JP2013173869A - Flame retardant polyester composition, and method for producing the same - Google Patents

Flame retardant polyester composition, and method for producing the same Download PDF

Info

Publication number
JP2013173869A
JP2013173869A JP2012040091A JP2012040091A JP2013173869A JP 2013173869 A JP2013173869 A JP 2013173869A JP 2012040091 A JP2012040091 A JP 2012040091A JP 2012040091 A JP2012040091 A JP 2012040091A JP 2013173869 A JP2013173869 A JP 2013173869A
Authority
JP
Japan
Prior art keywords
ppm
polyester composition
titanium
compound
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040091A
Other languages
Japanese (ja)
Inventor
Toshio Ishidera
俊雄 石寺
Satoko Yoshizaki
さと子 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2012040091A priority Critical patent/JP2013173869A/en
Publication of JP2013173869A publication Critical patent/JP2013173869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flame retardant polyester composition excellent in flame retardancy and hydrolysis resistance, excellent in heat resistance, and improved in polymerization reactivity.SOLUTION: A polyester composition contains 1 to 25 mol% of a component derived from a phosphine oxide compound represented by formula (1) based on the total dicarboxylic acid component of a polyester, wherein the polyester composition contains 50 ppm to 400 ppm of titanium compounds in terms of titanium atom, and 25 ppm to 600 ppm of magnesium compounds in terms of magnesium atom. In the formula, Ris hydrogen, a 1-12C monovalent saturated hydrocarbon or a monovalent aromatic hydrocarbon, and m and n are each an integer of 1 to 6.

Description

フィルムなどの成形品にしたとき優れた難燃性を有し、さらに優れた耐加水分解性および耐熱性を有する難燃性ポリエステル組成物に関する。   The present invention relates to a flame retardant polyester composition having excellent flame retardancy when formed into a molded article such as a film, and further having excellent hydrolysis resistance and heat resistance.

ポリエステル、特にポリエチレンテレフタレートやポリエチレンナフタレートは、その機械的、物理的、化学的性能が優れているため繊維、フィルム、その他の成形物に広く利用されている。近年、製造物責任法の施行に伴い、火災に対する安全性を確保するために樹脂の難燃化の要望が高まっている。   Polyesters, particularly polyethylene terephthalate and polyethylene naphthalate, are widely used in fibers, films and other molded articles because of their excellent mechanical, physical and chemical performance. In recent years, with the enforcement of the Product Liability Act, there is an increasing demand for resin flame retardants to ensure fire safety.

従来用いられているハロゲン系難燃剤を含有するポリエステル樹脂は、燃焼時にハロゲン化水素などのガスを発生する等の理由で、ハロゲンを含まない環境に配慮した難燃剤が望まれている。
このため、リン酸エステル系難燃剤などのノンハロゲン系難燃剤が提案されている(特許文献1)。しかし、これらの難燃剤は十分な難燃性を発揮させるためには、その添加量を多くする必要があり、得られる成形品の機械的特性の低下を招いたり、ポリエステル樹脂中から難燃剤がブリードアウトしたりする。
Conventionally used polyester resins containing halogen-based flame retardants are desired to be environment-friendly flame retardants that do not contain halogens, for example, because they generate gases such as hydrogen halides during combustion.
For this reason, non-halogen flame retardants such as phosphate ester flame retardants have been proposed (Patent Document 1). However, it is necessary to increase the amount of these flame retardants in order to exhibit sufficient flame retardancy, resulting in a decrease in mechanical properties of the resulting molded product, or the flame retardants from the polyester resin. Or bleed out.

一方、ポリエステル樹脂に化学的に結合させる反応型難燃剤も種々提案されており、特にリン化合物の共重合が知られている(特許文献1、特許文献2)。しかし、これらの化合物は難燃性が向上するものの、共重合されたポリエステルは耐加水分解性が著しく低下することが問題となっている。そこで特許文献3には水酸基を両末端に有するホスフィンオキサイド化合物などが種々例示されており、そこでは難燃性に優れ、耐加水分解性の向上が記載されている。
しかし、上記化合物の反応性、耐熱性に問題があり、難燃および耐加水分解効果だけでなく、よりポリエステル本来の諸特性を維持した実用性の高い樹脂が望まれている。
On the other hand, various reactive flame retardants that are chemically bonded to polyester resins have been proposed, and in particular, copolymerization of phosphorus compounds is known (Patent Documents 1 and 2). However, although these compounds have improved flame retardancy, the copolymerized polyester has a problem that the hydrolysis resistance is significantly reduced. Thus, Patent Document 3 exemplifies various phosphine oxide compounds having hydroxyl groups at both ends, in which excellent flame retardancy and improved hydrolysis resistance are described.
However, there is a problem in the reactivity and heat resistance of the above compounds, and there is a demand for a highly practical resin that maintains not only the flame retardancy and hydrolysis resistance but also various characteristics inherent in polyester.

特開昭50−56488号公報Japanese Patent Laid-Open No. 50-56488 特開2000−319368号公報JP 2000-319368 A 特開平10−25338号公報Japanese Patent Laid-Open No. 10-25338

本発明の目的は、難燃剤として、耐加水分解性に優れた水酸基を両末端に有するホスフィンオキサイド化合物を共重合しながらも、優れた耐熱性を備え、しかも重合反応性も改良された難燃性ポリエステル組成物を提供することにある。   An object of the present invention is to provide a flame retardant having excellent heat resistance and improved polymerization reactivity while copolymerizing a phosphine oxide compound having hydroxyl groups excellent in hydrolysis resistance at both ends as a flame retardant. It is in providing a conductive polyester composition.

本発明者らは、上記課題を解決しようと鋭意研究した結果、水酸基を両末端に有するホスフィンオキサイド化合物を共重合したポリエステル組成物を製造する際に、触媒として使用しているチタン化合物にマグネシウム化合物を加えることにより、優れた難燃性、耐加水分解性、重合反応性を得られることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a magnesium compound is used as a titanium compound used as a catalyst when producing a polyester composition obtained by copolymerizing a phosphine oxide compound having hydroxyl groups at both ends. It has been found that excellent flame retardancy, hydrolysis resistance and polymerization reactivity can be obtained by adding.

