JP2013173877A - Method for producing vinylic polymer - Google Patents

Method for producing vinylic polymer Download PDF

Info

Publication number
JP2013173877A
JP2013173877A JP2012040177A JP2012040177A JP2013173877A JP 2013173877 A JP2013173877 A JP 2013173877A JP 2012040177 A JP2012040177 A JP 2012040177A JP 2012040177 A JP2012040177 A JP 2012040177A JP 2013173877 A JP2013173877 A JP 2013173877A
Authority
JP
Japan
Prior art keywords
water
vinyl polymer
polymer
meth
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040177A
Other languages
Japanese (ja)
Inventor
Hiroaki Sasaki
太亮 佐々木
Kenichi Yoshihashi
健一 吉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012040177A priority Critical patent/JP2013173877A/en
Publication of JP2013173877A publication Critical patent/JP2013173877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a vinylic polymer low in coloring and high in hydrosilylation activity, the method being capable of efficiently removing, from the reaction system of the vinylic polymer, reaction agents used for polymerization of the vinylic polymer, such as a metal catalyst, an acidic substance, a basic substance and an ionic substance, and reaction residues.SOLUTION: A method for producing a vinylic polymer includes a step of dissolving a vinylic polymer polymerized by an atom transfer radical polymerization in a nonaqueous solvent, and bringing the polymer solution into contact with washing water, wherein the contact with the washing water is carried out using a washing water of 8≤pH≤14 and a washing water of 0≤pH≤6, respectively once or more.

Description

本発明はビニル系重合体の製造方法に関する。   The present invention relates to a method for producing a vinyl polymer.

ビニル系重合体の精密合成法としてリビングラジカル重合法が一般的に知られており、近年では、原子移動ラジカル重合を利用したビニル系重合体の製造方法が数多く報告されている(例えば特許文献1、特許文献2)。原子移動ラジカル重合法で製造されたビニル系重合体の工業的利用を想定すると、重合において使用する金属触媒、アミン類、その他反応剤の除去方法の確立は必要不可欠である。また、ハロゲン系開始剤や当該ハロゲン系開始剤で製造されたビニル系重合体中に含まれるハロゲンを除去することも重要である。   Living radical polymerization is generally known as a precise synthesis method for vinyl polymers, and in recent years, many methods for producing vinyl polymers using atom transfer radical polymerization have been reported (for example, Patent Document 1). Patent Document 2). Assuming industrial use of vinyl polymers produced by the atom transfer radical polymerization method, it is essential to establish a method for removing metal catalysts, amines and other reactants used in the polymerization. It is also important to remove the halogen contained in the halogen-based initiator and the vinyl polymer produced with the halogen-based initiator.

なぜなら製造したビニル系重合体に金属触媒が残存していると色調、貯蔵安定性の悪化などを起こしやすく、ハロゲンが遊離酸として残存していると貯蔵安定性の悪化を起こしやすく、またハロゲンが有機化合物の一部として残存していると高温下での炭素−ハロゲン結合の熱的ラジカル解離に端を発する該ビニル重合体の分子量・分子量分布の増大を起こしやすくなるからである。   This is because if the metal catalyst remains in the produced vinyl polymer, the color tone and storage stability are likely to deteriorate, and if halogen remains as a free acid, the storage stability is likely to deteriorate. This is because if it remains as a part of the organic compound, it tends to cause an increase in molecular weight and molecular weight distribution of the vinyl polymer, which originates from thermal radical dissociation of carbon-halogen bonds at high temperatures.

金属触媒、アミン類、その他反応剤の除去方法や、開始剤、ビニル系重合体由来のハロゲン除去方法は今もなお、数多くの大学や企業で研究が行われおり、ビニル系重合体の精製方法としてはこれまでに吸着剤を使用した精製方法や水を使用した精製方法が報告されている(例えば特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8)。   Methods for removing metal catalysts, amines, other reactants, initiators, and methods for removing halogens derived from vinyl polymers are still being studied by many universities and companies. So far, a purification method using an adsorbent and a purification method using water have been reported (for example, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, Patent Literature 8). .

WO96/30421公報WO96 / 30421 publication WO97/18247公報WO97 / 18247 特開2003−048921公報JP 2003-049821 A 特開2001−323012公報JP 2001-323012 A 特開2001−323015公報JP 2001-323015 A 特開2005−105265公報JP-A-2005-105265 特開平11−80250公報Japanese Patent Laid-Open No. 11-80250 特開2001−323016公報JP 2001-323016 A

本発明は、原子移動ラジカル重合を実施するために添加した金属触媒、酸性物質、塩基性物質、イオン性物質などの反応剤および反応残渣を当該ビニル系重合体の反応系から効率的に除去することが可能なビニル系重合体の製造方法を提供するものである。   The present invention efficiently removes a reaction agent and a reaction residue such as a metal catalyst, an acidic substance, a basic substance, and an ionic substance added to perform atom transfer radical polymerization from the reaction system of the vinyl polymer. The present invention provides a method for producing a vinyl polymer that can be used.

本発明は、前述の問題を解消することを目的とする。
すなわち、原子移動ラジカル重合により重合したビニル系重合体を非水溶性溶剤に溶解し、当該重合体溶液を洗浄水に接触させる工程を含むビニル系重合体の製造方法であって、
上記洗浄水による接触が、
8≦pH≦14の洗浄水による接触、および
0≦pH≦6の洗浄水による接触を
それぞれ1回以上行うことを必須とするビニル系重合体の製造方法に関する。
The present invention is directed to overcoming the problems set forth above.
That is, a method for producing a vinyl polymer comprising a step of dissolving a vinyl polymer polymerized by atom transfer radical polymerization in a water-insoluble solvent and bringing the polymer solution into contact with washing water,
Contact with the washing water is
The present invention relates to a method for producing a vinyl polymer, which requires at least one contact each with 8 ≦ pH ≦ 14 washing water and 0 ≦ pH ≦ 6 washing water.

原子移動ラジカル重合が、周期律表第7族、8族、9族、10族、または11族の遷移金属(M)を中心金属とする金属錯体を触媒としたものである事が好ましい。   The atom transfer radical polymerization is preferably carried out using a metal complex having a transition metal (M) of Groups 7, 8, 9, 10, or 11 of the periodic table as a central metal.

原子移動ラジカル重合系で添加した金属触媒、酸性物質、塩基性物質、イオン性物質などの反応剤及び、反応残渣を、製造したビニル系重合体から経済的、簡易的、かつ廃棄物をあまり排出せずに除去することが可能な製造方法であり、かつ得られた当該ビニル系重合体は低着色で、高いヒドロシリル化活性を有している。   Metal catalysts, acid substances, basic substances, ionic substances and other reactants added in atom transfer radical polymerization systems, and reaction residues are economically, easily and wastefully discharged from the produced vinyl polymers. The vinyl polymer thus obtained is low-colored and has a high hydrosilylation activity.

本発明は、原子移動ラジカル重合により重合したビニル系重合体を非水溶性溶剤に溶解し、該重合体溶液を洗浄水に接触させる工程を含むビニル系重合体の製造方法であって、
上記洗浄水による接触が、
8≦pH≦14の洗浄水による接触、および
0≦pH≦6の洗浄水による接触を
それぞれ1回以上行うビニル系重合体の製造方法に関するものである。
The present invention is a method for producing a vinyl polymer comprising a step of dissolving a vinyl polymer polymerized by atom transfer radical polymerization in a water-insoluble solvent and bringing the polymer solution into contact with washing water,
Contact with the washing water is
The present invention relates to a method for producing a vinyl polymer in which contact with a wash water of 8 ≦ pH ≦ 14 and contact with a wash water of 0 ≦ pH ≦ 6 are each performed once or more.

ビニル系重合体としては、炭化水素系重合体、並びに、(メタ)アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群から選ばれるモノマーを主として重合して製造される重合体が好ましい。ここで「主として」とは、ビニル系重合体を構成するモノマー単位のうち、50モル%以上が上記モノマーであることを意味し、好ましくは70モル%以上である。   Examples of vinyl polymers include hydrocarbon polymers and monomers selected from the group consisting of (meth) acrylic monomers, acrylonitrile monomers, aromatic vinyl monomers, fluorine-containing vinyl monomers, and silicon-containing vinyl monomers. A polymer produced mainly by polymerizing is preferred. Here, “mainly” means that 50 mol% or more of the monomer units constituting the vinyl polymer is the above monomer, and preferably 70 mol% or more.

炭化水素系重合体としては、ポリイソブチレン、水素添加ポリイソプレン、水素添加ポリブタジエン等が上げられる。   Examples of the hydrocarbon polymer include polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene.

さらに、ビニル系重合体としては、ポリイソブチレン、(メタ)アクリル系モノマーを主として重合して製造された(メタ)アクリル系重合体が好ましく、アクリル系重合体がより好ましく、アクリル酸エステルモノマーを重合して製造されるアクリル酸エステル系重合体がより好ましい。   Furthermore, the vinyl polymer is preferably a (meth) acrylic polymer produced mainly by polymerizing polyisobutylene and a (meth) acrylic monomer, more preferably an acrylic polymer, and a polymerized acrylate monomer. An acrylic ester polymer produced by the above method is more preferable.

(メタ)アクリル系モノマーとしては、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル酸エステルモノマー等が挙げられる。   (Meth) acrylic monomers include: (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid n-butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid n-heptyl, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Isodecyl (meth) acrylate, isobornyl (meth) acrylate, disishi (meth) acrylate Lopentanyl, dodecyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, (Meth) acrylate 2-hydroxyethyl, (meth) acrylate 2-hydroxypropyl, stearyl (meth) acrylate, isostearyl (meth) acrylate, glycidyl (meth) acrylate, 2-amino (meth) acrylate Ethyl, γ- (methacryloyloxypropyl) trimethoxysilane, ethylene oxide adduct of (meth) acrylic acid, trifluoromethylmethyl (meth) acrylate, 2-trifluoromethylethyl (meth) acrylate, (meth) acrylic 2-perfluoroethylethyl acid, (meth) a 2-perfluoroethyl-2-perfluorobutylethyl acrylate, 2-perfluoroethyl (meth) acrylate, perfluoromethyl (meth) acrylate, diperfluoromethylmethyl (meth) acrylate, (meth) acrylic acid 2-perfluoromethyl-2-perfluoroethylethyl, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, 2-perfluorohexadecylethyl (meth) acrylate, etc. (Meth) acrylic acid ester monomers and the like.

アクリロニトリル系モノマーとしては、アクリロニトリル、メタクリロニトリル等が挙げられる。   Examples of acrylonitrile monomers include acrylonitrile and methacrylonitrile.

芳香族ビニル系モノマーとしては、スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等が挙げられる。   Examples of the aromatic vinyl monomer include styrene, vinyl toluene, α-methyl styrene, chlorostyrene, styrene sulfonic acid and salts thereof.

フッ素含有ビニル系モノマーとしては、パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等が挙げられる。   Examples of the fluorine-containing vinyl monomer include perfluoroethylene, perfluoropropylene, and vinylidene fluoride.

ケイ素含有ビニル系モノマーとしては、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられる。   Examples of the silicon-containing vinyl monomer include vinyltrimethoxysilane and vinyltriethoxysilane.

次に原子移動ラジカル重合について説明する。原子移動ラジカル重合とは近年、Matyjaszewskiら(J.Am.Chem.Soc.1995,117,5614)やSawamotoら(Macromolecules 1995,28,1721)によって開発された重合方法であり、モノマー、開始剤、金属触媒、アミンなどの種々の反応剤を組み合わせることで分子量、分子量分布などを高度に制御した重合体、すなわちリビング重合体を合成する手法の一つである。   Next, atom transfer radical polymerization will be described. Atom transfer radical polymerization is a polymerization method recently developed by Matyjaszewski et al. (J. Am. Chem. Soc. 1995, 117, 5614) and Sawamoto et al. (Macromolecules 1995, 28, 1721). This is one of the techniques for synthesizing a polymer in which molecular weight, molecular weight distribution, etc. are highly controlled by combining various reagents such as a metal catalyst and amine, that is, a living polymer.

