JP2013174539A - Decontamination method of soil - Google Patents

Decontamination method of soil Download PDF

Info

Publication number
JP2013174539A
JP2013174539A JP2012040040A JP2012040040A JP2013174539A JP 2013174539 A JP2013174539 A JP 2013174539A JP 2012040040 A JP2012040040 A JP 2012040040A JP 2012040040 A JP2012040040 A JP 2012040040A JP 2013174539 A JP2013174539 A JP 2013174539A
Authority
JP
Japan
Prior art keywords
soil
particle size
water
treated
treated product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040040A
Other languages
Japanese (ja)
Inventor
Hiroharu Sugawara
弘治 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012040040A priority Critical patent/JP2013174539A/en
Publication of JP2013174539A publication Critical patent/JP2013174539A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination method of soil, which allows the volume of contaminated soil to be reduced with improved decontamination efficiency, by finely peeling the surface of coarse soil particles to make fine soil particles to which radioactive substances are adsorbed and then by removing the fine soil particles such that no radioactive substances remain in the coarse soil particles.SOLUTION: Calcium oxide and/or calcium hydroxide, and water are added to the soil contaminated with radioactive substances, agitated and mixed to form a processed product in slurry form. The processed soil in the processed product is separated based on a predetermined particle diameter Da, so that the soil having particle diameter Da or smaller is extracted as contaminated soil and the soil having particle larger than diameter Da is extracted as decontaminated soil. The separation of the processed soil in the processed product is gradually performed on an as needed basis. The processed soil produced in the separation step is repeatedly agitated, mixed, and separated. The processed product is drained in the separation step on an as needed basis.

Description

本発明は、放射性セシウムなどの放射性物質に汚染された土壌の除染を行うための土壌の除染方法に関する。   The present invention relates to a soil decontamination method for decontamination of soil contaminated with radioactive substances such as radioactive cesium.

平成23年(2011年)の「東日本大震災」では福島第1原発の事故で放射性物質が飛散したことから、地面が放射性物質に汚染された地域では、この地面の表面を掻取、これを汚染土壌として集積して保管している。その集積量は膨大であることから、この集積した汚染土壌を除染しその減容化が検討されている。
その対策として、例えば、特開2008−161766号公報(特許文献1)記載の汚染土壌の処理方法を用いて、放射性物質を取り出すことが検討される。これは、汚染された土壌をドラム型洗浄機に収容し、汚染土壌と洗浄水とを混合して撹拌し、これにより、放射性物質を洗浄し、その後、湿式振動篩によって、この洗浄水に混合した土壌を篩分けし、細粒の土壌粒子が洗浄水に混合した混合物を網目を通過させて取り出し、脱水するなどして汚染土壌として処理する。一方、網目上の粗粒の土壌は、別途取り出して、再利用する。
In the 2011 Great East Japan Earthquake in 2011, radioactive materials were scattered in the accident at the Fukushima Daiichi nuclear power plant. In areas where the ground was contaminated with radioactive materials, the surface of the ground was scraped and contaminated. Accumulated and stored as soil. Since the accumulation amount is enormous, decontamination of this accumulated contaminated soil and its volume reduction are being studied.
As a countermeasure, for example, it is considered to extract radioactive substances using a method for treating contaminated soil described in JP-A-2008-161766 (Patent Document 1). This is because the contaminated soil is housed in a drum-type washing machine, the contaminated soil and washing water are mixed and stirred, thereby washing the radioactive material, and then mixed into this washing water by a wet vibrating sieve. The resulting soil is sieved, and a mixture of fine soil particles mixed with washing water is taken out through a mesh, dehydrated and treated as contaminated soil. On the other hand, the coarse-grained soil on the mesh is taken out separately and reused.

特開2008−161766号公報JP 2008-161766 A

ところで、上記従来の方法においては、水洗と撹拌を行って細粒の土壌粒子及び洗浄水を取り出し、放射性物質の洗浄水への溶出や細粒の土壌粒子への付着を期待して減容化を図るものであるが、例えば、放射性物質である放射性セシウムにおいては、ある程度は細粒の土壌粒子及び洗浄水の取り出しにより除去はできるが、粗粒の土壌の方に残留する比率がきわめて高く、除染効率に劣り、実質的に減容化することができにくいという問題があった。
その理由は、土壌に含まれる粘土鉱物は、金属イオンとケイ酸が連結したシート(二次元)からなる構造を特徴とし、具体的には、珪素とアルミニウムが四面体をとる層と八面体を取る層の繰り返しからなり、層状ケイ酸塩とも呼ばれ、この構造に起因して、放射性物質、特にセシウムイオンを強く吸着することはよく知られており、このため、セシウムは他の陽イオンに比べ、土にしっかり保持されて、離れにくくなっているからである。
By the way, in the above conventional method, washing with water and stirring are performed to take out fine soil particles and washing water, and the volume is reduced in anticipation of elution of radioactive substances into washing water and adhesion to fine soil particles. However, for example, radioactive cesium, which is a radioactive substance, can be removed to some extent by taking out fine soil particles and washing water, but the ratio remaining in coarse soil is extremely high, There was a problem that the decontamination efficiency was inferior and it was difficult to substantially reduce the volume.
The reason is that clay minerals contained in the soil are characterized by a structure (two-dimensional) composed of metal ions and silicic acid connected to each other. Specifically, silicon and aluminum have tetrahedral layers and octahedrons. It is well known to strongly adsorb radioactive materials, especially cesium ions, because of this structure, and is also called layered silicate. This is because it is more firmly held in the soil and harder to leave.

本発明は上記の問題点に鑑みて為されたもので、放射性物質の土壌への吸着力を利用し、粗粒の土壌粒子の表面を細かく剥離して放射性物質を吸着させたままの細粒の土壌粒子を作り、この細粒の土壌粒子を取り出すことができるようにし、粗粒の土壌に放射性物質が残留しないようにして、除染効率の向上を図るとともに、汚染土壌の減容化を図った土壌の除染方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, utilizing the adsorption force of radioactive material to the soil, finely separated the surface of coarse soil particles finely adsorbed radioactive material In order to improve the decontamination efficiency and reduce the volume of contaminated soil, it is possible to remove the soil particles of coarse particles so that radioactive materials do not remain in the coarse soil. It aims at providing the decontamination method of the planned soil.

このような目的を達成するための本発明の土壌の除染方法は、放射性物質に汚染された土壌の除染を行う土壌の除染方法において、
土壌に、アルカリ剤及び水を加え、撹拌混合して泥水状の処理物を得、該処理物中の処理土壌を所定の粒径Daを基準にして分離し、該粒径Da以下の土壌を汚染土壌として抽出し、上記粒径Daを超える土壌を除染土壌として抽出する構成としている。
In order to achieve such an object, the soil decontamination method of the present invention is a soil decontamination method for decontaminating soil contaminated with radioactive substances.
To the soil, an alkali agent and water are added and mixed by stirring to obtain a muddy water-like treated product. The treated soil in the treated product is separated on the basis of a predetermined particle size Da, and the soil having the particle size Da or less is separated. Extracted as contaminated soil, the soil that exceeds the particle size Da is extracted as decontaminated soil.

