JP2013174390A - Solar hot water supply system - Google Patents

Solar hot water supply system Download PDF

Info

Publication number
JP2013174390A
JP2013174390A JP2012039071A JP2012039071A JP2013174390A JP 2013174390 A JP2013174390 A JP 2013174390A JP 2012039071 A JP2012039071 A JP 2012039071A JP 2012039071 A JP2012039071 A JP 2012039071A JP 2013174390 A JP2013174390 A JP 2013174390A
Authority
JP
Japan
Prior art keywords
heat
heat medium
solar
storage tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012039071A
Other languages
Japanese (ja)
Other versions
JP5985205B2 (en
Inventor
Masaya Nakanose
正也 中ノ瀬
Sakae Otsuka
栄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2012039071A priority Critical patent/JP5985205B2/en
Publication of JP2013174390A publication Critical patent/JP2013174390A/en
Application granted granted Critical
Publication of JP5985205B2 publication Critical patent/JP5985205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar hot water supply system which can be easily constructed while reducing the cost of component members.SOLUTION: A solar hot water supply system 1 includes: a heat storage tank 3 of atomospheric release type for reserving a heat medium L heated at the solar heat collector 2; piping 4 for sending the heat medium, to send the heat medium L inside a solar heat collector 2 to the heat reservoir 3; piping 5 for returning the heat medium, to return the heat medium L in the heat reservoir 3 to the solar heat collector 2; a first electric three-way switching valve 71 for switching circulation passages of the heat medium L; a heat exchanger 6 having high temperature side piping 61 connected to the first electric three-way switching valve 71 and low temperature side piping 62 connected to a water supply pipe 11; a circulation pump 7 disposed at an upper stream of first electric three-way switching valve 71 in the piping 5 for returning the heat medium for circulating the heat medium L between the solar heat collector 2 or the high temperature side piping 61; and a controller 8 having a first control section 81 for controlling the first electric three-way switching valve 71 and a second control section 82 for controlling the circulation pump 7.

Description

本発明は、太陽熱利用給湯システムに関する。   The present invention relates to a solar hot water supply system.

従来、省エネルギー化の観点から、太陽熱を利用して給湯を行う太陽熱利用給湯システムが知られている(例えば、特許文献1参照)。
この種の太陽熱利用給湯システムは、図4に示すように、太陽熱を利用して熱媒を加熱する太陽熱集熱器501と、貯湯槽503と、貯湯槽503内に配されかつ太陽熱集熱器501で加熱された熱媒と貯湯槽503内の水との間で熱交換させる熱交換器505と、太陽熱集熱器501内の熱媒を熱交換器505に送る熱媒送り配管507と、熱媒戻し配管509の途中に設けられかつ太陽熱集熱器501と熱交換器505との間で熱媒を循環させる循環ポンプ511と、熱媒戻し配管509における貯湯槽503と循環ポンプ511との間に設けられかつ熱媒の膨張・収縮を吸収する膨張タンク(シスターン)513と、循環ポンプ511を制御する制御装置515と、を備えている。
2. Description of the Related Art Conventionally, from the viewpoint of energy saving, a solar heat-use hot water supply system that uses hot water to supply hot water is known (see, for example, Patent Document 1).
As shown in FIG. 4, this type of solar hot water supply system uses a solar heat collector 501 that heats a heat medium using solar heat, a hot water storage tank 503, a hot water storage tank 503, and a solar heat collector. A heat exchanger 505 that exchanges heat between the heat medium heated in 501 and the water in the hot water storage tank 503, a heat medium feed pipe 507 that sends the heat medium in the solar heat collector 501 to the heat exchanger 505, A circulation pump 511 that is provided in the middle of the heat medium return pipe 509 and circulates the heat medium between the solar heat collector 501 and the heat exchanger 505, and a hot water storage tank 503 and a circulation pump 511 in the heat medium return pipe 509 An expansion tank (systern) 513 provided between them and absorbing expansion / contraction of the heat medium, and a control device 515 for controlling the circulation pump 511 are provided.

貯湯槽503は、上水道の水を給水する給水管517と接続された給水口を下部に有し、湯水を出湯する出湯管519と接続された出湯口を上部に有している。貯湯槽503は、耐食性に優れた金属(例えば、ステンレス)製の密閉タンクであり、外周部に断熱材を有している。貯湯槽503は、出湯口を有する上部に高温の湯水を集まり易くするために設置幅よりも高さが大きい縦置き型とされ、堅牢な脚部に支持されている。   The hot water storage tank 503 has a water supply port connected to a water supply pipe 517 for supplying water from the water supply in the lower part, and a hot water outlet connected to a hot water discharge pipe 519 for discharging hot water. The hot water storage tank 503 is a sealed tank made of metal (for example, stainless steel) having excellent corrosion resistance, and has a heat insulating material on the outer peripheral portion. The hot water storage tank 503 is a vertical type whose height is larger than the installation width so that hot water can be easily gathered at the upper part having the outlet, and is supported by a solid leg.

また、貯湯槽503に水を給水する給水管517には、減圧弁525及び排水弁527が配設されている。減圧弁525は、貯湯槽503内の圧力を一定に維持するため、貯湯槽503への給水圧を調整する弁である。
出湯管519には、温度調節弁533を介して、貯湯槽503から出湯される湯水を必要に応じて加熱する給湯器(補助加熱機)531が接続される。温度調節弁533には、減圧弁525の下流における給水管517から分岐された混合用給水管529が接続され、予め貯湯槽503の温水と給水管517から供給される冷水とを混合して給湯器531に入水する。温度調節弁533と給湯器531との間には、減圧弁525の上流における給水管517から分岐された直接給水用管535と接続された切換弁537が配設される。この切換弁537を使用することで、給湯器531への入水が出湯管519から行われる場合と、給水管517から直接行われる場合とに切り換えることができる。
In addition, a pressure reducing valve 525 and a drain valve 527 are disposed in a water supply pipe 517 that supplies water to the hot water storage tank 503. The pressure reducing valve 525 is a valve that adjusts the feed water pressure to the hot water storage tank 503 in order to keep the pressure in the hot water storage tank 503 constant.
A hot water heater (auxiliary heater) 531 that heats hot water discharged from the hot water storage tank 503 as necessary is connected to the hot water outlet pipe 519 through a temperature control valve 533. The temperature adjustment valve 533 is connected to a mixing water supply pipe 529 branched from a water supply pipe 517 downstream of the pressure reducing valve 525, and previously mixed hot water in the hot water storage tank 503 and cold water supplied from the water supply pipe 517 are used to supply hot water. Water enters the vessel 531. Between the temperature control valve 533 and the water heater 531, a switching valve 537 connected to the direct water supply pipe 535 branched from the water supply pipe 517 upstream of the pressure reducing valve 525 is disposed. By using this switching valve 537, it is possible to switch between the case where water is introduced into the water heater 531 from the hot water outlet pipe 519 and the case where the water is supplied directly from the water supply pipe 517.

制御装置515は、貯湯槽503内に設けられて貯湯槽503内の水の温度を検出する水温度センサ521と、太陽熱集熱器501の近傍に配設されて熱媒の温度を検出する熱媒温度センサ523とに接続されている。そして、制御装置515は、水温度センサ521で検出された水の温度と、熱媒温度センサ523で検出された熱媒の温度との差温に基づいて、循環ポンプ511の作動、停止を制御する。   The control device 515 is provided in the hot water storage tank 503 and detects the temperature of the water in the hot water storage tank 503, and the heat that is provided in the vicinity of the solar heat collector 501 and detects the temperature of the heat medium. The medium temperature sensor 523 is connected. The control device 515 controls the operation and stop of the circulation pump 511 based on the temperature difference between the temperature of the water detected by the water temperature sensor 521 and the temperature of the heat medium detected by the heat medium temperature sensor 523. To do.

特開平10−89776号公報Japanese Patent Laid-Open No. 10-89776

しかしながら、上述の如き従来の太陽熱利用給湯システムにおいては、貯湯槽503が縦置き型とされるため、貯湯槽503を支持する脚部を堅牢にする必要がある。そこで、コンクリート基礎上に貯湯槽503を施行しなければならず、施行工事が容易でなく、施行期間の短縮が難しいという問題があった。
また、従来の太陽熱利用給湯システムにおいては、密閉タンクである貯湯槽503への負荷を減らすため、貯湯槽503への給水圧を調整する減圧弁525や、熱媒の膨張・収縮を吸収する膨張タンク513等の高価な部品が必要となり、コストアップの原因となっていた。
また、熱交換器505は密閉タンクである貯湯槽503内に配置されるため、使用できる熱交換器形式に制約があり、プレート式熱交換器や多管式熱交換器などの熱交換性能の高い熱交換器を用いることが困難であった。
However, in the conventional solar-powered hot water supply system as described above, the hot water storage tank 503 is of a vertical type, so that the legs that support the hot water storage tank 503 need to be rigid. Therefore, the hot water storage tank 503 has to be enforced on the concrete foundation, and there is a problem that the construction work is not easy and it is difficult to shorten the enforcement period.
In the conventional solar water heating system, in order to reduce the load on the hot water storage tank 503, which is a sealed tank, a pressure reducing valve 525 that adjusts the water supply pressure to the hot water storage tank 503, and an expansion that absorbs expansion and contraction of the heat medium. Expensive parts, such as the tank 513, were required, which caused an increase in cost.
Further, since the heat exchanger 505 is disposed in the hot water storage tank 503 that is a sealed tank, there are restrictions on the type of heat exchanger that can be used, and the heat exchange performance of a plate heat exchanger, a multi-tubular heat exchanger, or the like is limited. It was difficult to use a high heat exchanger.

本発明は上記状況に鑑みてなされたもので、その目的は、熱交換性能を向上させながら部品コストを削減すると共に施行工事の容易な太陽熱利用給湯システムを提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a solar hot water supply system that can reduce the cost of parts while improving the heat exchange performance and can be easily implemented.

本発明に係る上記目的は、下記構成により達成される。
(1) 太陽熱を利用して熱媒を加熱する太陽熱集熱器と、前記太陽熱集熱器で加熱された熱媒を貯留する大気開放型の貯熱槽と、前記太陽熱集熱器内の熱媒を前記貯熱槽に送る熱媒送り配管と、前記貯熱槽内の熱媒を前記太陽熱集熱器に戻す熱媒戻し配管と、前記熱媒戻し配管の途中に設けられ、前記貯熱槽内の熱媒の循環経路を切り換える第1の電動三方切換弁と、入口端が前記第1の電動三方切換弁に接続されると共に出口端が前記熱媒送り配管に接続された高温側配管と、入口端が給水管に接続されると共に出口端が出湯管に接続された低温側配管とを有し、前記高温側配管内の熱媒と前記低温側配管内の水との間で熱交換させる熱交換器と、前記熱媒戻し配管における前記第1の電動三方切換弁より上流に設けられ、前記貯熱槽内の熱媒を前記太陽熱集熱器又は前記高温側配管との間で循環させる循環ポンプと、前記第1の電動三方切換弁を制御する第1制御部と前記循環ポンプを制御する第2制御部とを有し、前記熱交換器による熱交換運転及び前記太陽熱集熱器による集熱運転を制御する制御装置と、を備えたことを特徴とする太陽熱利用給湯システム。
上記(1)の構成の太陽熱利用給湯システムによれば、太陽熱集熱器で加熱された熱媒が大気開放型の貯熱槽に貯留されるので、熱媒の膨張・収縮を吸収する膨張タンクを貯熱槽と循環ポンプとの間に設ける必要がない。また、給水管から供給された水は、熱交換器の低温側配管を経て出湯管から出湯される。熱交換器の低温側配管は、従来の貯湯槽に比べて耐圧性が高いので、熱交換器への給水圧を調整する減圧弁を給水管に設ける必要がない。また、第1の電動三方切換弁を切り換えることにより、一つの循環ポンプだけで貯熱槽内の熱媒を太陽熱集熱器又は熱交換器へ循環させることができ、高価な循環ポンプを複数設ける必要がない。
また、熱交換器は貯熱槽内に配置されないので、使用できる熱交換器形式に制約がなく、プレート式熱交換器や多管式熱交換器などの熱交換性能の高い熱交換器を用いることができる。
また、熱媒が貯留される貯熱槽は、従来の湯水が充填される貯湯槽のように出湯口を有する上部に高温の湯水を集まり易くするために縦置き型とする必要がないので、貯熱槽を設置幅よりも高さが小さい横置き型とすることができる。また、貯熱槽は、耐圧性を要しないので、貯熱槽自体の構造を簡略化したり、合成樹脂で形成して軽量化したりすることもできる。そこで、貯熱槽の脚部を簡素化し、コンクリート基礎を廃止して簡易基礎にすることで施行工事を容易とすることができる。
The above object of the present invention is achieved by the following configuration.
(1) A solar heat collector that heats a heat medium using solar heat, an open-air heat storage tank that stores the heat medium heated by the solar heat collector, and heat in the solar heat collector A heat medium feed pipe for sending a medium to the heat storage tank; a heat medium return pipe for returning the heat medium in the heat storage tank to the solar heat collector; and the heat storage pipe provided in the middle of the heat medium return pipe. A first electric three-way switching valve for switching the circulation path of the heat medium in the tank, and a high-temperature side pipe having an inlet end connected to the first electric three-way switching valve and an outlet end connected to the heat medium feed pipe And a low temperature side pipe having an inlet end connected to the water supply pipe and an outlet end connected to the outlet pipe, and heat is generated between the heat medium in the high temperature side pipe and the water in the low temperature side pipe. A heat exchanger to be exchanged, and provided upstream of the first electric three-way selector valve in the heat medium return pipe, A circulation pump that circulates the heat medium between the solar heat collector or the high temperature side pipe, a first control unit that controls the first electric three-way switching valve, and a second control unit that controls the circulation pump; And a control device that controls a heat exchanging operation by the heat exchanger and a heat collecting operation by the solar heat collector.
According to the hot water supply system using solar heat configured as described in (1) above, since the heat medium heated by the solar heat collector is stored in the open air heat storage tank, the expansion tank absorbs expansion / contraction of the heat medium. Need not be provided between the heat storage tank and the circulation pump. Further, the water supplied from the water supply pipe is discharged from the hot water discharge pipe through the low temperature side pipe of the heat exchanger. Since the low temperature side piping of the heat exchanger has higher pressure resistance than the conventional hot water storage tank, it is not necessary to provide a pressure reducing valve for adjusting the feed water pressure to the heat exchanger in the feed water pipe. Further, by switching the first electric three-way switching valve, the heat medium in the heat storage tank can be circulated to the solar heat collector or the heat exchanger with only one circulation pump, and a plurality of expensive circulation pumps are provided. There is no need.
In addition, since the heat exchanger is not arranged in the heat storage tank, there is no restriction on the type of heat exchanger that can be used, and a heat exchanger with high heat exchange performance such as a plate heat exchanger or a multi-tube heat exchanger is used. be able to.
In addition, the heat storage tank in which the heat medium is stored does not need to be a vertical type in order to make it easy to gather hot water at the upper part having a hot water outlet like a conventional hot water storage tank filled with hot water. The heat storage tank can be a horizontal type whose height is smaller than the installation width. Moreover, since the heat storage tank does not require pressure resistance, the structure of the heat storage tank itself can be simplified, or the heat storage tank can be made of synthetic resin to reduce the weight. Therefore, it is possible to simplify the construction work by simplifying the legs of the heat storage tank and eliminating the concrete foundation to make it a simple foundation.