なお近年、Percec,Vらによって提唱されたシングルエレクトロントランスファリビングラジカル重合(J.Am.Chem.Soc.2006,128,14156,JPSChem 2007,45,1607)も先に説明した原子移動ラジカル重合の範疇にある重合方法として取り扱う。   Recently, single-electron transfer living radical polymerization (J. Am. Chem. Soc. 2006, 128, 14156, JPPS Chem 2007, 45, 1607) proposed by Percec, V et al. As a polymerization method.

原子移動ラジカル重合の例としては、開始剤として有機ハロゲン化物、またはハロゲン化スルホニル化合物、金属触媒として周期表第7族、第8族、第9族、第10族または第11族を中心金属とする金属錯体を用いる重合系が挙げられる。   Examples of atom transfer radical polymerization include organic halides or sulfonyl halide compounds as initiators, and group 7, group 8, group 9, group 10 or group 11 of the periodic table as a central metal as a metal catalyst. And a polymerization system using a metal complex.

原子移動ラジカル重合は分子量、分子量分布などを高度に制御する重合方法である反面、重合物の精製性において大きな課題を抱えている。原子移動ラジカル重合では金属触媒、アミン、酸などを反応剤として用いるのでこれらの反応剤を重合系から精製除去しなければ、重合体の分子量増大、分散度低下、強着色、貯蔵安定性の不良などの致命的な課題を引き起こす可能性が高い。   Atom transfer radical polymerization is a polymerization method that highly controls molecular weight, molecular weight distribution, and the like, but has a major problem in the purification of the polymer. In atom transfer radical polymerization, metal catalysts, amines, acids, and the like are used as reactants. If these reactants are not purified and removed from the polymerization system, the molecular weight of the polymer increases, the degree of dispersion decreases, the coloring becomes strong, and the storage stability is poor. There is a high possibility of causing fatal issues such as.

製造したビニル系重合体の分子量維持、分散度維持、低着色、貯蔵安定性確保の点において適切な精製処理は必要不可欠である。   Appropriate purification treatment is indispensable in terms of maintaining the molecular weight, maintaining the degree of dispersion, low coloration, and ensuring storage stability of the produced vinyl polymer.

ビニル系重合体の精製方法について説明する。ビニル系重合体の精製方法については種々の方法がある。吸着剤を利用した精製、イオン交換膜を利用した精製方法などあるが、経済的に安価で、簡易的、かつ廃棄物をあまり排出しない精製方法として水を利用した精製方法が有効であり、本発明ではpH域を制御した洗浄水を使用したビニル系重合体の精製を行う。以下、この精製方法について説明する。   A method for purifying the vinyl polymer will be described. There are various methods for purifying vinyl polymers. There are purification methods using adsorbents, purification methods using ion exchange membranes, etc., but a purification method using water is effective as a purification method that is economically inexpensive, simple, and does not discharge much waste. In the invention, the vinyl polymer is purified using washing water whose pH range is controlled. Hereinafter, this purification method will be described.

水を使用した精製は、まずビニル系重合体を非水溶性溶剤で溶解した上で行う。重合体の溶解には、以下のような各種非水溶性溶剤を選択することが出来る。たとえばn−ヘキサン、シクロヘキサン、メチルシクロヘキサンなどの飽和炭化水素系溶媒;ベンゼン、トルエン、キシレン、アニソールなどの芳香族炭化水素系溶媒;塩化メチレン、四塩化炭素、クロロホルムなどのハロゲン化炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸イソアミルなどのエステル系溶媒;n−ブタノール、n−ペンタノール、n−ヘキサノールなどの炭素数4以上のアルコール系溶媒などがあげられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。この中で好ましい溶剤は、入手も容易で毒性や環境負荷も低く、金属除去後の溶剤除去を簡便に行えるn−ブタノール、n−ヘキサノール、酢酸ブチル、トルエン、メチルシクロヘキサンであり、より好ましい溶剤は、金属抽出効率の良いn−ブタノール、n−ヘキサノールである。   Purification using water is performed after first dissolving the vinyl polymer in a non-water-soluble solvent. The following various water-insoluble solvents can be selected for dissolving the polymer. For example, saturated hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, and anisole; halogenated hydrocarbon solvents such as methylene chloride, carbon tetrachloride, and chloroform; Examples thereof include ester solvents such as ethyl acetate, butyl acetate and isoamyl acetate; alcohol solvents having 4 or more carbon atoms such as n-butanol, n-pentanol and n-hexanol. These may be used alone or in combination of two or more. Among them, preferred solvents are n-butanol, n-hexanol, butyl acetate, toluene, and methylcyclohexane, which are easily available, have low toxicity and environmental burden, and can be easily removed after removal of the metal. More preferred solvents are N-butanol and n-hexanol having high metal extraction efficiency.

ビニル系重合体と混合する溶剤の使用量は、特に限定されない。通常はビニル系重合体100重量部に対して、10〜2000重量部の範囲が好ましく、経済性と操作面から重合体に対して50〜200重量部の範囲が好ましい。   The amount of the solvent mixed with the vinyl polymer is not particularly limited. Usually, the range of 10 to 2000 parts by weight is preferable with respect to 100 parts by weight of the vinyl polymer, and the range of 50 to 200 parts by weight with respect to the polymer is preferable from the viewpoint of economy and operation.

混合攪拌後の油水分離性を高めるために、以下に記載の電解質成分を水に混合しても良い。   In order to improve oil-water separation after mixing and stirring, the electrolyte components described below may be mixed with water.

水に溶解する電解質成分の例は、塩化ナトリウム、硫酸ナトリウム、酢酸ナトリウム、アクリル酸ナトリウム、リン酸ナトリウム、クエン酸ナトリウム、酒石酸ナトリウム、安息香酸ナトリウム、ソルビン酸ナトリウム、フタル酸ナトリウム、アクリル酸ナトリウムおよびメタクリル酸ナトリウムである。これらのナトリウム塩はカリウム塩もしくはアンモニウム塩でもよい。この中では、入手が容易であり、中性塩で廃水処理における負荷の低い、硫酸ナトリウム、塩化ナトリウムが好ましく、硫酸ナトリウムがより好ましい。   Examples of electrolyte components that dissolve in water are sodium chloride, sodium sulfate, sodium acetate, sodium acrylate, sodium phosphate, sodium citrate, sodium tartrate, sodium benzoate, sodium sorbate, sodium phthalate, sodium acrylate, and Sodium methacrylate. These sodium salts may be potassium salts or ammonium salts. Among these, sodium sulfate and sodium chloride are preferable, and sodium sulfate is more preferable because it is easily available and is a neutral salt and has a low load in wastewater treatment.

水に加える電解質の含有量は特に限定されないが、完全に溶解している必要があるため、それぞれ電解質の溶解度に対応して添加量を調整することが好ましい。電解質水溶液と重合体溶液とを混合した後の分離性を促進するためには、電解質の添加量を水100重量部に対して、1〜15重量部にすることが好ましく、廃水処理の負荷を低減するために1〜10重量部にすることが好ましい。   Although the content of the electrolyte added to water is not particularly limited, it is necessary to completely dissolve the electrolyte. Therefore, it is preferable to adjust the addition amount corresponding to the solubility of the electrolyte. In order to promote the separability after mixing the aqueous electrolyte solution and the polymer solution, the amount of electrolyte added is preferably 1 to 15 parts by weight with respect to 100 parts by weight of water, and the wastewater treatment load is reduced. In order to reduce, it is preferable to set it as 1-10 weight part.

水もしくは電解質成分を溶解した水溶液と重合体溶液を接触させる際の水の使用量は特に制限はないが、経済性と操作面からビニル系重合体100重量部に対して20〜1000重量部の範囲が好ましい。   The amount of water used when the polymer solution is brought into contact with water or an aqueous solution in which an electrolyte component is dissolved is not particularly limited, but is 20 to 1000 parts by weight with respect to 100 parts by weight of the vinyl polymer in terms of economy and operation. A range is preferred.

使用する水については、重合体の汚染防止を考慮しなければならない。50μm以下のフィルターを通した水が好ましく、イオン交換樹脂で処理した純水がより好ましい。   For the water used, prevention of polymer contamination must be considered. Water through a filter of 50 μm or less is preferable, and pure water treated with an ion exchange resin is more preferable.

本発明は水を使用したビニル系重合体の精製であって、その水のpH域を制御して重合系に添加した金属触媒、酸性物質、塩基性物質、イオン性物質などの反応剤および反応残渣を当該ビニル系重合体から効率的に除去し、高いヒドロシリル化活性、低着色のビニル系重合体を得る。pHを制御した水を以下、洗浄水として記載する。   The present invention is a purification of a vinyl-based polymer using water, and a reactive agent and reaction such as a metal catalyst, an acidic substance, a basic substance, an ionic substance, etc. added to the polymerization system by controlling the pH range of the water. The residue is efficiently removed from the vinyl polymer to obtain a vinyl polymer having high hydrosilylation activity and low color. Hereinafter, the water whose pH is controlled is described as washing water.

本発明は非水溶性溶剤に溶かしたビニル系重合体溶液を、洗浄水に接触させる工程を含むビニル系重合体の製造方法であって、上記洗浄水による接触においては、8≦pH≦14の洗浄水による接触、0≦pH≦6の洗浄水による接触をそれぞれ1回以上行うことを必須としている。   The present invention is a method for producing a vinyl polymer comprising a step of bringing a vinyl polymer solution dissolved in a water-insoluble solvent into contact with washing water, wherein in the contact with the washing water, 8 ≦ pH ≦ 14 It is essential to perform the contact with the washing water and the contact with the washing water of 0 ≦ pH ≦ 6 at least once.

洗浄効果の高いビニル系重合体を得るためには酸性、塩基性双方の洗浄水での接触は交互に行うことが好ましく、また定常的に洗浄効果の高いビニル系重合体を得るためには酸性水、塩基性水との接触をそれぞれ2回以上実施するが好ましい。着色低減効果を最大限に発揮するためには、先に塩基性の洗浄水でビニル系重合体を処理し、後に酸性の洗浄水で処理するのが好ましい。   In order to obtain a vinyl polymer having a high cleaning effect, it is preferable to alternately perform contact with both acidic and basic cleaning water, and in order to obtain a vinyl polymer having a high cleaning effect on a regular basis, The contact with water and basic water is preferably carried out twice or more. In order to maximize the coloring reduction effect, it is preferable that the vinyl polymer is first treated with basic washing water and then treated with acidic washing water.

当該精製に使用する装置への負荷が小さくなる点、廃水処理にかかる経済的負荷少なくなる点において洗浄水のpH域は8≦pH≦10と、1≦pH≦6が好ましい。   The pH range of the wash water is preferably 8 ≦ pH ≦ 10 and 1 ≦ pH ≦ 6 in that the load on the apparatus used for the purification is reduced and the economic load on the wastewater treatment is reduced.