アルカリ剤としてはアルカリ金属化合物、アルカリ土類金属化合物等から選択される。強アルカリが好ましい。アルカリ金属化合物としては、Li,Na,K,Rb,Cs,Frの酸化物、水酸化物、炭酸水素塩、炭酸塩、ケイ酸塩、アルミン酸塩、硝酸塩または硫酸塩等が挙げられる。アルカリ土類金属化合物としては、Ca,Sr,Ba,Raの酸化物、水酸化物、炭酸水素塩または炭酸塩等が挙げられる。好ましくは、石灰質材料が適している。石灰質材料としては、例えば、生石灰(酸化カルシウム)、苦土生石灰、消石灰(水酸化カルシウム)、苦土消石灰、炭酸カルシウム、苦土炭酸カルシウム、ケイ酸カルシウム、副産石灰、貝化石石灰、有機石灰としての卵殻粉末等の少なくとも一つあるいは二つ以上の混合物である。   The alkali agent is selected from alkali metal compounds, alkaline earth metal compounds and the like. Strong alkali is preferred. Examples of the alkali metal compound include oxides, hydroxides, hydrogen carbonates, carbonates, silicates, aluminates, nitrates, sulfates of Li, Na, K, Rb, Cs, and Fr. Examples of the alkaline earth metal compound include Ca, Sr, Ba, and Ra oxides, hydroxides, hydrogen carbonates, and carbonates. Preferably a calcareous material is suitable. Examples of calcareous materials include quick lime (calcium oxide), quick lime lime, slaked lime (calcium hydroxide), white slaked lime, calcium carbonate, calcium carbonate, calcium silicate, by-product lime, shell fossil lime, organic lime And at least one or a mixture of two or more eggshell powder.

これにより、土壌に、アルカリ剤及び水を加え、撹拌混合すると、図1に示すように、主に粗粒の土壌粒子においてはその表面に放射性物質が吸着しているが、この土壌の表面が放射性物質を吸着したまま細かく剥離して細粒化していく。そのため、処理物中の処理土壌を所定の粒径Daを基準にして分離し、即ち、粗粒の土壌と細粒の土壌とに分離すると、粗粒の土壌から剥離して細粒化された細粒の土壌を、もともとある細粒の土壌とともに、放射性物質を吸着させたまま取り出すことができ、除染効率を向上させることができる。このため、抽出される粒径Da以下の汚染土壌の量が、元の土壌の量に比較して極めて少ないので、汚染土壌を大幅に減容化することができる。また、粒径Daを超える土壌には放射性物質がほとんど残らないことから、除染土壌として再利用することができる。   Thereby, when an alkali agent and water are added to the soil and mixed with stirring, as shown in FIG. 1, radioactive particles are adsorbed on the surface mainly of coarse soil particles. While adsorbing the radioactive material, it is finely peeled to make fine particles. Therefore, when the treated soil in the treated material is separated on the basis of the predetermined particle size Da, that is, when separated into coarse soil and fine soil, it is separated from the coarse soil and finely divided. Fine-grained soil can be taken out while adsorbing radioactive substances together with the original fine-grained soil, and decontamination efficiency can be improved. For this reason, since the quantity of the contaminated soil of the particle size Da or less extracted is very small compared with the quantity of the original soil, the volume of contaminated soil can be reduced significantly. Moreover, since a radioactive substance hardly remains in the soil exceeding the particle size Da, it can be reused as decontaminated soil.

このように、土壌の表面が細かく剥離して細粒化するのは、図1に示すように、アルカリ剤が水に溶けると低いORP数値を示し、そのため、水が粘土の内部へ浸透する浸透力が高められ、粘土表面のクラスターの細分化を促し、細かく破壊されることによるものと考えられる。
また、放射性セシウムの場合、ほとんどは粘土に吸着されており、また、粘土の塊の表面に付着しており中心部の粘土にはほとんど付着していない。そのため、粘土表面を剥ぎ取り、細分化して放射線セシウムを付着した細粒の粘土のみを回収すれば大幅な減容となる。そして、高濃度放射性粘土のみを分離隔離すればほとんどの土壌は再利用できる。
更にまた、放射性セシウムのほとんどは粘土に吸着されているので、脱液した液は、セシウムをほとんど含まないので、再利用し、あるいは、廃液にすることができる。
As shown in FIG. 1, the surface of the soil is finely peeled and finely divided as shown in FIG. 1, when the alkaline agent is dissolved in water, it shows a low ORP value, so that water penetrates into the clay. This is thought to be due to the fact that the strength is increased, which promotes the fragmentation of clusters on the clay surface and breaks up finely.
In the case of radioactive cesium, most is adsorbed on clay, and is adhering to the surface of the clay lump and hardly adhering to the clay in the center. Therefore, if the clay surface is peeled off, and only fine-grained clay with radiation cesium attached is recovered, the volume can be greatly reduced. And most soil can be reused by separating and isolating only high-concentration radioactive clay.
Furthermore, since most of the radioactive cesium is adsorbed on the clay, the liquid that has been drained does not substantially contain cesium and can be reused or made into a waste liquid.

そして、必要に応じ、上記処理物中の処理土壌の分離を段階的に行う構成としている。例えば、濾過する場合や篩にかけて分離する場合、目の粗さを段階的に細かくして分離する。そのため、一時に分離する場合に比較して、目詰まりしにくくなり、分離効率が向上させられる。   And it is set as the structure which isolate | separates the process soil in the said processed material in steps as needed. For example, when filtering or separating by sieving, the coarseness of the eyes is made finer in steps. Therefore, compared with the case where it isolate | separates at once, it becomes difficult to clog and a separation efficiency is improved.

また、必要に応じ、上記分離の過程で生じる処理土壌に対して、上記混合撹拌及び分離を繰り返し行う構成としている。分離した粗粒の処理土壌の放射線量が高い場合もあるが、その場合には、繰り返し混合撹拌及び分離を行うことで、放射性物質が付着した土壌表面を剥ぎ取って細分化することができ、確実に除染を行うことができる。   Moreover, it is set as the structure which repeats the said mixing stirring and isolation | separation with respect to the treated soil which arises in the process of the said isolation | separation as needed. In some cases, the radiation dose of the separated coarse-grained treated soil is high, but in that case, by repeatedly mixing and stirring and separating, the soil surface to which the radioactive material has adhered can be peeled off and subdivided. Decontamination can be performed reliably.

更に、必要に応じ、上記分離の過程で上記処理物の脱液を行う構成としている。脱液をすることで、土壌の重量が少なくなることから、減容化を確実に行うことができる。また、放射性物質は土壌に吸着して取り込まれており、水には溶出しにくいことから、脱液を再利用し、あるいは廃液とすることができる。   Furthermore, it is set as the structure which drains the said processed material in the process of the said isolation | separation as needed. By removing the liquid, the weight of the soil is reduced, so that volume reduction can be reliably performed. In addition, since radioactive substances are adsorbed and taken up by soil and are not easily eluted into water, drainage can be reused or used as waste liquid.