すなわち本発明の目的は、ポリエステルの全酸成分のモル数を基準として、下記式(1)で表されるホスフィンオキシド化合物から誘導される成分を1〜25モル%含む難燃性ポリエステル組成物であり、チタン化合物をチタン原子として50ppm〜400ppmを含有し、マグネシウム化合物をマグネシウム原子として25ppm〜600ppmを含有する難燃性ポリエステル組成物が提供される。   That is, an object of the present invention is a flame retardant polyester composition containing 1 to 25 mol% of a component derived from a phosphine oxide compound represented by the following formula (1) based on the number of moles of all acid components of the polyester. There is provided a flame retardant polyester composition containing 50 ppm to 400 ppm of a titanium compound as a titanium atom and 25 ppm to 600 ppm of a magnesium compound as a magnesium atom.

Figure 2013173869
(式中、Rは水素、炭素数1〜12の1価の飽和炭化水素または1価の芳香族炭化水素のいずれか1つを表し、m、nはそれぞれ1〜6の整数を表す)
Figure 2013173869
(In the formula, R 1 represents any one of hydrogen, a monovalent saturated hydrocarbon having 1 to 12 carbon atoms or a monovalent aromatic hydrocarbon, and m and n each represents an integer of 1 to 6)

また本発明の難燃性ポリエステル組成物は、その好ましい形態として、含有するチタン化合物の原子とマグネシウム原子の量の比が
0.5< Ti/Mg < 3.0
であること、含有するチタン化合物は、下記一般式(2)で表わされる化合物と芳香族多価カルボン酸またはその無水物とを反応させた生成物であることであることも包含する。
Ti(OR) ・・・(2)
(上記式中、Rはアルキル基および/またはフェニル基を示す)
Moreover, the flame-retardant polyester composition of the present invention has, as a preferred form thereof, a ratio of the amount of titanium compound atoms to magnesium atoms contained in a ratio of 0.5 <Ti / Mg <3.0.
It is included that the titanium compound to be contained is a product obtained by reacting a compound represented by the following general formula (2) with an aromatic polycarboxylic acid or an anhydride thereof.
Ti (OR) 4 (2)
(In the above formula, R represents an alkyl group and / or a phenyl group)

さらにまた、上記式(1)で表されるホスフィンオキシド化合物から誘導される成分を1〜25モル%有するポリエステル組成物の製造方法であって、
重縮合反応を、チタン化合物とマグネシウム化合物の存在下で行い、かつ得られるポリエステルの質量を基準として、チタン化合物がチタン原子で50ppm〜400ppm、マグネシウム化合物がマグネシウム原子で25ppm〜600ppmの範囲とする難燃性ポリエステル組成物の製造方法も提供される。
Furthermore, it is a manufacturing method of the polyester composition which has 1-25 mol% of components induced | guided | derived from the phosphine oxide compound represented by the said Formula (1),
The polycondensation reaction is carried out in the presence of a titanium compound and a magnesium compound, and based on the mass of the resulting polyester, it is difficult to set the titanium compound in the range of 50 ppm to 400 ppm in terms of titanium atoms and the magnesium compound in the range of 25 ppm to 600 ppm in terms of magnesium atoms. A method for producing a flammable polyester composition is also provided.

本発明の難燃性ポリエステル組成物は、難燃剤として、耐加水分解性に優れた水酸基を両末端に有するホスフィンオキサイド化合物を共重合しながらも、優れた耐熱性を備え、しかも重合反応性も改良されており、フィルムなどの成形体として好適に利用することができ、難燃性が求められる種々の用途、例えばフレキシブルプリント回路基板のような電気電子用途などに好適に用いることができる。   The flame-retardant polyester composition of the present invention has excellent heat resistance and copolymerization reactivity as a flame retardant while copolymerizing a phosphine oxide compound having hydroxyl groups excellent in hydrolysis resistance at both ends. It has been improved and can be suitably used as a molded article such as a film, and can be suitably used for various applications that require flame retardancy, such as electrical and electronic applications such as flexible printed circuit boards.

本発明における難燃性ポリエステル組成物について、詳述する。
本発明におけるポリエステルは、ポリエステルの全ジオール成分を基準として下記式(1)で表されるホスフィンオキシド化合物から誘導される成分(以下、リン含有共重合単位と称することがある)を1〜25モル%の範囲で有する。
The flame retardant polyester composition in the present invention will be described in detail.
The polyester in the present invention contains 1 to 25 mol of a component derived from a phosphine oxide compound represented by the following formula (1) based on all diol components of the polyester (hereinafter sometimes referred to as phosphorus-containing copolymer unit). % In the range.

Figure 2013173869
(式中、Rは水素、炭素数1〜12の1価の飽和炭化水素または1価の芳香族炭化水素のいずれか1つを表し、m、nはそれぞれ1〜6の整数を表す)
Figure 2013173869
(In the formula, R 1 represents any one of hydrogen, a monovalent saturated hydrocarbon having 1 to 12 carbon atoms or a monovalent aromatic hydrocarbon, and m and n each represents an integer of 1 to 6)

式(1)で表されるホスフィンオキシド化合物からなる単位のうち、m、nで表されるメチレン鎖数は好ましくは1〜4であり、さらに好ましくは2〜3である。
また、式(1)で表されるホスフィンオキシド化合物からなる単位のうち、Rで表される置換基の中でも、炭素数1〜6の飽和炭化水素、フェニル基が好ましく例示される。
Among the units composed of the phosphine oxide compound represented by the formula (1), the number of methylene chains represented by m and n is preferably 1 to 4, and more preferably 2 to 3.
Moreover, among the units consisting of the phosphine oxide compound represented by the formula (1), among the substituents represented by R 1 , preferred are C 1-6 saturated hydrocarbons and phenyl groups.