(2) 上記(1)の構成の太陽熱利用給湯システムであって、前記熱媒送り配管が前記貯熱槽の上部に接続され、前記熱媒戻し配管が前記貯熱槽の下部に接続されることを特徴とする太陽熱利用給湯システム。
上記(2)の構成の太陽熱利用給湯システムによれば、貯熱槽の下部に集まる上部より低温の熱媒が、熱媒戻し配管により太陽熱集熱器に戻されることで、太陽熱集熱器は熱媒を効率よく加熱することができる。
(2) In the solar water heating hot water supply system configured as described in (1) above, the heat medium feed pipe is connected to an upper part of the heat storage tank, and the heat medium return pipe is connected to a lower part of the heat storage tank. A solar hot water supply system characterized by that.
According to the solar water heating hot water supply system configured as described in (2) above, the heat medium having a temperature lower than that of the upper part collected in the lower part of the heat storage tank is returned to the solar heat collector by the heat medium return pipe. The heating medium can be efficiently heated.

(3) 上記(1)の構成の太陽熱利用給湯システムであって、前記熱媒送り配管が前記貯熱槽の下部に接続され、前記熱媒戻し配管が前記貯熱槽の上部に接続されることを特徴とする太陽熱利用給湯システム。
上記(3)の構成の太陽熱利用給湯システムによれば、貯熱槽の上部に集まる下部より高温の熱媒が、第1の電動三方切換弁を介して熱交換器の高温側配管に供給されることで、熱交換器は熱媒の熱を低温側配管内の水へ効率よく熱交換することができる。
(3) In the solar water heating hot water supply system configured as described in (1) above, the heat medium feed pipe is connected to a lower part of the heat storage tank, and the heat medium return pipe is connected to an upper part of the heat storage tank. A solar hot water supply system characterized by that.
According to the solar water heating system having the configuration of (3) above, the heat medium having a higher temperature than the lower part gathering at the upper part of the heat storage tank is supplied to the high temperature side pipe of the heat exchanger via the first electric three-way switching valve. Thus, the heat exchanger can efficiently exchange the heat of the heat medium to the water in the low temperature side pipe.

(4) 太陽熱を利用して熱媒を加熱する太陽熱集熱器と、前記太陽熱集熱器で加熱された熱媒を貯留する大気開放型の貯熱槽と、前記太陽熱集熱器内の熱媒を前記貯熱槽の上部に送る熱媒送り配管と、前記貯熱槽内の下部の熱媒を前記太陽熱集熱器に戻す熱媒戻し配管と、前記熱媒戻し配管の途中に設けられ、前記貯熱槽の熱媒の循環経路を切り換える第2の電動三方切換弁と、前記熱媒戻し配管における前記第2の電動三方切換弁より上流に設けられ、前記貯熱槽の熱媒の循環経路を切り換える第3の電動三方切換弁と、前記熱媒送り配管の途中に設けられ、前記貯熱槽の熱媒の循環経路を切り換える第4の電動三方切換弁と、入口端が前記第2の電動三方切換弁に接続されると共に出口端が前記第3の電動三方切換弁に接続された高温側配管と、入口端が給水管に接続されると共に出口端が出湯管に接続された低温側配管とを有し、前記高温側配管内の熱媒と前記低温側配管内の水との間で熱交換させる熱交換器と、前記熱媒戻し配管における前記第2の電動三方切換弁と前記第3の電動三方切換弁との間に設けられ、前記貯熱槽の熱媒を前記太陽熱集熱器又は前記高温側配管との間で循環させる循環ポンプと、入口端が前記第4の電動三方切換弁に接続されると共に出口端が前記熱媒戻し配管における前記循環ポンプと前記第3の電動三方切換弁との間に接続されるバイパス配管と、前記第2乃至第4の電動三方切換弁を制御する第3制御部と前記循環ポンプを制御する第2制御部とを有し、前記熱交換器による熱交換運転及び前記太陽熱集熱器による集熱運転を制御する制御装置と、を備えたことを特徴とする太陽熱利用給湯システム。
上記(4)の構成の太陽熱利用給湯システムによれば、太陽熱集熱器で加熱された熱媒が大気開放型の貯熱槽に貯留されるので、熱媒の膨張・収縮を吸収する膨張タンクを貯熱槽と循環ポンプとの間に設ける必要がない。また、給水管から供給された水は、熱交換器の低温側配管を経て出湯管から出湯される。熱交換器の低温側配管は、従来の貯湯槽に比べて耐圧性が高いので、熱交換器への給水圧を調整する減圧弁を給水管に設ける必要がない。また、第2乃至第4の電動三方切換弁を切り換えることにより、一つの循環ポンプだけで貯熱槽内の熱媒を太陽熱集熱器又は熱交換器へ循環させることができ、高価な循環ポンプを複数設ける必要がない。
また、熱交換器が貯熱槽内に配置されないので、使用できる熱交換器形式に制約がなく、プレート式熱交換器や多管式熱交換器などの熱交換性能の高い熱交換器を用いることができる。
また、熱媒が貯留される貯熱槽は、従来の湯水が充填される貯湯槽のように出湯口を有する上部に高温の湯水を集まり易くするために縦置き型とする必要がないので、貯熱槽を設置幅よりも高さが小さい横置き型とすることができる。また、貯熱槽は、耐圧性を要しないので、貯熱槽自体の構造を簡略化したり、合成樹脂で形成して軽量化したりすることもできる。そこで、貯熱槽の脚部を簡素化し、コンクリート基礎を廃止して簡易基礎にすることで施行工事を容易とすることができる。
また、貯熱槽内の熱媒を太陽熱集熱器に循環させる際には、第2乃至第4の電動三方切換弁を切り換えることにより、貯熱槽の下部に集まる上部より低温の熱媒を熱媒戻し配管により太陽熱集熱器に戻すことができるので、太陽熱集熱器は熱媒を効率よく加熱することができる。一方、貯熱槽内の熱媒を熱交換器に循環させる際には、第2乃至第4の電動三方切換弁を切り換えることにより、貯熱槽の上部に集まる下部より高温の熱媒がバイパス配管を介して熱交換器の高温側配管に供給されるので、熱交換器は熱媒の熱を低温側配管内の水へ効率よく熱交換することができる。従って、太陽熱集熱器の加熱効率向上と熱交換器の熱交換効率向上を両立させながら、貯熱槽の熱媒をそれぞれ太陽熱集熱器又は熱交換器へ循環させることができる。
(4) A solar heat collector that heats the heat medium using solar heat, an open-air heat storage tank that stores the heat medium heated by the solar heat collector, and heat in the solar heat collector A heat medium feed pipe for sending the medium to the upper part of the heat storage tank, a heat medium return pipe for returning the lower heat medium in the heat storage tank to the solar heat collector, and provided in the middle of the heat medium return pipe A second electric three-way switching valve that switches the circulation path of the heat medium in the heat storage tank, and an upstream of the second electric three-way switching valve in the heat medium return pipe, and the heat medium of the heat storage tank A third electric three-way switching valve for switching the circulation path, a fourth electric three-way switching valve provided in the middle of the heat medium feed pipe, for switching the circulation path of the heat medium in the heat storage tank, and an inlet end of the first electric three-way switching valve 2 is connected to the electric three-way switching valve 2 and has an outlet end connected to the third electric three-way switching valve. A pipe and a low temperature side pipe having an inlet end connected to a water supply pipe and an outlet end connected to a hot water pipe, between the heat medium in the high temperature side pipe and the water in the low temperature side pipe. A heat exchanger for exchanging heat, and the second electric three-way switching valve and the third electric three-way switching valve in the heat medium return pipe, and the solar heat collecting heat medium in the heat storage tank A circulation pump that circulates between the heater and the high temperature side pipe, an inlet end connected to the fourth electric three-way switching valve, and an outlet end connected to the circulation pump and the third electric motor in the heat medium return pipe A bypass pipe connected between the three-way switching valve, a third control unit for controlling the second to fourth electric three-way switching valves, and a second control unit for controlling the circulation pump; Control for controlling the heat exchange operation by the exchanger and the heat collection operation by the solar heat collector. Solar hot water system characterized by comprising apparatus and, a.
According to the hot water supply system using solar heat having the configuration of (4) above, the heat medium heated by the solar heat collector is stored in the open air heat storage tank, so that the expansion tank absorbs expansion / contraction of the heat medium Need not be provided between the heat storage tank and the circulation pump. Further, the water supplied from the water supply pipe is discharged from the hot water discharge pipe through the low temperature side pipe of the heat exchanger. Since the low temperature side piping of the heat exchanger has higher pressure resistance than the conventional hot water storage tank, it is not necessary to provide a pressure reducing valve for adjusting the feed water pressure to the heat exchanger in the feed water pipe. Further, by switching the second to fourth electric three-way switching valves, the heat medium in the heat storage tank can be circulated to the solar heat collector or heat exchanger with only one circulation pump, and an expensive circulation pump There is no need to provide multiple.
Also, since the heat exchanger is not arranged in the heat storage tank, there is no restriction on the type of heat exchanger that can be used, and a heat exchanger with high heat exchange performance such as a plate heat exchanger or a multi-tube heat exchanger is used. be able to.
In addition, the heat storage tank in which the heat medium is stored does not need to be a vertical type in order to make it easy to gather hot water at the upper part having a hot water outlet like a conventional hot water storage tank filled with hot water. The heat storage tank can be a horizontal type whose height is smaller than the installation width. Moreover, since the heat storage tank does not require pressure resistance, the structure of the heat storage tank itself can be simplified, or the heat storage tank can be made of synthetic resin to reduce the weight. Therefore, it is possible to simplify the construction work by simplifying the legs of the heat storage tank and eliminating the concrete foundation to make it a simple foundation.
In addition, when circulating the heat medium in the heat storage tank to the solar heat collector, by switching the second to fourth electric three-way switching valves, the heat medium having a lower temperature than the upper part collected in the lower part of the heat storage tank Since it can return to a solar-heat collector by heat-medium return piping, a solar-heat collector can heat a heat medium efficiently. On the other hand, when circulating the heat medium in the heat storage tank to the heat exchanger, the second to fourth electric three-way switching valves are switched to bypass the heat medium having a higher temperature than the lower part gathered at the upper part of the heat storage tank Since it is supplied to the high temperature side pipe of the heat exchanger via the pipe, the heat exchanger can efficiently exchange heat from the heat medium to the water in the low temperature side pipe. Therefore, it is possible to circulate the heat medium in the heat storage tank to the solar heat collector or the heat exchanger, respectively, while improving both the heating efficiency of the solar heat collector and the heat exchange efficiency of the heat exchanger.

