JP2013174461A - Pressurized-water reactor - Google Patents

Pressurized-water reactor Download PDF

Info

Publication number
JP2013174461A
JP2013174461A JP2012037725A JP2012037725A JP2013174461A JP 2013174461 A JP2013174461 A JP 2013174461A JP 2012037725 A JP2012037725 A JP 2012037725A JP 2012037725 A JP2012037725 A JP 2012037725A JP 2013174461 A JP2013174461 A JP 2013174461A
Authority
JP
Japan
Prior art keywords
flow
positioning key
core
reactor vessel
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012037725A
Other languages
Japanese (ja)
Inventor
Ken Uchida
憲 内田
Tetsuzo Yamamoto
哲三 山本
Katsunobu Watanabe
勝信 渡邉
Shinji Kubo
伸二 久保
Yukitaka Yamazaki
之崇 山崎
Yoshio Kono
義雄 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012037725A priority Critical patent/JP2013174461A/en
Publication of JP2013174461A publication Critical patent/JP2013174461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To improve a flow rate allocation by suppressing a supply reduction in a coolant to a fuel assembly of a peripheral part in the vicinity of a positioning key due to flow going around the positioning key.SOLUTION: In a pressurized-water reactor, a cylindrical porous plate 20 arranged so as to partition a lower plenum 8 and a bottom part of an annular flow channel 6 and having a plurality of inward flow channels for constituting a flow channel to the lower plenum 8 formed is provided in a reactor vessel 3 having a positioning key 12 for mutually positioning a lower core support plate 9 and the reactor vessel 3, and flow resistance of the cylindrical porous plate 20 in this area is reduced in order to suppress a decrease in flow flowing into the lower plenum 8 from a downcomer 6 being an annular flow channel between a reactor core tank 5 and the reactor vessel 3 in a lower portion of the positioning key 12 due to the existence of the positioning key 12.

Description

本発明の実施形態は、加圧水型原子炉に関する。   Embodiments of the present invention relate to a pressurized water reactor.

一般に加圧水型原子炉においては、冷却材が原子炉容器の入口ノズルより原子炉容器内に流入し、原子炉容器の内側面と炉心槽の外面との間に構成される環状流路部であるダウンカマを下降する。ダウンカマを下降しダウンカマの下端すなわち下部プレナム入口に到達した冷却材は、ほぼ半球状の領域である下部プレナムにて上昇流に転じ、下部炉心支持板に開けられている多数の縦孔を通過し、燃料集合体が設置されている炉心に到達する。   In general, in a pressurized water reactor, the coolant flows into the reactor vessel from the inlet nozzle of the reactor vessel, and is an annular flow path portion configured between the inner surface of the reactor vessel and the outer surface of the reactor core. Lower the downcomer. The coolant that descends the downcomer and reaches the lower end of the downcomer, that is, the lower plenum inlet, turns into an upward flow in the lower plenum, which is an almost hemispherical region, and passes through a number of vertical holes opened in the lower core support plate. And reach the core where the fuel assemblies are installed.

入口ノズルから炉心に至るまでの流路は、渦や流れの衝突などを発生させる要因を極力排除し、各燃料集合体に入る冷却材の流量が安定して一様となるように設計される。   The flow path from the inlet nozzle to the core is designed so that the factors that cause vortices and flow collisions are eliminated as much as possible, and the flow rate of the coolant entering each fuel assembly is stable and uniform. .

例えば、特許文献1では、下部プレナムに渦抑制板を設置する技術が公開されている。   For example, Patent Document 1 discloses a technique for installing a vortex suppression plate in a lower plenum.

図12は、従来の加圧水型原子炉の例における下部プレナム近傍の流れを示す立断面図である。ダウンカマ6を下降する流れは下部プレナム入口7を通り、下部プレナム8内に流入する。下部プレナム入口7の流路が狭くなると下部プレナム8への流入流速は増加し、慣性が増大することになる。   FIG. 12 is a vertical sectional view showing a flow in the vicinity of the lower plenum in an example of a conventional pressurized water reactor. The flow descending the downcomer 6 passes through the lower plenum inlet 7 and flows into the lower plenum 8. When the flow path of the lower plenum inlet 7 becomes narrower, the flow velocity of the inflow into the lower plenum 8 increases and the inertia increases.

この慣性のため、下部プレナム8内の流れとしては速度の速い流れが原子炉容器3の底部内面沿いに下降し原子炉容器3の底部中央に向かい、この周囲から中央に向かった流れが底部中央で方向を変えて上昇する傾向を持つ。この流れの傾向により、下部炉心支持板9の上向き流通孔を通過する冷却材流量としては下部炉心支持板9の中央部で多くなる分布が現れる。すなわち、下部プレナム入口7の流路が狭くなると、中央の燃料集合体に供給される冷却材流量が多くなる傾向が表れやすい。   Due to this inertia, the flow in the lower plenum 8 is a fast flow descending along the inner surface of the bottom of the reactor vessel 3 toward the center of the bottom of the reactor vessel 3, and the flow from the periphery toward the center is the center of the bottom. There is a tendency to change direction and rise. Due to this flow tendency, a distribution in which the coolant flow rate passing through the upward flow holes of the lower core support plate 9 increases at the center of the lower core support plate 9 appears. That is, when the flow path of the lower plenum inlet 7 is narrowed, the tendency of increasing the coolant flow rate supplied to the central fuel assembly tends to appear.