本発明において、難燃性付与成分としてホスフィンオキシド化合物を用いることが必要であり、かつホスフィンオキシド化合物の中でもモノマーの状態でジオールの化合物またはその誘導体を用いることが必要である。ポリエステル主鎖中にホスフィンオキシド化合物以外の化合物に由来するリン含有共重合単位、例えばホスフィン酸あるいはホスホン酸エステル由来のリン化合物重合単位が存在すると、ポリエステル組成物の耐熱性、耐加水分解性に悪影響を及ぼす。またホスフィンオキシド化合物においてもジカルボン酸の化合物またはその誘導体をモノマー成分として用いた場合、ジオールタイプのホスフィンオキシド化合物ほどの耐加水分解性が得られない。   In the present invention, it is necessary to use a phosphine oxide compound as a flame retardant imparting component, and among the phosphine oxide compounds, it is necessary to use a diol compound or a derivative thereof in a monomer state. If a phosphorus-containing copolymer unit derived from a compound other than a phosphine oxide compound is present in the polyester main chain, for example, a phosphorus compound polymer unit derived from phosphinic acid or phosphonic acid ester, the heat resistance and hydrolysis resistance of the polyester composition are adversely affected. Effect. Also in the phosphine oxide compound, when a dicarboxylic acid compound or a derivative thereof is used as a monomer component, hydrolysis resistance as high as that of a diol type phosphine oxide compound cannot be obtained.

また、本発明の難燃性ポリエステル組成物における上記式(1)で表されるホスフィンオキシドの含有量は、ポリエステルの全酸成分のモル数を基準として1モル%以上25モル%以下の範囲である。好ましい下限値は3モル%、さらに5モル%であり、好ましい上限値は15モル%、さらに10モル%、特に8モル%である。該リン含有共重合単位の含有量が下限値に満たないと本発明の目的とする難燃性を得ることができない。また、該リン含有共重合単位の含有量が上限値を超えると重合反応性に問題が生じ、フィルムなどの成形体としたときの十分な機械的特性を得ることできない。   The content of the phosphine oxide represented by the above formula (1) in the flame retardant polyester composition of the present invention is in the range of 1 mol% or more and 25 mol% or less based on the number of moles of all acid components of the polyester. is there. The preferred lower limit is 3 mol%, further 5 mol%, and the preferred upper limit is 15 mol%, further 10 mol%, especially 8 mol%. If the content of the phosphorus-containing copolymer unit is less than the lower limit value, the flame retardancy targeted by the present invention cannot be obtained. Further, if the content of the phosphorus-containing copolymer unit exceeds the upper limit, a problem occurs in the polymerization reactivity, and sufficient mechanical properties when formed into a molded body such as a film cannot be obtained.

上記ホスフィンオキシド化合物からなるモノマー成分を共重合させた結果、ポリエステル組成物中のリン原子濃度は、ポリエステルの質量を基準として、0.5質量%以上3.0質量%以下、さらに0.5質量%以上2.0質量%以下であることが、本発明の目的とする難燃性を得るために好ましい。   As a result of copolymerizing the monomer component comprising the phosphine oxide compound, the phosphorus atom concentration in the polyester composition is 0.5% by mass or more and 3.0% by mass or less, and further 0.5% by mass based on the mass of the polyester. % Or more and 2.0% by mass or less is preferable in order to obtain the flame retardancy targeted by the present invention.

本発明におけるポリエステル樹脂の主たる繰り返し単位は、テレフタル酸、2,6−ナフタレンジカルボン酸などのジカルボン酸成分と、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサン−1,4−ジメタノールなどのジオール成分からなる。ここで「主たる」とは、全繰り返し単位の50モル%以上であることをいい、より好ましくは70モル%以上、さらに好ましくは75モル%以上、特に好ましくは80モル%以上、最も好ましくは85モル%以上である。   The main repeating units of the polyester resin in the present invention are dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, ethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexane-1,4-di Consists of diol components such as methanol. Here, “main” means 50 mol% or more of all repeating units, more preferably 70 mol% or more, more preferably 75 mol% or more, particularly preferably 80 mol% or more, and most preferably 85 mol%. More than mol%.

本発明におけるポリエステル樹脂は、得られる特性を大きく変化させない範囲でその他の共重合成分を含むことができる。その他の共重合成分としては特に限定されないが、ジカルボン酸成分として、イソフタル酸、テレフタル酸、オルトフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、4,4´−ビフェニルジカルボン酸などの芳香族ジカルボン酸成分から主たる成分以外の成分、シクロヘキサン−1,4−ジカルボン酸などの脂環族ジカルボン酸成分、コハク酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸成分など、ジオール成分として、エチレングリコール、プロピレングリコール、トリメチレングリコールなどの脂肪族ジオール成分から主たる成分以外の成分、シクロヘキサン−1,4−ジメタノールなどの脂環族ジオール成分、ビスフェノールAなどの芳香族ジオール成分、ジエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールなどのエーテル縮合型ジオール成分などが挙げられる。また、前述の好ましいジカルボン酸およびジオール成分以外の成分として、p−ヒドロキシ安息香酸などのヒドロキシカルボン酸成分、トリメリット酸、ピロメリット酸などの3官能以上の成分が挙げられる。   The polyester resin in the present invention can contain other copolymerization components as long as the obtained properties are not largely changed. Other copolymer components are not particularly limited, but as dicarboxylic acid components, isophthalic acid, terephthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, Components other than the main component from aromatic dicarboxylic acid components such as 4,4'-biphenyldicarboxylic acid, alicyclic dicarboxylic acid components such as cyclohexane-1,4-dicarboxylic acid, fats such as succinic acid, adipic acid, and sebacic acid As diol components such as aliphatic dicarboxylic acid components, components other than main components from aliphatic diol components such as ethylene glycol, propylene glycol and trimethylene glycol, alicyclic diol components such as cyclohexane-1,4-dimethanol, and bisphenol A Aromatic diol components, such as Ethylene glycol, polyethylene glycol, and ether condensed diol component and polytetramethylene glycol. Moreover, as components other than the above-mentioned preferable dicarboxylic acid and diol components, a tri- or higher functional component such as a hydroxycarboxylic acid component such as p-hydroxybenzoic acid, trimellitic acid, and pyromellitic acid can be given.