洗浄に使用する水のpH域を8≦pH≦14に制御したい場合には水に水溶性の塩基性物質を添加すればよい。例を挙げるとすれば、水酸化ナトリウム、水酸化カリウム、アンモニア、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウム、クエン酸カリウム、アクリル酸カリウム、アクリル酸ナトリウム、メタクリル酸ナトリウム、メタクリル酸カリウム、シュウ酸カリウム、シュウ酸ナトリウム、ホウ酸ナトリウム、ホウ酸カリウム、酢酸ナトリウム、酢酸カリウム、蟻酸ナトリウム、蟻酸カリウム、トリエチルアミンなどがあるが、これらに限定されるものではない。   In order to control the pH range of water used for washing to 8 ≦ pH ≦ 14, a water-soluble basic substance may be added to water. For example, sodium hydroxide, potassium hydroxide, ammonia, potassium carbonate, sodium carbonate, sodium bicarbonate, potassium bicarbonate, sodium citrate, potassium citrate, potassium acrylate, sodium acrylate, sodium methacrylate Potassium methacrylate, potassium oxalate, sodium oxalate, sodium borate, potassium borate, sodium acetate, potassium acetate, sodium formate, potassium formate, triethylamine, and the like, but is not limited thereto.

洗浄に使用する水のpH域を0≦pH≦6に制御したい場合には水に水溶性の酸性物質を添加すればよい。例を挙げるとすれば、塩酸、硫酸、シュウ酸、炭酸、クエン酸、アクリル酸、メタクリル酸、アスコルビン酸、グルコース酸、ホウ酸、酢酸、蟻酸などがあるが、これらに限定されるものではない。   In order to control the pH range of water used for washing to 0 ≦ pH ≦ 6, a water-soluble acidic substance may be added to water. Examples include, but are not limited to, hydrochloric acid, sulfuric acid, oxalic acid, carbonic acid, citric acid, acrylic acid, methacrylic acid, ascorbic acid, glucose acid, boric acid, acetic acid, formic acid, and the like. .

洗浄水調整のために加える上記水溶性物質添加量はビニル系重合体に洗浄水由来の水溶性物質が残りにくく、経済的に不利になりにくい点において、水100重量部に対して10重量部以下が好ましく、5重量部以下がさらに好ましい。   The amount of the water-soluble substance added to adjust the washing water is 10 parts by weight with respect to 100 parts by weight of water in that the water-soluble substance derived from the washing water hardly remains in the vinyl polymer and is not economically disadvantageous. The following is preferable, and 5 parts by weight or less is more preferable.

上記水溶性物質を水に添加する場合の溶解温度は水溶性物質が水に溶ける温度であれば何度でも構わないが、設備の温調コストを抑える点において5℃〜90℃が好ましく、より好ましくは10℃〜85℃、さらに好ましくは15℃から80℃がよい。   The temperature at which the water-soluble substance is added to water may be any number of times as long as the water-soluble substance is soluble in water, but is preferably 5 ° C. to 90 ° C. in terms of suppressing the temperature adjustment cost of the equipment. Preferably it is 10 degreeC-85 degreeC, More preferably, 15 to 80 degreeC is good.

ビニル系重合体溶液を上記双方のpH域の洗浄水で洗浄すると、ビニル系重合体に、洗浄水の溶質として含まれていた酸性、およびまたは塩基性物質が残存する恐れがある。そのため上記双方のpH域の洗浄水で洗浄後に、溶質を含まない水でビニル系重合体溶液を洗浄することが、ビニル系重合体に洗浄水由来の水溶性物質が残存しなくなる点で好ましい。   If the vinyl polymer solution is washed with washing water in both pH ranges, there is a risk that acidic and / or basic substances contained as solutes in the washing water may remain in the vinyl polymer. For this reason, it is preferable to wash the vinyl polymer solution with water containing no solute after washing with the washing water in both pH ranges from the viewpoint that the water-soluble substance derived from the washing water does not remain in the vinyl polymer.

水もしくは洗浄水と重合体溶液の液々接触には様々な実施態様が可能であるが、撹拌混合と液々分離を回分操作で行う回分式のほか、水と重合体を向流方式で容器に通液する抽出塔方式やスプレー塔方式等も利用できる。さらに必要に応じて撹拌による混合分散に加えて、容器の振とう、超音波の利用など、分散効率を向上させる諸操作を取り入れることができる。2相を混合させる駆動力を必要としない方法として、スプレー塔、充填塔、バッフル塔、多孔板抽出塔、オリフィス塔、スタティックミキサーなどのフローミキサーと呼ばれる方法などが挙げられる。また、駆動力を必要とする方法としては、脈動式充填塔、脈動式多孔板塔、振動板塔、ポドビルニアク抽出機やルウェスタ抽出機のような遠心式抽出装置が挙げられる。駆動力として撹拌方式を用いる装置は様々な方式があり、ミキサーセトラー抽出装置や、シャイベル塔、回転円板抽出塔、オルドシュー−ラシュトン塔、ARD塔などが上げられる。   Various embodiments are possible for the liquid-liquid contact between water or washing water and the polymer solution. In addition to the batch method in which stirring and mixing and liquid-liquid separation are carried out by batch operation, water and the polymer are mixed in a countercurrent system. An extraction tower system or a spray tower system that allows liquid to pass through can also be used. Furthermore, in addition to mixing and dispersing by stirring, various operations for improving the dispersion efficiency such as shaking of the container and use of ultrasonic waves can be incorporated as necessary. Examples of methods that do not require a driving force for mixing the two phases include methods called flow mixers such as spray towers, packed towers, baffle towers, perforated plate extraction towers, orifice towers, and static mixers. Examples of the method that requires a driving force include a pulsating packed tower, a pulsating perforated plate tower, a vibrating plate tower, a centrifugal extraction device such as a Podovirniak extractor and a Lewesta extractor. There are various types of apparatuses using a stirring system as a driving force, such as a mixer-settler extraction apparatus, a Seibel tower, a rotating disk extraction tower, an Old shoe-Rushton tower, and an ARD tower.

水もしくは洗浄水と重合体溶液を接触させる際の温度としては特に限定されず、一般に0〜200℃であればよい。好ましくは20〜100℃であり、より好ましくは60〜100℃である。温度を高くすれば、重合体溶液の粘度が下がり分散する油滴が小さくなるため、水との接触面積が大きくなり、金属触媒の抽出が促進されるので好ましい。ただし高すぎるとビニル系重合体の品質が悪化する恐れがある。   The temperature at the time of bringing water or washing water into contact with the polymer solution is not particularly limited, and may generally be 0 to 200 ° C. Preferably it is 20-100 degreeC, More preferably, it is 60-100 degreeC. A higher temperature is preferable because the viscosity of the polymer solution decreases and the number of dispersed oil droplets decreases, so that the contact area with water increases and the extraction of the metal catalyst is promoted. However, if it is too high, the quality of the vinyl polymer may be deteriorated.

上記接触を行う時間も特に限定されず、本発明の目的を達成できる範囲内であればよい。重合体を溶解する非水溶性溶剤や電解質の種類を限定することにより、1分程度の混合攪拌により精製を完了する組み合わせもある。その他の組み合わせでも、通常、5〜300分程度で行うことができる。   The time for performing the contact is not particularly limited as long as the object of the present invention can be achieved. There is also a combination in which purification is completed by mixing and stirring for about 1 minute by limiting the type of water-insoluble solvent or electrolyte that dissolves the polymer. Other combinations can be usually performed in about 5 to 300 minutes.

水もしくは洗浄水と重合体溶液との油水分離には、比重差を利用する遠心分離または静置分離、あるいは電気的性質の違いを利用する静電浄油などを利用することが出来る。上記油水分離を行う時間も特に限定されず、本発明の目的を達成できる範囲内であればよい。通常、5〜300分程度で行うことが出来る。   For oil-water separation between water or washing water and the polymer solution, centrifugal separation or stationary separation using a specific gravity difference, electrostatic oil purification using a difference in electrical properties, or the like can be used. The time for performing the oil / water separation is not particularly limited as long as the object of the present invention can be achieved. Usually, it can be performed in about 5 to 300 minutes.

原子移動ラジカル重合では、開始剤として有機ハロゲン化物、またはハロゲン化スルホニル化合物を使用することが好ましいが、重合で使用したハロゲン開始剤、ハロゲン化金属触媒由来の含ハロゲン化合物はビニル系重合体の貯蔵安定性悪化、分子量・分子量分布の増大などの重大な欠陥を引き起こしやすくなるので、ビニル系重合体の反応系から可能な限り除去するのが好ましい。   In atom transfer radical polymerization, an organic halide or a sulfonyl halide compound is preferably used as an initiator. However, the halogen initiator used in the polymerization and the halogen-containing compound derived from the metal halide catalyst are stored in a vinyl polymer. Since it becomes easy to cause serious defects such as deterioration of stability and increase in molecular weight / molecular weight distribution, it is preferably removed from the reaction system of the vinyl polymer as much as possible.

ハロゲン除去効果を高めるためには高温でハロゲン基含有ビニル系重合体を加熱処理することが好ましく、また処理時間の短縮のためにはより高温の方が好ましいが、高温にしすぎるとビニル系重合体の分解又は熱的劣化、その分解や劣化に起因すると考えられる着色の悪化が起こるため、ビニル系重合体の分解又は熱的劣化が顕著に起こらない温度領域でビニル系重合体を加熱処理することが好ましい。このことから当該ビニル系重合体の低着色を維持しつつ、ハロゲン除去効果を高めるためには、具体的には140℃以上250℃以下で加熱処理を行うのが良い。160℃以上230℃以下がさらに好ましく、180℃以上210℃以下が最も好ましい。   In order to increase the halogen removal effect, it is preferable to heat-treat the halogen group-containing vinyl polymer at a high temperature, and in order to shorten the treatment time, a higher temperature is preferable. Heat treatment of the vinyl polymer in a temperature range in which the degradation or thermal degradation of the vinyl polymer does not occur remarkably due to degradation of the polymer or deterioration of coloration that is considered to be caused by the degradation or degradation. Is preferred. For this reason, in order to enhance the halogen removal effect while maintaining low coloration of the vinyl polymer, specifically, heat treatment is preferably performed at 140 ° C. or more and 250 ° C. or less. It is more preferably 160 ° C. or higher and 230 ° C. or lower, and most preferably 180 ° C. or higher and 210 ° C. or lower.

ハロゲン除去工程は、低分子のハロゲン化物を除去するために減圧脱揮することが好ましい。好ましくは減圧度が100torr以下、より好ましくは20torr以下、更に好ましくは10torr以下である。減圧加熱しながら処理を行う場合には表面更新の影響を受けやすいので、攪拌等による良好な表面更新状態で処理を行うことが好ましい。   The halogen removal step is preferably devolatilized under reduced pressure in order to remove low-molecular halides. The degree of vacuum is preferably 100 torr or less, more preferably 20 torr or less, and still more preferably 10 torr or less. When the treatment is performed while heating under reduced pressure, it is easily affected by surface renewal, and therefore, it is preferable to perform the treatment in a good surface renewal state by stirring or the like.

処理時間は特に限定されず、数分から数十時間の範囲で加熱処理が可能であるが、高温状態で長時間加熱処理するとビニル系重合体の分割又は熱的劣化が起こるため、必要以上の加熱処理は避けることが好ましい。(メタ)アクリル系重合体は耐熱性が高く、分解開始温度が高いので高温での処理が可能である。上記加熱工程での溶剤の有無は特に限定されないが、無溶媒での加熱処理が好ましい。   The treatment time is not particularly limited, and heat treatment is possible in the range of several minutes to several tens of hours. However, if the heat treatment is performed for a long time at a high temperature, the vinyl polymer will be divided or thermally deteriorated. Treatment is preferably avoided. Since the (meth) acrylic polymer has high heat resistance and a high decomposition initiation temperature, it can be processed at a high temperature. The presence or absence of a solvent in the heating step is not particularly limited, but a heat treatment without a solvent is preferable.