(5) 上記(1)〜(4)何れか1つの構成の太陽熱利用給湯システムであって、前記制御装置における第2制御部は、前記貯熱槽に設けられて前記貯熱槽内の熱媒の温度を検出する第1センサと、前記太陽熱集熱器に配設されて熱媒の温度を検出する第2センサとに接続され、前記第1センサで検出された熱媒の温度と、前記第2センサで検出された熱媒の温度との差温に基づいて、前記循環ポンプの作動、停止を制御することを特徴とする太陽熱利用給湯システム。
上記(5)の構成の太陽熱利用給湯システムによれば、第1センサで検出された貯熱槽内の熱媒の温度と、第2センサで検出された太陽熱集熱器近傍の熱媒の温度との差温が所定の開始温度以上であるときに集熱運転を開始すれば、エネルギー的に不経済な集熱運転を避けることができると共に、冬季などで屋外に設置される太陽熱集熱器近傍の熱媒の温度が貯湯槽内の熱媒の温度よりも低い場合の集熱運転による貯湯槽内の熱媒の温度低下を防止することができる。
(5) The solar-heated hot water supply system having any one of the above-described (1) to (4), wherein the second control unit in the control device is provided in the heat storage tank and heat in the heat storage tank A first sensor that detects the temperature of the medium, and a second sensor that is disposed in the solar heat collector and detects the temperature of the heat medium, and the temperature of the heat medium detected by the first sensor; A solar hot water supply system characterized in that the operation and stop of the circulation pump are controlled based on the temperature difference from the temperature of the heat medium detected by the second sensor.
According to the solar water heating hot water supply system having the configuration (5), the temperature of the heat medium in the heat storage tank detected by the first sensor and the temperature of the heat medium near the solar heat collector detected by the second sensor. If the heat collection operation is started when the temperature difference is higher than or equal to the predetermined start temperature, it is possible to avoid energy-efficient economic heat collection operation, and a solar heat collector installed outdoors in winter It is possible to prevent a decrease in the temperature of the heat medium in the hot water storage tank due to the heat collecting operation when the temperature of the nearby heat medium is lower than the temperature of the heat medium in the hot water tank.

(6) 上記(1)〜(5)何れか1つの構成の太陽熱利用給湯システムであって、前記出湯管には、前記低温側配管の出口端から出湯される湯水を必要に応じて加熱する補助加熱機が温度調節装置を介して接続されており、前記温度調節装置には、前記給水管から分岐された混合用給水管が接続され、予め前記低温側配管の出口端から出湯される温水と前記混合用給水管から供給される水とが混合して前記補助過熱機に入水されることを特徴とする太陽熱利用給湯システム。
上記(6)の構成の太陽熱利用給湯システムによれば、熱交換器から出湯される温水と混合用給水管から供給される水とが、温度調節装置によって所定の温度とされてから補助過熱機に入水されるので、補助過熱機は熱交換器から出湯される温水や混合用給水管から供給される水の温度変化に関わらず、使用者が設定した温度の温水を安定的に給湯することができる。
(6) In the solar water heating hot water supply system having any one of the above configurations (1) to (5), the hot water discharged from the outlet end of the low temperature side pipe is heated as necessary in the hot water pipe. An auxiliary heater is connected via a temperature control device, and the temperature control device is connected to a water supply pipe for mixing branched from the water supply pipe, and is heated in advance from the outlet end of the low temperature side pipe And the water supplied from the mixing water supply pipe are mixed and introduced into the auxiliary superheater.
According to the solar water heating system having the configuration of (6) above, the auxiliary superheater after the hot water discharged from the heat exchanger and the water supplied from the mixing water supply pipe are set to a predetermined temperature by the temperature control device. Therefore, the auxiliary superheater can stably supply hot water at the temperature set by the user regardless of the temperature change of the hot water discharged from the heat exchanger or the water supplied from the mixing water supply pipe. Can do.

本発明に係る太陽熱利用給湯システムによれば、熱交換性能を向上させながら部品コストを削減すると共に施行工事の容易な太陽熱利用給湯システムを提供できる。   According to the solar-heat-use hot water supply system which concerns on this invention, while improving heat exchange performance, while reducing components cost, the solar-heat-use hot water supply system with easy implementation can be provided.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。   The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through a mode for carrying out the invention described below (hereinafter referred to as “embodiment”) with reference to the accompanying drawings. .

本発明の第1実施形態に係る太陽熱利用給湯システムの概略構成図である。It is a schematic block diagram of the solar-heating hot water supply system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る太陽熱利用給湯システムの概略構成図である。It is a schematic block diagram of the solar-heating hot water supply system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る太陽熱利用給湯システムの概略構成図である。It is a schematic block diagram of the solar-powered hot-water supply system which concerns on 3rd Embodiment of this invention. 従来の太陽熱利用給湯システムの概略構成図である。It is a schematic block diagram of the conventional solar heat utilization hot water supply system.

以下、本発明に係る実施形態を図面を参照して説明する。
図1に示すように、本第1実施形態に係る太陽熱利用給湯システム1は、熱媒Lを強制循環させて熱交換する強制循環式として構成され、太陽熱集熱器2と、大気開放型の貯熱槽3と、熱媒送り配管4と、熱媒戻し配管5と、第1の電動三方切換弁71と、熱交換器6と、循環ポンプ7と、制御装置8と、給湯器(補助加熱機)10と、温度調節弁(温度調節装置)9と、を備える。
Embodiments according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the solar-powered hot water supply system 1 according to the first embodiment is configured as a forced circulation type in which a heat medium L is forcedly circulated to exchange heat, and a solar heat collector 2 and an open air type Heat storage tank 3, heat medium feed pipe 4, heat medium return pipe 5, first electric three-way switching valve 71, heat exchanger 6, circulation pump 7, control device 8, water heater (auxiliary (Heating machine) 10 and a temperature control valve (temperature control device) 9.

太陽熱集熱器2は、例えば矩形板状で、縦(屋根流れ方向)2m、横(棟木に沿う方向)1m、厚さ60mmの2平方メートル程度の集熱器面積を有して形成される。太陽熱集熱器2は、その内部に熱媒Lを循環させる内部流路を有しており、太陽熱を利用して熱媒Lを加熱する。一般に、この内部流路が長手側となる向きで屋根面に設置され、複数のものが横並びに連結して使用される。本実施形態では、三台の太陽熱集熱器2が連結して併設されており、太陽熱を利用して熱媒Lを加熱する。   The solar heat collector 2 has, for example, a rectangular plate shape, and has a heat collector area of about 2 square meters, which is 2 m long (roof flow direction), 1 m wide (direction along the purlin), and 60 mm thick. The solar heat collector 2 has an internal flow path for circulating the heat medium L therein, and heats the heat medium L using solar heat. Generally, the internal flow path is installed on the roof surface in the direction of the longitudinal side, and a plurality of the internal flow paths are used side by side. In the present embodiment, three solar heat collectors 2 are connected and provided, and the heat medium L is heated using solar heat.

貯熱槽3は、軒下等のスペースに設置され、太陽熱集熱器2で加熱された熱媒Lを貯留する横置き型のタンクであり、200リットル程度の貯液容量を有する。
本実施形態の貯熱槽3は、上部開口を備える直方体状の槽本体31と、槽本体31の上部開口を覆う蓋体32とを有し、断熱材を一体成形した合成樹脂で形成されている。
蓋体32は、熱媒Lが槽本体31から流出したり、雨水が槽本体31内に流入したりすることがないように槽本体31の上部開口を覆っているが、図示しない空気穴により槽本体31内を大気開放している。
The heat storage tank 3 is a horizontal tank that is installed in a space under the eaves or the like and stores the heat medium L heated by the solar heat collector 2, and has a liquid storage capacity of about 200 liters.
The heat storage tank 3 of the present embodiment has a rectangular parallelepiped tank body 31 having an upper opening, and a lid 32 that covers the upper opening of the tank body 31, and is formed of a synthetic resin integrally formed with a heat insulating material. Yes.
The lid 32 covers the upper opening of the tank body 31 so that the heat medium L does not flow out of the tank body 31 and rainwater does not flow into the tank body 31. The tank body 31 is open to the atmosphere.

槽本体31には、貯熱槽3の上部において熱媒送り配管4に接続される上部口(入口)33と、貯熱槽3の下部において熱媒戻し配管5に接続される下部口(出口)35とが設けられ、太陽熱集熱器2の図示しない内部流路に連通している。また、槽本体31の下部には、槽本体31内から熱媒Lを抜く際に開かれる排水口(図示せず)が設けられている。槽本体31に貯留された熱媒Lは、太陽熱集熱器2との間を循環することで加熱され、高温となる。   The tank body 31 has an upper port (inlet) 33 connected to the heat medium feed pipe 4 in the upper part of the heat storage tank 3 and a lower port (outlet) connected to the heat medium return pipe 5 in the lower part of the heat storage tank 3. ) 35 and communicates with an internal flow path (not shown) of the solar heat collector 2. In addition, a drainage port (not shown) that is opened when the heat medium L is removed from the tank body 31 is provided in the lower part of the tank body 31. The heat medium L stored in the tank body 31 is heated by circulating between the solar heat collector 2 and becomes high temperature.

熱媒送り配管4は、一端が下流側の太陽熱集熱器2の排水側となる出入口管21に接続され、他端が槽本体31の上部口33に接続される。熱媒戻し配管5は、一端が槽本体31の下部口35に接続され、他端が上流側の太陽熱集熱器2の注水側となる出入口管23に接続される。   One end of the heat medium feeding pipe 4 is connected to the inlet / outlet pipe 21 that is the drain side of the downstream solar heat collector 2, and the other end is connected to the upper port 33 of the tank body 31. One end of the heat medium return pipe 5 is connected to the lower port 35 of the tank body 31, and the other end is connected to the inlet / outlet pipe 23 that serves as the water injection side of the upstream solar heat collector 2.

第1の電動三方切換弁71は、熱媒戻し配管5の途中に設けられ、貯熱槽3内の熱媒Lの循環経路を太陽熱集熱器2又は熱交換器6へ切り換える。具体的には、第1の電動三方切換弁71は、弁体が熱媒戻し配管5から高温側配管61への通路を塞ぎ、貯熱槽3から太陽熱集熱器2への通路を開く状態と、弁体が貯熱槽3から太陽熱集熱器2への通路を塞ぎ、熱媒戻し配管5から高温側配管61への通路を開く状態と、に切り換わる。   The first electric three-way switching valve 71 is provided in the middle of the heat medium return pipe 5 and switches the circulation path of the heat medium L in the heat storage tank 3 to the solar heat collector 2 or the heat exchanger 6. Specifically, in the first electric three-way switching valve 71, the valve body closes the passage from the heat medium return pipe 5 to the high temperature side pipe 61 and opens the passage from the heat storage tank 3 to the solar heat collector 2. Then, the valve body is switched to a state in which the passage from the heat storage tank 3 to the solar heat collector 2 is closed and the passage from the heat medium return pipe 5 to the high temperature side pipe 61 is opened.

本第1実施形態に係る熱交換器6は、入口端が第1の電動三方切換弁71に接続されると共に出口端が熱媒送り配管4に接続された高温側配管61と、入口端が給水管11に接続されると共に出口端が出湯管13に接続された低温側配管62とを有し、高温側配管61内の熱媒Lと低温側配管62内の水との間で熱交換させるプレート式熱交換器であり、保温材で覆われている。本発明はこれに限定されるものではない。例えば、多管式熱交換器などの熱交換性能の高い種々の熱交換器を用いることができる。   The heat exchanger 6 according to the first embodiment includes a high-temperature side pipe 61 having an inlet end connected to the first electric three-way switching valve 71 and an outlet end connected to the heat transfer pipe 4, and an inlet end A low-temperature side pipe 62 connected to the water supply pipe 11 and having an outlet end connected to the hot water pipe 13, and heat exchange between the heat medium L in the high-temperature side pipe 61 and the water in the low-temperature side pipe 62. This is a plate heat exchanger that is covered with a heat insulating material. The present invention is not limited to this. For example, various heat exchangers having high heat exchange performance such as a multi-tube heat exchanger can be used.

