合のみならず、無線局同士で無線信号を送受信する場合であれば起こりうる問題である。   By the way, in a wireless communication system such as the fire alarm system described in Patent Document 1, each wireless station is operating normally by periodically transmitting a monitoring message from the wireless station to other wireless stations. The operation of confirming whether or not is performed. Here, in the space where the wireless communication system is constructed, fading may occur due to human movement or the like, and the received signal strength of the wireless signal at each wireless station may vary. Conventionally, a specific wireless station periodically transmits a monitoring message regardless of fluctuations in received signal strength. For this reason, when the received signal strength of another radio station fluctuates at the time of transmitting the monitoring message, there is a possibility that the other radio station cannot receive the radio signal and the operation check cannot be performed normally. The fluctuation of the received signal strength due to fading is a problem that can occur not only when the operation is confirmed as described above, but also when wireless signals are transmitted and received between wireless stations.

本発明は、上記の点に鑑みて為されたもので、受信信号強度の変動により無線局が無線信号を受信できなくなる状況を回避することができる無線通信システムを提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a wireless communication system that can avoid a situation in which a wireless station cannot receive a wireless signal due to fluctuations in received signal strength.

本発明の無線通信システムは、複数の無線局から成り、これら複数の前記無線局間で電波を媒体とする無線信号を送受信する無線通信システムであって、前記各無線局は、複数のアンテナと、前記各アンテナのうち何れか1つを使用して無線信号を送信する送信手段、及び前記各アンテナのうち何れか1つを使用して無線信号を受信する受信手段を有する無線送受信部と、所定のイベントが発生したときに前記送信手段を起動し、所定の送信期間に前記イベントに対応したメッセージを含む無線信号を送信させるとともに所定の休止期間に無線信号の送信を休止させる動作を交互に繰り返し且つ前記イベントが発生していないときには前記送信手段を停止させる送信制御手段、及び一定の間欠受信間隔を繰り返しカウントするタイマ手段、及び前記タイマ手段による前記間欠受信間隔のカウント中は前記受信手段を停止させ、前記タイマ手段による前記間欠受信間隔のカウントが完了する度に前記受信手段を起動する受信制御手段を有する制御部と、電池を電源として前記各手段に動作電力を給電する給電手段とを備え、前記各無線局のうち一の無線局の前記制御部は、前記送信手段を起動して他の無線局に対して定期的に無線信号を送信させ、前記一の無線局の前記制御部は、前記他の無線局における無線信号の受信レベルに基づいて、前記定期的な無線信号の送信タイミング又は前記定期的な無線信号の1周期当たりの送信回数のうち少なくとも何れか一方を設定することを特徴とする。   The wireless communication system of the present invention is a wireless communication system that includes a plurality of wireless stations, and transmits and receives wireless signals using a radio wave as a medium between the plurality of wireless stations, and each wireless station includes a plurality of antennas. A radio transmission / reception unit including a transmission unit that transmits a radio signal using any one of the antennas, and a reception unit that receives a radio signal using any one of the antennas; The transmission unit is activated when a predetermined event occurs, and an operation of transmitting a radio signal including a message corresponding to the event in a predetermined transmission period and pausing transmission of the radio signal in a predetermined pause period are alternately performed. Repetitive transmission control means for stopping the transmission means when the event has not occurred, timer means for repeatedly counting a constant intermittent reception interval, and A control unit having reception control means for stopping the reception means during counting of the intermittent reception interval by the timer means and starting the reception means each time counting of the intermittent reception interval by the timer means is completed; and a battery Power supply means for supplying operating power to the respective means using the power supply as a power source, and the control unit of one of the radio stations activates the transmission means and periodically transmits to other radio stations. And the control unit of the one wireless station transmits the periodic wireless signal transmission timing or the periodic wireless signal based on the reception level of the wireless signal in the other wireless station. It is characterized in that at least one of the number of transmissions per cycle is set.

この無線通信システムにおいて、前記一の無線局の前記制御部は、前記受信レベルの変動が相対的に小さい時間帯に、前記定期的な無線信号の送信タイミングを設定することが好ましい。   In this radio communication system, it is preferable that the control unit of the one radio station sets the transmission timing of the periodic radio signal in a time zone in which the fluctuation of the reception level is relatively small.

この無線通信システムにおいて、前記一の無線局の前記制御部は、前記他の無線局との間で無線信号を送受信することにより前記受信レベルの時間分布を求め、前記時間分布に基づいて前記受信レベルの変動が相対的に小さい時間帯に、前記定期的な無線信号の送信タイミングを設定することが好ましい。   In this wireless communication system, the control unit of the one wireless station obtains a time distribution of the reception level by transmitting and receiving a wireless signal to and from the other wireless station, and the reception based on the time distribution It is preferable to set the transmission timing of the periodic radio signal in a time zone in which the level fluctuation is relatively small.

この無線通信システムにおいて、前記一の無線局の前記制御部は、前記他の無線局との間で無線信号を送受信することにより前記受信レベルの確率分布を求め、前記確率分布に基づいて前記定期的な無線信号の1周期当たりの送信回数を設定することが好ましい。   In this wireless communication system, the control unit of the one wireless station obtains a probability distribution of the reception level by transmitting and receiving a wireless signal to and from the other wireless station, and the periodic transmission is performed based on the probability distribution. It is preferable to set the number of transmissions of a typical wireless signal per cycle.

この無線通信システムにおいて、前記一の無線局の前記制御部は、任意の一定期間を試験期間に設定し、前記試験期間において前記定期的な無線信号の送信間隔よりも短い間隔で無線信号を前記他の無線局との間で送受信することにより、前記受信レベルのデータを得ることが好ましい。   In this radio communication system, the control unit of the one radio station sets an arbitrary fixed period as a test period, and transmits the radio signal at an interval shorter than the periodic radio signal transmission interval in the test period. It is preferable to obtain the data of the reception level by transmitting / receiving to / from another radio station.

この無線通信システムにおいて、前記各無線局は、火災の発生を感知する火災警報器と、空気質を測る空気質センサを有する無線局と、人の存在を検知する人センサを有する無線局との少なくとも何れか1種であることが好ましい。   In this wireless communication system, each wireless station includes a fire alarm that detects the occurrence of a fire, a wireless station that has an air quality sensor that measures air quality, and a wireless station that has a human sensor that detects the presence of a person. At least one of them is preferable.

本発明は、受信信号強度の低下により無線局が無線信号を受信できなくなる状況を回避することができるという効果を奏する。   The present invention has an effect of avoiding a situation in which a radio station cannot receive a radio signal due to a decrease in received signal strength.

本発明に係る無線通信システムの実施形態を示す図で、(a)は火災警報器のブロック図で、(b)は何れかの子局における受信信号強度の時間分布を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows embodiment of the radio | wireless communications system which concerns on this invention, (a) is a block diagram of a fire alarm device, (b) is a figure which shows the time distribution of the received signal strength in either slave station. 同上の無線通信システムにおける無線信号のフレームフォーマットである。It is a frame format of a radio signal in the above radio communication system. 同上の無線通信システムにおいて、火災感知時の通信動作を説明するためのタイムチャートである。4 is a time chart for explaining a communication operation when a fire is detected in the above wireless communication system. 同上の無線通信システムの何れかの子局における受信信号強度の確率分布を示す図である。It is a figure which shows the probability distribution of the received signal strength in either slave station of a radio | wireless communications system same as the above.

以下、本発明に係る無線通信システムの実施形態について図面を用いて説明する。本実施形態は、図1(a)に示すように、複数台(図示では2台)の火災警報器(無線局)で構成されている。なお、以下の説明では、火災警報器を個別に示す場合は火災警報器TR1,TR2,…,TRnと表記し、総括して示す場合は火災警報器TR0と表記する。また、以下の説明では、一の火災警報器TR1を「親局TR1」、他の火災警報器TR2,…を「子局TR2,…」と表記する。   Hereinafter, embodiments of a wireless communication system according to the present invention will be described with reference to the drawings. As shown in FIG. 1A, the present embodiment includes a plurality (two in the figure) of fire alarms (wireless stations). In the following description, fire alarms are indicated as fire alarms TR1, TR2,..., TRn when indicated individually, and are indicated as fire alarms TR0 when indicated collectively. In the following description, one fire alarm device TR1 is referred to as “master station TR1,” and the other fire alarm devices TR2,.