ハロゲン除去は、重合体の分解等を抑制するために、ハロゲン含有ビニル系重合体において分子内環化反応を進行させることで行うのが好ましい。特に、分子内環化反応により、ビニル系重合体においてラクトン環を形成させることが好ましい。また、ハロゲン除去は、遊離酸の発生を抑制するために、ハロゲン含有ビニル系重合体から有機ハロゲン化物を脱離させることで行うのが好ましい。   Halogen removal is preferably carried out by advancing an intramolecular cyclization reaction in the halogen-containing vinyl polymer in order to suppress decomposition of the polymer. In particular, it is preferable to form a lactone ring in the vinyl polymer by an intramolecular cyclization reaction. The halogen removal is preferably carried out by detaching the organic halide from the halogen-containing vinyl polymer in order to suppress the generation of free acid.

本発明の特に好ましい態様においては、ハロゲン除去は、ハロゲン含有ビニル系重合体において分子内環化反応によるラクトン環を形成させて、それに伴い、有機ハロゲン化物を脱離させることによって行う。ビニル系モノマーの原子移動ラジカル重合で製造される末端に一般式(1)で表される基を有するビニル系重合体は上述の加熱処理でハロゲン除去される。
−C(R)(R)(X) (1)
(式中、R及びRはビニル系モノマーのエチレン性不飽和基に結合した基を示す。Xは塩素、臭素又はヨウ素を示す。)
In a particularly preferred embodiment of the present invention, the halogen removal is performed by forming a lactone ring by an intramolecular cyclization reaction in the halogen-containing vinyl polymer, and desorbing the organic halide accordingly. The vinyl polymer having a group represented by the general formula (1) at the terminal produced by atom transfer radical polymerization of a vinyl monomer is halogen-removed by the above heat treatment.
-C (R 1 ) (R 2 ) (X) (1)
(In the formula, R 1 and R 2 represent a group bonded to an ethylenically unsaturated group of a vinyl monomer. X represents chlorine, bromine or iodine.)

ここでR及びRはビニル系モノマーのエチレン性不飽和基に結合した基であるが、(メタ)アクリル酸系モノマーのエチレン性不飽和基に結合した基であることが好ましい。高温加熱処理による酸の遊離、分子量ジャンプ等のポリマー劣化、ビニル系重合体の官能基への影響が問題となる場合には、あらかじめ、特定のハロゲン含有構造に変換しておくことが好ましい。 Here, R 1 and R 2 are groups bonded to the ethylenically unsaturated group of the vinyl monomer, but are preferably groups bonded to the ethylenically unsaturated group of the (meth) acrylic acid monomer. In the case where the release of acid by high-temperature heat treatment, polymer deterioration such as molecular weight jump, or the influence on the functional group of the vinyl polymer becomes a problem, it is preferable to convert it into a specific halogen-containing structure in advance.

例えば、一般式(1)で表される基を下記の一般式(2)で表される基に変換したハロゲン含有ビニル系重合体を用いると、重合体同士のカップリングを抑制しつつ、速やかにハロゲンを除去することができる。
−C(R)(R)−CH−CH(X)−R (2)
(式中、R及びRはビニル系モノマーのエチレン性不飽和基に結合した基を示す。Xは塩素、臭素又はヨウ素を示す。Rは水素原子、水酸基又は有機基を示す。)
For example, when a halogen-containing vinyl polymer in which a group represented by the general formula (1) is converted into a group represented by the following general formula (2) is used, the coupling between the polymers is suppressed while quickly. The halogen can be removed.
—C (R 1 ) (R 2 ) —CH 2 —CH (X) —R 3 (2)
(In the formula, R 1 and R 2 represent a group bonded to an ethylenically unsaturated group of a vinyl monomer. X represents chlorine, bromine or iodine. R 3 represents a hydrogen atom, a hydroxyl group or an organic group.)

ここでR及びRはビニル系モノマーのエチレン性不飽和基に結合した基であるが、(メタ)アクリル酸系モノマーのエチレン性不飽和基に結合した基であることが好ましい。また、ハロゲン含有構造がγ−ハロカルボン酸構造、γ−ハロカルボン酸塩構造もしくはγ−ハロエステル構造(以下、γ−ハロカルボン酸構造等という)である場合には加熱処理により容易にハロゲン除去できるため、ハロゲン除去工程においてより好ましいハロゲン含有構造である。そのなかでもγ−ハロエステル構造が最も容易にハロゲン除去できる点で好ましい。 Here, R 1 and R 2 are groups bonded to the ethylenically unsaturated group of the vinyl monomer, but are preferably groups bonded to the ethylenically unsaturated group of the (meth) acrylic acid monomer. Further, when the halogen-containing structure is a γ-halocarboxylic acid structure, γ-halocarboxylate structure or γ-haloester structure (hereinafter referred to as γ-halocarboxylic acid structure etc.), the halogen can be easily removed by heat treatment, This is a more preferable halogen-containing structure in the halogen removing step. Of these, the γ-haloester structure is preferred because it can most easily remove halogen.

は水素原子、水酸基又は有機基であってRが有機基である場合には1個以上のエーテル結合又は1個以上のエステル結合を含んでいてもよい。また、エチレン性不飽和基、水酸基、アミノ基、シリル基等の官能基を有していてもよい。 R 3 is a hydrogen atom, a hydroxyl group or an organic group, and when R 3 is an organic group, it may contain one or more ether bonds or one or more ester bonds. Moreover, you may have functional groups, such as an ethylenically unsaturated group, a hydroxyl group, an amino group, and a silyl group.

γ−ハロカルボン酸構造等を有するビニル系重合体は、ビニル系モノマーの原子移動ラジカル重合により製造される末端にハロゲンを有するビニル系重合体と、分子内に1つ以上のエチレン性不飽和基を有する化合物を反応させることにより製造することができる。γ−ハロカルボン酸構造等としては特に限定されないが、下記一般式(3)で表される基がより好ましい。
−C(R)(CO)−CH−CH(X)−CH(R)−R (3)
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜10の有機基、Rは水素原子、炭素数1〜20の有機基又はアルカリ金属原子、R、Rは水素原子、水酸基又は有機基)
A vinyl polymer having a γ-halocarboxylic acid structure and the like includes a vinyl polymer having halogen at the terminal produced by atom transfer radical polymerization of a vinyl monomer, and one or more ethylenically unsaturated groups in the molecule. It can manufacture by making the compound which has it react. The γ-halocarboxylic acid structure and the like are not particularly limited, but a group represented by the following general formula (3) is more preferable.
-C (R 4) (CO 2 R 5) -CH 2 -CH (X) -CH (R 6) -R 7 (3)
(Wherein X is chlorine, bromine or iodine, R 4 is a hydrogen atom or an organic group having 1 to 10 carbon atoms, R 5 is a hydrogen atom, an organic group having 1 to 20 carbon atoms or an alkali metal atom, R 6 , R 7 is a hydrogen atom, a hydroxyl group or an organic group)

は水素原子または炭素数1〜10の有機基であって、好ましくは水素原子または炭素数1〜5の炭化水素基、さらに好ましくは水素原子またはメチル基、最も好ましくは水素原子である。Rは水素原子、炭素数1〜20の有機基又はアルカリ金属原子である。炭素数1〜20の有機基としては炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基等が例示されるが、1個以上のエーテル結合を有するものであってもよく、炭素数2〜20のアルコキシアルキル基等が例示される。Rは、水素原子、アルカリ金属原子、炭素数1〜20のアルキル基、炭素数2〜20のアルコキシアルキル基が好ましく、水素原子、ナトリウム原子、カリウム原子、炭素数1〜20のアルキル基、炭素数2〜20のアルコキシアルキル基がより好ましく、炭素数1〜20のアルキル基、炭素数2〜20のアルコキシアルキル基が特に好ましい。 R 4 is a hydrogen atom or an organic group having 1 to 10 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom. R 5 is a hydrogen atom, an organic group having 1 to 20 carbon atoms, or an alkali metal atom. Examples of the organic group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and the like. An alkoxyalkyl group having 2 to 20 carbon atoms and the like may be exemplified. R 5 is preferably a hydrogen atom, an alkali metal atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms, a hydrogen atom, a sodium atom, a potassium atom, an alkyl group having 1 to 20 carbon atoms, An alkoxyalkyl group having 2 to 20 carbon atoms is more preferable, and an alkyl group having 1 to 20 carbon atoms and an alkoxyalkyl group having 2 to 20 carbon atoms are particularly preferable.

、Rは水素原子、水酸基、又は有機基であって、R及びRは同一又は異なる基であってよい。R、Rが有機基である場合には1個以上のエーテル結合又は1個以上のエステル結合を含んでいてもよく、エチレン性不飽和基、水酸基、アミノ基、シリル基等の官能基を有していてもよい。また、R、Rは他端において連結して環状骨格を形成していてもよい。 R 6 and R 7 may be a hydrogen atom, a hydroxyl group, or an organic group, and R 6 and R 7 may be the same or different groups. When R 6 and R 7 are organic groups, they may contain one or more ether bonds or one or more ester bonds, and may be functional groups such as ethylenically unsaturated groups, hydroxyl groups, amino groups, and silyl groups. You may have. R 6 and R 7 may be linked at the other end to form a cyclic skeleton.

は水素原子又は炭素数1〜20の炭化水素基であることが好ましく、水素原子又はメチル基であることが特に好ましい。Rは炭素数1〜20の有機基であることが好ましく、Rが官能基を有する場合の官能基としては、エチレン性不飽和基又は水酸基が好ましい。 R 6 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, particularly preferably a hydrogen atom or a methyl group. R 7 is preferably an organic group having 1 to 20 carbon atoms, and the functional group when R 7 has a functional group is preferably an ethylenically unsaturated group or a hydroxyl group.

一般式(3)で表される基を有するビニル系重合体は、加熱工程によってハロゲンXが脱離し、ラクトン環形成を経てハロゲン除去される。一般式(3)におけるRが炭素数1〜20の有機基である場合、ハロゲンXが有機ハロゲン化物として脱離するため、遊離酸の発生を抑制することができる。 In the vinyl polymer having the group represented by the general formula (3), the halogen X is eliminated by the heating step, and the halogen is removed through lactone ring formation. When R 5 in the general formula (3) is an organic group having 1 to 20 carbon atoms, generation of free acid can be suppressed because halogen X is eliminated as an organic halide.

上記の高温下でのハロゲン除去はpH域を制御した洗浄水および、又は水を使用した精製の後に行うのがビニル系重合体の着色が抑えられる点で好ましく、また高温下でのハロゲン除去後に反応系中に除去しきれずに残る遊離ハロゲンをpH域を制御した洗浄水および、又は水へ溶解して除去できる点で水を使用した精製を当該ビニル系重合体にさらに実施するのが好ましい。これらの理由により高温下でのハロゲン除去前後の両方でpH域を制御した洗浄水および、又は水を使用した精製を行うことは、さらに精製度の高いビニル系重合体を得られる点で好ましい。   The above halogen removal at high temperature is preferably performed after washing with controlled pH and / or purification using water from the viewpoint of suppressing coloring of the vinyl polymer, and after halogen removal at high temperature. It is preferable to further purify the vinyl polymer by using water so that free halogen remaining in the reaction system that remains without being removed can be removed by dissolving it in washing water with controlled pH range or water. For these reasons, it is preferable to carry out purification using washing water and / or water whose pH range is controlled both before and after halogen removal at a high temperature in terms of obtaining a vinyl polymer having a higher degree of purification.