特開2007−163477号公報JP 2007-163477 A

図13は、従来の加圧水型原子炉の例における円筒状多孔板を設けた場合の下部プレナム近傍の流れを示す立断面図である。炉心流量分布の非一様性を緩和するため、図13に示すように多数の半径方向貫通孔を有する円筒状多孔板301を下部プレナム入口7に設置することがある。   FIG. 13 is an elevational sectional view showing a flow in the vicinity of the lower plenum when a cylindrical perforated plate is provided in an example of a conventional pressurized water reactor. In order to alleviate the non-uniformity of the core flow rate distribution, a cylindrical perforated plate 301 having a large number of radial through holes may be installed at the lower plenum inlet 7 as shown in FIG.

この円筒状多孔板301を用いた場合、ダウンカマ下降流は下部プレナム入口7において半径方向内側に流れの向きを換え、円筒状多孔板301を通過し、下部プレナム8内に対しほぼ半径方向内側向きの流れとして流入する。円筒状多孔板301を通過する際に流れは拡散すること、および流れは下部炉心支持板9の下面至近を流れることから、中央部に収斂する流れにはなりにくくなり、中央の燃料集合体を流れる冷却材流量が多くなるという前述の傾向は緩和される。   When this cylindrical perforated plate 301 is used, the downcomer downward flow changes the direction of the flow radially inward at the lower plenum inlet 7, passes through the cylindrical perforated plate 301, and is directed substantially radially inward with respect to the lower plenum 8. Inflow as a flow of. Since the flow diffuses when passing through the cylindrical perforated plate 301, and the flow flows near the lower surface of the lower core support plate 9, it becomes difficult for the flow to converge at the central portion, and the central fuel assembly The aforementioned tendency of increasing the flow rate of flowing coolant is alleviated.

図14は、位置決めキーを含む下部プレナム近傍の立断面図である。円環状流路であるダウンカマ6には、通常、炉心槽5の下部と原子炉容器3とを径方向に相互に位置決めする位置決めキー12が周方向に数ヶ所、設置される。   FIG. 14 is an elevational sectional view of the vicinity of the lower plenum including the positioning key. In the downcomer 6 that is an annular channel, usually, several positioning keys 12 for positioning the lower part of the reactor core 5 and the reactor vessel 3 in the radial direction are installed in the circumferential direction.

図15は、従来の加圧水型原子炉の例における下部プレナム近傍の流れを示す図14のXV−XV線矢視図である。図15の破線は冷却材の流れを示す。図示のように、ダウンカマ下降流が位置決めキー12近くに到達すると、位置決めキー12を回り込む流れができる。この回り込む流れは、その上流側である周方向にほぼ一様なダウンカマ下降流に比べて流速が大きくなる。   15 is a view taken along the line XV-XV in FIG. 14 showing the flow in the vicinity of the lower plenum in an example of a conventional pressurized water reactor. The broken line in FIG. 15 shows the flow of the coolant. As shown in the drawing, when the downcomer downward flow reaches near the positioning key 12, there is a flow around the positioning key 12. This flowing-around flow has a higher flow velocity than a downcomer descending flow that is substantially uniform in the circumferential direction on the upstream side.

また、流れにとって障害物である位置決めキー12のすぐ下流側すなわち位置決めキーの直下領域は後流領域と呼ばれ、この領域では圧力が低下する。一方、この回り込む流れの下に位置する領域では後流領域より圧力は上昇する。   Further, a region immediately downstream of the positioning key 12 that is an obstacle to the flow, that is, a region immediately below the positioning key is called a wake region, and the pressure is reduced in this region. On the other hand, the pressure rises in the region located under the wraparound flow as compared with the wake region.

図14においては、A点で代表させた円筒状多孔板301の上部外側領域は位置決めキーの後流部であり、Bで代表させた円筒状多孔板301の下部外側領域に比べて圧力が低下する。このような場合、通常、AとC間の差圧はBとD間の差圧よりも小さくなるため、円筒状多孔板301の上部を通過して下部プレナムに流入する冷却材の流量は、下部やその他の領域に比べて少ない。   In FIG. 14, the upper outer region of the cylindrical porous plate 301 represented by point A is the wake portion of the positioning key, and the pressure is lower than that of the lower outer region of the cylindrical porous plate 301 represented by B. To do. In such a case, since the differential pressure between A and C is usually smaller than the differential pressure between B and D, the flow rate of the coolant flowing through the upper portion of the cylindrical porous plate 301 and flowing into the lower plenum is Less than the bottom and other areas.

このように、位置決めキーの直下領域においては、円筒状多孔板301の上部を通過して下部プレナムに流入する冷却材の流量が少なくなるため、図13に示す流れから容易に類推できるように、下部炉心支持板9の上向き流通孔のうちの周辺部に流入する冷却材の流量が少なくなることが課題であった。   Thus, in the region immediately below the positioning key, the flow rate of the coolant flowing through the upper part of the cylindrical porous plate 301 and flowing into the lower plenum is reduced, so that it can be easily inferred from the flow shown in FIG. The problem was that the flow rate of the coolant flowing into the peripheral portion of the upward circulation holes of the lower core support plate 9 was reduced.

このような位置決めキー12を回り込む流れによる圧力分布のため、位置決めキー12に近接する周辺部の燃料集合体への冷却材の供給が減少するという問題がある。   Due to such pressure distribution due to the flow around the positioning key 12, there is a problem that the supply of coolant to the peripheral fuel assembly near the positioning key 12 is reduced.