火災警報器TR0は、アンテナ1と、無線送受信部2(送信手段、受信手段)と、警報部3と、操作入力受付部4とを備える。また、火災警報器TR0は、火災感知部5と、制御部6(送信制御手段、受信制御手段、タイマ手段)と、乾電池等の電池を電源として各部に動作電力を供給する電源部7(給電手段)とを備える。   The fire alarm device TR0 includes an antenna 1, a wireless transmission / reception unit 2 (transmission unit, reception unit), an alarm unit 3, and an operation input reception unit 4. The fire alarm TR0 includes a fire detection unit 5, a control unit 6 (transmission control unit, reception control unit, timer unit), and a power source unit 7 (power supply) that supplies operating power to each unit using a battery such as a dry battery as a power source. Means).

無線送受信部2は、電波法施行規則第6条第4項第3号に規定される「小電力セキュリティシステムの無線局」に準拠して電波を媒体とする無線信号を送受信するものである。そして、無線送受信部2は、アンテナ1から電波を媒体とした無線信号を送信するとともに他の火災警報器TR0が送信した無線信号をアンテナ1で受信する。なお、アンテナ1は、火災警報器TR0の本体から突出したデザインのものであってもよいが、アンテナ1を目立たないように本体に内蔵したデザインのものも作製可能である。   The radio transmission / reception unit 2 transmits / receives a radio signal using radio waves as a medium in accordance with “radio station of low power security system” defined in Article 6, Paragraph 4, Item 3 of the Radio Law Enforcement Regulations. The wireless transmission / reception unit 2 transmits a radio signal using radio waves as a medium from the antenna 1 and receives a radio signal transmitted from another fire alarm device TR0 by the antenna 1. The antenna 1 may have a design that protrudes from the main body of the fire alarm device TR0, but an antenna having a design that is built in the main body so that the antenna 1 is not conspicuous can be produced.

警報部3は、ブザー音を鳴動するブザーと、音声メッセージを鳴動するスピーカとを備え、ブザー音や音声メッセージ(例えば、「火事です」等)による火災警報(以下、「警報音」と呼ぶ)を報知する。   The alarm unit 3 includes a buzzer that sounds a buzzer sound and a speaker that sounds a voice message, and a fire alarm (hereinafter referred to as “alarm sound”) by a buzzer sound or a voice message (for example, “is a fire”). Is notified.

操作入力受付部4は、1乃至複数のスイッチ(例えば、押釦スイッチ)を有しており、スイッチが操作されることで各スイッチに対応した操作入力を受け付けるとともに当該操作入力に対応した操作信号を制御部6に出力する。例えば、操作入力受付部4は、警報部3による警報音の鳴動を停止するための操作入力などを受け付ける。   The operation input receiving unit 4 includes one or more switches (for example, push button switches), and receives an operation input corresponding to each switch when the switch is operated and outputs an operation signal corresponding to the operation input. Output to the control unit 6. For example, the operation input accepting unit 4 accepts an operation input for stopping the sounding of the alarm sound by the alarm unit 3.

火災感知部5は、例えば、火災にともなって発生する煙や熱、炎などを検出することで火災を感知するものである。なお、火災感知部5の構成については従来周知であるから、ここでは詳細な説明を省略する。   The fire sensing unit 5 senses a fire by detecting smoke, heat, flame, and the like generated with the fire, for example. In addition, since the structure of the fire detection part 5 is conventionally well-known, detailed description is abbreviate | omitted here.

制御部6は、マイコンや、書き換え可能な不揮発性の半導体メモリ等から成るメモリ部6Aを主な構成要素とする。制御部6は、図示しないメモリ(ROMあるいはEEPROM等)に格納されたプログラムをマイコンで実行することにより、後述する各種の機能を実現する。例えば、制御部6は、火災感知部5で火災の発生が感知されると、警報部3を駆動して警報音を鳴動させたり、予めメモリ(あるいはメモリ部6A)に格納されている警報用の音声メッセージを鳴動させたりすることで火災警報を報知する機能を有する。また、制御部6は、他の火災警報器TR0においても火災警報を報知させるために、火災警報メッセージを含む無線信号を無線送受信部2より送信させる機能も有する。また、制御部6は、他の火災警報器TR0から送信された無線信号を無線送受信部2で受信することにより火災警報メッセージを受け取ったときも、制御部6が警報部3を制御して警報音を鳴動させる機能も有する。   The control unit 6 includes a memory unit 6A including a microcomputer or a rewritable nonvolatile semiconductor memory as a main component. The control part 6 implement | achieves the various functions mentioned later by running the program stored in memory (ROM or EEPROM etc.) which is not illustrated with a microcomputer. For example, when the fire detection unit 5 detects the occurrence of a fire, the control unit 6 drives the alarm unit 3 to sound an alarm sound, or for alarms stored in the memory (or the memory unit 6A) in advance. It has a function to notify a fire alarm by sounding a voice message. The control unit 6 also has a function of causing the wireless transmission / reception unit 2 to transmit a radio signal including a fire alarm message in order to notify the fire alarm also in other fire alarm devices TR0. In addition, the control unit 6 controls the alarm unit 3 to generate an alarm even when the control unit 6 receives a fire alarm message by receiving a radio signal transmitted from another fire alarm device TR0. It also has a function to sound.

なお、各火災警報器TR1,TR2,…には固有の識別符号が割り当てられてメモリ部6Aに格納されており、当該識別符号によって無線信号の宛先並びに送信元の火災警報器TR1,TR2,…が特定できるようになっている。   Each of the fire alarm devices TR1, TR2,... Is assigned a unique identification code and stored in the memory unit 6A, and the destination of the radio signal and the source fire alarm devices TR1, TR2,. Can be specified.

ここで、電波法施行規則の無線設備規則第49条の17「小電力セキュリティシステムの無線局の無線設備」では、送信期間が3秒以下、休止期間が2秒以上とすることが規定されている(同条第5号参照)。なお、「送信期間」は、無線信号を連続して送信してもよい期間を示し、「休止期間」は、送信期間と送信期間の間に設けられた、無線信号を送信してはいけない期間を示す。このために本実施形態における制御部6では、上記無線設備規則に適合する送信期間に無線信号を送信させるとともに休止期間に送信を停止し且つ受信可能な状態としている。   Here, Article 49-17 “Radio Equipment for Radio Stations of Low Power Security System” of Radio Equipment Regulations of the Radio Law Enforcement Regulation stipulates that the transmission period is 3 seconds or less and the suspension period is 2 seconds or more. (See item 5 of the same article). The “transmission period” indicates a period during which the radio signal may be transmitted continuously, and the “pause period” is a period provided between the transmission period and the transmission period during which the radio signal should not be transmitted. Indicates. For this reason, the control unit 6 in the present embodiment transmits a radio signal during a transmission period that complies with the radio equipment rules, and stops transmission during a pause period and enables reception.

また、制御部6では、マイコンに内蔵するタイマ(タイマ手段)で所定の間欠受信間隔(但し、間欠受信間隔は前記送信期間よりも長い時間とする)を繰り返しカウントしている。そして、制御部6は、当該カウントが完了する毎に無線送受信部2を起動して所望の電波(他の火災警報器TR0が送信した無線信号)が受信できるか否かをチェックし、当該電波が捉えられなければ直ちに無線送受信部2を停止して待機状態に移行させる。これにより、平均消費電力を大幅に低減し、電源部7の電池寿命をできるだけ長くしている。ここで、電波の受信チェックは、無線送受信部2から出力される、受信信号強度(受信レベル)の大小に比例した直流電圧信号であるRSSI信号に基づいて制御部6が行っており、詳細については従来周知であるから省略する。なお、「RSSI信号」とは、受信信号強度(Receiving Signal Strength Indication)信号のことである。   The controller 6 repeatedly counts a predetermined intermittent reception interval (however, the intermittent reception interval is longer than the transmission period) by a timer (timer means) built in the microcomputer. Then, every time the counting is completed, the control unit 6 activates the wireless transmission / reception unit 2 to check whether or not a desired radio wave (a radio signal transmitted by another fire alarm device TR0) can be received. If the signal is not detected, the wireless transmission / reception unit 2 is immediately stopped to shift to a standby state. Thereby, the average power consumption is greatly reduced, and the battery life of the power supply unit 7 is made as long as possible. Here, the radio wave reception check is performed by the control unit 6 based on the RSSI signal, which is a DC voltage signal proportional to the magnitude of the received signal strength (reception level) output from the wireless transmission / reception unit 2. Is omitted because it is well known. The “RSSI signal” refers to a receiving signal strength (Receiving Signal Strength Indication) signal.