残留触媒を除去するためには、上記の方法に濾過剤や吸着剤などを用いる精製処理を併用してもよい。吸着剤の例は、活性炭、イオン交換樹脂(酸性、塩基性またはキレート形)、および無機系吸着剤である。無機系吸着剤の例は、シリカ、酸化マグネシウム、活性アルミナ、酸性白土、活性白土、ゼオライト、カオリン、ベントナイト、ケイソウ土などである。イオン交換樹脂や無機系吸着剤と重合体溶液の固液接触を併用する場合は、撹拌混合と固液分離を回分操作で行う回分式の方法が利用できる。この他に、吸着剤を容器に充填し重合体溶液を通液する固定層方式、吸着剤の移動層に液を通じる移動層式、吸着剤を液で流動化して吸着を行う流動層式などの連続式の方法も利用できる。さらに必要に応じて、撹拌による混合分散操作に、容器の振とうまたは超音波の利用などの、分散効率を向上させる操作を組み合わせることができる。重合体溶液を濾過剤もしくは吸着剤に接触させた後、濾過、遠心分離、沈降分離等の方法で除去し、必要に応じて水洗処理を行い、さらに精製度を上げることができる。   In order to remove the residual catalyst, the above-described method may be used in combination with a purification treatment using a filter agent or an adsorbent. Examples of adsorbents are activated carbon, ion exchange resins (acidic, basic or chelated), and inorganic adsorbents. Examples of the inorganic adsorbent include silica, magnesium oxide, activated alumina, acidic clay, activated clay, zeolite, kaolin, bentonite, diatomaceous earth and the like. When the solid-liquid contact between the ion exchange resin or inorganic adsorbent and the polymer solution is used in combination, a batch method in which stirring and mixing and solid-liquid separation are performed by a batch operation can be used. In addition to this, a fixed bed system in which a container is filled with an adsorbent and the polymer solution is passed, a moving bed system in which the liquid is passed through the moving bed of the adsorbent, a fluidized bed system in which the adsorbent is fluidized with liquid and adsorbed, etc. The continuous method can also be used. Furthermore, if necessary, operations for improving dispersion efficiency, such as shaking of a container or use of ultrasonic waves, can be combined with the mixing and dispersing operation by stirring. After the polymer solution is brought into contact with a filtering agent or an adsorbent, the polymer solution is removed by a method such as filtration, centrifugation, or sedimentation separation, and a washing treatment is performed as necessary to further increase the degree of purification.

本発明のビニル系重合体として、一般式(3)のRがエチレン性不飽和基である場合、得られたエチレン性不飽和基を有するビニル系重合体はヒドロシリル基を有する化合物とのヒドロシリル化反応によって、シリル基を有するビニル系重合体が得られる。 When R 7 in the general formula (3) is an ethylenically unsaturated group as the vinyl polymer of the present invention, the resulting vinyl polymer having an ethylenically unsaturated group is hydrosilylated with a compound having a hydrosilyl group. By the conversion reaction, a vinyl polymer having a silyl group is obtained.

エチレン性不飽和基を有するビニル系重合体の精製度が高ければヒドロシリル化活性は高くなり、比較的少ない遷移金属触媒存在下でヒドロシリル化反応が進行する。逆に精製度が低ければ比較的多くの遷移金属触媒存在下でないとヒドロシリル化反応は進行しなくなる。これは当該重合体を重合するのに添加した反応剤;金属触媒、アミン、酸や、重合後の反応残渣;遊離ハロゲン、有機ハロゲン、イオン性化合物などがヒドロシリル化反応触媒である遷移金属触媒を被毒するからである。   The higher the degree of purification of the vinyl polymer having an ethylenically unsaturated group, the higher the hydrosilylation activity, and the hydrosilylation reaction proceeds in the presence of a relatively small amount of transition metal catalyst. Conversely, if the degree of purification is low, the hydrosilylation reaction will not proceed unless a relatively large amount of transition metal catalyst is present. This is a reaction agent added to polymerize the polymer; a metal catalyst, an amine, an acid, a reaction residue after polymerization; a transition metal catalyst in which free halogen, organic halogen, ionic compounds, etc. are hydrosilylation reaction catalysts. Because it is poisoned.

ヒドロシリル化触媒には非常に高価な白金などの遷移金属触媒を用いることが多く、重合体のヒドロシリル化反応を行う場合には経済的な観点から、高いヒドロシリル化活性が発現する精製状態にする必要がある。すなわちビニル系重合体の精製度を高めることは重合体のヒドロシリル化反応を見据えた場合には大きな経済的優位性を発現する。   As the hydrosilylation catalyst, a very expensive transition metal catalyst such as platinum is often used. When conducting a hydrosilylation reaction of a polymer, it is necessary to obtain a purified state that exhibits high hydrosilylation activity from an economical viewpoint. There is. In other words, increasing the degree of purification of the vinyl polymer exhibits a great economic advantage in view of the hydrosilylation reaction of the polymer.

本発明では、エチレン性不飽和基を有するビニル系重合体のヒドロシリル化活性を測定することにより、精製度を判断する。ヒドロシリル化活性の測定方法は、エチレン性不飽和基を有するビニル系重合体、ヒドロシリル基を含有する鎖状シロキサン、および白金触媒を室温にて手混ぜし、得られた組成物の一部を130℃のホットプレート上にて空気雰囲気下でかき混ぜながら加熱し、ゲル化時間を測定することによって求める。エチレン性不飽和基を有するビニル系重合体の精製度が高ければ、少ない触媒量において短時間でゲル化する。   In the present invention, the degree of purification is determined by measuring the hydrosilylation activity of a vinyl polymer having an ethylenically unsaturated group. The hydrosilylation activity was measured by mixing a vinyl polymer having an ethylenically unsaturated group, a chain siloxane containing a hydrosilyl group, and a platinum catalyst at room temperature and mixing a part of the resulting composition with 130 parts. It is obtained by heating on a hot plate at 0 ° C. with stirring in an air atmosphere and measuring the gelation time. If the degree of purification of the vinyl polymer having an ethylenically unsaturated group is high, gelation takes place in a short time with a small amount of catalyst.

本発明を実施例に基づいてさらに詳細に説明するが、本発明はこの実施例のみに限定されるものではない。   The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

<分子量測定法>
本実施例に示す分子量はGPC分析装置で測定し、クロロホルムを移動相として、ポリスチレン換算の分子量を求めた。システムとして、ウォーターズ(Waters)社製GPCシステムを用い、カラムに、昭和電工(株)製Shodex K−804(ポリスチレンゲル)を用いた。
<Molecular weight measurement method>
The molecular weight shown in this example was measured with a GPC analyzer, and the molecular weight in terms of polystyrene was determined using chloroform as the mobile phase. As a system, a GPC system manufactured by Waters was used, and Shodex K-804 (polystyrene gel) manufactured by Showa Denko Co., Ltd. was used for the column.

<重合反応の転化率測定法>
本実施例に示す重合反応の添加率は以下に示す分析装置、条件で測定した。
使用機器:(株)島津製作所製ガスクロマトグラフィーGC−14B
分離カラム:J&W SCIENTIFIC INC製、キャピラリーカラムDB−17、0.32mmφ×30m
分離条件:初期温度50℃、3分間保持
昇温速度40℃/min
最終温度170℃、1.5分間保持
インジェクション温度250℃
ディテクター温度250℃
試料調整:サンプルをトルエンにより約10倍に希釈し、エタノールを内部標準物質とした。
<Method for measuring conversion rate of polymerization reaction>
The addition rate of the polymerization reaction shown in this example was measured using the following analyzer and conditions.
Equipment used: Gas chromatography GC-14B manufactured by Shimadzu Corporation
Separation column: J & W SCIENTIFIC INC, capillary column DB-17, 0.32 mmφ × 30 m
Separation conditions: Initial temperature 50 ° C, hold for 3 minutes
Temperature increase rate 40 ° C / min
Final temperature 170 ° C, hold for 1.5 minutes
Injection temperature 250 ° C
Detector temperature 250 ° C
Sample preparation: The sample was diluted about 10 times with toluene, and ethanol was used as an internal standard substance.

<重合体の構造分析法>
本製造例、実施例に示す重合体の構造は以下に示す分析装置、条件で測定した。
使用機器:AVANCETM III(400MHz−NMR)(Bruker社製)
試料調整:約60mgの重合体を適当な大きさのバイアル瓶に採取し、これに重クロロホルム(Cambridge Isotope Laboratories社製)を約1ml加え、重合体を溶解させた。これをサンプルチューブに全量移し換え、測定試料とした。
<Structural analysis method of polymer>
The structures of the polymers shown in the present production examples and examples were measured using the following analyzers and conditions.
Equipment used: AVANCE TM III (400 MHz-NMR) (manufactured by Bruker)
Sample preparation: About 60 mg of a polymer was collected in an appropriately sized vial, and about 1 ml of deuterated chloroform (Cambridge Isotop Laboratories) was added thereto to dissolve the polymer. The whole amount was transferred to a sample tube to obtain a measurement sample.

<水溶液pHの測定方法>
ロールpH試験紙を用いて目視により液性を評価した。
<Measurement method of aqueous solution pH>
The liquid property was evaluated visually using a roll pH test paper.

<重合体の着色度の測定方法>
精製処理したビニル系重合体の着色度(ΔE)は分光式色彩計SE−2000(日本電色工業社製)を用いて評価した。ΔE値が低い方が当該重合体が低着色であることを示している。
<Measurement method of degree of coloration of polymer>
The degree of coloration (ΔE * ) of the purified vinyl polymer was evaluated using a spectroscopic colorimeter SE-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). A lower ΔE * value indicates that the polymer is less colored.

<ヒドロシリル化活性評価試験>
重合体のヒドロシリル化活性を簡易評価するための測定方法を以下に示す。絶対的な活性評価方法ではないが、同じ条件で本評価を行った場合に、ヒドロシリル化活性に関して相対的評価を行うことが出来る。
<Hydrosilylation activity evaluation test>
A measurement method for simply evaluating the hydrosilylation activity of the polymer is shown below. Although it is not an absolute activity evaluation method, when this evaluation is performed under the same conditions, a relative evaluation can be performed regarding hydrosilylation activity.

ビニル系重合体(不飽和結合を有する化合物)と、分子中に平均5個のヒドロシリル基と平均5個のα−メチルスチレン基を含有する鎖状シロキサン(Si−H価:3.70mmol/g)および0価白金の1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン錯体のトルエン溶液(白金濃度1.3×10−5mmol/μl)とを室温にて手混ぜし、組成物を得た。なお、鎖状シロキサンの使用量はアルケニル基とヒドロシリル基がモル比で1/1.8となる量であり、使用した白金触媒量についてはビニル系重合体重量に対する重量濃度で表1に示した。組成物の一部を130℃のホットプレート上にて空気雰囲気下でかき混ぜながら加熱し、ゲル化時間を測定した。 A vinyl polymer (compound having an unsaturated bond) and a chain siloxane (Si-H value: 3.70 mmol / g) containing an average of 5 hydrosilyl groups and an average of 5 α-methylstyrene groups in the molecule. ) And a 1,1,3,3-tetramethyl-1,3-divinyldisiloxane complex toluene solution (platinum concentration 1.3 × 10 −5 mmol / μl) of zerovalent platinum at room temperature. A composition was obtained. The amount of chain siloxane used is such that the molar ratio of alkenyl group and hydrosilyl group is 1 / 1.8. The amount of platinum catalyst used is shown in Table 1 in terms of the weight concentration relative to the weight of the vinyl polymer. . A part of the composition was heated on a hot plate at 130 ° C. with stirring in an air atmosphere, and the gelation time was measured.