また、必要に応じ、上記小径側土壌とする粒径の基準Daを、30μm≦Da≦200μmに規定した構成としている。放射性セシウムは30μmまでの土壌粒子に多く存在していると考えられ、これに基づいて、最低でも30μmを基準とする。それ以上に設定した場合は、より安全率が高まるが、200μmを超えると、減容率に劣る。望ましくは、30μm≦Da≦100μmである。   Moreover, it is set as the structure which prescribed | regulated the reference | standard Da of the particle size used as the said small diameter side soil to 30 micrometers <= Da <= 200 micrometers as needed. It is considered that radioactive cesium is abundant in soil particles up to 30 μm, and based on this, the minimum is 30 μm. When it is set to more than that, the safety factor increases, but when it exceeds 200 μm, the volume reduction rate is inferior. Desirably, 30 μm ≦ Da ≦ 100 μm.

そして、必要に応じ、土壌に、アルカリ剤及び水を加え、撹拌混合して泥水状の処理物を得、該処理物を上記粒径Da以下の土壌が混合した泥水状の二次処理物と、上記粒径Daを超える土壌とに分離し、次に、上記二次処理物に凝集剤を添加して処理土壌を沈降させ、その後、該処理土壌が沈降した二次処理物を濾過して濾液と残渣に分け、該残渣を汚染土壌として抽出する構成としている。
処理物を粒径Da以下の土壌が混合した泥水状の二次処理物と粒径Daを超える土壌とに分離する方法は、例えば、濾過,篩分け等の方法で行うことができる。また、二次処理物を、凝集剤で凝集沈降させるので濾過を容易に行うことができ、粒径Da以下の土壌を残渣にして容易に抽出することができる。
And, if necessary, an alkaline agent and water are added to the soil, and the mixture is stirred and mixed to obtain a muddy water-like treated product. The treated product is a muddy water-like secondary treated product in which the soil having the particle size Da or less is mixed. , Separated into soil exceeding the particle size Da, and then the flocculant is added to the secondary treated product to settle the treated soil, and then the secondary treated product on which the treated soil has settled is filtered. The filtrate is divided into a residue and the residue is extracted as contaminated soil.
The method of separating the treated material into a muddy water-like secondary treated material mixed with soil having a particle size Da or less and soil having a particle size Da can be performed by methods such as filtration and sieving. Moreover, since the secondary treated product is coagulated and settled with a coagulant, it can be easily filtered, and the soil having a particle size of Da or less can be easily extracted as a residue.

また、必要に応じ、土壌に、アルカリ剤及び水を加え、撹拌混合して泥水状の処理物を得、該処理物を上記粒径Daより大きい所定寸法の目開きの篩を通過させて大径側土壌と、小径側土壌が混合した泥水状の二次処理物とに分離し、次に、該二次処理物を脱水乾燥して小径側土壌を得、その後、該小径側土壌を上記粒径Da以下の土壌と上記粒径Daを超える土壌とに分離する構成としている。これにより、大径側土壌をそのまま除染土壌とし、あるいは、再度撹拌混合及び分離を行って除染土壌とすることができる。また、脱水乾燥した小径側土壌を分離するので、最終分離を風力分級機を用いる等、比較的容易に行うことができる。   Further, if necessary, an alkaline agent and water are added to the soil, and the mixture is stirred and mixed to obtain a muddy water-like treated product. The treated product is passed through a sieve having a predetermined size larger than the particle size Da, and large. It separates into a diameter-side soil and a muddy water-like secondary treated product mixed with a small-diameter side soil, and then the secondary-treated product is dehydrated and dried to obtain a small-diameter-side soil. It is set as the structure isolate | separated into the soil of the particle size Da or less and the soil which exceeds the said particle size Da. Thereby, the large-diameter side soil can be used as the decontaminated soil as it is, or it can be agitated and mixed and separated again to obtain the decontaminated soil. Moreover, since the dehydrated and dried small-diameter side soil is separated, the final separation can be performed relatively easily such as using an air classifier.

そしてまた、必要に応じ、アルカリ剤として、酸化カルシウム及び/または水酸化カルシウムを用いる構成としている。図1に示すように、酸化カルシウム及び/または水酸化カルシウムにおいては、水に溶けると特に低いORP数値を示し、そのため、水が粘土の内部へ浸透する浸透力が高められ、粘土表面のクラスターの細分化を促し、細かく破壊する作用に優れる。   In addition, if necessary, calcium oxide and / or calcium hydroxide is used as the alkali agent. As shown in FIG. 1, calcium oxide and / or calcium hydroxide exhibits a particularly low ORP value when dissolved in water, so that the osmotic power of water penetrating into the clay is increased and the clusters on the clay surface are increased. Promotes subdivision and excels in breaking down finely.

この場合、上記土壌に加える水を、重量比で該土壌の2〜4倍量にし、上記土壌に加える酸化カルシウム及び/または水酸化カルシウムを、上記加える水に対する重量比で0.1〜10重量%にする構成としている。
加える水の量が少ないと、酸化カルシウム及び/または水酸化カルシウムが満遍なく土壌に行きわたらない。水の量が多すぎると、その後の取り扱いが煩雑になる。土壌の水分量によっても若干異なるが、好ましくは、水の量は2.5〜3.5倍量である。
また、加える酸化カルシウム及び/または水酸化カルシウムが0.1重量%より少ないとその効果が薄く、10重量%を超えると回収した土壌や液の性質に影響する。好ましくは、0.2〜5重量%、より望ましくは、0.8〜2重量%である。
In this case, the water added to the soil is made 2 to 4 times the weight of the soil by weight ratio, and the calcium oxide and / or calcium hydroxide added to the soil is 0.1 to 10 weight by weight ratio to the added water. %.
If the amount of water added is small, calcium oxide and / or calcium hydroxide will not reach the soil evenly. If the amount of water is too large, subsequent handling becomes complicated. The amount of water is preferably 2.5 to 3.5 times, although it varies slightly depending on the amount of water in the soil.
Further, if the amount of calcium oxide and / or calcium hydroxide added is less than 0.1% by weight, the effect is small, and if it exceeds 10% by weight, the properties of the recovered soil and liquid are affected. Preferably, the content is 0.2 to 5% by weight, more desirably 0.8 to 2% by weight.

本発明によれば、土壌の粒子の表面に放射性物質が吸着していても、この土壌に、アルカリ剤、特に、酸化カルシウム及び/または水酸化カルシウム、水を加えて撹拌すると、土壌の表面が細かく剥離して細粒化していく。そのため、処理物中の処理土壌を所定の粒径Daを基準にして分離し、即ち、粗粒の土壌と細粒の土壌とに分離すると、粗粒の土壌から剥離して細粒化された細粒の土壌を、もともとある細粒の土壌とともに、放射性物質を吸着させたまま取り出すことができ、除染効率を向上させることができる。このため、抽出される粒径Da以下の汚染土壌の量が、元の土壌の量に比較して極めて少ないので、汚染土壌を大幅に減容化することができる。また、粒径Daを超える土壌には放射性物質がほとんど残らないことから、除染土壌として再利用することができる。   According to the present invention, even if radioactive substances are adsorbed on the surface of the soil particles, when the alkaline agent, particularly calcium oxide and / or calcium hydroxide, water is added to the soil and stirred, the surface of the soil is Finely peel and fine grain. Therefore, when the treated soil in the treated material is separated on the basis of the predetermined particle size Da, that is, when separated into coarse soil and fine soil, it is separated from the coarse soil and finely divided. Fine-grained soil can be taken out while adsorbing radioactive substances together with the original fine-grained soil, and decontamination efficiency can be improved. For this reason, since the quantity of the contaminated soil of the particle size Da or less extracted is very small compared with the quantity of the original soil, the volume of contaminated soil can be reduced significantly. Moreover, since a radioactive substance hardly remains in the soil exceeding the particle size Da, it can be reused as decontaminated soil.