本発明の難燃性ポリエステル組成物はジカルボン酸とグリコールとのエステル化反応やジカルボン酸の低級アルキルエステルとグリコールとのエステル交換反応のどちらの方法も利用できる。エステル交換反応触媒としては、マンガン、マグネシウム、カルシウム、亜鉛、ナトリウム、カリウム、コバルト、チタンを含む化合物の一種または二種以上を用いることができる。   The flame-retardant polyester composition of the present invention can be used for either esterification reaction of dicarboxylic acid and glycol or ester exchange reaction of lower alkyl ester of dicarboxylic acid and glycol. As the transesterification reaction catalyst, one or more of compounds containing manganese, magnesium, calcium, zinc, sodium, potassium, cobalt, and titanium can be used.

ただし、本発明の難燃性ポリエステル組成物は、その重縮合反応において、重縮合触媒としてチタン化合物を使用したものであることが必要であり、その際マグネシウム化合物が存在していることが必要である。従来公知の重縮合触媒である、三酸化アンチモンなどのアンチモン化合物、二酸化ゲルマニウムで代表されるゲルマニウム化合物のみで反応させると十分に重合度が上がらないという問題が発生したり、チタン化合物のみで反応させると目的とする重合度に達するまでの時間が長くなり、生産効率が悪くなるといった問題が発生する。本発明で使用するチタン化合物としては、酢酸チタンやテトラ−n−ブトキシチタンなどが挙げられるが、特に望ましいのは、下記一般式(2)で表わされる化合物と芳香族多価カルボン酸またはその無水物とを反応させた生成物である。
Ti(OR) ・・・(2)
(上記式中、Rはアルキル基および/またはフェニル基を示す)
However, the flame-retardant polyester composition of the present invention is required to use a titanium compound as a polycondensation catalyst in the polycondensation reaction, and in this case, a magnesium compound must be present. is there. The conventional polycondensation catalyst, such as antimony compounds such as antimony trioxide and germanium compounds represented by germanium dioxide, may cause problems that the degree of polymerization does not increase sufficiently, or the reaction is carried out only with titanium compounds. As a result, it takes a long time to reach the desired degree of polymerization, resulting in poor production efficiency. Examples of the titanium compound used in the present invention include titanium acetate and tetra-n-butoxytitanium. Particularly desirable is a compound represented by the following general formula (2) and an aromatic polyvalent carboxylic acid or anhydride thereof. It is a product obtained by reacting a product.
Ti (OR) 4 (2)
(In the above formula, R represents an alkyl group and / or a phenyl group)

一般式(2)で表わされるテトラアルコキサイドチタンとしては、Rがアルキル基および/またはフェニル基であれば特に限定されないが、テトライソプロポキシチタン、テトラプロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン、テトラフェノキシチタンなどが好ましく用いられる。また、かかるチタン化合物と反応させる芳香族多価カルボン酸またはその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸およびこれらの無水物が好ましく用いられる。上記チタン化合物と芳香族多価カルボン酸またはその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸またはその無水物の一部とを溶解し、これにチタン化合物を滴下し、0〜200℃の温度で30分以上反応させれば良い。この生成物を用いることにより、重縮合反応中に分解されるホスフィンオキシド化合物によるチタン触媒化合物の触媒機能失活を抑えることができる。   The tetraalkoxide titanium represented by the general formula (2) is not particularly limited as long as R is an alkyl group and / or a phenyl group, but tetraisopropoxy titanium, tetrapropoxy titanium, tetra-n-butoxy titanium, tetra Ethoxy titanium, tetraphenoxy titanium and the like are preferably used. Further, as the aromatic polyvalent carboxylic acid to be reacted with such a titanium compound or an anhydride thereof, phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid and anhydrides thereof are preferably used. When the titanium compound and the aromatic polyvalent carboxylic acid or its anhydride are reacted, the aromatic polyvalent carboxylic acid or a part of its anhydride is dissolved in a solvent, and the titanium compound is dropped into this, What is necessary is just to make it react for 30 minutes or more at the temperature of 0-200 degreeC. By using this product, deactivation of the catalytic function of the titanium catalyst compound by the phosphine oxide compound decomposed during the polycondensation reaction can be suppressed.

本発明の難燃性ポリエステル組成物には、ポリマー中に可溶な上記チタン化合物を、難燃性ポリエステル組成物の質量を基準として、チタン金属原子量で50〜400ppmの範囲で含有する必要がある。特に好ましい下限値は、100ppm、さらに140ppmであり、特に好ましい上限値は、250ppm、さらに240ppmである。該チタン原子量が下限未満ではポリエステルの生産性が低下し、目標の分子量のポリエステルが得られない。また、該チタン原子量が上限を超える場合は熱安定性が低下しやすくなる。   The flame retardant polyester composition of the present invention needs to contain the titanium compound soluble in the polymer in the range of 50 to 400 ppm in terms of titanium metal atomic weight based on the mass of the flame retardant polyester composition. . Particularly preferred lower limit values are 100 ppm and further 140 ppm, and particularly preferred upper limit values are 250 ppm and further 240 ppm. When the titanium atom weight is less than the lower limit, the productivity of the polyester is lowered, and a polyester having a target molecular weight cannot be obtained. On the other hand, when the titanium atomic weight exceeds the upper limit, the thermal stability tends to be lowered.