本発明は以上の課題を解決するためになされたものであり、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能な加圧水型原子炉を得ることを目的とする。   The present invention has been made to solve the above problems, and is a pressurized water atom capable of improving the flow rate distribution by suppressing the decrease in the supply of coolant to the peripheral fuel assembly adjacent to the positioning key. The purpose is to obtain a furnace.

上述の目的を達成するため、本発明に係る加圧水型原子炉の実施形態は、鉛直方向を軸とする円筒状の原子炉容器と、前記原子炉容器内に設けられて該原子炉容器の内側面との間で環状流路部を形成する筒状の炉心槽と、前記炉心槽内に配置された炉心と、前記炉心の下方にあり前記炉心槽の下部に接して水平方向に広がるように設けられ前記炉心への複数の上向き流路孔を有し前記原子炉容器の底部と共に下部プレナムを形成する下部炉心支持板と、前記炉心槽の下部と前記原子炉容器との相互の位置決めをするための位置決めキーと、前記原子炉容器の側壁に互いに間隔をあけて水平に並んで形成された複数個の冷却材入口ノズルと、前記原子炉容器の側壁に互いに間隔をあけて水平に並んで形成され前記炉心の上部と直接に接続する複数個の冷却材出口ノズルと、前記原子炉容器の底部に接する下部プレナムと前記環状流路部の底部とを区画するように配置され前記環状流路部の底部から前記下部プレナムへの流路を構成する複数の内向き流路孔が形成され、前記位置決めキーの下方部分から下部プレナムに流入する冷却材の流量低下を抑制するために、前記位置決めキーの下方に属する部分の流動抵抗を小さくした円筒状多孔板と、を具備することを特徴とする。   In order to achieve the above-described object, an embodiment of a pressurized water reactor according to the present invention includes a cylindrical reactor vessel having a vertical axis as an axis, and a reactor vessel provided in the reactor vessel. A cylindrical core tank that forms an annular flow path portion with the side surface; a core disposed in the core tank; and a lower part of the core that is in contact with the lower part of the core tank and spreads horizontally A lower core support plate provided with a plurality of upward flow passage holes to the core and forming a lower plenum together with the bottom of the reactor vessel; and positioning the lower portion of the core vessel and the reactor vessel relative to each other For positioning, a plurality of coolant inlet nozzles formed horizontally and spaced apart from each other on the side wall of the reactor vessel, and a side by side horizontally spaced from the side wall of the reactor vessel Formed and connected directly to the top of the core. A plurality of coolant outlet nozzles, a lower plenum in contact with the bottom of the reactor vessel, and a bottom of the annular channel, and a channel from the bottom of the annular channel to the lower plenum. A plurality of inward flow path holes are formed, and the flow resistance of the portion belonging to the lower part of the positioning key is reduced in order to suppress a decrease in the flow rate of the coolant flowing into the lower plenum from the lower part of the positioning key. And a cylindrical perforated plate.

本発明の実施形態によれば、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能な加圧水型原子炉を得ることができる。   According to the embodiment of the present invention, it is possible to obtain a pressurized water reactor capable of suppressing a decrease in the supply of coolant to the peripheral fuel assembly adjacent to the positioning key and improving the flow distribution.

本発明に係る加圧水型原子炉の第1の実施形態の下部プレナム近傍の立断面図である。1 is an elevational sectional view in the vicinity of a lower plenum of a first embodiment of a pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第1の実施形態の全体立断面図である。1 is an overall vertical sectional view of a first embodiment of a pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第1の実施形態の下部プレナム近傍の図1のIII−III線矢視図である。FIG. 3 is a view taken along the line III-III in FIG. 1 in the vicinity of the lower plenum of the first embodiment of the pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第2の実施形態の下部プレナム近傍の立断面図である。It is an elevational sectional view of the vicinity of the lower plenum of the second embodiment of the pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第2の実施形態の下部プレナム近傍の図4のV−V線矢視図である。FIG. 5 is a view taken along the line VV in FIG. 4 near the lower plenum of the second embodiment of the pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第3の実施形態の下部プレナム近傍の立断面図である。It is an elevation sectional view near the lower plenum of the third embodiment of the pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第3の実施形態の下部プレナム近傍の図6のVII−VII線矢視図である。FIG. 7 is a view taken along the line VII-VII in FIG. 6 near the lower plenum of the third embodiment of the pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第3の実施形態の円筒状多孔板の鳥瞰図である。It is a bird's-eye view of the cylindrical porous board of 3rd Embodiment of the pressurized water reactor which concerns on this invention. 本発明に係る加圧水型原子炉の第4の実施形態の下部プレナム近傍の立断面図である。It is an elevational sectional view of the vicinity of the lower plenum of the fourth embodiment of the pressurized water reactor according to the present invention. 本発明に係る加圧水型原子炉の第4の実施形態の円筒状多孔板の鳥瞰図である。It is a bird's-eye view of the cylindrical porous board of 4th Embodiment of the pressurized water reactor which concerns on this invention. 本発明に係る加圧水型原子炉の第5の実施形態の円筒状多孔板の鳥瞰図である。It is a bird's-eye view of the cylindrical porous board of 5th Embodiment of the pressurized water reactor which concerns on this invention. 従来の加圧水型原子炉の例における下部プレナム近傍の流れを示す立断面図である。It is an elevation sectional view showing the flow near the lower plenum in the example of the conventional pressurized water reactor. 従来の加圧水型原子炉の例における円筒状多孔板を設けた場合の下部プレナム近傍の流れを示す立断面図である。It is an elevational sectional view showing a flow in the vicinity of the lower plenum when a cylindrical perforated plate is provided in an example of a conventional pressurized water reactor. 従来の加圧水型原子炉の例における位置決めキーを含む下部プレナム近傍の立断面図である。It is an elevational sectional view near the lower plenum including a positioning key in an example of a conventional pressurized water reactor. 従来の加圧水型原子炉の例における下部プレナム近傍の流れを示す図14のXV−XV線矢視図である。It is the XV-XV arrow directional view of FIG. 14 which shows the flow of the lower plenum vicinity in the example of the conventional pressurized water reactor.