本発明の土壌の除染方法の原理を示す図である。It is a figure which shows the principle of the decontamination method of the soil of this invention. 本発明の第一の実施の形態に係る土壌の除染方法を示す図である。It is a figure which shows the decontamination method of the soil which concerns on 1st embodiment of this invention. 本発明の第二の実施の形態に係る土壌の除染方法をそのシステムとともに示す図である。It is a figure which shows the decontamination method of the soil which concerns on 2nd embodiment of this invention with the system. 本発明の実施例1に係り放射性核種測定結果を示す表図である。It is a table | surface figure which concerns on Example 1 of this invention and shows a radionuclide measurement result. 本発明の実施例2及び比較例に係り放射性核種測定結果を示す表図である。It is a table | surface figure which concerns on Example 2 and a comparative example of this invention, and shows a radionuclide measurement result.

以下、添付図面に基づいて、本発明の実施の形態に係る土壌の除染方法について詳細に説明する。
実施の形態に係る土壌の除染方法は、放射性物質に汚染された土壌の除染を行うものである。土壌は、例えば、放射性セシウム等の放射性物質が付着した地面の表面を掻取、これを汚染土壌として集積して保管されているものを対象にする。
実施の形態では、酸化カルシウム及び/または水酸化カルシウムを用いる。この酸化カルシウム及び/または水酸化カルシウムは、例えば、貝殻を焼成して生成される。貝殻の焼成温度は、800℃以上である。望ましくは、1000℃以上である。800℃に満たないと活性に劣る。800℃以上で満足できる活性を保持できる。水酸化カルシウムは、例えば、酸化カルシウムに加水することにより生成する。
Hereinafter, based on an accompanying drawing, the soil decontamination method concerning an embodiment of the invention is explained in detail.
The soil decontamination method according to the embodiment performs decontamination of soil contaminated with radioactive substances. For soil, for example, the surface of the ground to which a radioactive substance such as radioactive cesium adheres is scraped, and this is collected and stored as contaminated soil.
In the embodiment, calcium oxide and / or calcium hydroxide is used. This calcium oxide and / or calcium hydroxide is produced, for example, by firing a shell. The firing temperature of the shell is 800 ° C. or higher. Desirably, it is 1000 degreeC or more. If less than 800 ° C., the activity is poor. Satisfactory activity can be maintained at 800 ° C. or higher. Calcium hydroxide is produced, for example, by adding water to calcium oxide.

また、実施の形態に係る土壌の除染方法は、先ず、土壌に、酸化カルシウム及び/または水酸化カルシウム,水を加え、撹拌混合して泥水状の処理物を得る。混合撹拌は、例えば、土木用のミキサやドラムウオッシャを用いる。容量は、例えば、30L〜4000Lの範囲で、処理する土壌の量や設置環境等に応じて、適宜のものを選択することができる。   In the soil decontamination method according to the embodiment, first, calcium oxide and / or calcium hydroxide and water are added to the soil, followed by stirring and mixing to obtain a muddy water-like treated product. For the mixing and stirring, for example, a civil engineering mixer or drum washer is used. The capacity can be selected as appropriate depending on the amount of soil to be treated, the installation environment, and the like, for example, in the range of 30 L to 4000 L.

この処理物中の処理土壌を所定の粒径Daを基準にして分離し、粒径Da以下の土壌を汚染土壌として抽出し、粒径Daを超える土壌を除染土壌として抽出する。分離に当たっては、例えば、処理物や処理土壌の水分状態等の条件に応じて、濾過具,振動スクリーン機,遠心分離機,風力分級等を適宜用いる。必要に応じ、処理物中の処理土壌の分離を段階的に行う。更に、必要に応じ、分離の過程で生じる処理土壌に対して、上記の混合撹拌及び分離を繰り返し行う。更にまた、必要に応じ、分離の過程で、処理物の脱液を行う。   The treated soil in the treated product is separated with reference to a predetermined particle size Da, soil having a particle size Da or less is extracted as contaminated soil, and soil exceeding the particle size Da is extracted as decontaminated soil. In the separation, for example, a filtering tool, a vibrating screen machine, a centrifuge, an air classification, or the like is appropriately used according to the conditions such as the moisture state of the treated product or the treated soil. If necessary, the treated soil in the treated material is separated in stages. Furthermore, if necessary, the above mixing and agitation and separation are repeated for the treated soil generated in the separation process. Furthermore, if necessary, the treated product is drained during the separation process.

土壌に加える水は、重量比で該土壌の2〜4倍量である。加える水の量が少ないと、酸化カルシウム及び/または水酸化カルシウムが満遍なく土壌に行きわたらない。水の量が多すぎると、その後の取り扱いが煩雑になる。土壌の水分量によっても若干異なるが、好ましくは、水の量は2.5〜3.5倍量である。   The amount of water added to the soil is 2 to 4 times the weight of the soil. If the amount of water added is small, calcium oxide and / or calcium hydroxide will not reach the soil evenly. If the amount of water is too large, subsequent handling becomes complicated. The amount of water is preferably 2.5 to 3.5 times, although it varies slightly depending on the amount of water in the soil.

土壌に加える酸化カルシウム及び/または水酸化カルシウムは、上記の加える水に対する重量比で0.1〜10重量%である。加える酸化カルシウム及び/または水酸化カルシウムが0.1重量%より少ないとその効果が薄く、10重量%を超えると回収した土壌や液の性質に影響する。好ましくは、0.2〜5重量%、より望ましくは、0.8〜2重量%である。   Calcium oxide and / or calcium hydroxide added to the soil is 0.1 to 10% by weight in terms of the weight ratio to the added water. If the amount of calcium oxide and / or calcium hydroxide to be added is less than 0.1% by weight, the effect is small, and if it exceeds 10% by weight, the properties of the recovered soil and liquid are affected. Preferably, the content is 0.2 to 5% by weight, more desirably 0.8 to 2% by weight.

また、所定の粒径の基準Daを、30μm≦Da≦200μmに規定している。放射性セシウムは30μmまでの土壌粒子に多く存在していると考えられ、これに基づいて、最低でも30μmを基準とする。それ以上に設定した場合は、より安全率が高まるが、200μmを超えると、減容率に劣る。望ましくは、30μm≦Da≦100μmである。実施の形態では、Da=30μmに設定している。尚、30μm≦Daであれば、例えば、Da≦40μm、Da≦50μm、Da≦60μm等の範囲で設定してよい。設定数値を上げることにより減容率は下がるが、安全率は上昇するので、除染条件に応じて定めることができる。   Further, the standard Da of the predetermined particle diameter is defined as 30 μm ≦ Da ≦ 200 μm. It is considered that radioactive cesium is abundant in soil particles up to 30 μm, and based on this, the minimum is 30 μm. When it is set to more than that, the safety factor increases, but when it exceeds 200 μm, the volume reduction rate is inferior. Desirably, 30 μm ≦ Da ≦ 100 μm. In the embodiment, Da = 30 μm is set. If 30 μm ≦ Da, for example, it may be set in the range of Da ≦ 40 μm, Da ≦ 50 μm, Da ≦ 60 μm, and the like. Increasing the setting value decreases the volume reduction rate, but the safety factor increases, so it can be determined according to the decontamination conditions.