さらに、親局TR1の制御部6では、定期的(例えば、24時間毎)に無線送受信部2を起動して定期監視を行うために定期監視メッセージを含む無線信号を送信させる。ここで、「定期監視」とは、子局TR2,…が正常に動作しているか否かの確認を行うことである。親局TR1の制御部6は、定期監視メッセージを含む無線信号を送信した後は、無線送受信部2を受信状態に切り換えて各子局TR2,…から送信される無線信号を受信する。   Further, the control unit 6 of the master station TR1 causes the wireless transmission / reception unit 2 to be activated periodically (for example, every 24 hours) to transmit a wireless signal including a periodic monitoring message in order to perform periodic monitoring. Here, “periodic monitoring” means checking whether or not the slave stations TR2,... Are operating normally. After transmitting the radio signal including the regular monitoring message, the control unit 6 of the master station TR1 switches the radio transmission / reception unit 2 to the reception state and receives the radio signal transmitted from each of the slave stations TR2,.

子局TR2,…においては、制御部6が火災感知部5の故障の有無及び電源部7の電池切れの有無を一定周期で(例えば、1時間毎に)監視するとともに、その監視結果(故障の有無及び電池切れの有無)をメモリ部6Aに記憶している。そして、子局TR2,…の制御部6は、親局TR1から定期監視メッセージを受け取ったときに、メモリ部6Aに記憶している監視結果を通知するための通知メッセージを含む無線信号を親局TR1に返信する。   In the slave stations TR2,..., The control unit 6 monitors whether or not the fire detection unit 5 has failed and whether or not the power supply unit 7 has run out of battery at regular intervals (for example, every hour), and the monitoring result (failure) The presence / absence of the battery and the presence / absence of the battery dead) are stored in the memory unit 6A. Then, the control unit 6 of the slave stations TR2,... Receives a radio signal including a notification message for notifying the monitoring result stored in the memory unit 6A when receiving the regular monitoring message from the master station TR1. Reply to TR1.

ここで、定期監視メッセージを含む無線信号を送信してから所定時間内に返信してこない子局TR2,…があれば、親局TR1の制御部6は、警報部3のブザーを駆動して報知音を鳴動させる等して、子局TR2,…に異常が発生したことを知らせる。ここで、「異常」とは、故障又は電池切れを示す。また、何れかの子局TR2,…が返信してきた通知メッセージが異常有りの監視結果を通知するものである場合も、親局TR1の制御部6は、上記と同様に子局TR2,…に異常が発生したことを知らせる。なお、火災警報器TR1,TR2,…の制御部6は、異常が生じていると判断した場合、直ちに警報部3から異常の発生を知らせるための警告音を警報部3のブザー又はスピーカから鳴動させるようになっている。   Here, if there is a slave station TR2,... That does not reply within a predetermined time after transmitting a radio signal including a periodic monitoring message, the control unit 6 of the master station TR1 drives the buzzer of the alarm unit 3. An alarm is sounded to notify the slave stations TR2,... That an abnormality has occurred. Here, “abnormal” indicates failure or battery exhaustion. Further, when the notification message returned from any of the slave stations TR2,... Notifies the monitoring result that there is an abnormality, the control unit 6 of the master station TR1 has an abnormality in the slave stations TR2,. Notify that it has occurred. When the control unit 6 of the fire alarm devices TR1, TR2,... Determines that an abnormality has occurred, a warning sound for notifying the occurrence of the abnormality immediately from the alarm unit 3 sounds from the buzzer or speaker of the alarm unit 3. It is supposed to let you.

また、親局TR1の制御部6は、火災感知部5が火災を感知して各子局TR2,…に火災警報メッセージを送信した後、若しくは何れかの子局TR2,…から火災警報メッセージを受信した後は、無線送信部2に一定周期で同期ビーコンを送信させる。この同期ビーコンは、複数の火災警報器TR0同士でTDMA(時分割多元接続)方式の無線通信(以下、「同期通信」と呼ぶ。)を行うために必要なタイムスロットを規定する信号である。同期ビーコンは、その1周期(サイクル)が複数のタイムスロットに分割され、全ての子局TR2,…にそれぞれ互いに異なるタイムスロットが1つずつ割り当てられる。そして、親局TR1から子局TR2,…へのメッセージは同期ビーコンに含めて送信され、子局TR2,…から親局TR1へのメッセージを含む無線信号は、各子局TR2,…に割り当てられているタイムスロットに格納されて送信される。   Also, the control unit 6 of the master station TR1 receives a fire alarm message from any of the slave stations TR2,. Thereafter, the wireless transmission unit 2 is caused to transmit a synchronization beacon at a constant cycle. The synchronous beacon is a signal that defines a time slot necessary for performing TDMA (time division multiple access) wireless communication (hereinafter referred to as “synchronous communication”) between a plurality of fire alarms TR0. One period (cycle) of the synchronization beacon is divided into a plurality of time slots, and one different time slot is assigned to each of the slave stations TR2,. Then, a message from the master station TR1 to the slave station TR2,... Is transmitted in a synchronous beacon, and a radio signal including a message from the slave station TR2,... To the master station TR1 is assigned to each slave station TR2,. Stored in the current time slot and transmitted.

したがって、複数台の火災警報器TR0(親局TR1並びに子局TR2,…)から送信される無線信号の衝突を確実に回避することができる。なお、各火災警報器TR0に対するタイムスロットの割当は固定であってもよいが、親局TR1から送信する同期ビーコンによってタイムスロットの割当情報を各子局TR2,…に通知しても構わない。   Therefore, it is possible to reliably avoid collision of radio signals transmitted from a plurality of fire alarm devices TR0 (master station TR1 and slave stations TR2,...). The time slot assignment for each fire alarm TR0 may be fixed, but the time slot assignment information may be notified to each slave station TR2,... By a synchronous beacon transmitted from the master station TR1.

図2は、火災警報器TR0が送受信する無線信号のフレームフォーマットを示している。このフレームフォーマットは、同期ビット(プリアンブル:PA)、フレーム同期パターン(ユニークワード:UW)、宛先アドレス(DA)、送信元アドレス(SA)、メッセージ(M)、CRC符号で1フレームが構成されている。ここで、宛先アドレス(DA)として各火災警報器TR0の識別符号を設定すれば、当該識別符号の火災警報器TR0のみが無線信号を受信してメッセージを取得する。また、宛先アドレス(DA)として何れの火災警報器TR0にも割り当てられていない特殊なビット列(例えば、全てのビットを1としたビット列)を設定すれば、無線信号をマルチキャストして全ての火災警報器TR0にメッセージを取得させることができる。例えば、火災警報メッセージを含む無線信号が親局TR1から全ての子局TR2,…にマルチキャストされる。   FIG. 2 shows a frame format of a radio signal transmitted and received by the fire alarm device TR0. In this frame format, one frame is composed of a synchronization bit (preamble: PA), a frame synchronization pattern (unique word: UW), a destination address (DA), a source address (SA), a message (M), and a CRC code. Yes. Here, if the identification code of each fire alarm device TR0 is set as the destination address (DA), only the fire alarm device TR0 with the identification code receives the radio signal and acquires the message. Also, if a special bit string that is not assigned to any fire alarm device TR0 is set as the destination address (DA) (for example, a bit string in which all bits are set to 1), all fire alarms are transmitted by multicasting radio signals. The message can be acquired by the device TR0. For example, a radio signal including a fire alarm message is multicast from the master station TR1 to all the slave stations TR2,.