また本発明の難燃性ポリエステル組成物には重合反応性を向上させるために酢酸マグネシウムで代表されるマグネシウム化合物を、難燃性ポリエステルの質量を基準として、マグネシウム原子量で25ppm〜600ppmをあわせて含有する必要がある。好ましい下限値は50ppm、さらに80ppmであり、好ましい上限値は300ppm、さらに250ppmである。チタン化合物と共にマグネシウム化合物を含有させることで、リン化合物の分解によるチタン化合物の失活に伴う重縮合反応速度の低下を補うことができ、チタン化合物のみでは、反応活性の低い温度範囲で長時間重縮合反応を行わなければならないのに対して、同じ反応温度でも重縮合反応時間を短縮させる効果が得られる。マグネシウム原子量が下限未満であると上述の効果は得られがたくなり、マグネシウム原子量が上限を超える場合は熱安定性が低下する可能性があり、コスト面からも好ましくない。   In addition, the flame retardant polyester composition of the present invention contains a magnesium compound represented by magnesium acetate in order to improve the polymerization reactivity, together with 25 ppm to 600 ppm in terms of magnesium atomic weight based on the mass of the flame retardant polyester. There is a need to. The preferred lower limit is 50 ppm and further 80 ppm, and the preferred upper limit is 300 ppm and further 250 ppm. By including the magnesium compound together with the titanium compound, it is possible to compensate for the decrease in the polycondensation reaction rate due to the deactivation of the titanium compound due to the decomposition of the phosphorus compound. While the condensation reaction must be performed, the effect of shortening the polycondensation reaction time can be obtained even at the same reaction temperature. If the magnesium atomic weight is less than the lower limit, the above-described effect is hardly obtained, and if the magnesium atomic weight exceeds the upper limit, the thermal stability may be lowered, which is not preferable from the viewpoint of cost.

また含有させるチタン原子とマグネシウム原子との質量比は、
0.5< Mg/Ti < 3.0
の範囲にあることが好ましい。この比が上記範囲にあることで重合反応性をより向上させることができる。なお、上記式中のTiはチタン原子量であり、Mgはマグネシウム原子量である。好ましいMg/Tiの下限値は0.8、上限値は2.5である。
Moreover, the mass ratio of the titanium atom to be contained and the magnesium atom is
0.5 <Mg / Ti <3.0
It is preferable that it exists in the range. When this ratio is in the above range, the polymerization reactivity can be further improved. In the above formula, Ti is the titanium atomic weight, and Mg is the magnesium atomic weight. The lower limit value of Mg / Ti is preferably 0.8, and the upper limit value is 2.5.

本発明における難燃性ポリエステル組成物におけるポリエステルの固有粘度(重量比4/6のP−クロロフェノール/1,1,2,2−テトラクロロエタンの混合溶媒を用いて温度35℃で測定)が0.60dl/g以上1.5dl/g以下であることが好ましく、さらに0.65dl/g以上1.0dl/g以下であることが好ましい。ポリエステルの固有粘度が下限値に満たないと、成形品の機械的特性を満足しなくなる。一方、上限値を超えると、溶融粘度が高いため、成形時の溶融押出が困難となる。
なお、本発明の目的を阻害しない範囲内で、従来公知の各種添加剤を含有させてもよく、例えば有機または無機の滑剤粒子、着色剤、帯電防止剤、酸化防止剤、紫外線吸収剤などを挙げることができる。
The intrinsic viscosity of the polyester in the flame-retardant polyester composition of the present invention (measured at a temperature of 35 ° C. using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane having a weight ratio of 4/6) is 0. It is preferably from 60 dl / g to 1.5 dl / g, more preferably from 0.65 dl / g to 1.0 dl / g. If the intrinsic viscosity of the polyester is less than the lower limit, the mechanical properties of the molded product will not be satisfied. On the other hand, if the upper limit value is exceeded, the melt viscosity is high, so that melt extrusion during molding becomes difficult.
In addition, various conventionally known additives may be included within a range that does not impair the object of the present invention. For example, organic or inorganic lubricant particles, colorants, antistatic agents, antioxidants, ultraviolet absorbers, etc. Can be mentioned.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いてポリマーを溶解して35℃で測定して求めた。単位はdl/gである。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester was measured at 35 ° C by dissolving the polymer using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio). And asked. The unit is dl / g.

(2)ホスフィンオキシドから誘導される成分の共重合量
試料20mgを重トリフルオロ酢酸:重クロロホルム=1:1の混合溶媒0.6mLに溶解し、室温でH−NMRスペクトル(日本電子製 JEOL A600)を測定した。NMRのスペクトルより、ホスフィンオキシドから誘導される成分の割合を見積もった。
(2) Amount of copolymerization of components derived from phosphine oxide 20 mg of a sample was dissolved in 0.6 mL of a mixed solvent of deuterated trifluoroacetic acid: deuterated chloroform = 1: 1, and 1 H-NMR spectrum (JEOL made by JEOL Ltd.) was obtained at room temperature. A600) was measured. From the NMR spectrum, the proportion of components derived from phosphine oxide was estimated.

(3)チタン原子、リン原子の含有量
ポリマーサンプルを加熱溶融して、円形ディスクを作成し、リガク製蛍光X線装置3270型を用いて測定し、定量を行った。
(3) Content of Titanium Atom and Phosphorus A polymer sample was heated and melted to prepare a circular disk, which was measured using a fluorescent X-ray apparatus 3270 type manufactured by Rigaku and quantified.

(4)マグネシウム原子の含有量
ポリマーサンプルをオルトクロロフェノールで溶解後、0.5N塩酸で分解したものを日立製作所製 偏光ゼーマン原子吸光光度計 Z5000を用いて、測定し、定量を行った。
(4) Content of magnesium atom A polymer sample dissolved in orthochlorophenol and then decomposed with 0.5N hydrochloric acid was measured using a polarization Zeeman atomic absorption spectrophotometer Z5000 manufactured by Hitachi, Ltd. and quantified.