図2には、第一の実施の形態に係る土壌の除染方法を示している。これは、土壌に、酸化カルシウム及び/または水酸化カルシウム,水を加え、撹拌混合して泥水状の処理物を得る(1−1)。混合撹拌は、容量が50Lの土木用のミキサを用いる。
次に、この処理物を分離する(1−2)。実施の形態では、濾過具による分離を行う。具体的には、目開きが30μmの土嚢袋を用いた。この土嚢袋に処理物を入れ、プラスチック製の矩形容器内に土嚢袋を入れ、適宜の時間放置する。これにより、粒径が30μm(Da)以下の土壌が混合した泥水状の二次処理物が容器内に流出して溜まり(1−3)、粒径が30μm(Da)を超える土壌が土嚢袋内に残り、これを取り出す(1−4)。この取り出した土壌は、放射線量が適正であれば、そのまま、除染土壌とする。放射線量が適正でなければ、上記の混合撹拌及び分離を繰り返し行う。
FIG. 2 shows a soil decontamination method according to the first embodiment. In this method, calcium oxide and / or calcium hydroxide and water are added to the soil and mixed by stirring to obtain a muddy water-like treated product (1-1). For mixing and stirring, a mixer for civil engineering having a capacity of 50 L is used.
Next, this processed product is separated (1-2). In the embodiment, separation by a filter is performed. Specifically, a sandbag with an opening of 30 μm was used. The processed material is put in the sandbag, and the sandbag is placed in a plastic rectangular container and left for an appropriate time. As a result, the muddy water-like secondary treated material mixed with soil having a particle size of 30 μm (Da) or less flows out and collects in the container (1-3), and the soil having a particle size exceeding 30 μm (Da) It remains inside and is taken out (1-4). If the radiation dose is appropriate, this removed soil is used as decontaminated soil as it is. If the radiation dose is not appropriate, the above mixing and stirring are repeated.

次に、二次処理物に凝集剤を添加して処理土壌を沈降させる(1−5)。凝集剤としては、例えば、カルシウム化合物,石炭灰,アルミニウム化合物等を成分とする市販のものを用いる。その後、処理土壌が沈降した二次処理物を濾過して濾液と残渣に分ける(1−6)。この場合、残渣は30μm(Da)以上の大きさの塊になって沈降する。この濾過は、上記と同様の土嚢袋に処理土壌が沈降した二次処理物を入れ、プラスチック製の矩形容器内に土嚢袋を入れ、適宜の時間放置する。これにより、濾液が容器内に流出して溜まり(1−7)、30μm(Da)以下の土壌の塊である残渣が土嚢袋内に残り、これを取り出す(1−8)。濾液には、土壌の流出はなく、放射性物質がほとんどない水酸化カルシウム溶液なので、再利用し、あるいは、廃液とする。残渣は、粒径Da以下の土壌の塊であり汚染土壌とする。この汚染土壌は、その後、例えば、ペレット状に圧縮加工し、コンクリート製の容器に入れるなどして保管する。抽出される粒径Da以下の汚染土壌の量が、元の土壌の量に比較して極めて少ないので、汚染土壌を大幅に減容化することができる。   Next, a coagulant is added to the secondary treated product to settle the treated soil (1-5). As a flocculant, the commercially available thing which uses a calcium compound, coal ash, an aluminum compound etc. as a component is used, for example. Thereafter, the secondary treated product on which the treated soil has settled is filtered and separated into a filtrate and a residue (1-6). In this case, the residue becomes a lump having a size of 30 μm (Da) or more and settles. In this filtration, a secondary treated product in which treated soil is settled is put in a sandbag similar to the above, and the sandbag is placed in a plastic rectangular container and left for an appropriate time. As a result, the filtrate flows out and accumulates in the container (1-7), and a residue that is a lump of soil of 30 μm (Da) or less remains in the sandbag and is taken out (1-8). Since the filtrate is a calcium hydroxide solution with no soil runoff and almost no radioactive material, it can be reused or used as a waste solution. The residue is a lump of soil having a particle size Da or less and is contaminated soil. The contaminated soil is then stored by, for example, compressing it into pellets and placing it in a concrete container. Since the amount of the contaminated soil having the particle size Da or less to be extracted is extremely small compared to the amount of the original soil, the volume of the contaminated soil can be greatly reduced.

尚、上記第一の実施の形態においては、処理物中の処理土壌の分離を段階的に行うようにしてよい。例えば、先に、目開きが例えば100μmの土嚢袋を用いて一次濾過を行い、次に、100μm以下の土壌が混合した泥水状の処理物を、上記の目開きが30μmの土嚢袋を用いて二次濾過を行う。これにより、一時に分離する場合に比較して、細粒の土壌の目詰まりがしにくくなり、分離効率が向上させられる。   In the first embodiment, the treated soil in the treated product may be separated stepwise. For example, first, primary filtration is performed using a sandbag with a mesh opening of, for example, 100 μm, and then a muddy water-like processed material mixed with soil of 100 μm or less is used with a sandbag with the opening of 30 μm. Secondary filtration is performed. Thereby, compared with the case where it isolate | separates at once, it becomes difficult to clog fine-grained soil and a separation efficiency is improved.

図3には、第二の実施の形態に係る土壌の除染方法を示している。これは、土壌に、酸化カルシウム及び/または水酸化カルシウム,水を加え、撹拌混合して泥水状の処理物を得る。混合撹拌は、容量が400〜3600Lのドラムウオッシャ1をバッチ式で用いる。
次に、この処理物を粒径30μm(Da)より大きい所定寸法(実施の形態では100μm)の目開きの篩を通過させて粒径が100μmを超える大径側土壌と、粒径が100μm以下の小径側土壌が混合した泥水状の二次処理物とに分離する。この分離は、周知の振動スクリーン2を用いて行う。この分離した大径側土壌は、放射線量が適正であれば、そのまま、除染土壌とする。放射線量が適正でなければ、上記の混合撹拌及び分離を繰り返し行う。
FIG. 3 shows a soil decontamination method according to the second embodiment. In this method, calcium oxide and / or calcium hydroxide and water are added to the soil and mixed by stirring to obtain a muddy water-like treated product. For mixing and stirring, a drum washer 1 having a capacity of 400 to 3600 L is used in a batch system.
Next, the treated material is passed through a sieve having an opening having a predetermined size (100 μm in the embodiment) larger than a particle size of 30 μm (Da), and a large-diameter side soil having a particle size exceeding 100 μm and a particle size of 100 μm or less It separates into a muddy water-like secondary treated product mixed with small-diameter side soil. This separation is performed using a known vibrating screen 2. The separated large-diameter side soil is directly decontaminated soil if the radiation dose is appropriate. If the radiation dose is not appropriate, the above mixing and stirring are repeated.