次に、火災感知の前後における本実施形態の通信動作を図3を用いて説明する。例えば、子局TR2において火災感知部5が火災を感知すると、子局TR2の制御部6は、警報部3より警報音を鳴動させるとともに、タイマによる間欠受信間隔T1のカウント完了前に無線送受信部2を起動する。そして、子局TR2の制御部6は、当該カウント完了時点を含む送信期間内に火災警報メッセージを含む無線信号を他の全ての火災警報器TR(親局TR1及び他の子局TR3,…)に宛てて送信する。この際、送信元の子局TR2の制御部6は、送信期間内で送信可能なフレーム数だけ無線信号を連続して送信し、送信期間後の休止期間(受信期間)には無線送受信部2を受信状態に切り換える。   Next, the communication operation of this embodiment before and after the fire detection will be described with reference to FIG. For example, when the fire detection unit 5 detects a fire in the slave station TR2, the control unit 6 of the slave station TR2 sounds an alarm sound from the alarm unit 3, and before the count of the intermittent reception interval T1 by the timer is completed, the radio transmission / reception unit 2 is started. Then, the control unit 6 of the slave station TR2 sends a radio signal including a fire alarm message to all other fire alarm devices TR (the master station TR1 and other slave stations TR3,...) Within a transmission period including the count completion time. Send to. At this time, the control unit 6 of the transmission source child station TR2 continuously transmits the radio signal by the number of frames that can be transmitted within the transmission period, and the radio transmission / reception unit 2 during the pause period (reception period) after the transmission period. To the receiving state.

なお、後述するように各火災警報器TR1,TR2,…において間欠受信間隔T1のカウントが完了するタイミングが揃っている場合には、1回の送信期間で火災警報メッセージを含む無線信号を受信することができる。   As will be described later, when the fire alarm devices TR1, TR2,... Are ready to complete counting of the intermittent reception interval T1, a radio signal including a fire alarm message is received in one transmission period. be able to.

ここで、小電力無線を利用すれば、無線通信距離としては通常の住宅ひとつのエリア内であれば十分カバーできるので、火元の子局TR2が、他の火災警報器TR(親局TR1及び他の子局TR3,…)に対しメッセージを送信することは通常は十分可能である。しかしながら、上述したように親局TR1は各子局TR2〜TR4に対して定期監視を行っており、親局TR1と各子局TR2〜TR4との間では通信パスの正常性が確認されているが、子局TR2〜TR4間の通信パスは確認されていない。このため、例えば障害物などの影響によって、ある子局にはメッセージが届いていない可能性もある。   Here, if the low-power radio is used, the wireless communication distance can be sufficiently covered as long as it is in an area of a normal house. Therefore, the fire station child station TR2 can connect other fire alarm devices TR (master station TR1 and master station TR1). It is usually possible to send a message to other slave stations TR3,. However, as described above, the master station TR1 periodically monitors the slave stations TR2 to TR4, and the normality of the communication path is confirmed between the master station TR1 and each of the slave stations TR2 to TR4. However, the communication path between the slave stations TR2 to TR4 has not been confirmed. For this reason, there is a possibility that a message does not reach a certain slave station due to the influence of an obstacle, for example.

そこで、火災警報メッセージを受信した親局TR1の制御部6は、送信元の子局TR2を除く他の子局TR3,TR4に対して火災警報メッセージを含む無線信号を、タイマによる間欠受信間隔T1のカウント完了時点を含む送信期間に送信する。他の子局TR3,TR4の制御部6では、子局TR2又は親局TR1から送信された火災警報メッセージを受け取ると直ちに警報部3より警報音を鳴動させる。また、他の子局TR3,TR4の制御部6は、無線送受信部2より火災警報メッセージの受信を確認する応答メッセージ(ACK)を無線信号によって返信する。なお、このように少なくとも1台の火災警報器TR0で火災が感知されることで全ての火災警報器TR0が火災警報を報知(警報音を鳴動)することを、以下では「連動鳴動」と呼ぶ。   Therefore, the control unit 6 of the master station TR1 that has received the fire alarm message transmits a radio signal including the fire alarm message to the other slave stations TR3 and TR4 other than the source slave station TR2, and an intermittent reception interval T1 by the timer. It is transmitted in the transmission period including the time point of completion of counting. When the control unit 6 of the other slave stations TR3 and TR4 receives the fire alarm message transmitted from the slave station TR2 or the master station TR1, the alarm unit 3 immediately sounds an alarm sound. Further, the control units 6 of the other slave stations TR3 and TR4 send back a response message (ACK) for confirming reception of the fire alarm message from the radio transmission / reception unit 2 by a radio signal. In addition, when all the fire alarm devices TR0 notify a fire alarm (sound an alarm sound) when a fire is detected by at least one fire alarm device TR0 in this way, it is hereinafter referred to as “linked sounding”. .

親局TR1の制御部6は、他の全ての子局TR3,TR4から応答メッセージ(ACK)を受け取れば、タイムスロットを規定するための同期ビーコンを一定の周期で無線送受信部2から送信させる。なお、本実施形態では先頭のタイムスロットを子局TR2に、2番目のタイムスロットを子局TR3に、3番目のタイムスロットを子局TR4にそれぞれ割り当てている。   When the control unit 6 of the master station TR1 receives the response message (ACK) from all the other slave stations TR3 and TR4, the control unit 6 causes the radio transmission / reception unit 2 to transmit a synchronization beacon for defining a time slot at a constant period. In the present embodiment, the first time slot is assigned to the child station TR2, the second time slot is assigned to the child station TR3, and the third time slot is assigned to the child station TR4.

ここで、上述のように親局TR1は各子局TR2〜TR4に対して定期監視を行っており、親局TR1と各子局TR2〜TR4との間では通信パスの正常性が確認されているが、子局TR2〜TR4間の通信パスは確認されていない。したがって、子局TR2,…が多数配置された場合、子局TR2,…間の通信パスの数は非常に多くなる為、子局TR2,…間の通信パスの正常性の確認を行うと電池消耗が激しくなる。そこで、本実施形態では、上述のように一の火災警報器TR1を親局とし、その他の火災警報器TR2,…を子局として、親局TR1から各子局TR2,…に火災警報メッセージやその他のメッセージ(後述する)を通知するようにしている。これにより、相互に通信パスが確立できない子局が存在する場合でも確実に連動鳴動させることができる。   Here, as described above, the master station TR1 periodically monitors the slave stations TR2 to TR4, and the normality of the communication path is confirmed between the master station TR1 and each of the slave stations TR2 to TR4. However, the communication path between the slave stations TR2 to TR4 has not been confirmed. Therefore, when a large number of slave stations TR2,... Are arranged, the number of communication paths between the slave stations TR2,. Exhaustion becomes intense. Therefore, in the present embodiment, as described above, one fire alarm device TR1 is a master station, and other fire alarm devices TR2,... Are slave stations, and the master station TR1 sends a fire alarm message to each slave station TR2,. Other messages (described later) are notified. As a result, even when there are slave stations that cannot establish a communication path with each other, the interlocking ringing can be reliably performed.

また、全ての火災警報器TR0が警報音を鳴動することにより連動鳴動が開始されると、親局TR1の制御部6は、同期ビーコンに含めることで火災警報メッセージM1(図4参照)を一定周期で全ての子局TR2,…に繰り返し送信する。そして、各子局TR2,…の制御部6では、親局TR1から送信される火災警報メッセージM1を受け取る度に警報部3の状態を確認し、仮に警報部3が停止していたとしたら警報部3に再度警報音を鳴動させる。   Also, when all the fire alarms TR0 sound an alarm sound and the linked sounding is started, the control unit 6 of the master station TR1 includes the fire alarm message M1 (see FIG. 4) by including it in the synchronous beacon. It is repeatedly transmitted to all the slave stations TR2,. Then, the control unit 6 of each slave station TR2,... Checks the state of the alarm unit 3 every time the fire alarm message M1 transmitted from the master station TR1 is received, and if the alarm unit 3 is stopped, the alarm unit 3 causes the alarm to sound again.