以下、図面を参照して本発明に係る加圧水型原子炉の実施形態について説明する。ここで、同一または類似の部分には、共通の符号を付して、重複説明は省略する。   Hereinafter, an embodiment of a pressurized water reactor according to the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明に係る加圧水型原子炉の第1の実施形態の下部プレナム近傍の立断面図である。図2は、本実施形態の全体立断面図である。また、図3は、本実施形態の下部プレナム近傍の図1のIII−III線矢視図である。
[First embodiment]
FIG. 1 is an elevational sectional view of the vicinity of a lower plenum of a first embodiment of a pressurized water reactor according to the present invention. FIG. 2 is an overall vertical sectional view of the present embodiment. 3 is a view taken along the line III-III in FIG. 1 in the vicinity of the lower plenum of the present embodiment.

炉心1は、その周囲を炉心槽5により囲まれている。鉛直方向を軸とする円筒状の原子炉容器3が、炉心槽5を内包し、原子炉容器3の側部と炉心槽5は、環状流路であるダウンカマ6を形成している。   The core 1 is surrounded by a core tank 5. A cylindrical nuclear reactor vessel 3 with the vertical direction as an axis encloses a reactor core tank 5, and the side portion of the reactor vessel 3 and the reactor core tank 5 form a downcomer 6 that is an annular flow path.

原子炉容器3の側壁には、互いに間隔をあけて水平に並んで形成された複数個の冷却材入口ノズル4と、互いに間隔をあけて水平に並んで形成された複数個の冷却材出口ノズル11とが設けられている。冷却材出口ノズル11は炉心の上部を構成する上部プレナム10と直接に接続されている。   A plurality of coolant inlet nozzles 4 are formed on the side wall of the reactor vessel 3 so as to be horizontally aligned with a space between them, and a plurality of coolant outlet nozzles are formed to be horizontally aligned with a space between each other. 11 is provided. The coolant outlet nozzle 11 is directly connected to the upper plenum 10 constituting the upper part of the core.

炉心1の下方には、炉心槽5の下部に接して水平方向に広がるように下部炉心支持板9が設けられている。下部炉心支持板9は複数の上向き流路孔を有しており、各流路孔を通過した冷却材は炉心1の図示しない各燃料集合体に流入する。   A lower core support plate 9 is provided below the core 1 so as to extend in the horizontal direction in contact with the lower portion of the core tank 5. The lower core support plate 9 has a plurality of upward flow passage holes, and the coolant that has passed through each flow passage hole flows into each fuel assembly (not shown) of the core 1.

原子炉容器3の上部は取り外し可能な蓋であり、下部は密閉状態を構成するための底部板3aである。原子炉容器3内の空間のうち、底部板3aで囲まれた部分は、下部プレナム8が構成されている。   The upper part of the reactor vessel 3 is a removable lid, and the lower part is a bottom plate 3a for constituting a sealed state. A lower plenum 8 is configured in a space surrounded by the bottom plate 3 a in the space in the reactor vessel 3.

冷却材入口ノズル4から炉心1に至るまでの流路は、渦や流れの衝突などを発生させる要因を極力排除し、各燃料集合体に入る冷却材の流量が安定して一様となるように設計される。このために、下部プレナム8内には、渦抑制板13が設けられている。   The flow path from the coolant inlet nozzle 4 to the core 1 eliminates factors that cause vortices and flow collisions as much as possible, so that the flow rate of the coolant entering each fuel assembly is stable and uniform. Designed to. For this purpose, a vortex suppression plate 13 is provided in the lower plenum 8.

さらに、下部プレナム入口7には、環状流路部であるダウンカマ6と原子炉容器3内の底部空間である下部プレナム8とを区画するように配置された円筒状多孔板20が設けられている。円筒状多孔板20には、複数の内向き流路孔21が形成され、これらはダウンカマ6の底部から下部プレナム8への流路を構成する。   Further, the lower plenum inlet 7 is provided with a cylindrical perforated plate 20 disposed so as to partition the downcomer 6 that is an annular flow path portion and the lower plenum 8 that is a bottom space in the reactor vessel 3. . A plurality of inward flow path holes 21 are formed in the cylindrical perforated plate 20, and these form a flow path from the bottom of the downcomer 6 to the lower plenum 8.