高温側配管61は、入口端が第1の電動三方切換弁71及び熱媒戻し配管5を介して槽本体31の下部口35に接続されると共に出口端が熱媒送り配管4を介して槽本体31の上部口33に接続されており、第1の電動三方切換弁71を切り換えることにより、貯熱槽3内の高温となった熱媒Lが循環される。
低温側配管62は、入口端が給水管11に接続されると共に出口端が出湯管13に接続されており、給水管11から供給された水を高温側配管61内を循環する高温の熱媒Lとの間で熱交換させ、温めた水を出湯管13から湯として出湯する。
The high temperature side pipe 61 has an inlet end connected to the lower port 35 of the tank body 31 via the first electric three-way switching valve 71 and the heat medium return pipe 5 and an outlet end connected to the tank via the heat medium feed pipe 4. It is connected to the upper port 33 of the main body 31, and the heat medium L having a high temperature in the heat storage tank 3 is circulated by switching the first electric three-way switching valve 71.
The low temperature side pipe 62 has an inlet end connected to the water supply pipe 11 and an outlet end connected to the hot water discharge pipe 13, and a high temperature heat medium that circulates the water supplied from the water supply pipe 11 through the high temperature side pipe 61. Heat is exchanged with L, and the warmed water is discharged as hot water from the hot water discharge pipe 13.

循環ポンプ7は、熱媒戻し配管5における第1の電動三方切換弁71より上流に設けられ、槽本体31から熱媒Lを加圧搬送することにより、貯熱槽3内の熱媒Lを太陽熱集熱器2又は高温側配管61との間で循環させる。
本実施形態において、熱媒Lには、安全性の面からプロピレングリコールを主とした不凍液が使用される。尚、循環ポンプ7を常時又は所定間隔で駆動し、熱媒Lを常に循環させて凍結を防止できる場合には、熱媒Lに水を使用することもできる。
The circulation pump 7 is provided upstream of the first electric three-way switching valve 71 in the heat medium return pipe 5 and pressurizes and conveys the heat medium L from the tank body 31, so that the heat medium L in the heat storage tank 3 is transferred. It circulates between the solar heat collector 2 or the high temperature side pipe 61.
In the present embodiment, an antifreeze liquid mainly composed of propylene glycol is used for the heat medium L from the viewpoint of safety. In addition, water can be used for the heating medium L when the circulating pump 7 is driven at all times or at a predetermined interval so that the heating medium L can be constantly circulated to prevent freezing.

制御装置8は、第1の電動三方切換弁71を制御する第1制御部81と循環ポンプ7を制御する第2制御部82とを有し、熱交換器6による熱交換運転及び太陽熱集熱器2による集熱運転を制御する。
第1制御部81は、低温側配管62の入口端近傍における給水管11に設けられて水の流量を検出するフロースイッチ20と、第1の電動三方切換弁71に接続される。そして、第1制御部81は、フロースイッチ20で検出された水の流量に基づいて、第1の電動三方切換弁71の弁切換を制御する。なお、フロースイッチ20は、給水管11内の水の流れを検出可能であれば、種々の流量計を使用することができる。
The control device 8 includes a first control unit 81 that controls the first electric three-way switching valve 71 and a second control unit 82 that controls the circulation pump 7, and performs heat exchange operation and solar heat collection by the heat exchanger 6. The heat collection operation by the vessel 2 is controlled.
The first controller 81 is connected to the flow switch 20 provided in the water supply pipe 11 in the vicinity of the inlet end of the low temperature side pipe 62 and detecting the flow rate of water, and the first electric three-way switching valve 71. The first control unit 81 controls the valve switching of the first electric three-way switching valve 71 based on the flow rate of water detected by the flow switch 20. The flow switch 20 can use various flow meters as long as the flow of water in the water supply pipe 11 can be detected.

第2制御部82は、貯熱槽3に設けられて貯熱槽3内の熱媒Lの温度を検出する第1センサ51と、太陽熱集熱器2に配設されて熱媒Lの温度を検出する第2センサ53とに接続される。そして、第2制御部82は、第1センサ51で検出された熱媒Lの温度と、第2センサ53で検出された熱媒Lの温度との差温に基づいて、循環ポンプ7の作動、停止を制御する。   The second control unit 82 is provided in the heat storage tank 3 to detect the temperature of the heat medium L in the heat storage tank 3 and the temperature of the heat medium L provided in the solar heat collector 2. Is connected to a second sensor 53 for detecting. Then, the second control unit 82 operates the circulation pump 7 based on the temperature difference between the temperature of the heat medium L detected by the first sensor 51 and the temperature of the heat medium L detected by the second sensor 53. Control the stop.

なお、第1センサ51及び第2センサ53は、それぞれ貯熱槽3内及び太陽熱集熱器2内における熱媒Lの温度を検出可能であれば、貯熱槽3内及び太陽熱集熱器2内に設けられても、貯熱槽3近傍の熱媒戻し配管5及び太陽熱集熱器2近傍の熱媒送り配管4に設けられてもよい。   In addition, if the 1st sensor 51 and the 2nd sensor 53 can detect the temperature of the heat carrier L in the heat storage tank 3 and the solar heat collector 2, respectively, in the heat storage tank 3 and the solar heat collector 2 respectively. Even if it is provided inside, the heat medium return pipe 5 near the heat storage tank 3 and the heat medium feed pipe 4 near the solar heat collector 2 may be provided.

本実施形態の出湯管13には、熱交換器6における低温側配管62の出口端から出湯される湯水を必要に応じて加熱する給湯器10が温度調節弁9を介して接続されている。温度調節弁9には、給水管11から分岐された混合用給水管41が接続され、予め熱交換器6から出湯される温水と混合用給水管41から供給される水とが所定の温度(例えば、30℃)となるように混合して給湯器10に入水される。尚、温度調節弁9に代えて、温度調節装置であるミキシングユニットを用いることもできる。   A hot water heater 10 that heats hot water discharged from the outlet end of the low temperature side pipe 62 in the heat exchanger 6 as necessary is connected to the hot water outlet pipe 13 of the heat exchanger 6 through a temperature control valve 9. A water supply pipe for mixing 41 branched from the water supply pipe 11 is connected to the temperature control valve 9, and the hot water discharged from the heat exchanger 6 and the water supplied from the water supply pipe for mixing 41 in advance have a predetermined temperature ( For example, the mixture is mixed so that the temperature becomes 30 ° C., and the water is supplied to the water heater 10. In addition, it can replace with the temperature control valve 9, and can also use the mixing unit which is a temperature control apparatus.

温度調節弁9と給湯器10との間には、給水管11から分岐された直接給水用管45と接続された切換弁43が配設される。この切換弁43を使用することで、給湯器10への入水が温度調節弁9から行われる場合と、給水管11から直接行われる場合とに切り換えることができる。   A switching valve 43 connected to a direct water supply pipe 45 branched from the water supply pipe 11 is disposed between the temperature control valve 9 and the water heater 10. By using this switching valve 43, it is possible to switch between the case where the water entering the water heater 10 is performed from the temperature control valve 9 and the case where it is performed directly from the water supply pipe 11.

給湯器10は、給湯運転が行われる場合に、必要に応じて給湯用ガスバーナが点火されて加熱され、出湯管13に接続された温度調節弁9から流入した湯水が熱交換されることにより、給湯管47からカランやシャワーヘッド等の図示しない出湯端末に所定の給湯設定温度を有する給湯水が供給される。   When the hot water supply operation is performed, the hot water heater 10 is heated by igniting the hot water gas burner as necessary, and the hot water flowing from the temperature control valve 9 connected to the hot water discharge pipe 13 is subjected to heat exchange. Hot water having a predetermined hot water supply set temperature is supplied from a hot water supply pipe 47 to a hot water outlet terminal (not shown) such as a currant or a shower head.

次に、上記構成を有する第1実施形態に係る太陽熱利用給湯システム1の作用を説明する。
本第1実施形態の太陽熱利用給湯システム1において、制御装置8の第1制御部81は、フロースイッチ20で検出された給水管11内の水の流量がゼロである場合は、第1の電動三方切換弁71の弁体を切り換えて熱媒戻し配管5から高温側配管61への通路を塞ぎ、貯熱槽3から太陽熱集熱器2への通路を開く。そこで、循環ポンプ7が駆動されると、貯熱槽3内の熱媒Lが熱媒戻し配管5を介して太陽熱集熱器2に戻され、太陽熱集熱器2と貯熱槽3との間で循環される。
Next, the effect | action of the solar-heating utilization hot water supply system 1 which concerns on 1st Embodiment which has the said structure is demonstrated.
In the solar hot water supply system 1 of the first embodiment, the first control unit 81 of the control device 8 performs the first electric operation when the flow rate of the water in the water supply pipe 11 detected by the flow switch 20 is zero. The valve body of the three-way switching valve 71 is switched to block the passage from the heat medium return pipe 5 to the high temperature side pipe 61, and the passage from the heat storage tank 3 to the solar heat collector 2 is opened. Therefore, when the circulation pump 7 is driven, the heat medium L in the heat storage tank 3 is returned to the solar heat collector 2 through the heat medium return pipe 5, and the solar heat collector 2 and the heat storage tank 3 are connected. Circulated between.

太陽熱集熱器2に日射が当たると、太陽熱集熱器2内の熱媒Lが加熱される。
制御装置8の第2制御部82は、第2センサ53で検出された太陽熱集熱器2内の熱媒Lの温度と、第1センサ51で検出された貯熱槽3内の熱媒Lの温度との温度差が、所定の開始温度以上である場合、集熱運転プログラムを起動し、図示しない太陽電池等の電源により循環ポンプ7を作動して、集熱運転を開始する。
When solar radiation hits the solar heat collector 2, the heat medium L in the solar heat collector 2 is heated.
The second control unit 82 of the control device 8 detects the temperature of the heat medium L in the solar heat collector 2 detected by the second sensor 53 and the heat medium L in the heat storage tank 3 detected by the first sensor 51. When the temperature difference from the above temperature is equal to or higher than a predetermined start temperature, the heat collection operation program is started, the circulation pump 7 is operated by a power source such as a solar cell (not shown), and the heat collection operation is started.

そこで、太陽熱利用給湯システム1は、エネルギー的に不経済な集熱運転を避けることができると共に、冬季などで屋外に設置される太陽熱集熱器2近傍の熱媒Lの温度が貯熱槽3内の熱媒Lの温度よりも低い場合の集熱運転による貯熱槽3内の熱媒Lの温度低下を防止することができる。   Therefore, the solar heat utilizing hot water supply system 1 can avoid the energy-efficient economic heat collecting operation, and the temperature of the heat medium L in the vicinity of the solar heat collector 2 installed outdoors in the winter season or the like. The temperature drop of the heat medium L in the heat storage tank 3 due to the heat collecting operation when the temperature is lower than the temperature of the heat medium L inside can be prevented.

集熱運転が開始されると、循環ポンプ7は回転し、熱媒Lを強制的に熱媒戻し配管5、太陽熱集熱器2、熱媒送り配管4、貯熱槽3、循環ポンプ7へと循環させる。その結果、貯熱槽3に貯留された熱媒Lが加熱される。
この際、本第1実施形態の太陽熱利用給湯システム1は、熱媒送り配管4が貯熱槽3の上部に設けた上部口33に接続され、熱媒戻し配管5が貯熱槽3の下部に設けた下部口35に接続される。そこで、貯熱槽3の下部に集まる上部より低温の熱媒Lが、熱媒戻し配管5により太陽熱集熱器2に戻されることで、太陽熱集熱器2は熱媒Lを効率よく加熱することができる。
そして、太陽熱集熱器2内の熱媒Lと貯熱槽3内の熱媒Lとの温度差が、所定の開始温度未満となると、第2制御部82は循環ポンプ7を停止して、集熱運転を終了する。
When the heat collection operation is started, the circulation pump 7 rotates, and the heat medium L is forced to the heat medium return pipe 5, the solar heat collector 2, the heat medium feed pipe 4, the heat storage tank 3, and the circulation pump 7. And circulate. As a result, the heat medium L stored in the heat storage tank 3 is heated.
At this time, in the solar water heating system 1 of the first embodiment, the heat medium feed pipe 4 is connected to the upper port 33 provided at the upper part of the heat storage tank 3, and the heat medium return pipe 5 is the lower part of the heat storage tank 3. Is connected to the lower port 35 provided in Therefore, the solar heat collector 2 efficiently heats the heat medium L by returning the heat medium L having a temperature lower than the upper part collected in the lower part of the heat storage tank 3 to the solar heat collector 2 through the heat medium return pipe 5. be able to.
Then, when the temperature difference between the heat medium L in the solar heat collector 2 and the heat medium L in the heat storage tank 3 becomes less than a predetermined start temperature, the second control unit 82 stops the circulation pump 7, End heat collection operation.