(製造例1)
(重合工程)
アクリル酸n−ブチル100重量部、エタノール(EtOH)10容量部、2,5−ジブロモアジピン酸ジエチル1.76重量部、及びトリエチルアミン(EtN)586ppmを仕込み、窒素気流下65℃で撹拌した。これに、臭化銅(II)(CuBr)108ppm(Cu量=30ppm)を純度96%のヘキサメチルトリス(2−アミノエチル)アミン(MeTREN)109ppm(Cuに対して等量)、及びEtOH1.02容量部で溶解させた溶液と、アスコルビン酸(VC)8.3ppmをエタノール0.09容量部で溶解させた溶液を別途準備し、それらを添加して反応を開始した。途中、アスコルビン酸をエタノールに溶解させた溶液を適宜添加しながら反応溶液の温度が70℃〜85℃となるように加熱攪拌を続けた。重合開始から160分後アクリル酸n−ブチルの反応率が93モル%に達したところで、反応容器内を減圧にし、揮発分を除去してビニル系重合体(A1)を得た。
なおここまでのアスコルビン酸の総添加量は150ppm、エタノールの総添加量は1.63容量部であった。このときの重合体(A1)の数平均分子量は20500、分子量分布は1.10であった。このときのビニル系重合体(A1)の末端構造は一般式(2)で示される構造と同じである。
さらに続いて、ビニル系重合体(A1)にEtOH57重量部と1,7−オクタジエン33重量部、EtN573ppmを添加し、窒素気流下、内温40℃でこれを加熱攪拌、溶解させた。最後にアスコルビン酸を窒素気流下でエタノールに溶解させた溶液を内温40℃に保ったビニル系重合体(A1)溶液に添加して反応を開始した。反応後は内温が40℃になるように温調機を調整した。反応開始後6時間後に反応系の真空脱揮を80℃2時間行い、反応を終了しビニル系重合体(B1)を得た。
なおここまでのアスコルビン酸の総添加量は1995ppm(前半の重合時を含めると合計アスコルビン酸の総添加量2145ppm)、エタノールの総添加量は23.2容量部であった。このときのビニル系重合体(B1)の数平均分子量は24400、分子量分布は1.31であった。このときのビニル系重合体(B1)の末端構造は一般式(3)で示される構造と同じである。
(Production Example 1)
(Polymerization process)
100 parts by weight of n-butyl acrylate, 10 parts by volume of ethanol (EtOH), 1.76 parts by weight of diethyl 2,5-dibromoadipate, and 586 ppm of triethylamine (Et 3 N) were charged and stirred at 65 ° C. under a nitrogen stream. . To this, copper bromide (II) (CuBr 2 ) 108 ppm (Cu amount = 30 ppm) hexamethyltris (2-aminoethyl) amine (Me 6 TREN) 109 ppm (equivalent to Cu) with a purity of 96%, A solution in which 1.02 parts by volume of EtOH was dissolved and a solution in which 8.3 ppm of ascorbic acid (VC) was dissolved in 0.09 parts by volume of ethanol were separately prepared and added to initiate the reaction. In the middle of the reaction, heating and stirring were continued so that the temperature of the reaction solution became 70 ° C to 85 ° C while appropriately adding a solution in which ascorbic acid was dissolved in ethanol. 160 minutes after the start of polymerization, when the reaction rate of n-butyl acrylate reached 93 mol%, the inside of the reaction vessel was depressurized to remove the volatile matter to obtain a vinyl polymer (A1).
The total addition amount of ascorbic acid so far was 150 ppm, and the total addition amount of ethanol was 1.63 parts by volume. At this time, the polymer (A1) had a number average molecular weight of 20,500 and a molecular weight distribution of 1.10. The terminal structure of the vinyl polymer (A1) at this time is the same as the structure represented by the general formula (2).
Subsequently, 57 parts by weight of EtOH, 33 parts by weight of 1,7-octadiene and 573 ppm of Et 3 N were added to the vinyl polymer (A1), and this was heated and stirred and dissolved at an internal temperature of 40 ° C. in a nitrogen stream. Finally, a solution in which ascorbic acid was dissolved in ethanol under a nitrogen stream was added to the vinyl polymer (A1) solution maintained at an internal temperature of 40 ° C. to initiate the reaction. After the reaction, the temperature controller was adjusted so that the internal temperature was 40 ° C. Six hours after the start of the reaction, the reaction system was devolatilized at 80 ° C. for 2 hours to complete the reaction and obtain a vinyl polymer (B1).
The total addition amount of ascorbic acid so far was 1995 ppm (total addition amount of ascorbic acid was 2145 ppm when including the first half polymerization), and the total addition amount of ethanol was 23.2 parts by volume. The vinyl polymer (B1) at this time had a number average molecular weight of 24,400 and a molecular weight distribution of 1.31. The terminal structure of the vinyl polymer (B1) at this time is the same as the structure represented by the general formula (3).

(製造例2)
(重合工程)
アクリル酸n−ブチル100重量部、エタノール(EtOH)10容量部、2,5−ジブロモアジピン酸ジエチル1.76重量部、及びトリエチルアミン(EtN)586ppmを仕込み、窒素気流下65℃で撹拌した。これに、臭化銅(II)(CuBr)108ppm(Cu量=30ppm)を純度96%のヘキサメチルトリス(2−アミノエチル)アミン(MeTREN)109ppm(Cuに対して等量)、及びEtOH1.02容量部で溶解させた溶液と、アスコルビン酸(VC)8.3ppmをエタノール0.09容量部で溶解させた溶液を別途準備し、それらを添加して反応を開始した。途中、アスコルビン酸をエタノールに溶解させた溶液を適宜添加しながら反応溶液の温度が70℃〜85℃となるように加熱攪拌を続けた。重合開始から160分後アクリル酸n−ブチルの反応率が92モル%に達したところで、反応容器内を減圧にし、揮発分を除去してビニル系重合体(A2)を得た。
なおここまでのアスコルビン酸の総添加量は1326ppm、エタノールの総添加量は14.4容量部であった。このときの重合体(A2)の数平均分子量は21100、分子量分布は1.18であった。このときのビニル系重合体(A2)の末端構造は一般式(2)で示される構造と同じである。
さらに続いて、ビニル系重合体(A2)にメタノール29重量部と1,7−オクタジエン30重量部、EtN143ppmを添加し、窒素気流下、内温40℃でこれを加熱攪拌、溶解させた。この溶液にCuBr20ppm(Cu量=15ppm)、純度96%のMeTREN20ppm(Cuに対して等量)をメタノール1.4重量部に窒素気流下で溶解させた溶液を添加し、混合攪拌した。アスコルビン酸(VC)2520ppmをメタノール9.59容量部で溶解させた溶液を窒素気流下で別途調整しておき、窒素気流下で内温40℃に保ったビニル系重合体(A2)溶液に調整しておいたアスコルビン酸−メタノール溶液を添加して反応を開始した。反応後は内温が40℃になるように温調機を調整した。反応開始後10時間後に反応系の真空脱揮を80℃2時間行い、反応を終了しビニル系重合体(B2)を得た。
なおここまでのアスコルビン酸の総添加量は8252ppm(前半の重合時を含めると合計アスコルビン酸の総添加量9578ppm)、メタノールの添加量は40.1容量部であった。このときのビニル系重合体(B2)の数平均分子量は25400、分子量分布は1.39であった。このときのビニル系重合体(B2)の末端構造は一般式(3)で示される構造と同じである。
(Production Example 2)
(Polymerization process)
100 parts by weight of n-butyl acrylate, 10 parts by volume of ethanol (EtOH), 1.76 parts by weight of diethyl 2,5-dibromoadipate, and 586 ppm of triethylamine (Et 3 N) were charged and stirred at 65 ° C. under a nitrogen stream. . To this, copper bromide (II) (CuBr 2 ) 108 ppm (Cu amount = 30 ppm) hexamethyltris (2-aminoethyl) amine (Me 6 TREN) 109 ppm (equivalent to Cu) with a purity of 96%, A solution in which 1.02 parts by volume of EtOH was dissolved and a solution in which 8.3 ppm of ascorbic acid (VC) was dissolved in 0.09 parts by volume of ethanol were separately prepared and added to initiate the reaction. In the middle of the reaction, heating and stirring were continued so that the temperature of the reaction solution became 70 ° C to 85 ° C while appropriately adding a solution in which ascorbic acid was dissolved in ethanol. 160 minutes after the start of polymerization, when the reaction rate of n-butyl acrylate reached 92 mol%, the inside of the reaction vessel was depressurized to remove the volatile matter to obtain a vinyl polymer (A2).
The total addition amount of ascorbic acid so far was 1326 ppm, and the total addition amount of ethanol was 14.4 parts by volume. At this time, the polymer (A2) had a number average molecular weight of 21,100 and a molecular weight distribution of 1.18. The terminal structure of the vinyl polymer (A2) at this time is the same as the structure represented by the general formula (2).
Subsequently, 29 parts by weight of methanol, 30 parts by weight of 1,7-octadiene and 143 ppm of Et 3 N were added to the vinyl polymer (A2), and this was heated and stirred and dissolved at an internal temperature of 40 ° C. in a nitrogen stream. . To this solution was added a solution prepared by dissolving 20 ppm CuBr 2 (Cu content = 15 ppm) and 96 ppm purity Me 6 TREN 20 ppm (equal to Cu) in 1.4 parts by weight of methanol under a nitrogen stream, and mixing and stirring. did. A solution in which 2520 ppm of ascorbic acid (VC) was dissolved in 9.59 parts by volume of methanol was separately adjusted under a nitrogen stream, and adjusted to a vinyl polymer (A2) solution maintained at an internal temperature of 40 ° C. under a nitrogen stream. The reaction was started by adding the ascorbic acid-methanol solution previously prepared. After the reaction, the temperature controller was adjusted so that the internal temperature was 40 ° C. After 10 hours from the start of the reaction, vacuum devolatilization of the reaction system was carried out at 80 ° C. for 2 hours to complete the reaction and obtain a vinyl polymer (B2).
The total addition amount of ascorbic acid so far was 8252 ppm (the total addition amount of ascorbic acid was 9578 ppm when including the first half polymerization), and the addition amount of methanol was 40.1 parts by volume. The vinyl polymer (B2) at this time had a number average molecular weight of 25400 and a molecular weight distribution of 1.39. The terminal structure of the vinyl polymer (B2) at this time is the same as the structure represented by the general formula (3).

(実施例1)
(前半水精製)
製造例1で作製したビニル系重合体(B1)150gに、n−ブタノール(協和発酵ケミカル社製)300gを加え攪拌することで、重合体(B1)溶液を得た。1Lのセパラブルフラスコ(攪拌機、およびジャケット付き)に純水を300g仕込み、28重量%アンモニア水0.03g(和光純薬工業社製)と無水硫酸ナトリウム(和光純薬工業社製。以下、芒硝と表す。)を添加し、室温条件下で攪拌して、pH9.0の塩基性水溶液を調整した。セパラブルフラスコのジャケット温度を50℃に設定し、調整した塩基性水溶液を加熱攪拌した。次にこの塩基性水溶液にビニル系重合体(B1)溶液を滴下していき、全量滴下後に約5分間攪拌を行った。攪拌停止後には速やかに油相と水相が分離され、油相(上相へ)は淡黄色のまま、水相(下相へ)は淡黄色に変化した。5分間静置後に、油相と水相を分離回収した。
別途、純水300gに37重量%塩酸0.05g(和光純薬工業社製)と芒硝3gを添加、50℃で加熱攪拌してpH=1.5の酸性水溶液を調整しておいた。水相を排出後、排出した水相と同重量の調整していたpH=1.5の酸性水溶液をセパラブルフラスコの内壁伝いに静かに添加した。添加後、油相と水相の2相をジャケット温度50℃において約5分間攪拌した。攪拌停止後には速やかに油相と水相が分離し、5分間静置後に、油相と水相を分離回収した。
上記塩基性水溶液での洗浄と酸性水溶液での攪拌をさらに1回ずつ行い、そして1重量%芒硝水での洗浄を最後に2回実施した。水相を排出後、油相から溶剤および水分をロータリーエバポレータを用いて減圧留去し、淡黄色のビニル系重合体(B1)を得た。
Example 1
(First half water purification)
A polymer (B1) solution was obtained by adding 300 g of n-butanol (manufactured by Kyowa Hakko Chemical Co., Ltd.) to 150 g of the vinyl polymer (B1) produced in Production Example 1 and stirring. A 1 L separable flask (with a stirrer and a jacket) was charged with 300 g of pure water, 0.03 g of 28 wt% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) and anhydrous sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd. And a basic aqueous solution having a pH of 9.0 was prepared by stirring at room temperature. The jacket temperature of the separable flask was set to 50 ° C., and the adjusted basic aqueous solution was heated and stirred. Next, the vinyl polymer (B1) solution was dropped into the basic aqueous solution, and the whole was dropped and stirred for about 5 minutes. After the stirring was stopped, the oil phase and the aqueous phase were quickly separated, the oil phase (to the upper phase) remained pale yellow, and the aqueous phase (to the lower phase) changed to pale yellow. After standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered.
Separately, 0.05 g of 37 wt% hydrochloric acid (manufactured by Wako Pure Chemical Industries) and 3 g of mirabilite were added to 300 g of pure water, and the mixture was heated and stirred at 50 ° C. to prepare an acidic aqueous solution with pH = 1.5. After discharging the aqueous phase, an acidic aqueous solution having a pH of 1.5, which had the same weight as the discharged aqueous phase, was gently added to the inner wall of the separable flask. After the addition, the oil phase and the aqueous phase were stirred for about 5 minutes at a jacket temperature of 50 ° C. After the stirring was stopped, the oil phase and the aqueous phase were promptly separated, and after standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered.
The washing with the basic aqueous solution and the stirring with the acidic aqueous solution were further performed once, and the washing with 1 wt% sodium nitrate water was finally performed twice. After discharging the aqueous phase, the solvent and water were distilled off from the oil phase under reduced pressure using a rotary evaporator to obtain a pale yellow vinyl polymer (B1).