(5)燃焼性
フィルムサンプルをUL−94VTM法に準拠して評価した。サンプルを20cm×5cmにカットし、23±2℃、50±5%RH中で48時間放置し、その後、試料下端をバーナーから10mm上方に離し垂直に保持した。該試料の下端を内径9.5mm、炎長20mmのブンゼンバーナーを加熱源とし、3秒間接炎した。VTM−0、VTM−1、VTM−2の評価基準に沿って難燃性を評価し、n=5の測定回数のうち、同じランクになった数の最も多いランクとした。
(5) Flammability Film samples were evaluated according to the UL-94 VTM method. The sample was cut into 20 cm × 5 cm and left in 23 ± 2 ° C. and 50 ± 5% RH for 48 hours, and then the lower end of the sample was held 10 mm above the burner and held vertically. The bottom of the sample was indirectly fired for 3 seconds using a Bunsen burner having an inner diameter of 9.5 mm and a flame length of 20 mm as a heating source. Flame retardance was evaluated according to the evaluation criteria of VTM-0, VTM-1, and VTM-2, and among the number of measurements of n = 5, the rank having the same number of ranks was set.

[実施例1]
テレフタル酸ジメチル(DMT)31Kg(160モル)、エチレングリコール(EG) 16.2Kg(261モル)、リン化合物として、n−ブチル−ビス(3−ヒドロキシトリメチレン)ホスフィンオキシド(日本化学工業社 PO−4500) 2.45Kg(11モル)を、攪拌機、精留塔、冷却器を供えた反応槽に仕込み、そこに触媒として、酢酸マンガン4水和物を30ミリモル%(全酸成分に対して)加え、エステル交換反応を行った。続いて、チタンテトラブトキシドとトリメリット酸無水物をモル比1:2で175℃、4時間反応させた反応物(トリメリット酸チタン)80ミリモル%(全酸成分に対して)、酢酸マグネシウム120ミリモル%(全酸成分に対して)を加えて、265℃にて真空下重縮合反応を行った。225分間重縮合反応を行い、固有粘度0.630dl/gのポリエステル組成物を得た。
得られたポリエステル組成物を170℃ドライヤーで3時間乾燥後、270℃でダイより表面温度20℃に維持した回転ドラム上に溶融押出して、厚み630μmの未延伸フィルムを製膜した。この未延伸フィルムを75℃に予熱し、低速ローラーと高速ローラーの間で15mm上方より800℃の表面温度の赤外線ヒーター1本にて加熱しながら製膜方向(MD方向)に4.1倍延伸し、さらに縦延伸したフィルムの両端をクリップで保持しながら100℃で加熱された雰囲気中で製膜方向に垂直な方向(TD方向)に4.2倍延伸し、さらに横方向に固定したまま全幅の3%の弛緩を与えながら220℃で熱処理し、厚み50μmのフィルムを得た。
得られたポリエステル組成物、およびそれからなるフィルムサンプルの特性を表1に示す。
[Example 1]
Dimethyl terephthalate (DMT) 31 kg (160 mol), ethylene glycol (EG) 16.2 kg (261 mol), n-butyl-bis (3-hydroxytrimethylene) phosphine oxide (Nippon Kagaku Kogyo Co., Ltd. PO-) 4500) 2.45 Kg (11 mol) was charged into a reaction vessel equipped with a stirrer, a rectifying column, and a cooler, and as a catalyst, 30 mmol% of manganese acetate tetrahydrate (based on the total acid components). In addition, a transesterification reaction was performed. Subsequently, a reaction product obtained by reacting titanium tetrabutoxide and trimellitic anhydride at a molar ratio of 1: 2 at 175 ° C. for 4 hours (titanium trimellitic acid) 80 mmol% (based on all acid components), magnesium acetate 120 A mmol% (based on the total acid components) was added, and a polycondensation reaction was performed at 265 ° C. under vacuum. A polycondensation reaction was performed for 225 minutes to obtain a polyester composition having an intrinsic viscosity of 0.630 dl / g.
The obtained polyester composition was dried with a 170 ° C. dryer for 3 hours, and melt-extruded on a rotating drum maintained at a surface temperature of 20 ° C. from a die at 270 ° C. to form an unstretched film having a thickness of 630 μm. This unstretched film is preheated to 75 ° C and stretched 4.1 times in the film forming direction (MD direction) while being heated by a single infrared heater with a surface temperature of 800 ° C from above 15 mm between the low speed roller and the high speed roller. Further, the film was stretched 4.2 times in the direction (TD direction) perpendicular to the film forming direction in an atmosphere heated at 100 ° C. while holding both ends of the film stretched longitudinally, and further fixed in the transverse direction. Heat treatment was performed at 220 ° C. while giving relaxation of 3% of the full width to obtain a film having a thickness of 50 μm.
Table 1 shows the properties of the obtained polyester composition and the film sample comprising the same.

[実施例2〜4]
実施例1において、リン化合物の添加量、チタン化合物の添加量、マグネシウム化合物の添加量、重縮合温度を変えたこと以外は実施例1と同様に行った。得られたポリエステル組成物、およびそれからなるフィルムサンプルの特性を表1に示す。特性を表1に示す。
[Examples 2 to 4]
In Example 1, it carried out like Example 1 except having changed the addition amount of the phosphorus compound, the addition amount of the titanium compound, the addition amount of the magnesium compound, and the polycondensation temperature. Table 1 shows the properties of the obtained polyester composition and the film sample comprising the same. The characteristics are shown in Table 1.