上述のように、本実施形態では、全ての火災警報器TR0で火災警報が報知され始めてからは、時分割多元接続(TDMA)による無線通信を行うことで衝突を回避することができる。更に、本実施形態では、一の火災警報器(親局)TR1から他の全ての火災警報器(子局)TR2,…に対して火災警報メッセージM1を同期ビーコンに含めて周期的に送信することで確実に火災警報を報知することができる。その結果、無線信号の衝突を回避しつつ複数の火災警報器TR0を効果的に連動させることができる。また、本実施形態では、火災発生時には全ての火災警報器TR0で火災警報が報知されるので、利用者が火災警報を知覚する(警報音を聞く)機会が増えるために安全性を向上することができる。   As described above, in the present embodiment, after fire alarms are started to be notified by all the fire alarm devices TR0, collision can be avoided by performing wireless communication by time division multiple access (TDMA). Furthermore, in this embodiment, the fire alarm message M1 is included in the synchronous beacon and periodically transmitted from one fire alarm (master station) TR1 to all other fire alarms (slave stations) TR2,. Thus, it is possible to reliably notify the fire alarm. As a result, a plurality of fire alarm devices TR0 can be effectively linked while avoiding radio signal collision. Moreover, in this embodiment, since fire alarms are notified by all fire alarm devices TR0 in the event of a fire, the user has more opportunities to perceive the fire alarm (listen to the alarm sound) to improve safety. Can do.

ところで、上記の通信動作において、各火災警報器TR1,TR2…が動作を開始する(タイマが間欠受信間隔T1のカウントを開始する)タイミングは、通常一致しない。このため、各火災警報器TR1,TR2,…の制御部6が無線送受信部2を起動して電波を受信するタイミング(図3における下向きの矢印参照)も不揃いとなる。これに対して本実施形態では、図3に示すように、各火災警報器TR1,TR2,…の無線送受信部2で同期信号が受信されると、制御部6がタイマによる間欠受信間隔T1のカウントを中止させる。そして、制御部6は、同期信号の終了時点(t=t0)から一定の待機時間T2が経過した時点でタイマによる間欠受信間隔T1のカウントを再開させる。   Incidentally, in the above communication operation, the timings at which the fire alarm devices TR1, TR2,... Start operation (the timer starts counting the intermittent reception interval T1) do not normally coincide. For this reason, the timing (refer to the downward arrow in FIG. 3) at which the control unit 6 of each fire alarm device TR1, TR2,... On the other hand, in this embodiment, as shown in FIG. 3, when the synchronization signal is received by the wireless transmission / reception unit 2 of each fire alarm device TR1, TR2,..., The control unit 6 sets the intermittent reception interval T1 by the timer. Stop counting. And the control part 6 restarts the count of the intermittent reception interval T1 by a timer when the fixed standby | waiting time T2 passes from the end time (t = t0) of a synchronizing signal.

したがって、同期信号を受信した後は、各火災警報器TR1,TR2,…においてタイマが間欠受信間隔T1のカウントを完了するタイミングが揃うことになるので、一の無線局から送信される無線信号を他の全ての無線局がほぼ同時に受信することができる。その結果、間欠受信を行うことで消費電力を低減して電池の寿命を延ばしつつ、何れかの無線局が送信した無線信号を他の無線局が受信できるまでの遅延時間を短くすることができる。   Therefore, after receiving the synchronization signal, the fire alarm devices TR1, TR2,... Have the same timing to complete the counting of the intermittent reception interval T1, so that the radio signal transmitted from one radio station is transmitted. All other radio stations can receive almost simultaneously. As a result, by performing intermittent reception, it is possible to shorten the delay time until another wireless station can receive a wireless signal transmitted from any wireless station, while reducing power consumption and extending battery life. .

本実施形態では、親局TR1が子局TR2,…に対して一定周期で送信する定期監視メッセージを含む無線信号を同期信号として兼用している。このため、各火災警報器TR1,TR2,…の定期監視と同期とを一括して行えるので、定期監視メッセージを含む無線信号と同期信号とを個別に送信する場合と比較して消費電力を低減することができる。また、この構成では、同期信号を送信するための専用の送信機(送信局)などが不要でシステム構成が簡略できるという利点がある。   In the present embodiment, a radio signal including a periodic monitoring message transmitted from the master station TR1 to the slave stations TR2,... At a constant cycle is also used as a synchronization signal. For this reason, since periodic monitoring and synchronization of each fire alarm device TR1, TR2,... Can be performed collectively, power consumption is reduced compared to the case where a radio signal including a periodic monitoring message and a synchronization signal are individually transmitted. can do. In addition, this configuration has an advantage that the system configuration can be simplified because a dedicated transmitter (transmitting station) for transmitting the synchronization signal is not required.

ところで、親局TR1が同期信号を各子局TR2,…に対して送信する場合、空間内に存在する人の動き等によりフェージングが生じ、各子局TR2,…における無線信号の受信信号強度が変動する虞がある。このため、同期信号の送信時において、例えば子局TR2の受信信号強度が変動している場合、子局TR2が同期信号を受信できずに動作確認を正常に行えない虞がある。このように子局TR2で同期信号を受信できなかった場合、親局TR1は、当該子局TR2がたとえ正常であっても、返信がないことから当該子局TR2に異常が発生したと判定して警報音を報知してしまう。   By the way, when the master station TR1 transmits a synchronization signal to each slave station TR2,..., Fading occurs due to the movement of a person existing in the space, and the received signal strength of the radio signal at each slave station TR2,. May fluctuate. For this reason, at the time of transmission of the synchronization signal, for example, when the received signal strength of the slave station TR2 varies, there is a possibility that the slave station TR2 cannot receive the synchronization signal and the operation check cannot be performed normally. When the slave station TR2 cannot receive the synchronization signal in this way, the master station TR1 determines that an error has occurred in the slave station TR2 because there is no reply even if the slave station TR2 is normal. Alarm sound.

そこで、本実施形態では、親局TR1(一の無線局)の制御部6は、各子局TR2,…(他の無線局)で受信する無線信号の受信信号強度(受信レベル)に基づいて、同期信号(定期的な無線信号)の送信タイミングを決定している。実施例としては、親局TR1の制御部6が、各子局TR2,…の受信信号強度の変動が相対的に小さい時間帯を同期信号の送信タイミングに設定する構成が考えられる。なお、「受信信号強度の変動が相対的に小さい時間帯」とは、受信信号強度の変動の幅が他の時間帯と比較して小さいという意味である。この受信信号強度の変動が相対的に小さい時間帯としては、例えば人が寝静まっている夜中等がある。   Therefore, in the present embodiment, the control unit 6 of the master station TR1 (one radio station) is based on the received signal strength (reception level) of the radio signal received by each slave station TR2,... (Other radio station). The transmission timing of the synchronization signal (periodic wireless signal) is determined. As an example, a configuration in which the control unit 6 of the master station TR1 sets a time zone in which the fluctuation of the received signal strength of each of the slave stations TR2,. Note that “a time period in which the variation in received signal strength is relatively small” means that the width of the variation in the received signal strength is small compared to other time zones. Examples of the time zone in which the fluctuation of the received signal intensity is relatively small include midnight when a person is asleep.

このように、親局TR1の制御部6が、受信信号強度の変動が相対的に小さい時間帯に同期信号の送信タイミングを設定することで、受信信号強度の変動により各子局TR2,…が同期信号を受信できなくなる状況を回避することができる。上記のように送信タイミングを設定する方法としては、例えば親局TR1の電源をオンに切り替えた時点、又は同期信号を送信した時点を基準として一定時間(例えば、16時間)をタイマでカウントし、カウント終了時に同期信号を送信する方法が考えられる。   As described above, the control unit 6 of the master station TR1 sets the transmission timing of the synchronization signal in a time zone in which the fluctuation of the received signal strength is relatively small, so that each slave station TR2,. A situation in which the synchronization signal cannot be received can be avoided. As a method of setting the transmission timing as described above, for example, a fixed time (for example, 16 hours) is counted with a timer based on the time when the power of the master station TR1 is switched on or the time when the synchronization signal is transmitted, A method of transmitting a synchronization signal at the end of counting can be considered.