(ハロゲン除去)
上記前半水精製で得られた重合体(B1)100重量部を300mlセパラブルフラスコに入れ、これにスミライザーGS(住友化学社製)0.2重量部を添加して内温100℃で1時間加熱攪拌した。その後、真空減圧状態にして内温190℃になるまで加熱攪拌を行い、190℃に到達後はその温度を維持したまま14時間真空状態で攪拌を実施した。14時間経過後に内温100℃まで温度を真空状態のまま降温し、100℃まで低下したところで常圧に戻した。
(Halogen removal)
100 parts by weight of the polymer (B1) obtained by the above-mentioned first half water purification is placed in a 300 ml separable flask, 0.2 parts by weight of Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.) is added thereto, and the internal temperature is 100 ° C. for 1 hour. Stir with heating. Thereafter, the mixture was heated and stirred until the internal temperature reached 190 ° C. under vacuum reduction, and after reaching 190 ° C., stirring was carried out for 14 hours while maintaining the temperature. After 14 hours, the temperature was lowered to an internal temperature of 100 ° C. in a vacuum state, and returned to normal pressure when the temperature was lowered to 100 ° C.

(後半水精製)
脱ハロゲン処理後のビニル系重合体(B1)100gにn−ブタノール200gを加え攪拌することで、ビニル系重合体(B1)溶液を得た。1Lのセパラブルフラスコ(攪拌機、およびジャケット付き)に純水を200g仕込み、セパラブルフラスコのジャケット温度を75℃に設定し、純水を加熱攪拌した。次にこの純水にビニル系重合体(B1)溶液を滴下していき、全量滴下後に約5分間攪拌を行った。攪拌停止後には速やかに油相と水相が分離され、油相(上相へ)は淡黄色、水相(下相へ)は無色のままであった。5分間静置後に、油相と水相を分離回収した。水相を排出し、排出した水と同重量の純水をセパラブルフラスコ内壁上部から壁伝えに静かに加え、再び下相に水相、上相に油相がくるようにし、上記で記載した攪拌、静置、分離操作をさらに1回、合計2回の精製操作を実施した。最後の2回目の操作で得られた油相から溶剤および水分をロータリーエバポレータを用いて減圧留去し、淡黄色のビニル系重合体(B1)を得た。得られたビニル系重合体(B1)のヒドロシリル化活性、着色を評価した。結果を表1に示す。
(Second half water purification)
A vinyl polymer (B1) solution was obtained by adding 200 g of n-butanol to 100 g of the vinyl polymer (B1) after dehalogenation and stirring. 200 g of pure water was charged into a 1 L separable flask (with a stirrer and a jacket), the jacket temperature of the separable flask was set to 75 ° C., and the pure water was heated and stirred. Next, the vinyl polymer (B1) solution was added dropwise to the pure water, and the whole was added and stirred for about 5 minutes. After the stirring was stopped, the oil phase and the aqueous phase were immediately separated, and the oil phase (to the upper phase) was pale yellow and the aqueous phase (to the lower phase) remained colorless. After standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered. Drain the aqueous phase, gently add pure water of the same weight as the drained water from the upper part of the inner wall of the separable flask to the wall, so that the aqueous phase is again in the lower phase and the oil phase is in the upper phase, as described above Stirring, standing, and separation operations were further performed once, for a total of two purification operations. The solvent and water were distilled off under reduced pressure from the oil phase obtained by the last second operation using a rotary evaporator to obtain a pale yellow vinyl polymer (B1). The resulting vinyl polymer (B1) was evaluated for hydrosilylation activity and coloring. The results are shown in Table 1.

(実施例2)
(前半水精製)
製造例1で作製したビニル系重合体(B1)150gに、n−ブタノール(協和発酵ケミカル社製)300gを加え攪拌することで、重合体(B1)溶液を得た。1Lのセパラブルフラスコ(攪拌機、およびジャケット付き)に純水を300g仕込み、炭酸水素ナトリウム2.7(和光純薬工業社製)gと炭酸ナトリウム0.3g(和光純薬工業社製)を添加し、室温条件下で攪拌して、pH9.5の塩基性水溶液を調整した。セパラブルフラスコのジャケット温度を75℃に設定し、調整した塩基性水溶液を加熱攪拌した。次にこの塩基性水溶液にビニル系重合体(B1)溶液を滴下していき、全量滴下後に約5分間攪拌を行った。攪拌停止後には速やかに油相と水相が分離され、油相(上相へ)は淡黄色のまま、水相(下相へ)は淡黄色に変化した。5分間静置後に、油相と水相を分離回収した。
別途、純水300gにクエン酸1.3g(和光純薬工業社製)とクエン酸二ナトリウム(和光純薬工業社製)1.8gを添加、75℃で加熱攪拌してpH=4.5の酸性水溶液を調整しておいた。水相を排出後、調整していたpH=4.5の酸性水溶液を排出した水相と同重量分だけ、セパラブルフラスコの内壁伝いに静かに添加した。添加後、油相と水相の2相をジャケット温度75℃において約5分間攪拌した。攪拌停止後には速やかに油相と水相が分離し、5分間静置後に、油相と水相を分離回収した。
上記塩基性水溶液での洗浄と酸性水溶液での洗浄をさらに1回ずつ行い、そして1重量%芒硝水での洗浄を最後に2回実施した。水相を排出後、油相から溶剤および水分をロータリーエバポレータを用いて減圧留去し、淡黄色のビニル系重合体(B1)を得た。
(ハロゲン除去)
実施例1の(ハロゲン除去)処理操作と同じ。
(後半水精製)
実施例1の(後半水精製)処理操作と同じ。
(Example 2)
(First half water purification)
A polymer (B1) solution was obtained by adding 300 g of n-butanol (manufactured by Kyowa Hakko Chemical Co., Ltd.) to 150 g of the vinyl polymer (B1) produced in Production Example 1 and stirring. A 1 L separable flask (with a stirrer and jacket) is charged with 300 g of pure water, and 2.7 g of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.3 g of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) are added. The mixture was stirred at room temperature to prepare a basic aqueous solution having a pH of 9.5. The jacket temperature of the separable flask was set to 75 ° C., and the adjusted basic aqueous solution was heated and stirred. Next, the vinyl polymer (B1) solution was dropped into the basic aqueous solution, and the whole was dropped and stirred for about 5 minutes. After the stirring was stopped, the oil phase and the aqueous phase were quickly separated, the oil phase (to the upper phase) remained pale yellow, and the aqueous phase (to the lower phase) changed to pale yellow. After standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered.
Separately, 1.3 g of citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.8 g of disodium citrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added to 300 g of pure water, and the mixture was heated and stirred at 75 ° C. to pH = 4.5. An acidic aqueous solution was prepared. After discharging the aqueous phase, the same amount as the aqueous phase from which the pH = 4.5 acidic aqueous solution was discharged was gently added to the inner wall of the separable flask. After the addition, the oil phase and the aqueous phase were stirred for about 5 minutes at a jacket temperature of 75 ° C. After the stirring was stopped, the oil phase and the aqueous phase were promptly separated, and after standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered.
Washing with the basic aqueous solution and washing with the acidic aqueous solution were performed once more, and the washing with 1 wt% sodium nitrate water was finally performed twice. After discharging the aqueous phase, the solvent and water were distilled off from the oil phase under reduced pressure using a rotary evaporator to obtain a pale yellow vinyl polymer (B1).
(Halogen removal)
Same as the (Halogen removal) treatment operation of Example 1.
(Second half water purification)
Same as the treatment operation in Example 1 (second half water purification).

(比較例1)
(前半水精製)
製造例1で作製したビニル系重合体(B1)150gに、n−ブタノール(協和発酵ケミカル社製)300gを加え攪拌することで、重合体(B1)溶液を得た。1Lのセパラブルフラスコ(攪拌機、およびジャケット付き)に純水を300g仕込み、芒硝3g添加し、室温条件下で攪拌して、芒硝水溶液を作成した。セパラブルフラスコのジャケット温度を75℃に設定し、芒硝水を加熱攪拌した。次にこの芒硝水にビニル系重合体(B1)溶液を滴下していき、全量滴下後に約5分間攪拌を行った。攪拌停止後には速やかに油相と水相が分離し、油相(上相へ)は淡黄色のまま、水相(下相へ)は淡黄色に変化した。5分間静置後に、油相と水相を分離回収した。水相を排出し、排出した芒硝水と同重量の1重量%芒硝水をセパラブルフラスコ内壁上部から壁伝えに静かに加え、再び下相に水相、上相に油相がくるようにし、上記で記載した攪拌、静置、分離操作をさらに3回、合計4回の精製操作を実施した。最後の4回目の操作で得られた油相から溶剤および水分をロータリーエバポレータを用いて減圧留去し、淡黄色のビニル系重合体(B1)を得た。
(ハロゲン除去)
実施例1の(ハロゲン除去)処理操作と同じ。
(後半水精製)
純水での洗浄回数が4回である以外は実施例1の(後半水精製)処理操作と同じ。
(Comparative Example 1)
(First half water purification)
A polymer (B1) solution was obtained by adding 300 g of n-butanol (manufactured by Kyowa Hakko Chemical Co., Ltd.) to 150 g of the vinyl polymer (B1) produced in Production Example 1 and stirring. A 1 L separable flask (with a stirrer and a jacket) was charged with 300 g of pure water, 3 g of mirabilite was added, and the mixture was stirred at room temperature to prepare a mirabilite solution. The jacket temperature of the separable flask was set to 75 ° C., and the salt water was heated and stirred. Next, the vinyl polymer (B1) solution was added dropwise to the salt water, and the whole was added and stirred for about 5 minutes. After the stirring was stopped, the oil phase and the aqueous phase separated quickly, the oil phase (to the upper phase) remained pale yellow, and the aqueous phase (to the lower phase) changed to pale yellow. After standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered. Drain the water phase, and gently add 1% by weight sodium hydroxide water of the same weight as the discharged salt water to the wall from the upper part of the inner wall of the separable flask so that the water phase comes again in the lower phase and the oil phase comes in the upper phase. The above-described stirring, standing, and separation operations were further performed three times for a total of four purification operations. The solvent and water were distilled off under reduced pressure from the oil phase obtained in the last fourth operation using a rotary evaporator to obtain a pale yellow vinyl polymer (B1).
(Halogen removal)
Same as the (Halogen removal) treatment operation of Example 1.
(Second half water purification)
Except that the number of times of washing with pure water is 4, the same operation as that in Example 1 (second-half water purification) is performed.