[実施例5]
2,6−ナフタレンジカルボン酸ジメチル(NDC)35Kg(143モル)、エチレングリコール(EG)17.1Kg(276モル)、ビス(3−ヒドロキシトリメチレン)n−ブチルホスフィンオキシド(日本化学工業社 PO−4500)2.19Kg(9.9モル)を、攪拌機、精留塔、冷却器を供えた反応槽に仕込み、そこに触媒として、酢酸マンガン4水和物を30ミリモル%(全酸成分に対して)加え、エステル交換反応を行った。続いて、チタンテトラブトキシドとトリメリット酸無水物をモル比1:2で175℃、4時間反応させた反応物(トリメリット酸チタン)80ミリモル%(全酸成分に対して)、酢酸マグネシウム80ミリモル%(全酸成分に対して)を加えて、270℃にて真空下重縮合反応を行った。重縮合反応を240分間行い、固有粘度0.61dl/gのポリエステル組成物を得た。
フィルム化においては、MD方向延伸における予熱温度を120℃に、TD方向延伸における温度を140℃にした以外は、実施例1と同様の方法によってフィルムサンプルを得た。
得られたポリエステル組成物、およびそれからなるフィルムサンプルの特性を表1に示す。
[Example 5]
Dimethyl 2,6-naphthalenedicarboxylate (NDC) 35 kg (143 mol), ethylene glycol (EG) 17.1 kg (276 mol), bis (3-hydroxytrimethylene) n-butylphosphine oxide (Nippon Chemical Industry Co., Ltd., PO- 4500) 2.19 Kg (9.9 mol) was charged into a reaction vessel equipped with a stirrer, a rectifying column and a cooler, and as a catalyst, manganese acetate tetrahydrate was added at 30 mmol% (based on the total acid components). In addition, a transesterification reaction was performed. Subsequently, a reaction product obtained by reacting titanium tetrabutoxide and trimellitic anhydride at a molar ratio of 1: 2 at 175 ° C. for 4 hours (titanium trimellitic acid) 80 mmol% (based on all acid components), magnesium acetate 80 A mmol% (based on the total acid components) was added, and a polycondensation reaction was performed at 270 ° C. under vacuum. A polycondensation reaction was performed for 240 minutes to obtain a polyester composition having an intrinsic viscosity of 0.61 dl / g.
In film formation, a film sample was obtained in the same manner as in Example 1 except that the preheating temperature in MD direction stretching was 120 ° C. and the temperature in TD direction stretching was 140 ° C.
Table 1 shows the properties of the obtained polyester composition and the film sample comprising the same.

[実施例6]
テレフタル酸(TA)26.6Kg(160モル)、エチレングリコール(EG)16.1Kg(260モル)を攪拌機、精留塔、冷却器を供えた反応槽に仕込み、ゲージ圧0.15MPa下、140℃から250℃に昇温しながらエステル化反応させた後、リン化合物として、n−ブチル−ビス(3−ヒドロキシトリメチレン)ホスフィンオキシド(日本化学工業社 PO−4500)2.45Kg(11モル)および、チタンテトラブトキシドとトリメリット酸無水物をモル比1:2で175℃、4時間反応させた反応物(トリメリット酸チタン)80ミリモル%(全酸成分に対して)、酢酸マグネシウム120ミリモル%(全酸成分に対して)を加えて、265℃にて真空下重縮合反応を行った。235分間重縮合反応を行い、固有粘度0.63dl/gのポリエステル組成物を得た。その後は、厚み50μmのフィルムを得た。得られたポリエステル組成物、およびそれからなるフィルムサンプルの特性を表1に示す。
[Example 6]
Terephthalic acid (TA) 26.6 Kg (160 mol) and ethylene glycol (EG) 16.1 Kg (260 mol) were charged into a reaction vessel equipped with a stirrer, a rectifying column, and a cooler, under a gauge pressure of 0.15 MPa, 140 After the esterification reaction while raising the temperature from 250C to 250C, n-butyl-bis (3-hydroxytrimethylene) phosphine oxide (Nippon Kagaku Kogyo Co., Ltd. PO-4500) 2.45 Kg (11 mol) is used as the phosphorus compound. And a reaction product of titanium tetrabutoxide and trimellitic anhydride at a molar ratio of 1: 2 at 175 ° C. for 4 hours (titanium trimellitic acid) 80 mmol% (based on all acid components), magnesium acetate 120 mmol % (Based on the total acid components) was added, and a polycondensation reaction was performed at 265 ° C. under vacuum. A polycondensation reaction was performed for 235 minutes to obtain a polyester composition having an intrinsic viscosity of 0.63 dl / g. Thereafter, a film having a thickness of 50 μm was obtained. Table 1 shows the properties of the obtained polyester composition and the film sample comprising the same.

[比較例1〜9]
リン化合物の添加量、重縮合反応触媒および酢酸マグネシウムの添加量、重縮合反応温度、後処理反応温度、時間を変えたこと以外は、実施例1と同様におこなった。得られたポリエステル組成物、およびそれからなるフィルムサンプルの特性を表1に示す。なお、途中で重合度の上昇が停止したものは途中で反応を終了させている。また、比較例4は、表1に示すように重縮合反応触媒として、三酸化二アンチモンを、アンチモン元素量で202ppmとなるように添加した。
[Comparative Examples 1 to 9]
The same procedure as in Example 1 was conducted except that the addition amount of the phosphorus compound, the addition amount of the polycondensation reaction catalyst and magnesium acetate, the polycondensation reaction temperature, the post-treatment reaction temperature, and the time were changed. Table 1 shows the properties of the obtained polyester composition and the film sample comprising the same. In addition, what stopped the raise of the polymerization degree on the way has terminated reaction on the way. In Comparative Example 4, as shown in Table 1, diantimony trioxide was added as a polycondensation reaction catalyst so that the amount of elemental antimony was 202 ppm.

Figure 2013173869
Figure 2013173869

表1中にある*の意味は、撹拌電力の上昇が止まり、それ以上重合度が上がらなくなった時間である。   The meaning of * in Table 1 is the time when the stirring power stops increasing and the degree of polymerization no longer increases.

本発明の難燃性ポリエステル組成物は、難燃性が求められる種々の用途、例えばフレキシブルプリント回路基板のような電気電子用途などに好適に用いることができる。   The flame-retardant polyester composition of the present invention can be suitably used for various applications that require flame retardancy, such as electrical and electronic applications such as flexible printed circuit boards.