給湯器10への入水が出湯管13から行われるように切換弁43が切り換えられ、太陽熱利用給湯システム1の給湯運転が行われた状態で、給湯器10の下流にある出湯端末が開栓されると、給水管11から給水された水が熱交換器6の低温側配管62を経て出湯管13から温度調節弁9に流入されて給湯器10に供給される。この時、フロースイッチ20が給水管11内の水の流量変化(流入)を検出する。   The selector valve 43 is switched so that the water supply to the hot water heater 10 is supplied from the hot water outlet pipe 13, and the hot water outlet terminal downstream of the hot water heater 10 is opened with the hot water supply operation of the solar hot water supply system 1 being performed. Then, the water supplied from the water supply pipe 11 flows into the temperature control valve 9 from the hot water discharge pipe 13 through the low temperature side pipe 62 of the heat exchanger 6 and is supplied to the water heater 10. At this time, the flow switch 20 detects the flow rate change (inflow) of the water in the water supply pipe 11.

制御装置8の第1制御部81は、フロースイッチ20で検出された水の流入に基づいて、第1の電動三方切換弁71の弁体を切り換えて貯熱槽3から太陽熱集熱器2への通路を塞ぎ、熱媒戻し配管5から高温側配管61への通路を開く。この際、集熱運転によって貯熱槽3内の熱媒Lが高温となり、太陽熱集熱器2内の熱媒Lとの温度差が所定の開始温度未満となった為に循環ポンプ7が停止している場合には、制御装置8の第2制御部82が循環ポンプ7を作動する。   The first control unit 81 of the control device 8 switches the valve body of the first electric three-way switching valve 71 based on the inflow of water detected by the flow switch 20 from the heat storage tank 3 to the solar heat collector 2. The passage from the heat medium return pipe 5 to the high temperature side pipe 61 is opened. At this time, the heat medium L in the heat storage tank 3 becomes high temperature due to the heat collecting operation, and the temperature difference with the heat medium L in the solar heat collector 2 becomes less than a predetermined start temperature, so that the circulation pump 7 is stopped. If it is, the second control unit 82 of the control device 8 operates the circulation pump 7.

そこで、貯熱槽3内の高温となった熱媒Lが、熱交換器6の高温側配管61へ循環される。
給水管11から熱交換器6の低温側配管62に供給された水は、高温側配管61に供給される高温となった熱媒Lとの間で熱交換され、温められた湯水が出湯管13に出湯する。
Therefore, the heat medium L having a high temperature in the heat storage tank 3 is circulated to the high temperature side pipe 61 of the heat exchanger 6.
The water supplied from the water supply pipe 11 to the low-temperature side pipe 62 of the heat exchanger 6 is heat-exchanged with the high-temperature heat medium L supplied to the high-temperature side pipe 61, and the hot water is heated. Take out the hot water at 13.

温度調節弁9に流入した湯水は、熱交換器6から出湯される温水と混合用給水管41から供給される水とを所定の温度(例えば、30℃)に混合して給湯器10に供給される。給湯器10は、必要に応じて温度調節弁9から供給された湯水を所定の給湯設定温度に加熱して給湯管47から出湯端末に供給する。   The hot water flowing into the temperature control valve 9 is mixed with hot water discharged from the heat exchanger 6 and water supplied from the mixing water supply pipe 41 at a predetermined temperature (for example, 30 ° C.) and supplied to the water heater 10. Is done. The hot water heater 10 heats the hot water supplied from the temperature control valve 9 to a predetermined hot water supply set temperature as necessary and supplies the hot water to the outlet terminal from the hot water supply pipe 47.

本第1実施形態の太陽熱利用給湯システム1によれば、熱交換器6から出湯される温水と混合用給水管41から供給される水とが、温度調節弁9によって所定の温度とされてから給湯器10に入水されるので、給湯器10は熱交換器6から出湯される温水や混合用給水管41から供給される水の温度変化に関わらず、使用者が設定した温度の温水を安定的に給湯することができる。   According to the hot water supply system 1 using solar heat of the first embodiment, the hot water discharged from the heat exchanger 6 and the water supplied from the mixing water supply pipe 41 are set to a predetermined temperature by the temperature control valve 9. Since water enters the water heater 10, the water heater 10 stabilizes the hot water at the temperature set by the user regardless of the temperature change of the hot water discharged from the heat exchanger 6 or the water supplied from the mixing water supply pipe 41. Hot water can be supplied.

従って、上述した太陽熱利用給湯システム1においては、太陽熱集熱器2で加熱された熱媒Lが大気開放型の貯熱槽3に貯留されるので、熱媒Lの膨張・収縮を吸収する膨張タンクを貯熱槽3と循環ポンプ7との間に設ける必要がない。   Therefore, in the solar-heat-use hot water supply system 1 described above, since the heat medium L heated by the solar heat collector 2 is stored in the open air heat storage tank 3, the expansion that absorbs the expansion / contraction of the heat medium L is achieved. There is no need to provide a tank between the heat storage tank 3 and the circulation pump 7.

また、給水管11から供給された水は、熱交換器6の低温側配管62を経て出湯管13から出湯される。熱交換器6の低温側配管62は、従来の貯湯槽503(図4参照)に比べて耐圧性が高いので、熱交換器6への給水圧を調整する減圧弁を給水管11に設ける必要がない。
また、第1の電動三方切換弁71を切り換えることにより、一つの循環ポンプ7だけで貯熱槽3内の熱媒Lを太陽熱集熱器2又は熱交換器6へ循環させることができ、高価な循環ポンプ7を複数設ける必要がない。
The water supplied from the water supply pipe 11 is discharged from the hot water discharge pipe 13 through the low temperature side pipe 62 of the heat exchanger 6. Since the low temperature side pipe 62 of the heat exchanger 6 has higher pressure resistance than the conventional hot water tank 503 (see FIG. 4), it is necessary to provide a pressure reducing valve in the water supply pipe 11 for adjusting the water supply pressure to the heat exchanger 6. There is no.
Further, by switching the first electric three-way switching valve 71, the heat medium L in the heat storage tank 3 can be circulated to the solar heat collector 2 or the heat exchanger 6 with only one circulation pump 7, which is expensive. There is no need to provide a plurality of circulating pumps 7.

また、熱交換器6は貯熱槽3内に配置されないので、使用できる熱交換器形式に制約がなく、プレート式熱交換器や多管式熱交換器などの熱交換性能の高い熱交換器を用いることができる。
更に、熱媒Lが貯留される貯熱槽3は、従来の湯水が充填される貯湯槽503のように出湯口を有する上部に高温の湯水を集まり易くするために縦置き型とする必要がないので、貯熱槽3を設置幅よりも高さが小さい横置き型とすることができる。
Further, since the heat exchanger 6 is not disposed in the heat storage tank 3, there is no restriction on the type of heat exchanger that can be used, and a heat exchanger having high heat exchange performance such as a plate heat exchanger or a multi-tube heat exchanger. Can be used.
Furthermore, the heat storage tank 3 in which the heat medium L is stored needs to be a vertical type in order to make it easy to collect high-temperature hot water at the upper part having the outlet, like the conventional hot water tank 503 filled with hot water. Since there is no, the heat storage tank 3 can be made into a horizontal installation type whose height is smaller than the installation width.

また、貯熱槽3は、耐圧性を要しないので、貯熱槽3自体の構造を簡略化したり、本実施形態の如く合成樹脂で形成して軽量化したりすることもできる。
更に、太陽熱利用給湯システム1は、貯熱槽3を設置幅よりも高さが小さい横置き型の直方体状とすることで、貯熱槽3が転倒し難くなるので、貯熱槽3の脚部を簡素化し、従来のようなコンクリート基礎を廃止して簡易基礎にすることで施行工事を容易とすることができる。
また、貯熱槽3を横置き型とすることで高さが低くなり、意匠性を向上させて家のデザイン性を阻害しないようにできる。
Moreover, since the heat storage tank 3 does not require pressure resistance, the structure of the heat storage tank 3 itself can be simplified, or the heat storage tank 3 can be reduced in weight by being formed of a synthetic resin as in this embodiment.
Furthermore, since the solar water heating system 1 has a horizontal cuboid shape whose height is smaller than the installation width of the heat storage tank 3, it is difficult for the heat storage tank 3 to fall down. The construction work can be facilitated by simplifying the section and eliminating the conventional concrete foundation to make it a simple foundation.
Moreover, height can be lowered by making the heat storage tank 3 horizontal, and the design can be improved so that the design of the house is not hindered.

従って、上述した本第1実施形態に係る太陽熱利用給湯システム1によれば、熱交換性能を向上させながら減圧弁や高価な膨張タンクを不要として部品コストを削減すると共に、貯熱槽3の脚部を簡素化して簡易基礎とすることで、施行工事を容易として施行期間を短縮すること、大幅なコストダウンが可能となる。   Therefore, according to the solar-heat-use hot water supply system 1 according to the first embodiment described above, the heat exchange performance is improved, the pressure reducing valve and the expensive expansion tank are not required, the parts cost is reduced, and the legs of the heat storage tank 3 are reduced. By simplifying the section and using it as a simple foundation, it is possible to facilitate the construction work, shorten the enforcement period, and significantly reduce costs.

図2は、本発明の第2実施形態に係る太陽熱利用給湯システム101の概略構成図である。なお、上記第1実施形態に係る太陽熱利用給湯システム1と同様の構成部材については、同符号を付して詳細な説明を省略する。
図2に示すように、本第2実施形態に係る太陽熱利用給湯システム101は、太陽熱集熱器2と、大気開放型の貯熱槽3と、熱媒送り配管4と、熱媒戻し配管5と、第1の電動三方切換弁71と、熱交換器6と、循環ポンプ7と、制御装置8と、給湯器(補助加熱機)10と、温度調節弁(温度調節装置)9と、を備える。
FIG. 2 is a schematic configuration diagram of a solar water heating hot water supply system 101 according to the second embodiment of the present invention. In addition, about the structural member similar to the solar-heat utilization hot water supply system 1 which concerns on the said 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
As shown in FIG. 2, the solar water heating hot water supply system 101 according to the second embodiment includes a solar heat collector 2, an open air heat storage tank 3, a heat medium feed pipe 4, and a heat medium return pipe 5. A first electric three-way switching valve 71, a heat exchanger 6, a circulation pump 7, a control device 8, a hot water heater (auxiliary heater) 10, and a temperature control valve (temperature control device) 9. Prepare.

そして、本第2実施形態に係る太陽熱利用給湯システム101は、熱媒送り配管4が貯熱槽3の下部に設けた下部口(入口)35に接続され、熱媒戻し配管5が貯熱槽3の上部に設けた上部口(出口)33に接続されると共に、高温側配管61の入口端が第1の電動三方切換弁71及び熱媒戻し配管5を介して槽本体31の上部口33に接続され、出口端が熱媒送り配管4を介して槽本体31の下部口35に接続された以外は、上記第1実施形態に係る太陽熱利用給湯システム1と同様の構成である。   In the solar water heating hot water supply system 101 according to the second embodiment, the heat medium feed pipe 4 is connected to a lower port (inlet) 35 provided at the lower part of the heat storage tank 3, and the heat medium return pipe 5 is a heat storage tank. 3 is connected to an upper port (outlet) 33 provided at the upper part of 3, and the inlet end of the high temperature side pipe 61 is connected to the upper port 33 of the tank body 31 via the first electric three-way switching valve 71 and the heat medium return pipe 5. It is the structure similar to the solar-heating hot water supply system 1 which concerns on the said 1st Embodiment except the outlet end being connected to the lower port 35 of the tank main body 31 via the heat-medium feed piping 4. FIG.

本第2実施形態に係る太陽熱利用給湯システム101によれば、貯熱槽3の上部に集まる下部より高温の熱媒Lが、第1の電動三方切換弁71を介して熱交換器6の高温側配管61に供給されることで、熱交換器6は熱媒Lの熱を低温側配管62内の水へ効率よく熱交換することができる。なお、その他の作用効果は、上記第1実施形態に係る太陽熱利用給湯システム1と同様である。   According to the solar-powered hot water supply system 101 according to the second embodiment, the heat medium L that is hotter than the lower part that collects in the upper part of the heat storage tank 3 passes through the first electric three-way switching valve 71 and the high temperature of the heat exchanger 6. By being supplied to the side pipe 61, the heat exchanger 6 can efficiently exchange heat of the heat medium L to the water in the low temperature side pipe 62. In addition, the other effect is the same as that of the solar-heating hot water supply system 1 which concerns on the said 1st Embodiment.