円筒多孔板20がない場合、図12に示すようにダウンカマ6から下部プレナム入口7を経由して下部プレナム8に流入する冷却材は下部プレナム8の中央部に向かう流れとなるため、下部プレナム入口7が狭い場合、炉心1の中央部の燃料集合体へ供給される冷却材流量に比べ周辺部の燃料集合体へ供給される冷却材流量が低減する傾向が現れる。円筒多孔板20を設けるのは、このような炉心1における流量分布の非均一性を緩和するためである。   When the cylindrical perforated plate 20 is not provided, the coolant flowing into the lower plenum 8 from the downcomer 6 via the lower plenum inlet 7 flows toward the center of the lower plenum 8 as shown in FIG. When 7 is narrow, the coolant flow rate supplied to the peripheral fuel assemblies tends to be lower than the coolant flow rate supplied to the fuel assemblies in the central portion of the core 1. The reason why the cylindrical perforated plate 20 is provided is to alleviate such non-uniformity of the flow distribution in the core 1.

また、ダウンカマ6の下部において、炉心槽5下部の下部炉心支持板9と原子炉容器3との間に、下部炉心支持板9と原子炉容器3との相互の位置決めをするための位置決めキー12が設けられている。   In addition, a positioning key 12 for positioning the lower core support plate 9 and the reactor vessel 3 between the lower core support plate 9 and the reactor vessel 3 below the reactor core 5 below the downcomer 6. Is provided.

円筒状多孔板20はその下部が、支持部材31により原子炉容器3に接続、支持されている。なお、支持部材31による接続は単なる溶接による接続でもよい。   The lower portion of the cylindrical porous plate 20 is connected to and supported by the reactor vessel 3 by a support member 31. The connection by the support member 31 may be a connection by simple welding.

炉心槽5の下部に円筒状多孔板20が設けられ、円筒状多孔板20の上端と炉心槽5の間は、間隙部32があって流路を形成している。   A cylindrical porous plate 20 is provided in the lower part of the core tank 5, and there is a gap 32 between the upper end of the cylindrical porous plate 20 and the core tank 5 to form a flow path.

図中の破線は炉心槽5の下端に設けられている位置決めキー12の近傍の流れの状態を示す。ダウンカマ6の下降流が位置決めキー12近くに到達すると、位置決めキー12を回り込む流れができる。この回り込む流れは、その上流側である周方向にほぼ一様なダウンカマ下降流に比べて流速が大きくなり、位置決めキー12の直下領域の圧力が低下する。   The broken line in the figure indicates the state of the flow in the vicinity of the positioning key 12 provided at the lower end of the reactor core 5. When the downward flow of the downcomer 6 reaches near the positioning key 12, there is a flow around the positioning key 12. This flowing-around flow has a larger flow velocity than the downcomer downflow that is substantially uniform in the circumferential direction on the upstream side, and the pressure in the region immediately below the positioning key 12 decreases.

円筒状多孔板20に設けられた内向き流路孔21のうち、この圧力が低下する領域に相当する範囲に他の領域と同様の内向き流路孔21を設けると、この領域における円筒状多孔板20内外の圧力差が小さいため下部プレナムに流入する流れが低下してしまう。   Of the inward flow passage holes 21 provided in the cylindrical perforated plate 20, when an inward flow passage hole 21 similar to other regions is provided in a range corresponding to the region where the pressure decreases, a cylindrical shape in this region is formed. Since the pressure difference inside and outside the porous plate 20 is small, the flow flowing into the lower plenum is lowered.

これを避け、流量低下を抑制するために、この領域では、流動抵抗の小さい大口径の内向き流路孔である大型内向き流路孔21aが設けられている。   In order to avoid this and suppress a decrease in flow rate, a large inward flow passage hole 21a, which is a large-diameter inward flow passage hole with a small flow resistance, is provided in this region.

なお、図3では、大型内向き流路孔21aは円形としたが、円形に限らず、他の形状でもよい。また、図3では、大型内向き流路孔21aは、円筒状多孔板20において位置決めキー12に近い領域にのみ設けているが、位置決めキー12を回り込む流れとの関係で、円筒状多孔板20の下側まで設けてもよい。   In addition, in FIG. 3, although the large inward flow path hole 21a was circular, it is not limited to a circular shape and may have other shapes. In FIG. 3, the large inward flow passage hole 21 a is provided only in a region near the positioning key 12 in the cylindrical porous plate 20, but the cylindrical porous plate 20 is related to the flow around the positioning key 12. It may be provided up to the lower side.

このように流動抵抗の小さな大型内向き流路孔21aを設けることにより、円筒状多孔板20内外の圧力差が小さくなる位置決めキー12の直下領域からの流れは、その差圧の低下を流動抵抗の低下で補償することにより、位置決めキー12の設けられていない領域と同等の内向きの流量を確保することができる。この結果、下部プレナムに流入する流量の周方向の分布の局所的な低下が抑制される。   By providing the large inward flow passage hole 21a having a small flow resistance in this way, the flow from the region immediately below the positioning key 12 in which the pressure difference between the inside and outside of the cylindrical perforated plate 20 becomes small is reduced by the flow resistance. By compensating for the decrease, the inward flow rate equivalent to the area where the positioning key 12 is not provided can be secured. As a result, a local decrease in the circumferential distribution of the flow rate flowing into the lower plenum is suppressed.

以上のように構成されることにより、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能となる。   By being configured as described above, it is possible to suppress a decrease in the supply of coolant to the peripheral fuel assembly adjacent to the positioning key and improve the flow distribution.