次に、二次処理物を脱水乾燥して粒径が100μm以下の小径側土壌を得る。この脱水乾燥は、周知の脱水乾燥機3を用いる。回収し得る液があれば、放射性物質がほとんどない水酸化カルシウム溶液なので、再利用し、あるいは、廃液とする。
その後、粒径が100μm以下の小径側土壌を粒径が30μm(Da)以下の土壌と粒径が30μm(Da)を超える土壌とに分離する。この分離においては、周知の風力分級機4を用いる。最終分離を風力分級機4を用いるので、分離を比較的容易に行うことができる。粒径が30μm(Da)を超える土壌は、除染土壌とすることができる。また、粒径が30μm(Da)以下の土壌は、汚染土壌としてコンクリート製の容器に入れるなどして保管する。抽出される粒径Da以下の汚染土壌の量が、元の土壌の量に比較して極めて少ないので、汚染土壌を大幅に減容化することができる。
Next, the secondary treated product is dehydrated and dried to obtain a small-diameter side soil having a particle size of 100 μm or less. For this dehydration drying, a well-known dehydration dryer 3 is used. If there is a liquid that can be recovered, it is a calcium hydroxide solution with little radioactive material, so it can be reused or used as a waste liquid.
Then, the small-diameter side soil having a particle size of 100 μm or less is separated into soil having a particle size of 30 μm (Da) or less and soil having a particle size exceeding 30 μm (Da). In this separation, a well-known air classifier 4 is used. Since the air classifier 4 is used for the final separation, the separation can be performed relatively easily. Soil having a particle size exceeding 30 μm (Da) can be decontaminated soil. Further, soil having a particle size of 30 μm (Da) or less is stored as contaminated soil in a concrete container. Since the amount of the contaminated soil having the particle size Da or less to be extracted is extremely small compared to the amount of the original soil, the volume of the contaminated soil can be greatly reduced.

次に実施例について説明する。
(実施例1)
上記の第一の実施の形態に係る除染方法を用いて、福島県相馬郡飯舘村比曽14地区に集積された放射性物質の汚染土壌を除染した。
土壌(未処理土)10Kgを容量が50Lの土木用のミキサに投入し、水を3倍量(30Kg)を加えた。酸化カルシウムを水に対して1重量%になるように加えた。そして、30分撹拌混合した。
この撹拌混合して得られた処理物を、目開きが30μmの土嚢袋に入れ、プラスチック製の矩形容器内にこの土嚢袋を入れ、適宜の時間放置した。これにより、粒径が30μm以下の土壌が混合した泥水状の二次処理物が容器内に流出して溜まり、粒径が30μmを超える土壌が土嚢袋内に残った。この土嚢袋の土壌を取り出し除染土壌とした。次に、二次処理物に市販の凝集剤を添加して処理土壌を沈降させ、これを土嚢に入れて上記と同様に濾過し、濾液と残渣に分け、残渣は取り出し汚染土壌とした。
Next, examples will be described.
Example 1
Using the decontamination method according to the first embodiment described above, contaminated soil of radioactive material accumulated in the 14 district of Hiei, Iizumi-mura, Soma-gun, Fukushima Prefecture was decontaminated.
10 kg of soil (untreated soil) was put into a mixer for civil engineering having a capacity of 50 L, and 3 times the amount of water (30 kg) was added. Calcium oxide was added to 1% by weight with respect to water. And it stirred and mixed for 30 minutes.
The treated product obtained by stirring and mixing was placed in a sandbag having an opening of 30 μm, and the sandbag was placed in a plastic rectangular container and allowed to stand for an appropriate time. As a result, the muddy water-like secondary treated product mixed with the soil having a particle size of 30 μm or less flows out and accumulates in the container, and the soil having a particle size exceeding 30 μm remains in the sandbag. The soil of this sandbag was taken out and used as decontaminated soil. Next, a commercially available flocculant was added to the secondary treated product to settle the treated soil, which was put in a sandbag and filtered in the same manner as above to separate the filtrate and the residue, and the residue was taken out as contaminated soil.

そして、未処理土、除染土壌、汚染土壌(残渣)、濾液について、ゲルマニウム半導体検出器による放射性核種測定を行った。結果を図4に示す。この結果から、実施例1の除染土壌は、酸化カルシウム及び水の混合撹拌を1回行っただけあるが、未処理土壌の放射性セシウムがトータルで57000Bq/Kgあったものが、除染土壌で19600Bq/Kgまで大幅に下がり、その除染率は極めて高いことが分かる。このことは、汚染土壌の放射性セシウムが77000Bq/Kgに凝縮されて高くなっていることからも明らかであり、高濃度の粘土が回収されていることが分かる。また、濾液(水酸化カルシウム溶液)の放射性セシウムの濃度は略ゼロであり、再処理や排水処理しても無害であることが分かる。尚、実施例1の除染土壌は、酸化カルシウム及び水の混合撹拌を1回行っただけであるが、混合撹拌及び濾過を繰り返し行えば、更に、放射線濃度を下げることができる。   And about the untreated soil, decontaminated soil, contaminated soil (residue), and the filtrate, the radionuclide measurement by the germanium semiconductor detector was performed. The results are shown in FIG. From this result, the decontaminated soil of Example 1 was only mixed and stirred once with calcium oxide and water, but the total amount of radioactive cesium in the untreated soil was 57000 Bq / Kg. It is significantly reduced to 19600 Bq / Kg, and it can be seen that the decontamination rate is extremely high. This is also clear from the fact that radioactive cesium in the contaminated soil is condensed and increased to 77000 Bq / Kg, and it can be seen that a high concentration of clay is recovered. Moreover, the density | concentration of the radioactive cesium of a filtrate (calcium hydroxide solution) is substantially zero, and it turns out that it is harmless even if it reprocesses or drains. In addition, although the decontamination soil of Example 1 only mixed and stirred calcium oxide and water once, if mixing and stirring are repeated, the radiation concentration can be further reduced.

(実施例2)
上記実施例1と同様の除染方法を用いて、福島県相馬郡飯舘村比曽字比曽415に集積された放射性物質の汚染土壌を除染した。また、比較例として、酸化カルシウムを添加しない水を用い、上記実施例1と同様の工程で、未処理土を処理した。そして、未処理土、除染土壌(実施例2)、除染土壌(比較例)について、ゲルマニウム半導体検出器による放射性核種測定を行った。結果を図5に示す。この結果から、未処理土壌の放射性セシウムがトータルで27000Bq/Kgあったものに対し、単に水で処理した除染土壌(比較例)では、15500Bq/Kgであり、その除染率は低く(除染率43%)、実用性に劣ることが分かる。これに対して、実施例2の処理に係る除染土壌(実施例2)では、1370Bq/Kgまで大幅に下がり、その除染率は極めて高く(除染率95%)、実用性に富むことが分かる。
(Example 2)
Using the same decontamination method as in Example 1, the contaminated soil of radioactive material accumulated in Hiei 415, Iitate Village, Soma-gun, Fukushima Prefecture was decontaminated. In addition, as a comparative example, untreated soil was treated in the same process as in Example 1 using water to which calcium oxide was not added. And the radionuclide measurement by the germanium semiconductor detector was performed about untreated soil, decontaminated soil (Example 2), and decontaminated soil (comparative example). The results are shown in FIG. From this result, the total amount of radioactive cesium in the untreated soil was 27000 Bq / Kg, whereas in the decontaminated soil simply treated with water (Comparative Example), it was 15500 Bq / Kg, and the decontamination rate was low (decontamination). It can be seen that the dyeing rate is 43%) and the practicality is poor. On the other hand, in the decontamination soil (Example 2) which concerns on the process of Example 2, it falls significantly to 1370 Bq / Kg, the decontamination rate is very high (decontamination rate 95%), and it is rich in practicality. I understand.