図3は、本発明の第3実施形態に係る太陽熱利用給湯システム201の概略構成図である。なお、上記第1実施形態に係る太陽熱利用給湯システム1と同様の構成部材については、同符号を付して詳細な説明を省略する。
図3に示すように、本第3実施形態に係る太陽熱利用給湯システム201は、太陽熱集熱器2と、大気開放型の貯熱槽3と、熱媒送り配管4と、熱媒戻し配管5と、第2の電動三方切換弁72と、第3の電動三方切換弁73と、第4の電動三方切換弁74と、熱交換器6と、循環ポンプ7と、バイパス配管75と、制御装置8aと、給湯器(補助加熱機)10と、温度調節弁(温度調節装置)9と、を備える。
FIG. 3 is a schematic configuration diagram of a solar hot water supply system 201 according to the third embodiment of the present invention. In addition, about the structural member similar to the solar-heat utilization hot water supply system 1 which concerns on the said 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
As shown in FIG. 3, a solar water heating hot water supply system 201 according to the third embodiment includes a solar heat collector 2, an open air heat storage tank 3, a heat medium feed pipe 4, and a heat medium return pipe 5. A second electric three-way switching valve 72, a third electric three-way switching valve 73, a fourth electric three-way switching valve 74, a heat exchanger 6, a circulation pump 7, a bypass pipe 75, and a control device. 8 a, a hot water heater (auxiliary heater) 10, and a temperature control valve (temperature control device) 9.

第2の電動三方切換弁72は、熱媒戻し配管5の途中に設けられ、貯熱槽3内の熱媒Lの循環経路を太陽熱集熱器2又は熱交換器6へ切り換える。具体的には、第2の電動三方切換弁72は、弁体が熱媒戻し配管5から高温側配管61への通路を塞ぎ、貯熱槽3の下部口(出入口)35から太陽熱集熱器2への通路を開く状態と、弁体が貯熱槽3の下部口35から太陽熱集熱器2への通路を塞ぎ、熱媒戻し配管5から高温側配管61への通路を開く状態と、に切り換わる。   The second electric three-way switching valve 72 is provided in the middle of the heat medium return pipe 5 and switches the circulation path of the heat medium L in the heat storage tank 3 to the solar heat collector 2 or the heat exchanger 6. Specifically, in the second electric three-way switching valve 72, the valve element closes the passage from the heat medium return pipe 5 to the high temperature side pipe 61, and the solar heat collector from the lower port (entrance / exit) 35 of the heat storage tank 3. A state where the passage to 2 is opened, a state where the valve body closes the passage from the lower port 35 of the heat storage tank 3 to the solar heat collector 2, and the passage from the heat medium return pipe 5 to the high temperature side pipe 61 is opened, Switch to.

第3の電動三方切換弁73は、熱媒戻し配管5における第2の電動三方切換弁72より上流に設けられ、貯熱槽3内の熱媒Lの循環経路を太陽熱集熱器2又は熱交換器6へ切り換える。具体的には、第3の電動三方切換弁73は、弁体が高温側配管61から熱媒戻し配管5への通路を塞ぎ、貯熱槽3の下部口35から第2の電動三方切換弁72を介して太陽熱集熱器2への通路を開く状態と、弁体が貯熱槽3の下部口35から第2の電動三方切換弁72への通路を塞ぎ、高温側配管61から貯熱槽3の下部口35への通路を開く状態と、に切り換わる。   The third electric three-way switching valve 73 is provided upstream of the second electric three-way switching valve 72 in the heat medium return pipe 5, and the solar heat collector 2 or the heat is passed through the circulation path of the heat medium L in the heat storage tank 3. Switch to exchanger 6. Specifically, the third electric three-way switching valve 73 has a valve element that blocks the passage from the high-temperature side pipe 61 to the heat medium return pipe 5, and the second electric three-way switching valve from the lower port 35 of the heat storage tank 3. The state in which the passage to the solar heat collector 2 is opened through 72 and the valve block the passage from the lower port 35 of the heat storage tank 3 to the second electric three-way switching valve 72, and heat is stored from the high temperature side pipe 61. It switches to the state which opens the channel | path to the lower port 35 of the tank 3. FIG.

第4の電動三方切換弁74は、熱媒送り配管4の途中に設けられ、貯熱槽3内の熱媒Lの循環経路を太陽熱集熱器2又は熱交換器6へ切り換える。具体的には、第4の電動三方切換弁74は、弁体が熱媒送り配管4からバイパス配管75への通路を塞ぎ、太陽熱集熱器2から貯熱槽3の上部口(出入口)33への通路を開く状態と、弁体が太陽熱集熱器2から貯熱槽3の上部口33への通路を塞ぎ、貯熱槽3の上部口33からバイパス配管75及び第2の電動三方切換弁72を介して高温側配管61への通路を開く状態と、に切り換わる。   The fourth electric three-way switching valve 74 is provided in the middle of the heat medium feed pipe 4 and switches the circulation path of the heat medium L in the heat storage tank 3 to the solar heat collector 2 or the heat exchanger 6. Specifically, the fourth electric three-way switching valve 74 has a valve element that blocks the passage from the heat medium feed pipe 4 to the bypass pipe 75, and the upper port (entrance / exit) 33 of the heat storage tank 3 from the solar heat collector 2. And the valve element closes the passage from the solar heat collector 2 to the upper port 33 of the heat storage tank 3, and the bypass pipe 75 and the second electric three-way switching from the upper port 33 of the heat storage tank 3 It switches to the state which opens the channel | path to the high temperature side piping 61 via the valve 72. FIG.

本第3実施形態に係る熱交換器6は、入口端が第2の電動三方切換弁72に接続されると共に出口端が第3の電動三方切換弁73に接続された高温側配管61と、入口端が給水管11に接続されると共に出口端が出湯管13に接続された低温側配管62とを有し、高温側配管61内の熱媒Lと低温側配管62内の水との間で熱交換させるプレート式熱交換器であり、保温材で覆われている。   The heat exchanger 6 according to the third embodiment includes a high temperature side pipe 61 having an inlet end connected to the second electric three-way switching valve 72 and an outlet end connected to the third electric three-way switching valve 73; A low-temperature side pipe 62 having an inlet end connected to the water supply pipe 11 and an outlet end connected to the hot water pipe 13, between the heat medium L in the high-temperature side pipe 61 and the water in the low-temperature side pipe 62. It is a plate type heat exchanger that exchanges heat with, and is covered with a heat insulating material.

高温側配管61は、入口端が第2の電動三方切換弁72、熱媒戻し配管5、バイパス配管75及び熱媒送り配管4を介して槽本体31の上部口33に接続されると共に出口端が第3の電動三方切換弁73及び熱媒戻し配管5を介して槽本体31の下部口35に接続されており、第2乃至第4の電動三方切換弁72,73,74を切り換えることにより、貯熱槽3内の高温となった熱媒Lが循環される。
低温側配管62は、入口端が給水管11に接続されると共に出口端が出湯管13に接続されており、給水管11から供給された水を高温側配管61内を循環する高温の熱媒Lとの間で熱交換させ、温めた水を出湯管13から湯として出湯する。
The high temperature side pipe 61 has an inlet end connected to the upper port 33 of the tank body 31 via the second electric three-way switching valve 72, the heat medium return pipe 5, the bypass pipe 75 and the heat medium feed pipe 4 and an outlet end. Is connected to the lower port 35 of the tank body 31 via the third electric three-way switching valve 73 and the heat medium return pipe 5, and by switching the second to fourth electric three-way switching valves 72, 73, 74. The heat medium L having a high temperature in the heat storage tank 3 is circulated.
The low temperature side pipe 62 has an inlet end connected to the water supply pipe 11 and an outlet end connected to the hot water discharge pipe 13, and a high temperature heat medium that circulates the water supplied from the water supply pipe 11 through the high temperature side pipe 61. Heat is exchanged with L, and the warmed water is discharged as hot water from the hot water discharge pipe 13.

循環ポンプ7は、熱媒戻し配管5における第2の電動三方切換弁72と第3の電動三方切換弁73との間に設けられ、槽本体31から熱媒Lを加圧搬送することにより、貯熱槽3内の熱媒Lを太陽熱集熱器2又は高温側配管61との間で循環させる。   The circulation pump 7 is provided between the second electric three-way switching valve 72 and the third electric three-way switching valve 73 in the heat medium return pipe 5 and conveys the heat medium L from the tank body 31 under pressure. The heat medium L in the heat storage tank 3 is circulated between the solar heat collector 2 or the high temperature side pipe 61.

バイパス配管75は、入口端が第4の電動三方切換弁74に接続されると共に出口端が熱媒戻し配管5における循環ポンプ7と第3の電動三方切換弁73との間に接続される。
制御装置8aは、第2乃至第4の電動三方切換弁72,73,74を制御する第3制御部83と循環ポンプ7を制御する第2制御部82とを有し、熱交換器6による熱交換運転及び太陽熱集熱器2による集熱運転を制御する。
The bypass pipe 75 has an inlet end connected to the fourth electric three-way switching valve 74 and an outlet end connected between the circulation pump 7 and the third electric three-way switching valve 73 in the heat medium return pipe 5.
The control device 8 a includes a third control unit 83 that controls the second to fourth electric three-way switching valves 72, 73, and 74 and a second control unit 82 that controls the circulation pump 7. The heat exchanging operation and the heat collecting operation by the solar heat collector 2 are controlled.

第3制御部83は、フロースイッチ20と、第2乃至第4の電動三方切換弁72,73,74に接続される。そして、第3制御部83は、フロースイッチ20で検出された水の流量に基づいて、第2乃至第4の電動三方切換弁72,73,74の弁切換を制御する。   The third control unit 83 is connected to the flow switch 20 and the second to fourth electric three-way switching valves 72, 73 and 74. The third control unit 83 controls valve switching of the second to fourth electric three-way switching valves 72, 73, 74 based on the flow rate of water detected by the flow switch 20.

次に、上記構成を有する第3実施形態に係る太陽熱利用給湯システム201の作用を説明する。
本第3実施形態の太陽熱利用給湯システム201において、制御装置8aの第3制御部83は、フロースイッチ20で検出された給水管11内の水の流量がゼロである場合は、第2乃至第4の電動三方切換弁72,73,74を切り換えて、貯熱槽3内の熱媒Lを太陽熱集熱器2と貯熱槽3との間で循環させる。
Next, the effect | action of the solar-heat utilization hot water supply system 201 which concerns on 3rd Embodiment which has the said structure is demonstrated.
In the solar heat-use hot water supply system 201 of the third embodiment, the third control unit 83 of the control device 8a performs the second to second operations when the flow rate of water in the water supply pipe 11 detected by the flow switch 20 is zero. 4, the electric medium L in the heat storage tank 3 is circulated between the solar heat collector 2 and the heat storage tank 3.

具体的には、第2の電動三方切換弁72は、熱媒戻し配管5から高温側配管61への通路を塞ぎ、貯熱槽3の下部口35から太陽熱集熱器2への通路を開く状態に弁体が切り換えられる。第3の電動三方切換弁73は、高温側配管61から熱媒戻し配管5への通路を塞ぎ、貯熱槽3の下部口35から第2の電動三方切換弁72を介して太陽熱集熱器2への通路を開く状態に弁体が切り換えられる。第4の電動三方切換弁74は、熱媒送り配管4からバイパス配管75への通路を塞ぎ、太陽熱集熱器2から貯熱槽3の上部口33への通路を開く状態に弁体が切り換えられる。   Specifically, the second electric three-way switching valve 72 blocks the passage from the heat medium return pipe 5 to the high temperature side pipe 61 and opens the passage from the lower port 35 of the heat storage tank 3 to the solar heat collector 2. The valve body is switched to the state. The third electric three-way switching valve 73 closes the passage from the high temperature side pipe 61 to the heat medium return pipe 5, and the solar heat collector from the lower port 35 of the heat storage tank 3 through the second electric three-way switching valve 72. The valve body is switched to a state where the passage to 2 is opened. The fourth electric three-way switching valve 74 closes the passage from the heat medium feed pipe 4 to the bypass pipe 75 and switches the valve body to a state in which the passage from the solar heat collector 2 to the upper port 33 of the heat storage tank 3 is opened. It is done.

そこで、循環ポンプ7が駆動されると、貯熱槽3内の熱媒Lが熱媒戻し配管5を介して太陽熱集熱器2に戻されると共に、熱媒送り配管4を介して貯熱槽3に送られるので、太陽熱集熱器2と貯熱槽3との間で熱媒Lが循環される。   Therefore, when the circulation pump 7 is driven, the heat medium L in the heat storage tank 3 is returned to the solar heat collector 2 via the heat medium return pipe 5 and also the heat storage tank via the heat medium feed pipe 4. 3, the heat medium L is circulated between the solar heat collector 2 and the heat storage tank 3.

太陽熱集熱器2に日射が当たると、太陽熱集熱器2内の熱媒Lが加熱される。
制御装置8aの第2制御部82は、第2センサ53で検出された太陽熱集熱器2内の熱媒Lの温度と、第1センサ51で検出された貯熱槽3内の熱媒Lの温度との温度差が、所定の開始温度以上である場合、集熱運転プログラムを起動し、図示しない太陽電池等の電源により循環ポンプ7を作動して、集熱運転を開始する。
When solar radiation hits the solar heat collector 2, the heat medium L in the solar heat collector 2 is heated.
The second control unit 82 of the control device 8 a detects the temperature of the heat medium L in the solar heat collector 2 detected by the second sensor 53 and the heat medium L in the heat storage tank 3 detected by the first sensor 51. When the temperature difference from the above temperature is equal to or higher than a predetermined start temperature, the heat collection operation program is started, the circulation pump 7 is operated by a power source such as a solar cell (not shown), and the heat collection operation is started.