[第2の実施形態]
図4は、本発明に係る加圧水型原子炉の第2の実施形態の下部プレナム近傍の立断面図である。また、図5は、本実施形態の下部プレナム近傍の図4のV−V線矢視図である。
[Second Embodiment]
FIG. 4 is an elevational sectional view of the vicinity of the lower plenum of the second embodiment of the pressurized water reactor according to the present invention. FIG. 5 is a view taken along the line V-V in FIG. 4 near the lower plenum of the present embodiment.

本実施形態においては、円筒状多孔板20の位置決めキー12の直下の圧力の低下する領域に面した部分に切欠き部22が設けられている。切欠き部22を設けることにより、円筒状多孔板20の外側から内側へ通過する流れの流動抵抗が小さくなり、この領域の内外の圧力差の局部的な低下を補償し、位置決めキー12の設けられていない領域と同等の内向きの流量を確保することができる。   In the present embodiment, a notch 22 is provided in a portion of the cylindrical perforated plate 20 facing a region where the pressure immediately below the positioning key 12 decreases. By providing the notch 22, the flow resistance of the flow passing from the outside to the inside of the cylindrical perforated plate 20 is reduced, and the local decrease in the pressure difference inside and outside this region is compensated, and the positioning key 12 is provided. An inward flow rate equivalent to that of the region that is not provided can be ensured.

以上のように構成されることにより、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能となる。   By being configured as described above, it is possible to suppress a decrease in the supply of coolant to the peripheral fuel assembly adjacent to the positioning key and improve the flow distribution.

[第3の実施形態]
図6は、本発明に係る加圧水型原子炉の第3の実施形態の下部プレナム近傍の立断面図である。図7は、本実施形態の下部プレナム近傍の図6のVII−VII線矢視図である。また、図8は、本実施形態の円筒状多孔板の鳥瞰図である。
[Third embodiment]
FIG. 6 is an elevational sectional view of the vicinity of the lower plenum of the third embodiment of the pressurized water reactor according to the present invention. FIG. 7 is a view taken along the line VII-VII of FIG. 6 near the lower plenum of the present embodiment. FIG. 8 is a bird's-eye view of the cylindrical porous plate of the present embodiment.

本実施形態は、第2の実施形態の変形であり、切欠き部22の出口側に、下部ガイド23および側部ガイド24が設けられている。これらのガイドは、切欠き部22の存在による円筒状多孔板20の強度、剛性の低下を補償する機能も有する。   This embodiment is a modification of the second embodiment, and a lower guide 23 and a side guide 24 are provided on the outlet side of the notch 22. These guides also have a function of compensating for a decrease in strength and rigidity of the cylindrical porous plate 20 due to the presence of the notch 22.

このように下部ガイド23、側部ガイド24が設けられていることにより、ダウンカマ6を下向きに流れてきた冷却材の流れが、円筒状多孔板20を通過して下部プレナム8に流入する際、ほぼ水平な面を持つ下部ガイド23により、半径方向内側に向いたほぼ水平面内の流れに置き換えられる。切欠き部22から下部プレナム8に流入する流れが、中心方向にガイドされ、他の内向き流路孔21から下部プレナムに流入した流れを乱すことが抑制され、局部的な流量低下が適切に抑制される。   By providing the lower guide 23 and the side guide 24 in this manner, the flow of the coolant flowing downward through the downcomer 6 passes through the cylindrical perforated plate 20 and flows into the lower plenum 8. The lower guide 23 having a substantially horizontal surface replaces the flow in a substantially horizontal plane directed radially inward. The flow that flows into the lower plenum 8 from the notch 22 is guided in the center direction, and the flow that flows into the lower plenum from the other inward flow passage holes 21 is prevented from being disturbed. It is suppressed.

以上のように構成されることにより、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能となる。   By being configured as described above, it is possible to suppress a decrease in the supply of coolant to the peripheral fuel assembly adjacent to the positioning key and improve the flow distribution.

[第4の実施形態]
図9は、本発明に係る加圧水型原子炉の第4の実施形態の下部プレナム近傍の立断面図である。また、図10は、本実施形態の円筒状多孔板の鳥瞰図である。
[Fourth Embodiment]
FIG. 9 is an elevational sectional view of the vicinity of the lower plenum of the fourth embodiment of the pressurized water reactor according to the present invention. FIG. 10 is a bird's-eye view of the cylindrical porous plate of the present embodiment.

位置決めキー12の後流領域よりさらに下部の下部領域において、円筒状多孔板20の下側部分に開口部25を設け、下部ガイド23、側部ガイド24でガイドした出口側に偏向板26が設けられている。   In the lower region below the wake region of the positioning key 12, an opening 25 is provided in the lower portion of the cylindrical porous plate 20, and a deflection plate 26 is provided on the outlet side guided by the lower guide 23 and the side guide 24. It has been.

位置決めキー12の直下の直下領域が圧力が低くなっているのに対して、この下部領域は圧力が高くなっている領域である。従って、この領域では、円筒状多孔板20の内外圧力差が大きい。この領域の円筒状多孔板に、流動抵抗が小さくかつ流路面積の大きな流路を設けることにより、この領域を通して下部プレナムに流入する冷却材の流れを積極的に確保するとともに、偏向板26により斜め上方にガイドすることにより、周辺部への燃料集合体への冷却材の供給の低下を防止しようとするものである。   The area immediately below the positioning key 12 has a low pressure, while the lower area has a high pressure. Therefore, in this region, the pressure difference between the inside and outside of the cylindrical porous plate 20 is large. By providing a flow path with a small flow resistance and a large flow area on the cylindrical porous plate in this region, the flow of the coolant flowing into the lower plenum through this region is positively secured, and the deflection plate 26 By guiding obliquely upward, a decrease in the supply of coolant to the fuel assembly to the peripheral portion is to be prevented.