<実験例>
次に、実験例について説明する。実験は、上記実施の形態で用いた酸化カルシウムの活性について行った。酸化カルシウム1gを2Lの水に溶解した処理液を作成し、これを、種々に使用してその効果を確認した。
(実験例1)
ヨードを含浸させ褐色に変色したティッシュペーパーを上記の処理液に浸漬し、撹拌した。その結果、褐色が消えて無色透明になった。これは、処理液がヨードを還元しヨウ化水素という全く違う物質に変えたもので、その活性に富むことが分かった。
(実験例2)
網目状の茶こし器に茶の葉を入れ、これに上記の処理液を注いで、茶の葉成分を抽出した。常温の水で抽出するのに比較し、褐色な抽出液が得られた。これは粘土塊(茶葉に相当)を形成している一番外側にある高濃度放射性セシウム含有粘土(茶葉の色素成分に相当)が細分化される仕組みを裏付けるものと推測される。なお、抽出力が大きくなる仕組みは酸化カルシウムの作用によりORP(酸化還元電位)が低下し、水のクラスターが小さくなり浸透力が増すことによるものと推測される。
(実験例3)
ペットボトルに収容された市販の茶飲料に対して、上記の処理液を加えた。茶の色が褐色に変化し、茶の成分を更に抽出したことが分かった。これも、小さな粘土塊を浸透力の増したアルカリ性水溶液がさらに細分化することを裏付けるものと推測される。
<Experimental example>
Next, experimental examples will be described. The experiment was conducted on the activity of calcium oxide used in the above embodiment. A treatment solution was prepared by dissolving 1 g of calcium oxide in 2 L of water, and the effect was confirmed by using it in various ways.
(Experimental example 1)
The tissue paper impregnated with iodine and turned brown was immersed in the treatment solution and stirred. As a result, the brown color disappeared and it became colorless and transparent. It was found that the treatment liquid was reduced in iodine and changed to a completely different substance called hydrogen iodide, and its activity was rich.
(Experimental example 2)
Tea leaves were put into a mesh-shaped tea strainer, and the above-mentioned treatment liquid was poured into the tea leaves to extract tea leaf components. Compared to extraction with water at room temperature, a brown extract was obtained. This is presumed to support the mechanism by which the outermost highly-concentrated radioactive cesium-containing clay (corresponding to the pigment component of tea leaves) forming the clay mass (corresponding to tea leaves) is subdivided. In addition, it is estimated that the mechanism by which extraction power becomes large is due to the ORP (redox potential) being lowered by the action of calcium oxide, the water clusters becoming smaller, and the penetration power being increased.
(Experimental example 3)
The above treatment liquid was added to a commercially available tea beverage contained in a PET bottle. The tea color changed to brown, and it was found that the tea components were further extracted. This is also presumed to support the further fragmentation of the alkaline aqueous solution with increased penetrating power through small clay blocks.

(実験例4)
上記の処理液の還元電位を測定した。水道水の酸化還元電位が680mvであったのに対し、処理液は79mvであった。水道水は、塩素成分が含まれており、一般には、+600mv〜+800mvであり、所謂名水といわれる鉱泉水でも+150mv〜+250mvの範囲程度であるが、処理水は極めて低く、還元力に富むことが分かった。
以上の結果から、酸化カルシウム及び/または水酸化カルシウムは、土壌に対する作用においても、放射性物質を吸着させたままの細粒の土壌粒子にする剥離作用を呈することが推量された。
(Experimental example 4)
The reduction potential of the above treatment liquid was measured. The redox potential of tap water was 680 mv, whereas the treatment liquid was 79 mv. The tap water contains a chlorine component, and is generally +600 mV to +800 mV, and even the mineral water called so-called famous water is in the range of +150 mV to +250 mV, but the treated water is extremely low and may be rich in reducing power. I understood.
From the above results, it was inferred that calcium oxide and / or calcium hydroxide exhibited an exfoliating action in the form of fine soil particles with the radioactive substance adsorbed in the action on the soil.

尚、本発明の実施の形態において、土壌の分離手段や分離工程は上記に限定されるものではなく、土壌の形態に合わせて適宜に定めてよい。   In the embodiment of the present invention, the soil separation means and the separation step are not limited to the above, and may be appropriately determined according to the form of the soil.

上述もしたが、福島第1原発の事故で放射性物質が飛散したことから、地面が放射性物質に汚染された地域では、この地面の表面を掻取、これを汚染土壌として集積して保管しているが、その集積量は膨大である。現在、これらの保管土壌を除染しその減容化を行うのに、単に水を使用して洗浄したり、強酸(硫酸や塩酸)を使用することが検討されているが、水の洗浄では除染効率に劣り、酸を使用すると土壌が酸性になり農耕地として使用できなくなる。本発明によれば、除染率が極めて高く、除染効率に優れるとともに、アルカリ剤で処理することから、特に水酸化カルシウムは酸性土壌を中性化するのにも役立ち、そのため、除染土壌をそのまま農耕地として再利用することができ、極めて有用になる。   As mentioned above, since radioactive materials were scattered in the accident at Fukushima Daiichi Nuclear Power Plant, in areas where the ground was contaminated with radioactive materials, the surface of the ground was scraped and stored as contaminated soil. However, the amount of accumulation is enormous. At present, in order to decontaminate and reduce the volume of these stored soils, it is considered to simply wash with water or use strong acid (sulfuric acid or hydrochloric acid). It is inferior in decontamination efficiency, and when acid is used, the soil becomes acidic and cannot be used as agricultural land. According to the present invention, since the decontamination rate is extremely high, the decontamination efficiency is excellent, and since it is treated with an alkaline agent, calcium hydroxide is particularly useful for neutralizing acidic soil. Can be reused as agricultural land as it is, which makes it extremely useful.

1 ドラムウオッシャ
2 振動スクリーン
3 脱水乾燥機
4 風力分級機
1 Drum Washer 2 Vibrating Screen 3 Dehydrating Dryer 4 Air Classifier

Claims (9)