また、親局TR1が現在の時刻を計時する時計部を備え、時計部が予め設定された時刻(例えば、午前2時)を示すと、各子局TR2,…に対して同期信号を送信する方法も考えられる。この場合にも、上記と同様に、受信信号強度の変動が相対的に小さい時間帯に同期信号を送信することができるので、受信信号強度の変動により各子局TR2,…が同期信号を受信できなくなる状況を回避することができる。   In addition, the master station TR1 includes a clock unit for measuring the current time, and when the clock unit indicates a preset time (for example, 2:00 am), a synchronization signal is transmitted to each of the slave stations TR2,. A method is also conceivable. Also in this case, as described above, since the synchronization signal can be transmitted in a time zone in which the variation in the received signal strength is relatively small, each slave station TR2,... Receives the synchronization signal due to the variation in the received signal strength. It is possible to avoid a situation where it becomes impossible.

その他の実施例としては、各子局TR2,…における受信信号強度の時間分布を求め、当該時間分布に基づいて受信信号強度の変動が相対的に小さい時間帯を同期信号の送信タイミングに設定する構成が考えられる。すなわち、各子局TR2,…は、親局TR1から送信される同期信号を受信すると、受信した際の受信信号強度を測定する。そして、各子局TR2,…は、測定した受信信号強度のデータを返信信号に含めて、親局TR1に返信する。   As another embodiment, a time distribution of the received signal strength in each of the slave stations TR2,... Is obtained, and a time zone in which the fluctuation of the received signal strength is relatively small is set as the synchronization signal transmission timing based on the time distribution. Configuration is conceivable. That is, when each of the slave stations TR2,... Receives the synchronization signal transmitted from the master station TR1, it measures the received signal strength when received. Each slave station TR2,... Includes the measured received signal strength data in the reply signal and returns it to the master station TR1.

親局TR1の制御部6は、各子局TR2,…からの返信信号に含まれる受信信号強度のデータを、返信信号の受信時刻(若しくは、対応する同期信号の送信時刻)に紐付けてメモリ(メモリ部6A)に記憶させる。そして、親局TR1の制御部6は、受信信号強度のデータから受信信号強度の時間分布を求め、当該時間分布に基づいて、受信信号強度の変動が相対的に小さい時間帯(図1(b)における「A1」)に同期信号の送信タイミングを設定する。ここでは、受信信号強度の時間分布は、各子局TR2,…の受信信号強度の平均値を用いて求めている。   The control unit 6 of the master station TR1 associates the received signal strength data included in the return signal from each slave station TR2,... With the return time of the return signal (or the transmission time of the corresponding synchronization signal). It is stored in (memory unit 6A). Then, the control unit 6 of the master station TR1 obtains a time distribution of the received signal strength from the data of the received signal strength, and based on the time distribution, a time zone in which the fluctuation of the received signal strength is relatively small (FIG. 1 (b ) Is set to “A1”). Here, the time distribution of the received signal strength is obtained using the average value of the received signal strength of each of the slave stations TR2,.

なお、受信信号強度の変動が相対的に小さい時間帯を求める方法としては、例えば以下に示すものがある。すなわち、上記時間分布を一定区間毎に区切り、各区間における受信信号強度の変動幅(すなわち、受信信号強度の最大値と最小値との差分)を求め、変動幅が最小の区間を変動が相対的に小さい時間帯として定める方法がある。また、変動幅が最大の区間の変動幅に対して、その50%以下の変動幅を有する区間を、受信信号強度の変動が相対的に小さい時間帯として定める方法もある。勿論、このような時間帯を定める方法は上記のものに限定される必要はない。   As a method for obtaining a time zone in which fluctuations in received signal strength are relatively small, for example, there are the following methods. That is, the above time distribution is divided into fixed intervals, the fluctuation width of the received signal strength in each section (that is, the difference between the maximum value and the minimum value of the received signal strength) is obtained, and the fluctuation is relative to the section where the fluctuation width is the smallest. There is a method of setting as a small time zone. In addition, there is a method in which a section having a fluctuation width of 50% or less of the fluctuation width of the section having the largest fluctuation width is defined as a time zone in which the fluctuation of the received signal strength is relatively small. Of course, the method for determining such a time zone need not be limited to the above.

このように、親局TR1の制御部6が、受信信号強度の変動が相対的に小さい時間帯に同期信号の送信タイミングを設定することで、受信信号強度の変動により各子局TR2,…が同期信号を受信できなくなる状況を回避することができる。   As described above, the control unit 6 of the master station TR1 sets the transmission timing of the synchronization signal in a time zone in which the fluctuation of the received signal strength is relatively small, so that each slave station TR2,. A situation in which the synchronization signal cannot be received can be avoided.

なお、子局TR2,…毎に個別に受信信号強度の時間分布を求め、各子局TR2,…の受信信号強度の各時間分布に基づいて、各子局TR2,…に対する同期信号の送信タイミングを個別に設定してもよい。この場合、各子局TR2,…の設置環境に応じた最適な送信タイミングを設定することができる。   Is obtained individually for each slave station TR2,..., And the transmission timing of the synchronization signal to each slave station TR2,... Is based on each time distribution of the received signal strength of each slave station TR2,. May be set individually. In this case, it is possible to set an optimal transmission timing according to the installation environment of each of the slave stations TR2,.

ところで、各子局TR2,…で受信する無線信号の受信信号強度に基づいて受信信号強度の確率分布を求め、この確率分布に基づいて、同期信号の1周期当たりの送信回数(以下、単に「送信回数」と呼ぶ)を設定してもよい(図4参照)。すなわち、各子局TR2,…は、親局TR1から送信される同期信号を受信すると、受信した際の受信信号強度を測定する。そして、各子局TR2,…は、測定した受信信号強度のデータを返信信号に含めて、親局TR1に返信する。   By the way, a probability distribution of the received signal strength is obtained based on the received signal strength of the radio signal received by each of the slave stations TR2,..., And based on this probability distribution, the number of times of transmission of the synchronization signal per cycle (hereinafter, simply “ May be set (refer to FIG. 4). That is, when each of the slave stations TR2,... Receives the synchronization signal transmitted from the master station TR1, it measures the received signal strength when received. Each slave station TR2,... Includes the measured received signal strength data in the reply signal and returns it to the master station TR1.

親局TR1の制御部6は、各子局TR2,…からの返信信号に含まれる受信信号強度のデータから平均値及び分散を求め、また、この平均値及び分散から、受信信号強度を確率変数とする確率密度関数を持つ確率分布を求める。ここでは、受信信号強度の確率分布は、各子局TR2,…の受信信号強度の平均値を用いて求めている。更に、親局TR1の制御部6は、受信信号強度が所定値以下の場合に無線信号を受信し難いものとして、上記の確率分布の平均値及び分散に基づいて、受信信号強度が所定値以下となる確率xを演算する。そして、無線信号の受信が成功する確率をp、送信回数をnとすると、親局TR1の制御部6は、p≧1−xを満たすように、送信回数nを設定する。 The control unit 6 of the master station TR1 obtains an average value and variance from the received signal strength data included in the return signal from each of the slave stations TR2,..., And uses the average value and variance to determine the received signal strength as a random variable. A probability distribution having a probability density function is obtained. Here, the probability distribution of the received signal strength is obtained using the average value of the received signal strength of each of the slave stations TR2,. Further, the control unit 6 of the master station TR1 assumes that it is difficult to receive a radio signal when the received signal strength is less than a predetermined value, and the received signal strength is less than the predetermined value based on the average value and variance of the probability distribution. The probability x is calculated. Then, assuming that the probability of successful radio signal reception is p and the number of transmissions is n, the control unit 6 of the master station TR1 sets the number of transmissions n so as to satisfy p ≧ 1- xn .

例えば、受信信号強度が−100dBm以下である場合に無線信号を受信し難いものとする。そして、受信信号強度の確率分布の平均値及び分散に基づいて、受信信号強度が−100dBm以下となる確率が0.1となる結果を得たものとする。ここで、無線信号の受信が成功する確率pの目標値を0.9999とすると、上式より、0.9999=1−(0.1)となる。このため、親局TR1の制御部6は、同期信号の送信回数nを4回に設定する。 For example, it is assumed that it is difficult to receive a radio signal when the received signal strength is −100 dBm or less. Then, based on the average value and variance of the probability distribution of received signal strength, it is assumed that the probability that the received signal strength is −100 dBm or less is 0.1. Here, if the target value of the probability p of successful radio signal reception is 0.9999, 0.9999 = 1− (0.1) n from the above equation. For this reason, the control unit 6 of the master station TR1 sets the number n of transmissions of the synchronization signal to four.