すなわち、本実施形態では、下部プレナム入口7から下部プレナム8へ流入する流れのうち、外周部に配された燃料集合体に供給される冷却材が位置決めキー下部で低下することを、下部プレナム入口7から直接外周部に向かって流れをガイドすることにより、抑制している。   In other words, in the present embodiment, the coolant supplied to the fuel assembly disposed on the outer peripheral portion of the flow flowing from the lower plenum inlet 7 to the lower plenum 8 is reduced at the lower portion of the positioning key. It is suppressed by guiding the flow directly from 7 to the outer periphery.

以上のように構成されることにより、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能となる。   By being configured as described above, it is possible to suppress a decrease in the supply of coolant to the peripheral fuel assembly adjacent to the positioning key and improve the flow distribution.

[第5の実施形態]
図11は、本発明に係る加圧水型原子炉の第5の実施形態の円筒状多孔板の鳥瞰図である。本実施形態は、第4の実施形態の変形であり、第4の実施形態では矩形の開口部であったのが、本実施形態では円形の円形流路孔21bとなっている。
[Fifth Embodiment]
FIG. 11 is a bird's-eye view of a cylindrical porous plate of a fifth embodiment of a pressurized water reactor according to the present invention. The present embodiment is a modification of the fourth embodiment. In the fourth embodiment, a rectangular opening is used instead of the rectangular opening in the fourth embodiment.

本実施形態では、第4の実施形態と同様に、位置決めキーに近接する周辺部の燃料集合体への冷却材の供給減少を抑制し流量配分を改善することが可能となる。   In the present embodiment, similarly to the fourth embodiment, it is possible to suppress a decrease in the supply of coolant to the fuel assemblies in the peripheral portion close to the positioning key and improve the flow rate distribution.

[その他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、各実施形態において、円筒状多孔板はその下部で原子炉容器から支持されている場合を示したが、円筒状多孔板はその上部でたとえば炉心槽下部あるいは下部炉心支持板から支持されることでもよい。また、各実施形態の特徴を組み合わせてもよい。さらに、これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
[Other Embodiments]
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. For example, in each embodiment, the case where the cylindrical perforated plate is supported from the reactor vessel at the lower portion thereof is shown. It may be. Moreover, you may combine the characteristic of each embodiment. Furthermore, these embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention.

これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1・・・炉心
2・・・燃料集合体
3・・・原子炉容器
3a・・・底部板
4・・・冷却材入口ノズル
5・・・炉心槽
6・・・ダウンカマ(環状流路部)
7・・・下部プレナム入口
8・・・下部プレナム
9・・・下部炉心支持板
10・・・上部プレナム
11・・・冷却材出口ノズル
12・・・位置決めキー
13・・・渦抑制板
20・・・円筒状多孔板
21・・・内向き流路孔
21a・・・大型内向き流路孔
21b・・・円形流路孔
22・・・切欠き部
23・・・下部ガイド
24・・・側部ガイド
25・・・開口部
26・・・偏向板
31・・・支持部材
32・・・間隙部
301・・・円筒状多孔板
DESCRIPTION OF SYMBOLS 1 ... Core 2 ... Fuel assembly 3 ... Reactor vessel 3a ... Bottom plate 4 ... Coolant inlet nozzle 5 ... Core tank 6 ... Downcomer (annular channel part)
7 ... Lower plenum inlet 8 ... Lower plenum 9 ... Lower core support plate 10 ... Upper plenum 11 ... Coolant outlet nozzle 12 ... Positioning key 13 ... Vortex suppression plate 20. ..Cylindrical perforated plate 21 ... inward flow passage hole 21a ... large inward flow passage hole 21b ... circular flow passage hole 22 ... notch 23 ... lower guide 24 ... Side guide 25 ... Opening 26 ... Deflection plate 31 ... Support member 32 ... Gap 301 ... Cylindrical perforated plate

Claims (5)