放射性物質に汚染された土壌の除染を行う土壌の除染方法において、
土壌に、アルカリ剤及び水を加え、撹拌混合して泥水状の処理物を得、該処理物中の処理土壌を所定の粒径Daを基準にして分離し、該粒径Da以下の土壌を汚染土壌として抽出し、上記粒径Daを超える土壌を除染土壌として抽出することを特徴とする土壌の除染方法。
In soil decontamination methods for decontamination of soil contaminated with radioactive substances,
To the soil, an alkali agent and water are added and mixed by stirring to obtain a muddy water-like treated product. The treated soil in the treated product is separated on the basis of a predetermined particle size Da, and the soil having the particle size Da or less is separated. A soil decontamination method, wherein the soil is extracted as contaminated soil, and the soil having the particle size Da is extracted as decontamination soil.
上記処理物中の処理土壌の分離を段階的に行うことを特徴とする請求項1記載の土壌の除染方法。   2. The soil decontamination method according to claim 1, wherein the treated soil in the treated material is separated stepwise. 上記分離の過程で生じる処理土壌に対して、上記混合撹拌及び分離を繰り返し行うことを特徴とする請求項1または2記載の土壌の除染方法。   The soil decontamination method according to claim 1 or 2, wherein the mixing and stirring are repeatedly performed on the treated soil generated in the separation process. 上記分離の過程で上記処理物の脱液を行うことを特徴とする請求項1乃至3何れかに記載の土壌の除染方法。   4. The soil decontamination method according to any one of claims 1 to 3, wherein the treated product is drained in the separation process. 上記基準とする所定の粒径Daを、30μm≦Da≦200μmの範囲内で規定したことを特徴とする請求項1乃至4何れかに記載の土壌の除染方法。   The soil decontamination method according to any one of claims 1 to 4, wherein the predetermined particle diameter Da as the reference is defined within a range of 30 µm ≤ Da ≤ 200 µm. 土壌に、アルカリ剤及び水を加え、撹拌混合して泥水状の処理物を得、該処理物を上記粒径Da以下の土壌が混合した泥水状の二次処理物と、上記粒径Daを超える土壌とに分離し、次に、上記二次処理物に凝集剤を添加して処理土壌を沈降させ、その後、該処理土壌が沈降した二次処理物を濾過して濾液と残渣に分け、該残渣を汚染土壌として抽出することを特徴とする請求項1乃至5何れかに記載の土壌の除染方法。   To the soil, an alkaline agent and water are added and mixed by stirring to obtain a muddy water-like treated product. The muddy water-like secondary treated product obtained by mixing the treated material with the soil having the particle size Da or less and the particle size Da. Then, the flocculant is added to the secondary treated product to settle the treated soil, and then the secondary treated product on which the treated soil has settled is filtered to be separated into a filtrate and a residue, 6. The soil decontamination method according to claim 1, wherein the residue is extracted as contaminated soil. 土壌に、アルカリ剤及び水を加え、撹拌混合して泥水状の処理物を得、該処理物を上記粒径Daより大きい所定寸法の目開きの篩を通過させて大径側土壌と、小径側土壌が混合した泥水状の二次処理物とに分離し、次に、上記二次処理物を脱水乾燥して小径側土壌を得、その後、該小径側土壌を上記粒径Da以下の土壌と上記粒径Daを超える土壌とに分離することを特徴とする請求項1乃至5何れかに記載の土壌の除染方法。   To the soil, an alkaline agent and water are added, and mixed by stirring to obtain a muddy water-like treated product. The treated product is passed through a sieve having a predetermined size larger than the particle size Da, and the large-diameter side soil and the small-diameter It separates into a muddy water-like secondary treated product mixed with the side soil, and then the secondary treated product is dehydrated and dried to obtain a small-diameter-side soil, and then the small-diameter-side soil is a soil having a particle size Da or less. The soil decontamination method according to any one of claims 1 to 5, wherein the soil is separated into soil having a particle size Da exceeding the particle size Da. アルカリ剤として、酸化カルシウム及び/または水酸化カルシウムを用いることを特徴とする請求項1乃至7何れかに記載の土壌の除染方法。   8. The soil decontamination method according to claim 1, wherein calcium oxide and / or calcium hydroxide is used as the alkaline agent. 上記土壌に加える水を、重量比で該土壌の2〜4倍量にし、上記土壌に加える酸化カルシウム及び/または水酸化カルシウムを、上記加える水に対する重量比で0.1〜10重量%にすることを特徴とする請求項8記載の土壌の除染方法。   The water added to the soil is 2 to 4 times the weight of the soil, and the calcium oxide and / or calcium hydroxide added to the soil is 0.1 to 10% by weight with respect to the added water. The soil decontamination method according to claim 8.
JP2012040040A 2012-02-27 2012-02-27 Decontamination method of soil Pending JP2013174539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040040A JP2013174539A (en) 2012-02-27 2012-02-27 Decontamination method of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040040A JP2013174539A (en) 2012-02-27 2012-02-27 Decontamination method of soil

Publications (1)

Publication Number Publication Date
JP2013174539A true JP2013174539A (en) 2013-09-05

Family

ID=49267563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040040A Pending JP2013174539A (en) 2012-02-27 2012-02-27 Decontamination method of soil

Country Status (1)

Country Link
JP (1) JP2013174539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234954A (en) * 2012-05-10 2013-11-21 Makino:Kk Decontamination plant and decontamination method for contaminated soil
JP2014178157A (en) * 2013-03-14 2014-09-25 Taisei Corp Decontamination method for radioactive material contaminated soil
JP2015054807A (en) * 2013-09-13 2015-03-23 株式会社片山化学工業研究所 Method for preventing solidification of granulated blast furnace slag
CN114029327A (en) * 2021-11-30 2022-02-11 中国原子能科学研究院 Method for cleaning and decontaminating radioactive contaminated soil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234954A (en) * 2012-05-10 2013-11-21 Makino:Kk Decontamination plant and decontamination method for contaminated soil
JP2014178157A (en) * 2013-03-14 2014-09-25 Taisei Corp Decontamination method for radioactive material contaminated soil
JP2015054807A (en) * 2013-09-13 2015-03-23 株式会社片山化学工業研究所 Method for preventing solidification of granulated blast furnace slag
CN114029327A (en) * 2021-11-30 2022-02-11 中国原子能科学研究院 Method for cleaning and decontaminating radioactive contaminated soil

Similar Documents

Publication Publication Date Title
Chen et al. Removal of Cd (II) and Pb (II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms
Khandaker et al. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Kofa et al. Removal of fluoride from water by adsorption onto fired clay pots: kinetics and equilibrium studies
US9868647B2 (en) System and methods for removing impurities from phosphogypsum and manufacturing gypsum binders and products
JP6009847B2 (en) Decontamination apparatus and decontamination method for solid matter contaminated with radioactive material
JP5187376B2 (en) Removal agent for heavy metal ions in waste water and method for removing heavy metal ions using the same
JP2013250261A (en) Decontamination method for radioactive cesium contaminated slurry
JP2013174539A (en) Decontamination method of soil
Sicupira et al. Batch removal of manganese from acid mine drainage using bone char
Yan et al. A new low-cost hydroxyapatite for efficient immobilization of lead
KR20220122819A (en) Method and System for Decontamination of Contaminated Soil
Mahmoud et al. Kinetic and thermodynamic study of the adsorption of Ni (II) using Spent Activated clay Mineral
CN112585096A (en) Treatment of tailings
CA3003233C (en) Method for decontaminating radiocontaminated grains
WO2013094284A1 (en) Method for removing specific element
Zhirong et al. Adsorption behavior of U (VI)/Th (IV) by acid-leached red mud: a comparative study
JP6137887B2 (en) Method for decontamination of soil containing radioactive material
MXPA03002981A (en) Gypsum decontamination process.
JP5973932B2 (en) Processing method and processing plant for garbage and sewage sludge incineration ash
JP6815118B2 (en) Decontamination method for radioactively contaminated soil
KR101589905B1 (en) Liquid Sericite Solution and Method of Removing Cesium from Contaminated Materials by the Same
KR102272210B1 (en) A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same
JP2014055895A (en) Adsorbent for radioactive material, reproduction method therefor, and purification method for radioactive contaminated material
JP2002159952A (en) Method for removing harmful metal from waste viscus of scallop