Claims (4)

ポリエステルの全ジカルボン酸成分を基準として、下記式(1)で表されるホスフィンオキシド化合物から誘導される成分を1〜25モル%含むポリエステル組成物であり、チタン化合物をチタン原子として50ppm〜400ppm含有し、マグネシウム化合物をマグネシウム原子として25ppm〜600ppm含有する難燃性ポリエステル組成物。
Figure 2013173869
(式中、Rは水素、炭素数1〜12の1価の飽和炭化水素または1価の芳香族炭化水素のいずれか1つを表し、m、nはそれぞれ1〜6の整数を表す)
A polyester composition containing 1 to 25 mol% of a component derived from a phosphine oxide compound represented by the following formula (1) on the basis of all dicarboxylic acid components of polyester, and containing 50 ppm to 400 ppm of titanium compound as titanium atom And a flame retardant polyester composition containing 25 ppm to 600 ppm of a magnesium compound as magnesium atoms.
Figure 2013173869
(In the formula, R 1 represents any one of hydrogen, a monovalent saturated hydrocarbon having 1 to 12 carbon atoms or a monovalent aromatic hydrocarbon, and m and n each represents an integer of 1 to 6)
含有するチタン原子とマグネシウム原子の量の比が
0.5 < Ti/Mg < 3.0
の範囲である請求項1記載の難燃性ポリエステル組成物。
Ratio of amount of titanium atom and magnesium atom contained is 0.5 <Ti / Mg <3.0
The flame-retardant polyester composition according to claim 1, which is in the range of
含有するチタン化合物が、下記一般式(2)で表わされる化合物と芳香族多価カルボン酸またはその無水物とを反応させた生成物である請求項1記載の難燃性ポリエステル組成物。
Ti(OR) ・・・(2)
(上記式中、Rはアルキル基および/またはフェニル基を示す)
The flame retardant polyester composition according to claim 1, wherein the titanium compound contained is a product obtained by reacting a compound represented by the following general formula (2) with an aromatic polyvalent carboxylic acid or an anhydride thereof.
Ti (OR) 4 (2)
(In the above formula, R represents an alkyl group and / or a phenyl group)
下記式(1)で表されるホスフィンオキシド化合物から誘導される成分を1〜25モル%有するポリエステル組成物の製造方法であって、
重縮合反応を、チタン化合物とマグネシウム化合物の存在下で行い、かつ得られるポリエステルの質量を基準として、チタン化合物がチタン原子で50ppm〜400ppm、マグネシウム化合物がマグネシウム原子で25ppm〜600ppmの範囲とする難燃性ポリエステル組成物の製造方法。
Figure 2013173869
(式中、Rは水素、炭素数1〜12の1価の飽和炭化水素または1価の芳香族炭化水素のいずれか1つを表し、m、nはそれぞれ1〜6の整数を表す)
A method for producing a polyester composition having 1 to 25 mol% of a component derived from a phosphine oxide compound represented by the following formula (1):
The polycondensation reaction is carried out in the presence of a titanium compound and a magnesium compound, and based on the mass of the resulting polyester, it is difficult to set the titanium compound in the range of 50 ppm to 400 ppm in terms of titanium atoms and the magnesium compound in the range of 25 ppm to 600 ppm in terms of magnesium atoms. A method for producing a flammable polyester composition.
Figure 2013173869
(In the formula, R 1 represents any one of hydrogen, a monovalent saturated hydrocarbon having 1 to 12 carbon atoms or a monovalent aromatic hydrocarbon, and m and n each represents an integer of 1 to 6)
JP2012040091A 2012-02-27 2012-02-27 Flame retardant polyester composition, and method for producing the same Pending JP2013173869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040091A JP2013173869A (en) 2012-02-27 2012-02-27 Flame retardant polyester composition, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040091A JP2013173869A (en) 2012-02-27 2012-02-27 Flame retardant polyester composition, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013173869A true JP2013173869A (en) 2013-09-05

Family

ID=49267070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040091A Pending JP2013173869A (en) 2012-02-27 2012-02-27 Flame retardant polyester composition, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013173869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517786A (en) * 2017-04-25 2020-06-18 ポリテクニール,エスアエス Flame-retardant polymer, method for producing the same, and thermoplastic polymer composition containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517786A (en) * 2017-04-25 2020-06-18 ポリテクニール,エスアエス Flame-retardant polymer, method for producing the same, and thermoplastic polymer composition containing the same

Similar Documents

Publication Publication Date Title
JP4962007B2 (en) Flame retardant polyester and method for producing the same
TWI614279B (en) Polyester-co-phosphonates
WO2009079494A1 (en) Flame retardant polyester composition and process for producing the same
JP2020517786A (en) Flame-retardant polymer, method for producing the same, and thermoplastic polymer composition containing the same
JP2008247932A (en) Polyester composition
JP5346517B2 (en) Flame retardant copolyester and biaxially oriented film comprising the same
JP2019073674A (en) Method for producing flame retardant polyester and flame retardant polyester produced by the method
JP5731340B2 (en) Flame retardant polyester
JP2013173869A (en) Flame retardant polyester composition, and method for producing the same
CN114989406A (en) Application of non-metallic organic compound in synthesis of polyester by DMT method, DMT method functional copolyester and preparation method thereof
KR20100079766A (en) Method for preparing polyester resin
KR101110779B1 (en) Flame retardant polyester resin and preparation method thereof
JP5840912B2 (en) Flame retardant polyester, method for producing the same, and flame retardant polyester film
JP2011144237A (en) Non-halogen flame retardant antistatic polyester resin composition and molded product thereof
JP2000212266A (en) Preparation of flame-retardant polyester
JP5785067B2 (en) Flame retardant polyester film
JP2012126864A (en) Flame-retardant orientation polyester film
JP5584147B2 (en) Flame retardant copolyester
JP2015067622A (en) Manufacturing method of polyester
KR100236755B1 (en) Process for preparing flame-retardant polyester
JP5616203B2 (en) Copolymerized aromatic polyester and biaxially oriented film using the same
JP5650565B2 (en) Flame retardant transparent copolymer polyethylene naphthalate composition
JP2016108459A (en) Polyester resin composition and polyester film
JP2001163962A (en) Fire retarding polyester resin composition and its manufacturing method
JP6113969B2 (en) Flame retardant polyester film