鉛直方向を軸とする円筒状の原子炉容器と、
前記原子炉容器内に設けられて該原子炉容器の内側面との間で環状流路部を形成する筒状の炉心槽と、
前記炉心槽内に配置された炉心と、
前記炉心の下方にあり前記炉心槽の下部に接して水平方向に広がるように設けられ前記炉心への複数の上向き流路孔を有し前記原子炉容器の底部と共に下部プレナムを形成する下部炉心支持板と、
前記炉心槽の下部と前記原子炉容器との相互の位置決めをするための位置決めキーと、
前記原子炉容器の側壁に互いに間隔をあけて水平に並んで形成された複数個の冷却材入口ノズルと、
前記原子炉容器の側壁に互いに間隔をあけて水平に並んで形成され前記炉心の上部と直接に接続する複数個の冷却材出口ノズルと、
前記原子炉容器の底部に接する下部プレナムと前記環状流路部の底部とを区画するように配置され前記環状流路部の底部から前記下部プレナムへの流路を構成する複数の内向き流路孔が形成され、前記位置決めキーの下方部分から下部プレナムに流入する冷却材の流量低下を抑制するために、前記位置決めキーの下方に属する部分の流動抵抗を小さくした円筒状多孔板と、
を具備することを特徴とする加圧水型原子炉。
A cylindrical reactor vessel with the vertical axis as the axis;
A cylindrical reactor core tank that is provided in the reactor vessel and forms an annular channel portion with the inner surface of the reactor vessel;
A core disposed in the core tank;
A lower core support provided below the core and in contact with the lower part of the core tank so as to spread horizontally and having a plurality of upward flow passage holes to the core and forming a lower plenum together with the bottom of the reactor vessel The board,
A positioning key for mutual positioning of the lower part of the reactor core and the reactor vessel;
A plurality of coolant inlet nozzles formed horizontally on the side wall of the reactor vessel at intervals from each other;
A plurality of coolant outlet nozzles that are formed on the sidewalls of the reactor vessel and are arranged horizontally and spaced apart from each other and connected directly to the upper part of the core;
A plurality of inward flow paths that are disposed so as to partition a lower plenum in contact with a bottom of the reactor vessel and a bottom of the annular flow path and constitute a flow path from the bottom of the annular flow path to the lower plenum A cylindrical perforated plate in which a hole is formed and the flow resistance of the part belonging to the lower part of the positioning key is reduced in order to suppress a decrease in the flow rate of the coolant flowing into the lower plenum from the lower part of the positioning key;
A pressurized water reactor characterized by comprising:
前記内向き流路孔は、少なくとも一つの大型内向き流路孔と、前記大型内向き流路孔より相対的に面積の小さな複数の小型流路孔とを含み、前記大型内向き流路孔は、前記位置決めキーの下方にあたる部分に配設されることを特徴とする請求項1に記載の加圧水型原子炉。   The inward flow path hole includes at least one large inward flow path hole and a plurality of small flow path holes having a relatively smaller area than the large inward flow path hole. The pressurized water reactor according to claim 1, wherein the pressurized water reactor is disposed in a portion below the positioning key. 前記円筒状多孔板は、前記位置決めキーの下方にあたる部分の少なくとも一部に切欠き部を有することを特徴とする請求項1に記載の加圧水型原子炉。   2. The pressurized water reactor according to claim 1, wherein the cylindrical perforated plate has a notch in at least a part of a portion below the positioning key. 前記切欠き部の出口に冷却材のガイドのためのガイド板を有することを特徴とする請求項3に記載の加圧水型原子炉。   The pressurized water reactor according to claim 3, further comprising a guide plate for guiding a coolant at an outlet of the notch. 前記円筒状多孔板は、前記位置決めキーの下方部分の少なくとも一部に開口部を有し、前記開口部の出口に冷却材を内側上方にガイドするための偏向板を有することを特徴とする請求項1ないし請求項4のいずれか一項に記載の加圧水型原子炉。   The cylindrical perforated plate has an opening in at least a part of a lower portion of the positioning key, and has a deflecting plate for guiding a coolant inward and upward at an outlet of the opening. The pressurized water reactor according to any one of claims 1 to 4.
JP2012037725A 2012-02-23 2012-02-23 Pressurized-water reactor Pending JP2013174461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037725A JP2013174461A (en) 2012-02-23 2012-02-23 Pressurized-water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037725A JP2013174461A (en) 2012-02-23 2012-02-23 Pressurized-water reactor

Publications (1)

Publication Number Publication Date
JP2013174461A true JP2013174461A (en) 2013-09-05

Family

ID=49267498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037725A Pending JP2013174461A (en) 2012-02-23 2012-02-23 Pressurized-water reactor

Country Status (1)

Country Link
JP (1) JP2013174461A (en)

Similar Documents

Publication Publication Date Title
WO2012098874A1 (en) Pressurized-water reactor
JP2012251977A (en) Reactor internal structure and nuclear reactor
JP4474467B2 (en) A device with a gravity-flow water tank for discharging industrial water into a drainage channel
WO2012081232A1 (en) Pressure water reactor
ITMI20131139A1 (en) SYSTEM AND METHOD OF DIFFUSION OF GAS TO ENTER A GASEOUS FLOW, IN PARTICULAR A GASSOUS PASSIVATING FLOW, IN AN APPARATUS OF A UREA PLANT
JPH04258792A (en) Guiding apparatus for control rod cluster
US20100163478A1 (en) Water-flow filtering structure
CN104350548A (en) Fuel bundle for a liquid metal cooled nuclear reactor
JP2013174461A (en) Pressurized-water reactor
JP2017049170A (en) Atomic reactor
JP2014122856A (en) Nuclear reactor structure of pressurized water reactor
JP2016125837A (en) Control rod guide tube of fast reactor
JP2008157972A (en) Inlet structure for coolant core
JP5959043B2 (en) Rectifier in the upper plenum in the fast breeder reactor vessel
JP2002257971A (en) Nuclear reactor vessel
JP2013043529A (en) Gas and liquid separation device for fuel tank
JP4202200B2 (en) Reactor internal structure
JP6462400B2 (en) Steam separator and method for reinforcing steam separator
JP5818450B2 (en) Reactor vessel
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
JP4220845B2 (en) Reactor internal structure
CN212476650U (en) Side direction spray column that admits air with structure flow equalizes
JPH01197696A (en) Natural-circulation type nuclear reactor
US20200141665A1 (en) Fluid disperser and fluid dispersing device
JP2014066582A (en) Nuclear fuel assembly for pressurized water reactor and lower nozzle used therein

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140110