(比較例2)
(前半水精製)
塩基性水溶液でビニル系重合体(B1)溶液を洗浄せずに、酸性水溶液と芒硝水溶液だけで洗浄する以外は実施例2の前半水精製条件と同じ。
(ハロゲン除去)
実施例1の(ハロゲン除去)処理操作と同じ。
(後半水精製)
実施例1の(後半水精製)処理操作と同じ。
(Comparative Example 2)
(First half water purification)
The conditions for the first half water purification in Example 2 are the same as in Example 2 except that the vinyl polymer (B1) solution is not washed with a basic aqueous solution, but only with an acidic aqueous solution and a sodium sulfate aqueous solution.
(Halogen removal)
Same as the (Halogen removal) treatment operation of Example 1.
(Second half water purification)
Same as the treatment operation in Example 1 (second half water purification).

(比較例3)
(前半水精製)
ビニル系重合体(B1)ではなく、ビニル系重合体(B2)を使用する以外は比較例1と処理操作は同じ。
(ハロゲン除去)
実施例1の(ハロゲン除去)処理操作と同じ。
(後半水精製)
純水での洗浄回数が4回である以外は実施例1の(後半水精製)処理操作と同じ。
(Comparative Example 3)
(First half water purification)
The processing operation is the same as that of Comparative Example 1 except that the vinyl polymer (B2) is used instead of the vinyl polymer (B1).
(Halogen removal)
Same as the (Halogen removal) treatment operation of Example 1.
(Second half water purification)
Except that the number of times of washing with pure water is 4, the same operation as that in Example 1 (second-half water purification) is performed.

(比較例4)
(前半水精製)
製造例2で作製したビニル系重合体(B2)150gに、n−ブタノール(協和発酵ケミカル社製)300gを加え攪拌することで、重合体(B2)溶液を得た。1Lのセパラブルフラスコ(攪拌機、およびジャケット付き)に純水を300g仕込み、水酸化ナトリウム0.3g(和光純薬工業社製)と芒硝3gを添加し、室温条件下で攪拌して、pH13の塩基性水溶液を調整した。セパラブルフラスコのジャケット温度を50℃に設定し、調整した塩基性水溶液を加熱攪拌した。次にこの塩基性水溶液にビニル系重合体(B2)溶液を滴下していき、全量滴下後に約5分間攪拌を行った。攪拌停止後には速やかに油相と水相が分離し、油相(上相へ)は淡黄色のまま、水相(下相へ)は淡黄色に変化した。5分間静置後に、油相と水相を分離回収した。上記と同濃度の水酸化ナトリウム水溶液を別途調整しておき、これを排出した水相と同重量分だけ、セパラブルフラスコ内壁上部から壁伝えに静かに加え、再び下相に水相、上相に油相がくるようにし、上記で記載した攪拌、静置、分離操作をさらに2回、合計3回の精製操作を実施した。
3回目の水相を排出後、3回目に排出した水相と同重量分の1重量%芒硝水溶液をセパラブルフラスコの内壁伝いに静かに添加した。添加後、油相と水相の2相をジャケット温度50℃において約5分間攪拌した。攪拌停止後には速やかに油相と水相が分離し、5分間静置後に、油相と水相を分離回収した。1重量%芒硝水溶液での洗浄をさらに2回行い、最後の水相を排出後、油相から溶剤および水分をロータリーエバポレータを用いて減圧留去し、淡黄色のビニル系重合体(B2)を得た。
(ハロゲン除去)
実施例1の(ハロゲン除去)処理操作と同じ。
(後半水精製)
純水での洗浄回数が3回である以外は実施例1の(後半水精製)処理操作と同じ。
(Comparative Example 4)
(First half water purification)
To 150 g of the vinyl polymer (B2) produced in Production Example 2, 300 g of n-butanol (manufactured by Kyowa Hakko Chemical Co., Ltd.) was added and stirred to obtain a polymer (B2) solution. A 1 L separable flask (with a stirrer and a jacket) was charged with 300 g of pure water, 0.3 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and 3 g of mirabilite were added, and the mixture was stirred at room temperature to adjust the pH to 13. A basic aqueous solution was prepared. The jacket temperature of the separable flask was set to 50 ° C., and the adjusted basic aqueous solution was heated and stirred. Next, the vinyl polymer (B2) solution was dropped into the basic aqueous solution, and the whole was dropped and stirred for about 5 minutes. After the stirring was stopped, the oil phase and the aqueous phase separated quickly, the oil phase (to the upper phase) remained pale yellow, and the aqueous phase (to the lower phase) changed to pale yellow. After standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered. A sodium hydroxide aqueous solution with the same concentration as above is prepared separately, and the same amount as the discharged aqueous phase is gently added to the wall from the upper part of the inner wall of the separable flask. Then, the above-described stirring, standing, and separation operations were further performed twice, for a total of three purification operations.
After discharging the third aqueous phase, a 1% by weight aqueous solution of sodium silicate that was the same weight as the third aqueous phase was gently added to the inner wall of the separable flask. After the addition, the oil phase and the aqueous phase were stirred for about 5 minutes at a jacket temperature of 50 ° C. After the stirring was stopped, the oil phase and the aqueous phase were promptly separated, and after standing for 5 minutes, the oil phase and the aqueous phase were separated and recovered. Washing is further performed twice with a 1 wt% aqueous solution of sodium sulfate, and after the final aqueous phase is discharged, the solvent and water are distilled off from the oil phase under reduced pressure using a rotary evaporator to obtain a pale yellow vinyl polymer (B2). Obtained.
(Halogen removal)
Same as the (Halogen removal) treatment operation of Example 1.
(Second half water purification)
Except that the number of times of washing with pure water is 3, the same operation as that in Example 1 (second half water purification) is performed.

Figure 2013173877
Figure 2013173877

(実施例1、実施例2、比較例1、比較例2)
前半精製において酸性水で洗浄を実施した実施例1,2と比較例2は酸性水での洗浄を実施していない比較例1に比べ低着色となっているが、酸性水のみで洗浄を実施した比較例2は塩基性水でも洗浄を実施した実施例1,2よりもヒドロシリル化活性が低下している。
(Example 1, Example 2, Comparative Example 1, Comparative Example 2)
Examples 1 and 2 and Comparative Example 2 that were washed with acidic water in the first half purification were less colored than Comparative Example 1 that was not washed with acidic water, but were washed only with acidic water. In Comparative Example 2, the hydrosilylation activity was lower than in Examples 1 and 2 in which washing was performed with basic water.

(比較例3、比較例4)
前半精製において塩基性水のみで洗浄を実施した比較例4は塩基性水でも酸性水でも洗浄を実施していない比較例3よりも強着色、低シリル化活性となっている。
(Comparative Example 3, Comparative Example 4)
Comparative Example 4 which was washed with only basic water in the first half purification was more strongly colored and less silylated than Comparative Example 3 which was not washed with basic water or acidic water.

すなわち表1の結果から酸性水での洗浄だけではビニル系重合体は低着色にはなるが、ヒドロシリル化活性が低く、逆に塩基性水での洗浄だけでは着色、シリル化活性共に悪化し、酸性水と塩基性水の両方で洗浄を実施したビニル系重合体のみが低着色で高ヒドロシリル化活性になることが分かる。   That is, from the results of Table 1, the vinyl polymer becomes low colored only by washing with acidic water, but the hydrosilylation activity is low, and conversely, washing with basic water alone deteriorates both coloring and silylation activity, It can be seen that only the vinyl polymer washed with both acidic water and basic water has low coloring and high hydrosilylation activity.

Claims (2)

原子移動ラジカル重合により重合したビニル系重合体を非水溶性溶剤に溶解し、該重合体溶液を洗浄水に接触させる工程を含むビニル系重合体の製造方法であって、
上記洗浄水による接触が、
8≦pH≦14の洗浄水による接触、および
0≦pH≦6の洗浄水による接触を
それぞれ1回以上行うビニル系重合体の製造方法。
A method for producing a vinyl polymer comprising a step of dissolving a vinyl polymer polymerized by atom transfer radical polymerization in a water-insoluble solvent and bringing the polymer solution into contact with washing water,
Contact with the washing water is
A method for producing a vinyl polymer, wherein the contact with the wash water of 8 ≦ pH ≦ 14 and the contact with the wash water of 0 ≦ pH ≦ 6 are each performed once or more.
原子移動ラジカル重合が、周期律表第7族、8族、9族、10族、または11族の遷移金属(M)を中心金属とする金属錯体を触媒としたものである請求項1に記載のビニル系重合体の製造方法。
2. The atom transfer radical polymerization is carried out using a metal complex having a transition metal (M) of Group 7, 8, 9, 10, or 11 of the periodic table as a central metal as a catalyst. A method for producing a vinyl polymer.
JP2012040177A 2012-02-27 2012-02-27 Method for producing vinylic polymer Pending JP2013173877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040177A JP2013173877A (en) 2012-02-27 2012-02-27 Method for producing vinylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040177A JP2013173877A (en) 2012-02-27 2012-02-27 Method for producing vinylic polymer

Publications (1)

Publication Number Publication Date
JP2013173877A true JP2013173877A (en) 2013-09-05

Family

ID=49267076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040177A Pending JP2013173877A (en) 2012-02-27 2012-02-27 Method for producing vinylic polymer

Country Status (1)

Country Link
JP (1) JP2013173877A (en)

Similar Documents

Publication Publication Date Title
US7999066B2 (en) Copper removal from ATRP products by means of addition of sulfur compounds
RU2446177C2 (en) Method of producing halogen-free atom transfer radical polymerisation products
EP3325522B1 (en) Polymeric particles
KR20090037933A (en) Process for preparing hydroxy-telechelic atrp products
JP2018115335A (en) PRODUCTION METHOD OF α,β-UNSATURATED CARBOXYLIC ACID ESTER POLYMER AND COPOLYMER HAVING SUBSTITUENT AT β POSITION
JP2003147015A (en) Method for removing copper metal complex from polymer
JP4857539B2 (en) Polymer and process for producing the same
JP4222207B2 (en) Silicon compounds
JP2013173877A (en) Method for producing vinylic polymer
EP3435079A1 (en) Chromatography stationary phase
JP5231012B2 (en) Method for producing vinyl polymer
JP5918628B2 (en) Method for producing vinyl polymer
JP5710258B2 (en) Use of alkali metal-silica gel (M-SG) materials in the drying and purification of solvents and monomers for their use in anionic polymerization
JP4393670B2 (en) Method for purifying vinyl polymer
JP2013147529A (en) Method for producing vinyl polymer
JP2011231236A (en) Method for producing vinyl polymer
JP4215121B2 (en) Method for purifying acrylic polymer
JP2007099985A (en) Method for producing vinyl polymer
JP6659593B2 (en) Vinyl polymer having terminal hydrolyzable silyl group, method for producing the same, and curable composition
JP2011231235A (en) Method for producing vinyl polymer
JP2006083287A (en) Method for producing vinylic polymer
JP5904549B2 (en) Living cationic polymerization initiator system and polymer production method using the same
JP4418082B2 (en) Method for purifying vinyl polymer
EP1948672B1 (en) Catalysts for catalytic chain transfer
JP4965207B2 (en) Method for producing vinyl polymer