そこで、太陽熱利用給湯システム201は、エネルギー的に不経済な集熱運転を避けることができると共に、冬季などで屋外に設置される太陽熱集熱器2近傍の熱媒Lの温度が貯熱槽3内の熱媒Lの温度よりも低い場合の集熱運転による貯熱槽3内の熱媒Lの温度低下を防止することができる。   Therefore, the solar heat-utilizing hot water supply system 201 can avoid the energy-efficient economic heat collection operation, and the temperature of the heat medium L in the vicinity of the solar heat collector 2 installed outdoors in the winter season or the like can be reduced. The temperature drop of the heat medium L in the heat storage tank 3 due to the heat collecting operation when the temperature is lower than the temperature of the heat medium L inside can be prevented.

集熱運転が開始されると、循環ポンプ7は回転し、熱媒Lを強制的に熱媒戻し配管5、太陽熱集熱器2、熱媒送り配管4、貯熱槽3、循環ポンプ7へと循環させる。その結果、貯熱槽3に貯留された熱媒Lが加熱される。
そして、太陽熱集熱器2内の熱媒Lと貯熱槽3内の熱媒Lとの温度差が、所定の開始温度未満となると、第2制御部82は循環ポンプ7を停止して、集熱運転を終了する。
When the heat collection operation is started, the circulation pump 7 rotates, and the heat medium L is forced to the heat medium return pipe 5, the solar heat collector 2, the heat medium feed pipe 4, the heat storage tank 3, and the circulation pump 7. And circulate. As a result, the heat medium L stored in the heat storage tank 3 is heated.
Then, when the temperature difference between the heat medium L in the solar heat collector 2 and the heat medium L in the heat storage tank 3 becomes less than a predetermined start temperature, the second control unit 82 stops the circulation pump 7, End heat collection operation.

給湯器10への入水が出湯管13から行われるように切換弁43が切り換えられ、太陽熱利用給湯システム201の給湯運転が行われた状態で、給湯器10の下流にある出湯端末が開栓されると、給水管11から給水された水が熱交換器6の低温側配管62を経て出湯管13から温度調節弁9に流入されて給湯器10に供給される。この時、フロースイッチ20が給水管11内の水の流量変化(流入)を検出する。   The switching valve 43 is switched so that the water supply to the hot water heater 10 is supplied from the hot water outlet pipe 13, and the hot water supply terminal downstream of the hot water heater 10 is opened with the hot water supply operation of the solar water heating hot water supply system 201 performed. Then, the water supplied from the water supply pipe 11 flows into the temperature control valve 9 from the hot water discharge pipe 13 through the low temperature side pipe 62 of the heat exchanger 6 and is supplied to the water heater 10. At this time, the flow switch 20 detects the flow rate change (inflow) of the water in the water supply pipe 11.

制御装置8aの第3制御部83は、フロースイッチ20で検出された水の流入に基づいて、第2乃至第4の電動三方切換弁72,73,74を切り換えて、貯熱槽3内の熱媒Lを熱交換器6と貯熱槽3との間で循環させる。
具体的には、第2の電動三方切換弁72は、貯熱槽3の下部口35から太陽熱集熱器2への通路を塞ぎ、熱媒戻し配管5から高温側配管61への通路を開く状態に弁体が切り換えられる。第3の電動三方切換弁73は、貯熱槽3の下部口35から第2の電動三方切換弁72への通路を塞ぎ、高温側配管61から貯熱槽3の下部口35への通路を開く状態に弁体が切り換えられる。第4の電動三方切換弁74は、太陽熱集熱器2から貯熱槽3の上部口33への通路を塞ぎ、貯熱槽3の上部口33からバイパス配管75及び第2の電動三方切換弁72を介して高温側配管61への通路を開く状態に弁体が切り換えられる。
Based on the inflow of water detected by the flow switch 20, the third control unit 83 of the control device 8 a switches the second to fourth electric three-way switching valves 72, 73, 74, and stores in the heat storage tank 3. The heat medium L is circulated between the heat exchanger 6 and the heat storage tank 3.
Specifically, the second electric three-way switching valve 72 blocks the passage from the lower port 35 of the heat storage tank 3 to the solar heat collector 2 and opens the passage from the heat medium return pipe 5 to the high temperature side pipe 61. The valve body is switched to the state. The third electric three-way switching valve 73 closes the passage from the lower port 35 of the heat storage tank 3 to the second electric three-way switching valve 72, and the passage from the high temperature side pipe 61 to the lower port 35 of the heat storage tank 3. The valve body is switched to the open state. The fourth electric three-way switching valve 74 blocks the passage from the solar heat collector 2 to the upper port 33 of the heat storage tank 3, and bypasses the pipe 75 and the second electric three-way switching valve from the upper port 33 of the heat storage tank 3. The valve body is switched to a state where the passage to the high temperature side pipe 61 is opened via 72.

この際、集熱運転によって貯熱槽3内の熱媒Lが高温となり、太陽熱集熱器2内の熱媒Lとの温度差が所定の開始温度未満となった為に循環ポンプ7が停止している場合には、制御装置8aの第2制御部82が循環ポンプ7を作動する。
そこで、貯熱槽3内の高温となった熱媒Lが、熱交換器6の高温側配管61へ循環される。
給水管11から熱交換器6の低温側配管62に供給された水は、高温側配管61に供給される高温となった熱媒Lとの間で熱交換され、温められた湯水が出湯管13に出湯する。
At this time, the heat medium L in the heat storage tank 3 becomes high temperature due to the heat collecting operation, and the temperature difference with the heat medium L in the solar heat collector 2 becomes less than a predetermined start temperature, so the circulation pump 7 is stopped. If it is, the second control unit 82 of the control device 8a operates the circulation pump 7.
Therefore, the heat medium L having a high temperature in the heat storage tank 3 is circulated to the high temperature side pipe 61 of the heat exchanger 6.
The water supplied from the water supply pipe 11 to the low-temperature side pipe 62 of the heat exchanger 6 is heat-exchanged with the high-temperature heat medium L supplied to the high-temperature side pipe 61, and the hot water is heated. Take out the hot water at 13.

本第3実施形態に係る太陽熱利用給湯システム201によれば、貯熱槽3内の熱媒Lを太陽熱集熱器2に循環させる際には、第2乃至第4の電動三方切換弁72,73,74を切り換えることにより、貯熱槽3の下部に集まる上部より低温の熱媒Lを下部口35から熱媒戻し配管5により太陽熱集熱器2に戻すことができるので、太陽熱集熱器2は熱媒Lを効率よく加熱することができる。   According to the solar heat utilization hot water supply system 201 according to the third embodiment, when the heat medium L in the heat storage tank 3 is circulated to the solar heat collector 2, the second to fourth electric three-way switching valves 72, By switching 73 and 74, the heat medium L having a temperature lower than that of the upper part collected in the lower part of the heat storage tank 3 can be returned to the solar heat collector 2 from the lower port 35 through the heat medium return pipe 5, so that the solar heat collector 2 can heat the heating medium L efficiently.

一方、貯熱槽3内の熱媒Lを熱交換器6に循環させる際には、第2乃至第4の電動三方切換弁72,73,74を切り換えることにより、貯熱槽3の上部に集まる下部より高温の熱媒Lがバイパス配管75を介して熱交換器6の高温側配管61に供給されるので、熱交換器6は熱媒Lの熱を低温側配管62内の水へ効率よく熱交換することができる。   On the other hand, when the heat medium L in the heat storage tank 3 is circulated to the heat exchanger 6, the second to fourth electric three-way switching valves 72, 73, and 74 are switched, so that Since the heat medium L that is hotter than the gathered lower part is supplied to the high temperature side pipe 61 of the heat exchanger 6 via the bypass pipe 75, the heat exchanger 6 efficiently converts the heat of the heat medium L to the water in the low temperature side pipe 62. It can exchange heat well.

従って、本第3実施形態に係る太陽熱利用給湯システム201は、太陽熱集熱器2の加熱効率向上と熱交換器6の熱交換効率向上を両立させながら、貯熱槽3の熱媒Lをそれぞれ太陽熱集熱器2又は熱交換器6へ循環させることができる。なお、その他の作用効果は、上記第1実施形態に係る太陽熱利用給湯システム1と同様である。   Therefore, the solar-powered hot-water supply system 201 according to the third embodiment uses the heating medium L of the heat storage tank 3 while simultaneously improving the heating efficiency of the solar heat collector 2 and the heat exchange efficiency of the heat exchanger 6. It can be circulated to the solar heat collector 2 or the heat exchanger 6. In addition, the other effect is the same as that of the solar-heating hot water supply system 1 which concerns on the said 1st Embodiment.

なお、本発明の太陽熱利用給湯システムは、上述した各実施形態に限定されるものではなく、適宜、変形、改良等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所等は本発明を達成できるものであれば任意であり、限定されない。   In addition, the solar water utilization hot water supply system of this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

例えば、上記実施形態においては、太陽熱集熱器2内の熱媒Lと貯熱槽3内の熱媒Lとの温度差が、所定の開始温度以上である場合に循環ポンプ7が作動される構成としたが、日射があると太陽電池の発電によって循環ポンプが自動的に運転されるように構成することもできる。
また、制御装置による集熱運転方法は、上述した制御装置8,8aの集熱運転方法に限定されるものではなく、例えば、給水管11に設けた給水温度センサや水流量計、熱媒戻し配管5や熱媒送り配管4に設けた熱媒流量計等の値に基づいて、貯熱槽3の熱媒Lから熱交換器6内の水に供給される集熱量を計算しながら循環ポンプ7の回転数を制御するなどの種々の集熱運転方法を採りうることは云うまでもない。
For example, in the above embodiment, the circulation pump 7 is operated when the temperature difference between the heat medium L in the solar heat collector 2 and the heat medium L in the heat storage tank 3 is equal to or higher than a predetermined start temperature. Although it was configured, the solar pump can be configured to automatically operate the circulation pump when there is solar radiation.
Further, the heat collection operation method by the control device is not limited to the heat collection operation method of the control devices 8 and 8a described above. For example, a water supply temperature sensor, a water flow meter, a heat medium return provided in the water supply pipe 11 Circulation pump while calculating the amount of heat collected from the heat medium L in the heat storage tank 3 to the water in the heat exchanger 6 based on the values of the heat medium flow meter provided in the pipe 5 and the heat medium feed pipe 4 It goes without saying that various heat collecting operation methods such as controlling the number of rotations of 7 can be adopted.

1…太陽熱利用給湯システム
2…太陽熱集熱器
3…貯熱槽
4…熱媒送り配管
5…熱媒戻し配管
6…熱交換器
7…循環ポンプ
8…制御装置
9…温度調節弁(温度調節装置)
10…給湯器(補助加熱機)
11…給水管
13…出湯管
20…フロースイッチ
31…槽本体
32…蓋体
51…第1センサ
53…第2センサ
61…高温側配管
62…低温側配管
71…第1の電動三方切換弁
81…第1制御部
82…第2制御部
L…熱媒
DESCRIPTION OF SYMBOLS 1 ... Solar hot water supply system 2 ... Solar heat collector 3 ... Heat storage tank 4 ... Heat-medium feed piping 5 ... Heat-medium return piping 6 ... Heat exchanger 7 ... Circulation pump 8 ... Control device 9 ... Temperature control valve (temperature control) apparatus)
10 ... Water heater (auxiliary heater)
DESCRIPTION OF SYMBOLS 11 ... Supply pipe 13 ... Hot water pipe 20 ... Flow switch 31 ... Tank main body 32 ... Cover body 51 ... 1st sensor 53 ... 2nd sensor 61 ... High temperature side piping 62 ... Low temperature side piping 71 ... 1st electric three-way selector valve 81 ... 1st control part 82 ... 2nd control part L ... Heat medium

Claims (6)