そして、親局TR1の制御部6は、同期信号を送信する各周期において、各子局TR2,…に対して同期信号を4回ずつ送信する。この例で言えば、各子局TR2,…では、4回送信される同期信号のうち少なくとも何れかの同期信号を受信できる確率が0.9999であるため、受信信号強度の変動に依らず、ほぼ確実に同期信号を受信することができる。   Then, the control unit 6 of the master station TR1 transmits the synchronization signal four times to each of the slave stations TR2,... In each cycle of transmitting the synchronization signal. In this example, each slave station TR2,... Has a probability of receiving at least any one of the synchronization signals transmitted four times, which is 0.9999. The synchronization signal can be received almost certainly.

上述のように、親局TR1の制御部6が、受信信号強度の確率分布に基づいて同期信号の送信回数を設定することで、送信タイミングを設定することなく同期信号を各子局TR2,…で受信させることができる。したがって、受信信号強度の変動により各子局TR2,…が同期信号を受信できなくなる状況を回避することができる。   As described above, the control unit 6 of the master station TR1 sets the number of transmissions of the synchronization signal based on the probability distribution of the received signal strength, so that the synchronization signal is sent to each slave station TR2,... Without setting the transmission timing. Can be received. Therefore, it is possible to avoid a situation in which each slave station TR2,... Cannot receive the synchronization signal due to fluctuations in the received signal strength.

なお、子局TR2,…毎に個別に受信信号強度の確率分布を求め、各子局TR2,…の受信信号強度の各確率分布に基づいて、各子局TR2,…に対する同期信号の1周期当たりの送信回数を個別に設定してもよい。この場合、各子局TR2,…の設置環境に応じた最適な送信回数を設定することができる。   It is to be noted that a probability distribution of received signal strength is obtained individually for each slave station TR2,..., And one period of a synchronization signal for each slave station TR2,... Based on each probability distribution of received signal strength of each slave station TR2,. The number of hit transmissions may be set individually. In this case, it is possible to set the optimum number of transmissions according to the installation environment of each of the slave stations TR2,.

もちろん、受信信号強度に基づいて同期信号の送信タイミングと再送回数との両方を決定してもよい。この場合、受信信号強度の変動により無線局が無線信号を受信できなくなる状況を回避することができる確率を更に高めることができる。   Of course, both the transmission timing of the synchronization signal and the number of retransmissions may be determined based on the received signal strength. In this case, it is possible to further increase the probability of avoiding a situation in which the wireless station cannot receive a wireless signal due to fluctuations in received signal strength.

ところで、上記の受信信号強度の時間分布又は確率分布を求める場合には、受信信号強度のデータ数が多いほうが望ましい。しかしながら、通常の同期信号の送信間隔が例えば24時間と長いことから、各分布を得るために十分なデータ数を確保するのに非常に時間がかかってしまう。   By the way, when the time distribution or probability distribution of the received signal strength is obtained, it is desirable that the number of received signal strength data is larger. However, since the transmission interval of a normal synchronization signal is as long as 24 hours, for example, it takes a very long time to secure a sufficient number of data to obtain each distribution.

そこで、任意の一定期間を試験期間として、この試験期間内においては同期信号の送信間隔よりも短い送信間隔で親局TR1と各子局TR2,…との間で無線通信を行い、短期間で所望のデータ数を得るようにしてもよい。例えば、親局TR1の電源をオンに切り替えた時点から一定期間(例えば、24時間)を試験期間とし、親局TR1の制御部6が、各子局TR2,…に対して例えば10分毎に同期信号を送信するように構成することが考えられる。この場合、通常の同期信号の送信間隔では各子局TR2,…から1つの受信信号強度のデータしか得られないのに対して、100以上の受信信号強度のデータを得ることができる。このように、試験期間を設定することで、短期間で受信信号強度の各分布を得るために十分なデータ数を確保することができる。   Therefore, an arbitrary fixed period is set as a test period, and wireless communication is performed between the master station TR1 and each of the slave stations TR2,... A desired number of data may be obtained. For example, a fixed period (for example, 24 hours) from the time when the power of the master station TR1 is switched on is set as the test period, and the control unit 6 of the master station TR1 performs a test for each slave station TR2,. It is conceivable to configure to transmit a synchronization signal. In this case, only one received signal strength data can be obtained from each of the slave stations TR2,... At a normal synchronization signal transmission interval, whereas 100 or more received signal strength data can be obtained. Thus, by setting the test period, it is possible to secure a sufficient number of data to obtain each distribution of received signal strength in a short period.

勿論、親局TR1が既に受信信号強度の各分布を得るために十分なデータ数を確保している場合には、上記の試験期間を設定する必要はない。なお、試験期間中において、親局TR1が各子局TR2,…に送信する無線信号は同期信号でなくてもよい。すなわち、親局TR1が送信する無線信号は、各子局TR2,…に対して受信した際の受信信号強度のデータを含めて返信させるよう指示する無線信号であればよい。   Of course, when the master station TR1 has already secured a sufficient number of data to obtain each distribution of received signal strength, it is not necessary to set the above test period. During the test period, the radio signal transmitted from the master station TR1 to each of the slave stations TR2,. That is, the radio signal transmitted by the master station TR1 may be any radio signal that instructs each slave station TR2,... To send back the data including the received signal strength data.

なお、本実施形態の無線局は、上述の火災警報器TR0に限定されるものではない。例えば、火災警報器TR0以外の無線局を用いて本実施形態の無線通信システムを構築してもよい。   In addition, the radio station of this embodiment is not limited to the above-mentioned fire alarm device TR0. For example, the wireless communication system of the present embodiment may be constructed using a wireless station other than the fire alarm TR0.

例えば、空気中の湿度などのいわゆる空気質を測る空気質センサを有する無線局を用いて本実施形態の無線通信システムを構築してもよい。空気質センサの一例としては、ガスセンサがある。ガスセンサは、都市ガスやLPガスなどの燃料ガスや、二酸化炭素や一酸化炭素など環境を測る指標となるCOx系の気体成分、若しくはその他の気体成分や空気中に浮遊する塵などの汚れを測定するものである。このガスセンサを有する無線局としては、ガス漏れや不完全燃焼の発生を警報音で知らせるガス警報器がある。   For example, the wireless communication system of the present embodiment may be constructed using a wireless station having an air quality sensor that measures a so-called air quality such as humidity in the air. An example of an air quality sensor is a gas sensor. Gas sensors measure fuel gas such as city gas and LP gas, COx gas components that measure the environment, such as carbon dioxide and carbon monoxide, or other gas components and dirt such as dust floating in the air. To do. As a radio station having this gas sensor, there is a gas alarm device that notifies the occurrence of gas leakage or incomplete combustion with an alarm sound.

また、人の存在を検知する人センサを有する無線局を用いて本実施形態の無線通信システムを構築してもよい。人センサは、人体から発せられる赤外線を感知して人の存在を検知する方式と、対象の領域を撮像した画像を画像処理解析して人の存在を検知する方式との何れか一方の方式を採用することが考えられる。または、上記の両方の方式を組み合わせて人センサに採用してもよい。   Moreover, you may construct | assemble the radio | wireless communications system of this embodiment using the radio station which has a human sensor which detects presence of a person. The human sensor is a method of detecting the presence of a person by detecting infrared rays emitted from the human body, or a method of detecting the presence of a person by performing image processing analysis on an image obtained by imaging a target area. It is possible to adopt. Or you may employ | adopt as a human sensor combining the said both systems.

また、これら空気質センサを有する無線局や人センサを有する無線局を、上述した無線式の火災警報器TR0と混合して無線通信システムを構築してもよい。この場合、火災感知のみならず、人体検知や換気警鐘の目的も兼ねる無線通信システムを構築することができる。   Further, a wireless communication system may be constructed by mixing a wireless station having the air quality sensor or a wireless station having a human sensor with the wireless fire alarm TR0 described above. In this case, it is possible to construct a wireless communication system that serves not only for fire detection but also for the purpose of human body detection and ventilation warning.

1 アンテナ
2 無線送受信部(送信手段、受信手段)
6 制御部(送信制御手段、受信制御手段、タイマ手段)
7 電源部(給電手段)
TR1,TR2 火災警報器(無線局)
DESCRIPTION OF SYMBOLS 1 Antenna 2 Wireless transmission / reception part (Transmission means, reception means)
6 Control unit (transmission control means, reception control means, timer means)
7 Power supply (power supply means)
TR1, TR2 Fire alarm (radio station)

Claims (6)

複数の無線局から成り、これら複数の前記無線局間で電波を媒体とする無線信号を送受信する無線通信システムであって、
前記各無線局は、複数のアンテナと、前記各アンテナのうち何れか1つを使用して無線信号を送信する送信手段、及び前記各アンテナのうち何れか1つを使用して無線信号を受信する受信手段を有する無線送受信部と、所定のイベントが発生したときに前記送信手段を起動し、所定の送信期間に前記イベントに対応したメッセージを含む無線信号を送信させるとともに所定の休止期間に無線信号の送信を休止させる動作を交互に繰り返し且つ前記イベントが発生していないときには前記送信手段を停止させる送信制御手段、及び一定の間欠受信間隔を繰り返しカウントするタイマ手段、及び前記タイマ手段による前記間欠受信間隔のカウント中は前記受信手段を停止させ、前記タイマ手段による前記間欠受信間隔のカウントが完了する度に前記受信手段を起動する受信制御手段を有する制御部と、電池を電源として前記各手段に動作電力を給電する給電手段とを備え、
前記各無線局のうち一の無線局の前記制御部は、前記送信手段を起動して他の無線局に対して定期的に無線信号を送信させ、
前記一の無線局の前記制御部は、前記他の無線局における無線信号の受信レベルに基づいて、前記定期的な無線信号の送信タイミング又は前記定期的な無線信号の1周期当たりの送信回数のうち少なくとも何れか一方を設定することを特徴とする無線通信システム。
A wireless communication system comprising a plurality of wireless stations and transmitting and receiving wireless signals using radio waves as a medium between the plurality of wireless stations,
Each of the radio stations receives a radio signal using a plurality of antennas, a transmission unit that transmits a radio signal using any one of the antennas, and any one of the antennas. A wireless transmission / reception unit having a reception unit configured to activate the transmission unit when a predetermined event occurs, transmit a radio signal including a message corresponding to the event during a predetermined transmission period, and perform radio transmission during a predetermined pause period The operation of pausing the transmission of the signal is alternately repeated, and the transmission means for stopping the transmission means when the event has not occurred, the timer means for repeatedly counting a constant intermittent reception interval, and the intermittent by the timer means While the reception interval is being counted, the reception unit is stopped, and every time the intermittent reception interval is counted by the timer unit, And a control unit having a receiving control means for activating the reception means, a feeding means for feeding the operating power to each unit of the battery as the power source,
The control unit of one radio station among the radio stations activates the transmission means to periodically transmit radio signals to other radio stations,
The control unit of the one radio station may determine the transmission timing of the periodic radio signal or the number of transmissions per period of the periodic radio signal based on the reception level of the radio signal in the other radio station. A wireless communication system, wherein at least one of them is set.
前記一の無線局の前記制御部は、前記受信レベルの変動が相対的に小さい時間帯に、前記定期的な無線信号の送信タイミングを設定することを特徴とする請求項1記載の無線通信システム。   2. The wireless communication system according to claim 1, wherein the control unit of the one wireless station sets the transmission timing of the periodic wireless signal in a time zone in which the variation of the reception level is relatively small. . 前記一の無線局の前記制御部は、前記他の無線局との間で無線信号を送受信することにより前記受信レベルの時間分布を求め、前記時間分布に基づいて前記受信レベルの変動が相対的に小さい時間帯に、前記定期的な無線信号の送信タイミングを設定することを特徴とする請求項1記載の無線通信システム。   The control unit of the one radio station obtains a time distribution of the reception level by transmitting and receiving a radio signal to and from the other radio station, and the fluctuation of the reception level is relatively based on the time distribution. The wireless communication system according to claim 1, wherein the transmission timing of the periodic wireless signal is set in a small time zone. 前記一の無線局の前記制御部は、前記他の無線局との間で無線信号を送受信することにより前記受信レベルの確率分布を求め、前記確率分布に基づいて前記定期的な無線信号の1周期当たりの送信回数を設定することを特徴とする請求項1記載の無線通信システム。   The control unit of the one radio station obtains a probability distribution of the reception level by transmitting / receiving a radio signal to / from the other radio station, and 1 of the periodic radio signal is obtained based on the probability distribution. The radio communication system according to claim 1, wherein the number of transmissions per period is set. 前記一の無線局の前記制御部は、任意の一定期間を試験期間に設定し、前記試験期間において前記定期的な無線信号の送信間隔よりも短い間隔で無線信号を前記他の無線局との間で送受信することにより、前記受信レベルのデータを得ることを特徴とする請求項3又は4記載の無線通信システム。   The control unit of the one radio station sets an arbitrary fixed period as a test period, and transmits a radio signal to the other radio station at an interval shorter than the periodic radio signal transmission interval in the test period. 5. The wireless communication system according to claim 3, wherein the data of the reception level is obtained by transmitting / receiving data between the wireless communication systems. 前記各無線局は、火災の発生を感知する火災警報器と、空気質を測る空気質センサを有する無線局と、人の存在を検知する人センサを有する無線局との少なくとも何れか1種であることを特徴とする請求項1乃至5の何れか1項に記載の無線通信システム。
Each wireless station is at least one of a fire alarm that detects the occurrence of a fire, a wireless station that has an air quality sensor that measures air quality, and a wireless station that has a human sensor that detects the presence of a person. The wireless communication system according to claim 1, wherein there is a wireless communication system.
JP2012199911A 2012-01-24 2012-09-11 Wireless communication system Pending JP2013175154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199911A JP2013175154A (en) 2012-01-24 2012-09-11 Wireless communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012012210 2012-01-24
JP2012012210 2012-01-24
JP2012199911A JP2013175154A (en) 2012-01-24 2012-09-11 Wireless communication system

Publications (1)

Publication Number Publication Date
JP2013175154A true JP2013175154A (en) 2013-09-05

Family

ID=49267979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199911A Pending JP2013175154A (en) 2012-01-24 2012-09-11 Wireless communication system

Country Status (1)

Country Link
JP (1) JP2013175154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784424B1 (en) 2017-06-22 2017-10-12 (주)리더스테크 Fire detector linked others

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784424B1 (en) 2017-06-22 2017-10-12 (주)리더스테크 Fire detector linked others

Similar Documents

Publication Publication Date Title
JP5222123B2 (en) Fire alarm system
JP2010147868A (en) Wireless communication system
JP5044470B2 (en) Fire alarm system
JP5134424B2 (en) Fire alarm system
JP5192907B2 (en) Fire alarm system
WO2014041763A1 (en) Wireless communication system
JP5507979B2 (en) Wireless communication system
JP5502611B2 (en) Wireless communication system
JP2013175154A (en) Wireless communication system
JP5022292B2 (en) Fire alarm system
JP5091747B2 (en) Fire alarm system
JP5979540B2 (en) Wireless communication system
JP5391321B2 (en) Fire alarm system
JP5942147B2 (en) Wireless communication system
JP5945850B2 (en) Wireless communication system
JP5308235B2 (en) Alarm system
JP5541975B2 (en) Wireless communication system
JP6273544B2 (en) Wireless communication system
JP5015846B2 (en) Fire alarm system
JP5600761B2 (en) Wireless communication system
JP5492022B2 (en) Wireless communication system
JP5369060B2 (en) Fire alarm system
JP6004306B2 (en) Fire alarm and fire alarm system
JP4525850B2 (en) Fire alarm system
JP5027517B2 (en) Wireless transmission system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312