太陽熱を利用して熱媒を加熱する太陽熱集熱器と、
前記太陽熱集熱器で加熱された熱媒を貯留する大気開放型の貯熱槽と、
前記太陽熱集熱器内の熱媒を前記貯熱槽に送る熱媒送り配管と、
前記貯熱槽内の熱媒を前記太陽熱集熱器に戻す熱媒戻し配管と、
前記熱媒戻し配管の途中に設けられ、前記貯熱槽内の熱媒の循環経路を切り換える第1の電動三方切換弁と、
入口端が前記第1の電動三方切換弁に接続されると共に出口端が前記熱媒送り配管に接続された高温側配管と、入口端が給水管に接続されると共に出口端が出湯管に接続された低温側配管とを有し、前記高温側配管内の熱媒と前記低温側配管内の水との間で熱交換させる熱交換器と、
前記熱媒戻し配管における前記第1の電動三方切換弁より上流に設けられ、前記貯熱槽内の熱媒を前記太陽熱集熱器又は前記高温側配管との間で循環させる循環ポンプと、
前記第1の電動三方切換弁を制御する第1制御部と前記循環ポンプを制御する第2制御部とを有し、前記熱交換器による熱交換運転及び前記太陽熱集熱器による集熱運転を制御する制御装置と、
を備えたことを特徴とする太陽熱利用給湯システム。
A solar collector that uses solar heat to heat the heating medium;
An open air heat storage tank for storing a heat medium heated by the solar heat collector;
A heat medium feed pipe for sending the heat medium in the solar heat collector to the heat storage tank;
A heat medium return pipe for returning the heat medium in the heat storage tank to the solar heat collector;
A first electric three-way switching valve that is provided in the middle of the heat medium return pipe and switches a circulation path of the heat medium in the heat storage tank;
A high temperature side pipe having an inlet end connected to the first electric three-way switching valve and an outlet end connected to the heat transfer pipe, an inlet end connected to a water supply pipe, and an outlet end connected to a hot water pipe A heat exchanger that exchanges heat between the heat medium in the high temperature side pipe and the water in the low temperature side pipe,
A circulation pump that is provided upstream of the first electric three-way switching valve in the heat medium return pipe and circulates the heat medium in the heat storage tank between the solar heat collector or the high temperature side pipe;
A first control unit that controls the first electric three-way switching valve; and a second control unit that controls the circulation pump; and a heat exchange operation by the heat exchanger and a heat collection operation by the solar heat collector. A control device to control;
A hot water supply system using solar heat.
前記熱媒送り配管が前記貯熱槽の上部に接続され、前記熱媒戻し配管が前記貯熱槽の下部に接続されることを特徴とする請求項1に記載の太陽熱利用給湯システム。   2. The solar-powered hot water supply system according to claim 1, wherein the heat medium feed pipe is connected to an upper part of the heat storage tank, and the heat medium return pipe is connected to a lower part of the heat storage tank. 前記熱媒送り配管が前記貯熱槽の下部に接続され、前記熱媒戻し配管が前記貯熱槽の上部に接続されることを特徴とする請求項1に記載の太陽熱利用給湯システム。   2. The solar-powered hot water supply system according to claim 1, wherein the heat medium feed pipe is connected to a lower part of the heat storage tank, and the heat medium return pipe is connected to an upper part of the heat storage tank. 太陽熱を利用して熱媒を加熱する太陽熱集熱器と、
前記太陽熱集熱器で加熱された熱媒を貯留する大気開放型の貯熱槽と、
前記太陽熱集熱器内の熱媒を前記貯熱槽の上部に送る熱媒送り配管と、
前記貯熱槽内の下部の熱媒を前記太陽熱集熱器に戻す熱媒戻し配管と、
前記熱媒戻し配管の途中に設けられ、前記貯熱槽の熱媒の循環経路を切り換える第2の電動三方切換弁と、
前記熱媒戻し配管における前記第2の電動三方切換弁より上流に設けられ、前記貯熱槽の熱媒の循環経路を切り換える第3の電動三方切換弁と、
前記熱媒送り配管の途中に設けられ、前記貯熱槽の熱媒の循環経路を切り換える第4の電動三方切換弁と、
入口端が前記第2の電動三方切換弁に接続されると共に出口端が前記第3の電動三方切換弁に接続された高温側配管と、入口端が給水管に接続されると共に出口端が出湯管に接続された低温側配管とを有し、前記高温側配管内の熱媒と前記低温側配管内の水との間で熱交換させる熱交換器と、
前記熱媒戻し配管における前記第2の電動三方切換弁と前記第3の電動三方切換弁との間に設けられ、前記貯熱槽の熱媒を前記太陽熱集熱器又は前記高温側配管との間で循環させる循環ポンプと、
入口端が前記第4の電動三方切換弁に接続されると共に出口端が前記熱媒戻し配管における前記循環ポンプと前記第3の電動三方切換弁との間に接続されるバイパス配管と、
前記第2乃至第4の電動三方切換弁を制御する第3制御部と前記循環ポンプを制御する第2制御部とを有し、前記熱交換器による熱交換運転及び前記太陽熱集熱器による集熱運転を制御する制御装置と、
を備えたことを特徴とする太陽熱利用給湯システム。
A solar collector that uses solar heat to heat the heating medium;
An open air heat storage tank for storing a heat medium heated by the solar heat collector;
A heat medium feed pipe for sending the heat medium in the solar heat collector to the upper part of the heat storage tank;
A heat medium return pipe for returning a lower heat medium in the heat storage tank to the solar heat collector;
A second electric three-way switching valve provided in the middle of the heat medium return pipe for switching the heat medium circulation path of the heat storage tank;
A third electric three-way switching valve provided upstream of the second electric three-way switching valve in the heat medium return pipe and switching a circulation path of the heat medium in the heat storage tank;
A fourth electric three-way switching valve provided in the middle of the heat medium feed pipe and switching a heat medium circulation path of the heat storage tank;
A high-temperature side pipe having an inlet end connected to the second electric three-way switching valve and an outlet end connected to the third electric three-way switching valve; an inlet end connected to a water supply pipe; A low-temperature side pipe connected to the pipe, and a heat exchanger for exchanging heat between the heat medium in the high-temperature side pipe and the water in the low-temperature side pipe,
It is provided between the second electric three-way switching valve and the third electric three-way switching valve in the heat medium return pipe, and the heat medium in the heat storage tank is connected to the solar heat collector or the high temperature side pipe. A circulation pump that circulates between,
A bypass pipe having an inlet end connected to the fourth electric three-way switching valve and an outlet end connected between the circulation pump and the third electric three-way switching valve in the heat medium return pipe;
A third control unit for controlling the second to fourth electric three-way switching valves and a second control unit for controlling the circulation pump; and heat exchange operation by the heat exchanger and collection by the solar heat collector. A control device for controlling thermal operation;
A hot water supply system using solar heat.
前記制御装置における第2制御部は、前記貯熱槽に設けられて前記貯熱槽内の熱媒の温度を検出する第1センサと、前記太陽熱集熱器に配設されて熱媒の温度を検出する第2センサとに接続され、前記第1センサで検出された熱媒の温度と、前記第2センサで検出された熱媒の温度との差温に基づいて、前記循環ポンプの作動、停止を制御することを特徴とする請求項1〜4の何れか1項に記載の太陽熱利用給湯システム。   The second control unit in the control device includes a first sensor that is provided in the heat storage tank and detects the temperature of the heat medium in the heat storage tank, and a temperature of the heat medium that is disposed in the solar heat collector. The circulating pump is operated based on a temperature difference between the temperature of the heat medium detected by the first sensor and the temperature of the heat medium detected by the second sensor. The solar hot water supply system according to any one of claims 1 to 4, wherein the stop is controlled. 前記出湯管には、前記低温側配管の出口端から出湯される湯水を必要に応じて加熱する補助加熱機が温度調節装置を介して接続されており、前記温度調節装置には、前記給水管から分岐された混合用給水管が接続され、予め前記低温側配管の出口端から出湯される温水と前記混合用給水管から供給される水とが混合して前記補助過熱機に入水されることを特徴とする請求項1〜5の何れか1項に記載の太陽熱利用給湯システム。   An auxiliary heater for heating the hot water discharged from the outlet end of the low temperature side pipe as needed is connected to the hot water pipe via a temperature adjusting device, and the temperature adjusting device includes the water supply pipe A water supply pipe for mixing branched from is connected, and hot water discharged from the outlet end of the low temperature side pipe and water supplied from the water supply pipe for mixing are mixed and entered into the auxiliary superheater. The solar-heating-use hot water supply system according to any one of claims 1 to 5.
JP2012039071A 2012-02-24 2012-02-24 Solar water heating system Expired - Fee Related JP5985205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039071A JP5985205B2 (en) 2012-02-24 2012-02-24 Solar water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039071A JP5985205B2 (en) 2012-02-24 2012-02-24 Solar water heating system

Publications (2)

Publication Number Publication Date
JP2013174390A true JP2013174390A (en) 2013-09-05
JP5985205B2 JP5985205B2 (en) 2016-09-06

Family

ID=49267442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039071A Expired - Fee Related JP5985205B2 (en) 2012-02-24 2012-02-24 Solar water heating system

Country Status (1)

Country Link
JP (1) JP5985205B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239843A (en) * 1975-09-25 1977-03-28 Furukawa Electric Co Ltd:The Sun-heat utilizing hot-water supply system
JPS6038552A (en) * 1983-08-12 1985-02-28 Matsushita Electric Works Ltd Hot water storage tank
JPH11159884A (en) * 1997-11-28 1999-06-15 Mitsubishi Electric Corp Heat accumulator
JP2002333207A (en) * 2001-05-10 2002-11-22 Toho Gas Co Ltd Exhaust heat utilizing system for cogeneration
JP2003247757A (en) * 2002-02-25 2003-09-05 Sunpot Co Ltd Solar heater
JP2009068760A (en) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp Hot water storage type water heater
JP2010101539A (en) * 2008-10-22 2010-05-06 Chofu Seisakusho Co Ltd Solar water heater
JP2010151429A (en) * 2008-12-26 2010-07-08 Noritz Corp Hot water storage and supply system
JP2010223489A (en) * 2009-03-23 2010-10-07 Osaka Gas Co Ltd Solar system
JP2011069573A (en) * 2009-09-28 2011-04-07 Corona Corp Storage hot water supply heating device
JP2011220647A (en) * 2010-04-14 2011-11-04 Yazaki Corp Reduced fuel cost calculating device, and solar hot water supply system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239843A (en) * 1975-09-25 1977-03-28 Furukawa Electric Co Ltd:The Sun-heat utilizing hot-water supply system
JPS6038552A (en) * 1983-08-12 1985-02-28 Matsushita Electric Works Ltd Hot water storage tank
JPH11159884A (en) * 1997-11-28 1999-06-15 Mitsubishi Electric Corp Heat accumulator
JP2002333207A (en) * 2001-05-10 2002-11-22 Toho Gas Co Ltd Exhaust heat utilizing system for cogeneration
JP2003247757A (en) * 2002-02-25 2003-09-05 Sunpot Co Ltd Solar heater
JP2009068760A (en) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp Hot water storage type water heater
JP2010101539A (en) * 2008-10-22 2010-05-06 Chofu Seisakusho Co Ltd Solar water heater
JP2010151429A (en) * 2008-12-26 2010-07-08 Noritz Corp Hot water storage and supply system
JP2010223489A (en) * 2009-03-23 2010-10-07 Osaka Gas Co Ltd Solar system
JP2011069573A (en) * 2009-09-28 2011-04-07 Corona Corp Storage hot water supply heating device
JP2011220647A (en) * 2010-04-14 2011-11-04 Yazaki Corp Reduced fuel cost calculating device, and solar hot water supply system

Also Published As

Publication number Publication date
JP5985205B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
CN103062927A (en) Solar energy distributed type generation hot water combined supply system
JP4513754B2 (en) Hybrid hot water supply system
JP2012002442A (en) Solar heat hot water supply system
KR101389361B1 (en) High efficiency hybrid cooling/heating and hot water supply system with absorption type
KR100590381B1 (en) Solar heating and domestic hot water system connected with a boiler for home
US20120125320A1 (en) Method for providing heat
JP2013124777A (en) Hot water system using solar heat
KR101045005B1 (en) Solar heatimg complex apparatus
JP5869365B2 (en) Solar water heating system
JP2013092337A (en) Solar heat-pump water heater system
KR100590385B1 (en) Solar heating and domestic hot water system connected with a boiler for home
KR101527391B1 (en) Variable flow rate control solar heat system with coil contained heat storage tank
KR101168538B1 (en) Apartment house solar thermal energy hot water system equipped communal heat storage tank and control method thereof
KR101406589B1 (en) Boiler by solar with heat tanks
JP2012202668A (en) Hot water supply heating device
KR101168551B1 (en) Method for supplying heat and preventing over heat in the solar thermal energy hot water system equipped heat storage tank in apartment
JP5985205B2 (en) Solar water heating system
KR20090111421A (en) Hot-water supply system using solar heat
CN207975720U (en) A kind of electric boiler and solar united use heating installation
KR20100004436A (en) The solar collector and heating system using a solarcollector
KR101168542B1 (en) Solar thermal energy hot water system equipped heat storage tank in apartment and control method thereof
JP2014037963A (en) Solar heat hot water supply system
JP2013174389A (en) Solar hot water supply system
JP5671304B2 (en) Heat source equipment
GB2486491A (en) Water heating system and a method of supplying hot water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees