JP2013172552A - Battery pack control system and battery pack control method - Google Patents

Battery pack control system and battery pack control method Download PDF

Info

Publication number
JP2013172552A
JP2013172552A JP2012035042A JP2012035042A JP2013172552A JP 2013172552 A JP2013172552 A JP 2013172552A JP 2012035042 A JP2012035042 A JP 2012035042A JP 2012035042 A JP2012035042 A JP 2012035042A JP 2013172552 A JP2013172552 A JP 2013172552A
Authority
JP
Japan
Prior art keywords
battery
assembled
assembled battery
cell
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035042A
Other languages
Japanese (ja)
Other versions
JP5916429B2 (en
Inventor
Kaho Yabuta
火峰 薮田
Tomonobu Tsujikawa
知伸 辻川
Takashi Matsushita
傑 松下
Nobuhiko Suzuki
伸彦 鈴木
Riichi Kitano
利一 北野
Toshio Matsushima
敏雄 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
NTT Facilities Research Institute Inc.
Original Assignee
NTT Facilities Inc
NTT Facilities Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc, NTT Facilities Research Institute Inc. filed Critical NTT Facilities Inc
Priority to JP2012035042A priority Critical patent/JP5916429B2/en
Publication of JP2013172552A publication Critical patent/JP2013172552A/en
Application granted granted Critical
Publication of JP5916429B2 publication Critical patent/JP5916429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress reduction in discharge capacity of a battery pack as a whole even when an abnormal secondary battery is included.SOLUTION: A battery pack control system comprises: a rectifier 3 for charging a battery pack 20; disconnection switches 5 for disconnecting lithium ion cells 2 from the battery pack 20; and controllers 6 and 7 for monitoring a battery state, including voltage and temperature, of each cell 2, and controlling the rectifier 3 and each disconnection switch 5 on the basis of the battery state of each cell 2. When the battery states of the cells 2 reach a predetermined abnormal state, the controllers 6 and 7 disconnect such cells 2 by the disconnection switches 5. When the battery pack control system is charging, the output voltage of the rectifier 3 is controlled in accordance with the number of cells 2 which are disconnected.

Description

この発明は、二次電池を複数直列に接続した組電池の充放電を制御する、組電池制御システムおよび組電池制御方法に関する。   The present invention relates to an assembled battery control system and an assembled battery control method for controlling charging / discharging of an assembled battery in which a plurality of secondary batteries are connected in series.

例えば、リチウムイオン二次電池は、エネルギー密度が高い、自己放電量が少ない、などという利点を有し、これまで、携帯電話やラップトップパソコン等の小型電子機器用の電源として使用されてきた。さらに、近年では、電気自動車用電池として有力視されており、産業用のバックアップ電池としての用途も広がりつつある。使用に当たっては、使用目的に応じた電圧や容量を得るために、単電池であるリチウムイオンセルを複数直列に接続して組電池を構成したり、さらに、それらの組電池を並列に接続して使用したりする場合がある。   For example, lithium ion secondary batteries have advantages such as high energy density and low self-discharge, and have been used as power sources for small electronic devices such as mobile phones and laptop computers. Furthermore, in recent years, it has been regarded as a promising battery for electric vehicles, and its use as an industrial backup battery is expanding. In use, in order to obtain a voltage and capacity according to the purpose of use, a plurality of lithium ion cells, which are single cells, are connected in series to form an assembled battery, and further, these assembled batteries are connected in parallel. It may be used.

このような組電池を充電する場合、各リチウムイオンセルの電圧にバラツキが生じる場合がある。すなわち、一部のリチウムイオンセルの充電電圧が高く過充電状態となり、他の一部のリチウムイオンセルでは充電電圧が低い充電不足状態(満充電に至らない状態)となる場合がある。このため、バラツキをなくして各リチウムイオンセルを適正に充電するために、バイパス回路(抵抗)を設ける技術が知られている(例えば、特許文献1参照。)。この技術では、直列に接続された各リチウムイオンセルにバイパス回路が設けられ、充電時に、あるリチウムイオンセルの電圧が適正な充電電圧範囲(許容充電電圧範囲)の上限を超えた場合に、このセルに対応するバイパス回路によって、このセルへの充電電流をバイパスし、かつこのセルを放電(バイパス放電)させる。これにより、充電電圧が高いリチウムイオンセルの電圧を下げ、電圧が低いリチウムイオンセルの充電を促進する、というものである。   When charging such an assembled battery, the voltage of each lithium ion cell may vary. That is, the charge voltage of some lithium ion cells is high and the battery is overcharged, and in some other lithium ion cells, the charge voltage is low and the battery is undercharged (not fully charged). For this reason, a technique of providing a bypass circuit (resistance) in order to properly charge each lithium ion cell without variation is known (see, for example, Patent Document 1). In this technology, each lithium ion cell connected in series is provided with a bypass circuit, and when the voltage of a certain lithium ion cell exceeds the upper limit of an appropriate charging voltage range (allowable charging voltage range) during charging, By the bypass circuit corresponding to the cell, the charging current to the cell is bypassed, and the cell is discharged (bypass discharge). Thereby, the voltage of the lithium ion cell having a high charging voltage is lowered, and the charging of the lithium ion cell having a low voltage is promoted.

特開2002−064947号公報Japanese Patent Application Laid-Open No. 2002-064947

ところで、上記のようなバイパス放電を行ったとしても、組電池のなかには、短絡や異常低電圧などの異常事象を有するセルが存在する場合があり、このような異常セルが存在すると、組電池全体の放電容量が低下してしまう場合がある。すなわち、放電中にいずれかのセルの電圧が放電終止電圧(放電を終了すべき電圧)に達した場合、その後も放電を継続すると過放電状態となり、異常加熱などが生じるおそれがある。このため、放電中に異常セルの電圧が早期に放電終止電圧に達した場合、他の健全なセルの電圧が放電終止電圧に達していないにもかかわらず、組電池全体の放電を終了しなければならず、放電容量が低下してしまう場合がある。   By the way, even if the bypass discharge as described above is performed, there may be a cell having an abnormal event such as a short circuit or an abnormal low voltage in the assembled battery. If such an abnormal cell exists, the entire assembled battery The discharge capacity may be reduced. That is, when the voltage of any cell reaches the end-of-discharge voltage (voltage at which discharge is to be terminated) during discharge, if the discharge is continued thereafter, an overdischarge state may occur and abnormal heating or the like may occur. For this reason, if the voltage of an abnormal cell reaches the discharge end voltage early during discharge, the discharge of the entire assembled battery must be terminated even though the voltage of other healthy cells has not reached the discharge end voltage. In other words, the discharge capacity may be reduced.

例えば、バックアップ用の組電池の場合、異常セルの電圧が放電終止電圧に達した時点で、組電池を系統から切り離さなければならず、バックアップ時間が著しく短縮されてしまう。殊に、1組の組電池しか設置されていない場合には、単なる1個のセルの異常によって、バックアップ機能が失われ、設備の運用に大きな支障をきたすことになる。   For example, in the case of an assembled battery for backup, the assembled battery must be disconnected from the system when the voltage of the abnormal cell reaches the end-of-discharge voltage, and the backup time is significantly shortened. In particular, when only one set of assembled batteries is installed, the backup function is lost due to a mere failure of one cell, which greatly impedes the operation of the facility.

そこでこの発明は、異常な二次電池が存在する場合であっても、組電池全体の放電容量が低下するのを抑制することが可能な組電池制御システムおよび組電池制御方法を提供することを目的とする。   Therefore, the present invention provides an assembled battery control system and an assembled battery control method capable of suppressing a reduction in the discharge capacity of the entire assembled battery even when an abnormal secondary battery is present. Objective.

上記目的を達成するために請求項1に記載の発明は、二次電池が複数直列に接続された組電池を制御する組電池制御システムであって、前記組電池を充電する充電手段と、前記二次電池を前記組電池から切り離す切離手段と、前記各二次電池の電圧や温度を含む電池状態を監視し、前記各二次電池の電池状態に基づいて前記充電手段および前記各切離手段を制御する制御手段と、を備え、前記制御手段は、前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記切離手段によって切り離すとともに、充電中の場合には前記切り離した二次電池の数に応じて前記充電手段の出力電圧を調整する、ことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is an assembled battery control system for controlling an assembled battery in which a plurality of secondary batteries are connected in series, and charging means for charging the assembled battery, Separating means for separating the secondary battery from the assembled battery, and monitoring the battery state including the voltage and temperature of each secondary battery, and the charging means and each separating based on the battery state of each secondary battery Control means for controlling the means, and when the battery state of the secondary battery reaches a predetermined abnormal state, the control means disconnects the secondary battery by the disconnecting means and In this case, the output voltage of the charging unit is adjusted according to the number of the separated secondary batteries.

この発明によれば、二次電池の電池状態が所定の異常状態になると、この二次電池が切離手段によって組電池から切り離されるとともに、充電中の場合には、切り離された二次電池の数に応じて充電手段の出力電圧が調整される。   According to the present invention, when the battery state of the secondary battery becomes a predetermined abnormal state, the secondary battery is disconnected from the assembled battery by the disconnecting means, and when being charged, the secondary battery is disconnected. The output voltage of the charging means is adjusted according to the number.

請求項2に記載の発明は、請求項1に記載の組電池制御システムにおいて、前記組電池が複数並列に接続されている場合、前記制御手段は、一部の組電池の二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記切離手段によって切り離すとともに、切り離した二次電池の数と同じ数の二次電池を他の組電池から前記切離手段によって切り離す、ことを特徴とする。   According to a second aspect of the present invention, in the assembled battery control system according to the first aspect, when a plurality of the assembled batteries are connected in parallel, the control means is a battery of a secondary battery of a part of the assembled batteries. When the state reaches a predetermined abnormal state, the secondary battery is disconnected by the disconnecting means, and the same number of secondary batteries as the disconnected secondary batteries are disconnected from other assembled batteries by the disconnecting means. It is characterized by separating.

この発明によれば、ある組電池の二次電池の電池状態が所定の異常状態になると、この二次電池がこの組電池から切り離されるとともに、切り離された二次電池の数と同じ数の二次電池が他の組電池から切り離される。すなわち、並列に接続されているすべての組電池において、接続されている二次電池の数が同数となる。   According to this invention, when the battery state of a secondary battery of a certain assembled battery becomes a predetermined abnormal state, the secondary battery is disconnected from the assembled battery, and the same number of secondary batteries as the number of disconnected secondary batteries are obtained. The secondary battery is disconnected from the other assembled batteries. That is, in all the assembled batteries connected in parallel, the number of connected secondary batteries is the same.

請求項3に記載の発明は、請求項1または2に記載の組電池制御システムにおいて、前記切離手段は、複数の前記二次電池ごとに設けられている、ことを特徴とする。   According to a third aspect of the present invention, in the assembled battery control system according to the first or second aspect, the disconnecting means is provided for each of the plurality of secondary batteries.

請求項4に記載の発明は、二次電池が複数直列に接続された組電池を制御する組電池制御方法であって、前記二次電池を前記組電池から切り離し可能に接続し、前記各二次電池の電圧や温度を含む電池状態を監視し、前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記組電池から切り離すとともに、充電中の場合には前記切り離した二次電池の数に応じて、前記組電池を充電する充電手段の出力電圧を調整する、ことを特徴とする。   The invention according to claim 4 is an assembled battery control method for controlling an assembled battery in which a plurality of secondary batteries are connected in series, wherein the secondary battery is detachably connected to the assembled battery, and each of the two The battery state including the voltage and temperature of the secondary battery is monitored, and when the battery state of the secondary battery reaches a predetermined abnormal state, the secondary battery is disconnected from the assembled battery and when being charged. The output voltage of the charging means for charging the assembled battery is adjusted according to the number of the separated secondary batteries.

請求項5に記載の発明は、請求項4に記載の組電池制御方法において、前記組電池が複数並列に接続されている場合、一部の組電池の二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を該組電池から切り離すとともに、切り離した二次電池の数と同じ数の二次電池を他の組電池から切り離す、ことを特徴とする。   According to a fifth aspect of the present invention, in the assembled battery control method according to the fourth aspect, when a plurality of the assembled batteries are connected in parallel, the battery state of the secondary batteries of some assembled batteries is a predetermined abnormality. When the state is reached, the secondary battery is separated from the assembled battery, and the same number of secondary batteries as the number of separated secondary batteries are separated from other assembled batteries.

請求項1、4に記載の発明によれば、二次電池の電池状態が所定の異常状態になると、この二次電池が組電池から切り離されるため、異常な二次電池が早期に放電終止電圧に達するために組電池全体の放電を終了しなければならない、という事態を回避することができる。つまり、異常な二次電池が存在する場合であっても、組電池全体の放電容量の極端な低下を抑制することが可能となる。しかも、充電中の場合には、切り離された二次電池の数に応じて充電手段の出力電圧が調整されるため、接続されている二次電池の数に応じた適正な充電電圧で組電池全体を継続して使用することが可能となる。   According to the first and fourth aspects of the invention, when the battery state of the secondary battery becomes a predetermined abnormal state, the secondary battery is disconnected from the assembled battery. Therefore, it is possible to avoid a situation in which the discharge of the entire assembled battery must be terminated to reach That is, even when an abnormal secondary battery is present, it is possible to suppress an extreme decrease in the discharge capacity of the entire assembled battery. In addition, when charging is in progress, the output voltage of the charging means is adjusted according to the number of disconnected secondary batteries, and therefore the assembled battery with an appropriate charging voltage according to the number of connected secondary batteries. The whole can be used continuously.

請求項2、5に記載の発明によれば、組電池が複数並列に接続されている場合には、すべての組電池において接続されている二次電池の数が同数となるように、二次電池が切り離されるため、組電池間における電圧バランスが保たれる。この結果、組電池間で電流の流れ込みが生じることがなく、複数の組電池を適正に充放電することが可能となる。   According to the second and fifth aspects of the present invention, when a plurality of assembled batteries are connected in parallel, the number of secondary batteries connected in all the assembled batteries is the same. Since the battery is disconnected, the voltage balance between the assembled batteries is maintained. As a result, no current flows between the assembled batteries, and a plurality of assembled batteries can be charged and discharged appropriately.

請求項3に記載の発明によれば、複数の二次電池ごとに切離手段が設けられているため、各二次電池に切離手段を設ける場合に比べて切離手段の配設数が少なく、信頼性が向上するとともに、システムの簡素化・簡易化および低コスト化が可能となる。   According to the third aspect of the present invention, since the separation means is provided for each of the plurality of secondary batteries, the number of separation means provided is smaller than when each secondary battery is provided with a separation means. The reliability is improved, and the system can be simplified and simplified and the cost can be reduced.

この発明の実施の形態1に係る組電池制御システムを、1組の組電池を備えた直流電源システムに適用した状態を示す概略構成図である。It is a schematic block diagram which shows the state which applied the assembled battery control system which concerns on Embodiment 1 of this invention to the DC power supply system provided with 1 set of assembled batteries. 図1のシステムによる整流器の出力電圧と充電電流との変化を示す図である。It is a figure which shows the change of the output voltage and charging current of a rectifier by the system of FIG. 図1のシステムによる組電池の放電特性などを示す図である。It is a figure which shows the discharge characteristic etc. of the assembled battery by the system of FIG. 図1のシステムにおけるリチウムイオンセルの放電特性例を示す図である。It is a figure which shows the example of a discharge characteristic of the lithium ion cell in the system of FIG. この発明の実施の形態2に係る組電池制御システムを、3組の組電池を備えた直流電源システムに適用した状態を示す概略構成図である。It is a schematic block diagram which shows the state which applied the assembled battery control system which concerns on Embodiment 2 of this invention to the direct-current power supply system provided with 3 sets of assembled batteries. 図1のシステムを無停電電源装置に適用した状態を示す概略構成図である。It is a schematic block diagram which shows the state which applied the system of FIG. 1 to the uninterruptible power supply. 図6において、複数のセルごとに切離スイッチを設けた状態を示す概略構成図である。In FIG. 6, it is a schematic block diagram which shows the state which provided the isolation | separation switch for every some cell.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

(実施の形態1)
図1は、この実施の形態に係る組電池制御システム1を、1組のリチウムイオン組電池20を備えた直流電源システムに適用した状態を示す概略構成図である。この組電池制御システム1は、単電池であるリチウムイオンセル(リチウムイオン二次電池)2が複数直列に接続されたリチウムイオン組電池20を制御するシステムであり、主として、整流器(充電手段)3と、各リチウムイオンセル2に設けられたバイパス回路4および切離スイッチ(切離手段)5と、セルコントローラ(制御手段)6と、システムコントローラ(制御手段)7とを備えている。また、バイパス回路4および切離スイッチ5とセルコントローラ6、セルコントローラ6とシステムコントローラ7、およびシステムコントローラ7と整流器3とは、それぞれ通信(信号伝送)可能に接続されている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing a state in which the assembled battery control system 1 according to this embodiment is applied to a DC power supply system including a set of lithium ion assembled batteries 20. The assembled battery control system 1 is a system for controlling a lithium ion assembled battery 20 in which a plurality of lithium ion cells (lithium ion secondary batteries) 2 which are single cells are connected in series. Mainly, a rectifier (charging means) 3 And a bypass circuit 4 and a disconnect switch (disconnect means) 5, a cell controller (control means) 6, and a system controller (control means) 7 provided in each lithium ion cell 2. The bypass circuit 4 and the disconnect switch 5 are connected to the cell controller 6, the cell controller 6 and the system controller 7, and the system controller 7 and the rectifier 3 are communicably connected (signal transmission).

整流器3は、商用電源100からの電力を直流に変換して組電池20に供給することで、組電池20を充電する装置であり、システムコントローラ7によって出力電圧・充電電圧が調整されるようになっている。また、整流器3には直流負荷装置101が接続され、商用電源100からの電力が整流器3で直流に変換されて直流負荷装置101に供給される。さらに、組電池20は、組電池20からの電流の流れのみを許容する機能を有する逆流防止装置(図示せず)を介して接続され、これにより、組電池20からの放電が常時可能で、逆流防止装置を介して組電池20から直流負荷装置101に電力が供給されるようになっている。   The rectifier 3 is a device that charges the assembled battery 20 by converting the electric power from the commercial power supply 100 into a direct current and supplies it to the assembled battery 20, so that the output voltage / charging voltage is adjusted by the system controller 7. It has become. Further, the DC load device 101 is connected to the rectifier 3, and the electric power from the commercial power supply 100 is converted into DC by the rectifier 3 and supplied to the DC load device 101. Furthermore, the assembled battery 20 is connected via a backflow prevention device (not shown) having a function of allowing only the current flow from the assembled battery 20, thereby enabling discharge from the assembled battery 20 at all times. Electric power is supplied from the assembled battery 20 to the DC load device 101 via the backflow prevention device.

バイパス回路4は、抵抗(負荷)とスイッチとを備えたセル電圧調整器であり、該当するリチウムイオンセル2の充電電圧が所定の電圧に達した場合に、セルコントローラ6によってスイッチがオンされ、このセル2への充電電流がバイパスされるとともに、このセル2が抵抗によって放電(バイパス放電)される。これにより、このセル2の充電電圧を下げて、電圧が低いンセル2の充電を促進するものである。   The bypass circuit 4 is a cell voltage regulator provided with a resistor (load) and a switch. When the charging voltage of the corresponding lithium ion cell 2 reaches a predetermined voltage, the switch is turned on by the cell controller 6. The charging current to the cell 2 is bypassed, and the cell 2 is discharged by a resistor (bypass discharge). As a result, the charging voltage of the cell 2 is lowered, and the charging of the cell 2 having a low voltage is promoted.

切離スイッチ5は、該当するリチウムイオンセル2を組電池20から切り離すスイッチであり、第1の端子51と第2の端子52とを備えている。そして、第1の端子51がオンされている状態では、このセル2が組電池20に接続され、第2の端子52がオンされている状態では、このセル2が組電池20から切り離される(バイパスされる。)。このような切離スイッチ5は、通常時は第1の端子51がオンされ、セルコントローラ6によって後述するように制御されるようになっている。   The disconnect switch 5 is a switch that disconnects the corresponding lithium ion cell 2 from the assembled battery 20, and includes a first terminal 51 and a second terminal 52. When the first terminal 51 is turned on, the cell 2 is connected to the assembled battery 20, and when the second terminal 52 is turned on, the cell 2 is disconnected from the assembled battery 20 ( Bypassed.) Such a disconnect switch 5 is normally controlled by the cell controller 6 as described later with the first terminal 51 turned on.

セルコントローラ6は、各セル2の充電電圧に基づいて上記のようにバイパス回路4を制御するとともに、各リチウムイオンセル2の電圧や温度を含む電池状態を常時測定、監視し、各セル2の電池状態に基づいて、各切離スイッチ5を制御するとともに、整流器3の制御に必要な情報をシステムコントローラ7に送信する装置である。すなわち、電圧や温度などを計測する計測器を備え、充電中において、いずれかのセル2の電池状態が所定の異常状態に達した場合に、このセル2の切離スイッチ5の第2の端子52をオン(第1の端子51をオフ)して、このセル2を組電池20から切り離す。これと同時に、組電池20からセル2を切り離した旨およびそのセル数を含む切離情報をシステムコントローラ7に伝送する。これを受けて、システムコントローラ7によって、後述するように整流器3の出力電圧が調整される。   The cell controller 6 controls the bypass circuit 4 based on the charging voltage of each cell 2 as described above, and constantly measures and monitors the battery state including the voltage and temperature of each lithium ion cell 2. This is a device that controls each disconnect switch 5 based on the battery state and transmits information necessary for controlling the rectifier 3 to the system controller 7. That is, a measuring instrument for measuring voltage, temperature, and the like is provided, and when the battery state of any cell 2 reaches a predetermined abnormal state during charging, the second terminal of the disconnect switch 5 of this cell 2 52 is turned on (the first terminal 51 is turned off), and the cell 2 is disconnected from the assembled battery 20. At the same time, the fact that the cell 2 has been disconnected from the assembled battery 20 and the separation information including the number of cells are transmitted to the system controller 7. In response to this, the output voltage of the rectifier 3 is adjusted by the system controller 7 as will be described later.

このように、異常状態のセル2を組電池20から切り離すとともに、整流器3の出力電圧を調整することで、組電池20に接続されているセル数に適合した出力電圧で、残りのセル2を充電するものである。ここで、所定の異常状態には、短絡、開放、異常な電圧上昇・下降、異常な温度上昇、異常な圧力(内圧)上昇などが含まれる。   In this manner, the abnormal cells 2 are disconnected from the assembled battery 20 and the output voltage of the rectifier 3 is adjusted to adjust the output voltage suitable for the number of cells connected to the assembled battery 20 so that the remaining cells 2 can be connected. It is something to charge. Here, the predetermined abnormal state includes short circuit, open circuit, abnormal voltage increase / decrease, abnormal temperature increase, abnormal pressure (internal pressure) increase, and the like.

同様に、放電中において、いずれかのセル2の電池状態が所定の異常状態に達した場合に、このセル2を組電池20から切り離す。ここで、所定の異常状態には、上記のような短絡や開放などに加えて、放電途中における電圧が極端に(異常に)低い(急降下する)状態や、セル2の電圧が放電終止電圧や異常電圧(過放電電圧)に達した状態も含まれる。なお、整流器3の出力電圧調整を行わない理由は、放電中に元来整流器3からの電力供給がないため、出力電圧を調整する必要がないからである。   Similarly, when the battery state of any cell 2 reaches a predetermined abnormal state during discharging, the cell 2 is disconnected from the assembled battery 20. Here, in addition to the short circuit and the open circuit as described above, the predetermined abnormal state includes a state in which the voltage during the discharge is extremely (abnormally) low (suddenly drops), the voltage of the cell 2 is the discharge end voltage, A state where an abnormal voltage (overdischarge voltage) is reached is also included. The reason why the output voltage of the rectifier 3 is not adjusted is that there is no power supply from the rectifier 3 during discharge, so that it is not necessary to adjust the output voltage.

システムコントローラ7は、セルコントローラ6からの切離情報などに基づいて、整流器3の出力電圧を調整する装置である。例えば、1セル当たりの充電電圧の最適正値(満充電電圧)が4.1Vで、12セルで組電池20が構成されている場合において、1セルを組電池20から切り離した場合、次のように整流器3の出力電圧を下げるように、整流器3に指令する。
切り離し前の出力電圧VT0=4.1×12=49.2V
切り離し後の出力電圧VT1=4.1×11=45.1V
このようにして、切り離されたセル2の数に応じて、整流器3の出力電圧を下げるものである。従って、整流器3の出力電圧が低下された後も、各セル2では充電電圧の最適正値による充電が継続される。
The system controller 7 is a device that adjusts the output voltage of the rectifier 3 based on the separation information from the cell controller 6 and the like. For example, when the optimum positive value (full charge voltage) of the charging voltage per cell is 4.1 V and the assembled battery 20 is composed of 12 cells, when one cell is disconnected from the assembled battery 20, The rectifier 3 is commanded to lower the output voltage of the rectifier 3 as described above.
Output voltage before separation V T0 = 4.1 × 12 = 49.2V
Output voltage after separation V T1 = 4.1 × 11 = 45.1V
In this way, the output voltage of the rectifier 3 is lowered according to the number of separated cells 2. Therefore, even after the output voltage of the rectifier 3 is lowered, the charging with the optimum positive value of the charging voltage is continued in each cell 2.

次に、このような構成の組電池制御システム1の作用や、この組電池制御システム1による組電池制御方法などについて説明する。   Next, an operation of the assembled battery control system 1 having such a configuration, an assembled battery control method by the assembled battery control system 1, and the like will be described.

まず、充電時においては、すべての切離スイッチ5の第1の端子51がオンされ、全セル2が組電池20に接続された状態で、図2に示すような初期総電圧VT0および初期充電電流Iで、整流器3によって充電される。ここで、初期総電圧VT0は、12個のセル2の充電電圧の最適正値に対応した値(12×4.1=49.2V)である。このような充電状態では、セルコントローラ6によって各セル2の電池状態がリアルタイムに監視され、いずれかのセル2の電池状態が上記のような異常状態に達すると、上記のようにして、このセル2が組電池20から切り離されるとともに、整流器3の出力電圧が調整される。これにより、図2に示すように、整流器3の出力電圧が切離後総電圧VT1に調整され、充電電流が切離後充電電流Iとなる。ここで、切離後総電圧VT1は、11個のセル2の充電電圧の最適正値に対応した値(11×4.1=45.1V)である。従って、整流器3の出力電圧と組電池20の総電圧とが同電圧VT1になるため、切離後充電電流Iは、初期充電電流Iとほぼ同値に収束され、切り離し前と同等の充電電流で残りのセル2に対する充電が継続されるものである。 First, at the time of charging, with the first terminals 51 of all the disconnect switches 5 turned on and all the cells 2 are connected to the assembled battery 20, the initial total voltage V T0 and the initial voltage as shown in FIG. It is charged by the rectifier 3 with the charging current I 0 . Here, the initial total voltage V T0 is a value (12 × 4.1 = 49.2 V) corresponding to the optimal positive value of the charging voltage of the 12 cells 2. In such a charged state, the battery state of each cell 2 is monitored in real time by the cell controller 6, and when the battery state of any cell 2 reaches the abnormal state as described above, 2 is disconnected from the assembled battery 20 and the output voltage of the rectifier 3 is adjusted. Thereby, as shown in FIG. 2, the output voltage of the rectifier 3 is adjusted to the total voltage V T1 after disconnection, and the charging current becomes the post-disconnection charging current I 1 . Here, the total voltage V T1 after separation is a value (11 × 4.1 = 45.1 V) corresponding to the optimal positive value of the charging voltage of the 11 cells 2. Accordingly, since the output voltage of the rectifier 3 and the total voltage of the assembled battery 20 become the same voltage V T1 , the post-separation charging current I 1 is converged to substantially the same value as the initial charging current I 0, and is the same as before the separation. The remaining cell 2 is continuously charged with the charging current.

このように、充電中にセル2が組電池20から切り離された場合には、切り離されたセル2の数に応じて整流器3の出力電圧が調整されるため、接続されているセル2の数に応じて組電池20全体を適正に充電することが可能となる。   Thus, when the cell 2 is disconnected from the assembled battery 20 during charging, the output voltage of the rectifier 3 is adjusted according to the number of the disconnected cells 2, so the number of connected cells 2 Accordingly, the entire assembled battery 20 can be appropriately charged.

一方、放電時においては、すべての切離スイッチ5の第1の端子51がオンされ、全セル2が組電池20に接続された状態で、全セル2が放電される。このような放電状態では、セルコントローラ6によって各セル2の電池状態がリアルタイムに監視され、いずれかのセル2の電池状態が上記のような異常状態に達すると、上記のようにして、このセル2が組電池20から切り離される。例えば、いずれかのセル2の電圧が他のセル2に比較して極端に短時間で放電終止電圧に達すると、このセル2が組電池20から切り離されて、残りのセル2による放電が継続されるものである。   On the other hand, at the time of discharging, all the cells 2 are discharged in a state in which the first terminals 51 of all the disconnect switches 5 are turned on and all the cells 2 are connected to the assembled battery 20. In such a discharge state, the battery state of each cell 2 is monitored in real time by the cell controller 6. When the battery state of any cell 2 reaches the abnormal state as described above, 2 is disconnected from the assembled battery 20. For example, when the voltage of one of the cells 2 reaches the discharge end voltage in an extremely short time compared to the other cells 2, the cell 2 is disconnected from the assembled battery 20 and discharge by the remaining cells 2 continues. It is what is done.

以上のように、この組電池制御システム1および組電池制御方法によれば、いずれかのセル2の電池状態が所定の異常状態になると、このセル2が組電池20から切り離されるため、異常なセル2が早期に放電終止電圧に達するために組電池20全体の放電を終了しなければならない、という事態を回避することができる。つまり、異常なセル2が存在する場合であっても、組電池20全体の放電容量・放電時間が極端に低下することを抑制することが可能となる。   As described above, according to the assembled battery control system 1 and the assembled battery control method, when the battery state of any one of the cells 2 becomes a predetermined abnormal state, the cell 2 is disconnected from the assembled battery 20, and thus abnormal. It is possible to avoid a situation in which the discharge of the entire assembled battery 20 must be terminated in order for the cell 2 to reach the discharge end voltage early. That is, even when an abnormal cell 2 is present, it is possible to prevent the discharge capacity / discharge time of the assembled battery 20 from being extremely reduced.

具体的には、放電時に異常なセル2が発見された場合に、事前にこのセル2を組電池20から切り離すことで、放電時において異常なセル2が早期に放電終止電圧に達することによる、組電池20全体の放電終了を回避することができる。このような効果を図3に示す。すべてのセル2が健全・正常な場合、放電時における組電池20の総電圧は、適正総放電カーブTD1のように変化し、各セル2の電圧は、適正セル放電カーブCD1〜CD3のように変化して、総電圧が放電終止電圧43Vに達するまでの放電時間は、t3となる。ここで、適正セル放電カーブCD1〜CD3はそれぞれ、最大値、平均値、最小値を示す。   Specifically, when an abnormal cell 2 is discovered at the time of discharge, by disconnecting the cell 2 from the assembled battery 20 in advance, the abnormal cell 2 at the time of discharge reaches an end-of-discharge voltage early. The end of discharge of the entire assembled battery 20 can be avoided. Such an effect is shown in FIG. When all the cells 2 are healthy and normal, the total voltage of the assembled battery 20 at the time of discharge changes like an appropriate total discharge curve TD1, and the voltage of each cell 2 changes like the appropriate cell discharge curves CD1 to CD3. The discharge time until the total voltage reaches the final discharge voltage 43V is t3. Here, the appropriate cell discharge curves CD1 to CD3 indicate the maximum value, the average value, and the minimum value, respectively.

一方、異常なセル2が存在し、組電池20の総電圧が異常総放電カーブTD2のように変化し、異常なセル2の電圧が異常セル放電カーブCD4のように変化して、時間t1で異常電圧Vに達すると、従来では、この時点で組電池20全体の放電を終了していた。これに対してこの組電池制御システム1および組電池制御方法では、時間t1においてこのセル2が組電池20から切り離され、残りのセル20による放電が継続される。すなわち、組電池20の総電圧が切離後総放電カーブTD3のように変化し、時間t2で放電終止電圧43Vに達するまで放電が継続される。このように、異常なセル2が存在する場合であっても、従来の放電時間t1に比べて、放電時間を時間t2に延ばすことができる。 On the other hand, there is an abnormal cell 2, the total voltage of the assembled battery 20 changes as an abnormal total discharge curve TD2, and the voltage of the abnormal cell 2 changes as an abnormal cell discharge curve CD4. When the abnormal voltage VE is reached, the discharge of the entire assembled battery 20 has been terminated at this point in the past. On the other hand, in the assembled battery control system 1 and the assembled battery control method, the cell 2 is disconnected from the assembled battery 20 at time t1, and discharge by the remaining cells 20 is continued. That is, the total voltage of the assembled battery 20 changes like the total discharge curve TD3 after disconnection, and the discharge is continued until the discharge end voltage 43V is reached at time t2. Thus, even when there is an abnormal cell 2, the discharge time can be extended to time t2, compared to the conventional discharge time t1.

ここで、例えば、組電池20全体の放電終止電圧(直流負荷装置101によって規定される電圧)が43Vで、1つの異常なセル2を切り離した場合、残り11セルの1セル当たりの放電終止電圧は、次のようになる。
放電終止電圧=43V÷11セル=3.9V
一方、セル2を切り離す前の12セルの状態における1セル当たりの放電終止電圧は、次のようになる。
放電終止電圧=43V÷12セル=3.6V
Here, for example, when the discharge end voltage of the entire assembled battery 20 (voltage defined by the DC load device 101) is 43 V and one abnormal cell 2 is disconnected, the discharge end voltage per cell of the remaining 11 cells Is as follows.
End-of-discharge voltage = 43V ÷ 11 cells = 3.9V
On the other hand, the discharge end voltage per cell in the state of 12 cells before separating the cell 2 is as follows.
End-of-discharge voltage = 43V ÷ 12 cells = 3.6V

そして、1つの異常なセル2を切り離して、放電終止電圧が3.6Vから3.9Vに変化することで、セル2・組電池20の放電容量は、図4に示すように、例えば、100%から60%に変化する。このように異常なセル2を組電池20から切り離すことで、残りの組電池20の容量が減少するが、異常なセル2が存在することで組電池20全体の放電を早期に終了させる場合に比べて、組電池20全体の放電容量・放電時間を大きく維持することが可能となる。   Then, by disconnecting one abnormal cell 2 and changing the discharge end voltage from 3.6 V to 3.9 V, the discharge capacity of the cell 2 and the assembled battery 20 is, for example, 100 as shown in FIG. % To 60%. When the abnormal cell 2 is disconnected from the assembled battery 20 in this manner, the capacity of the remaining assembled battery 20 is reduced. However, when the abnormal cell 2 exists, the discharge of the entire assembled battery 20 is terminated early. In comparison, the discharge capacity and discharge time of the entire assembled battery 20 can be maintained large.

(実施の形態2)
図5は、この実施の形態に係る組電池制御システム1を、3組のリチウムイオン組電池20を備えた直流電源システムに適用した状態を示す概略構成図である。ここで、実施の形態1と同等の構成については、同一の符号を付することで、その説明を省略する。
(Embodiment 2)
FIG. 5 is a schematic configuration diagram showing a state in which the assembled battery control system 1 according to this embodiment is applied to a DC power supply system including three sets of lithium ion assembled batteries 20. Here, about the structure equivalent to Embodiment 1, the description is abbreviate | omitted by attaching | subjecting the same code | symbol.

この実施の形態では、3組の組電池20が並列に接続され、それぞれの組電池20に対して、バイパス回路4、切離スイッチ5およびセルコントローラ6が設けられ、システムコントローラ7は各セルコントローラ6と通信可能に接続されている。そして、システムコントローラ7では、実施の形態1の制御(整流器3の出力調整制御)に加えて、いずれかのセルコントローラ6から切離情報を受信した場合に、切り離されたセル2の数と同じ数のセル2を他の組電池20から切り離すように、他のセルコントローラ6に指令送信する。   In this embodiment, three sets of assembled batteries 20 are connected in parallel, and for each assembled battery 20, a bypass circuit 4, a disconnect switch 5 and a cell controller 6 are provided. 6 is communicably connected. In the system controller 7, in addition to the control of the first embodiment (the output adjustment control of the rectifier 3), when the disconnection information is received from any of the cell controllers 6, the number is the same as the number of the disconnected cells 2. A command is transmitted to the other cell controllers 6 so as to separate the number of cells 2 from the other assembled batteries 20.

例えば、第Cの組電池20から1つのセル2(図中符号C1)が切り離された旨の切離情報を受信した場合、第Aおよび第Bの組電池20のセルコントローラ6に対して、1つのセル2を切り離すように指令を送信する。ここで、第Aおよび第Bの組電池20において、どのセル2を切り離すかは、各セル2の電池状態に基づいて判定される。例えば、電圧が最も低い、あるいは最も高いセル2を選定する。この指令を受けて、他のセルコントローラ6によって、他の組電池20からセル2(図中符号C2、C3)が切り離され、すべての組電池20においてセル数が同数に維持される。   For example, when receiving disconnection information indicating that one cell 2 (reference numeral C1 in the figure) has been disconnected from the C-th assembled battery 20, the cell controllers 6 of the A-th and B-th assembled batteries 20 A command is transmitted to disconnect one cell 2. Here, in the A and B assembled batteries 20, which cell 2 is to be separated is determined based on the battery state of each cell 2. For example, the cell 2 having the lowest voltage or the highest voltage is selected. In response to this command, the other cell controller 6 separates the cells 2 (reference numerals C2 and C3 in the figure) from the other assembled batteries 20 and maintains the same number of cells in all the assembled batteries 20.

このように、この実施の形態によれば、例えば、第Cの組電池20のあるセル2の電池状態が異常状態になると、このセル2が第Cの組電池20から切り離されるとともに、1つのセル2が第Aおよび第Bの組電池20から切り離されて、すべての組電池20におけるセル数が同数に維持される。このため、組電池20間における電圧バランスが保たれ、組電池20同士で電流の流れ込みが生じることがなく、複数の組電池20を適正に充放電することが可能となる。   Thus, according to this embodiment, for example, when the battery state of a cell 2 with the C-th assembled battery 20 becomes abnormal, the cell 2 is disconnected from the C-th assembled battery 20 and The cell 2 is disconnected from the A-th and B-th assembled batteries 20, and the number of cells in all the assembled batteries 20 is maintained at the same number. For this reason, the voltage balance between the assembled batteries 20 is maintained, current does not flow between the assembled batteries 20, and a plurality of assembled batteries 20 can be charged and discharged appropriately.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、組電池充電システム1を直流電源システムに適用した場合について説明したが、無停電電源装置(UPS:Uninterruptible Power Supply)や電気自動車などにも適用することができる。無停電電源装置に適用する場合、図6に示すように、整流器3で直流に変換された電力が、交直変換器103で交流に変換されて交流負荷装置102に供給され、交直変換器103に対して放電スイッチ9を介して組電池20が接続されている。また、充電手段としての充電器8が組電池20に接続され、セル2の切り離しに応じて、システムコントローラ7によって充電器8の出力電圧を調整するものである。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the case where the assembled battery charging system 1 is applied to a DC power supply system has been described. However, the present invention can also be applied to an uninterruptible power supply (UPS) or an electric vehicle. When applied to an uninterruptible power supply, as shown in FIG. 6, the electric power converted into direct current by the rectifier 3 is converted into alternating current by the AC / DC converter 103 and supplied to the AC load device 102. On the other hand, an assembled battery 20 is connected via a discharge switch 9. In addition, a charger 8 as a charging means is connected to the assembled battery 20, and the output voltage of the charger 8 is adjusted by the system controller 7 in accordance with the separation of the cell 2.

ここで、図6では、簡略化のために5セルしか図示していないが、実際には、数十から百以上のセル2が接続されているため、数セルを組電池20から切り離したとしても、組電池20全体の容量低下は少ない。例えば、100セルで組電池20が構成され、組電池20全体の放電終止電圧が350V(1セル当たりの放電終止電圧が3.5V)の場合、1セルを組電池20から切り離したとしても、残り99セルの1セル当たりの放電終止電圧は約3.53Vで、放電容量は100%近く維持される(図4参照)。同様に、5セルを組電池20から切り離したとしても、残り95セルの1セル当たりの放電終止電圧は約3.68Vで、放電容量は約95%維持され、さらに、10セルを組電池20から切り離したとしても、残り90セルの放電容量は約60%維持されるものである(1セル当たりの放電終止電圧は約3.9V)。   Here, in FIG. 6, only five cells are shown for simplification, but in reality, several cells are separated from the assembled battery 20 because several tens to hundreds of cells 2 are connected. However, the capacity reduction of the assembled battery 20 as a whole is small. For example, when the assembled battery 20 is configured with 100 cells and the discharge end voltage of the entire assembled battery 20 is 350 V (discharge end voltage per cell is 3.5 V), even if one cell is disconnected from the assembled battery 20, The discharge end voltage per cell of the remaining 99 cells is about 3.53 V, and the discharge capacity is maintained near 100% (see FIG. 4). Similarly, even if 5 cells are separated from the assembled battery 20, the discharge end voltage per cell of the remaining 95 cells is about 3.68V, the discharge capacity is maintained at about 95%, and further, 10 cells are connected to the assembled battery 20 Even if it is disconnected from the battery, the discharge capacity of the remaining 90 cells is maintained at about 60% (the discharge end voltage per cell is about 3.9 V).

また、上記の実施の形態では、各リチウムイオンセル2に切離スイッチ5を設けているが、複数のセル2ごとに切離スイッチ5を設けてもよい。例えば、図7に示すように、上記のように無停電電源装置に適用した場合に、3セルごとに切離スイッチ5を設けてグループ化する。そして、同一グループ内のいずれかのセル2の電池状態が異常状態に達した場合に、切離スイッチ5の第2の端子52をオンして、このグループ内の3セルすべてを組電池20から切り離してもよい。   In the above embodiment, the separation switch 5 is provided for each lithium ion cell 2, but the separation switch 5 may be provided for each of the plurality of cells 2. For example, as shown in FIG. 7, when applied to an uninterruptible power supply as described above, a separation switch 5 is provided for every three cells to be grouped. Then, when the battery state of any cell 2 in the same group reaches an abnormal state, the second terminal 52 of the disconnect switch 5 is turned on, and all three cells in this group are removed from the assembled battery 20. It may be separated.

このように複数のセル2ごとに切離スイッチ5を設けることで、切離スイッチ5の配設数を少なくして、システム1の信頼性を向上させることができるとともに、システム1の簡素化・簡易化および低コスト化が可能となる。特に、多数のセル2を備える無停電電源装置では、その効果が大きい。   Thus, by providing the separation switch 5 for each of the plurality of cells 2, the number of the separation switches 5 can be reduced, the reliability of the system 1 can be improved, and the system 1 can be simplified. Simplification and cost reduction are possible. In particular, in an uninterruptible power supply device including a large number of cells 2, the effect is great.

さらに、上記の実施の形態では、セルコントローラ6とシステムコントローラ7とを分けているが、1つのコントローラで上記のような制御を行うようにしてもよい。また、リチウムイオンセル2に限らず、鉛蓄電池など、広く二次電池一般に適用することができる。   Furthermore, in the above embodiment, the cell controller 6 and the system controller 7 are separated, but the above-described control may be performed by one controller. Moreover, not only the lithium ion cell 2 but widely applicable to secondary batteries such as lead storage batteries.

1 組電池制御システム
2 リチウムイオンセル(リチウムイオン二次電池)
20 リチウムイオン組電池
3 整流器(充電手段)
4 バイパス回路
5 切離スイッチ(切離手段)
6 セルコントローラ(制御手段)
7 システムコントローラ(制御手段)
1 Battery control system 2 Lithium ion cell (lithium ion secondary battery)
20 Lithium ion battery 3 Rectifier (charging means)
4 Bypass circuit 5 Disconnect switch (disconnect means)
6 Cell controller (control means)
7 System controller (control means)

Claims (5)

二次電池が複数直列に接続された組電池を制御する組電池制御システムであって、
前記組電池を充電する充電手段と、
前記二次電池を前記組電池から切り離す切離手段と、
前記各二次電池の電圧や温度を含む電池状態を監視し、前記各二次電池の電池状態に基づいて前記充電手段および前記各切離手段を制御する制御手段と、
を備え、
前記制御手段は、前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記切離手段によって切り離すとともに、充電中の場合には前記切り離した二次電池の数に応じて前記充電手段の出力電圧を調整する、
ことを特徴とする組電池制御システム。
An assembled battery control system for controlling an assembled battery in which a plurality of secondary batteries are connected in series,
Charging means for charging the assembled battery;
Separating means for separating the secondary battery from the assembled battery;
Control means for monitoring the battery state including the voltage and temperature of each secondary battery, and controlling the charging means and the disconnecting means based on the battery state of each secondary battery;
With
The control means disconnects the secondary battery by the disconnecting means when the battery state of the secondary battery reaches a predetermined abnormal state, and counts the number of the secondary batteries disconnected when charging. Adjusting the output voltage of the charging means according to
A battery pack control system.
前記組電池が複数並列に接続されている場合、
前記制御手段は、一部の組電池の二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記切離手段によって切り離すとともに、切り離した二次電池の数と同じ数の二次電池を他の組電池から前記切離手段によって切り離す、
ことを特徴とする請求項1に記載の組電池制御システム。
When the assembled battery is connected in parallel,
When the battery state of the secondary batteries of some of the assembled batteries has reached a predetermined abnormal state, the control means disconnects the secondary batteries by the disconnecting means and has the same number as the detached secondary batteries. A number of secondary batteries are separated from other assembled batteries by the separating means,
The assembled battery control system according to claim 1.
前記切離手段は、複数の前記二次電池ごとに設けられている、
ことを特徴とする請求項1または2のいずれか1項に記載の組電池制御システム。
The separation means is provided for each of the plurality of secondary batteries.
The assembled battery control system according to any one of claims 1 and 2.
二次電池が複数直列に接続された組電池を制御する組電池制御方法であって、
前記二次電池を前記組電池から切り離し可能に接続し、
前記各二次電池の電圧や温度を含む電池状態を監視し、
前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記組電池から切り離すとともに、充電中の場合には前記切り離した二次電池の数に応じて、前記組電池を充電する充電手段の出力電圧を調整する、
ことを特徴とする組電池制御方法。
An assembled battery control method for controlling an assembled battery in which a plurality of secondary batteries are connected in series,
The secondary battery is detachably connected from the assembled battery,
Monitor battery status including voltage and temperature of each secondary battery,
When the battery state of the secondary battery reaches a predetermined abnormal state, the secondary battery is disconnected from the assembled battery, and when being charged, depending on the number of the separated secondary batteries, Adjust the output voltage of the charging means to charge the battery,
And a battery pack control method.
前記組電池が複数並列に接続されている場合、
一部の組電池の二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を該組電池から切り離すとともに、切り離した二次電池の数と同じ数の二次電池を他の組電池から切り離す、
ことを特徴とする請求項4に記載の組電池制御方法。
When the assembled battery is connected in parallel,
When the battery state of the secondary battery of some of the assembled batteries reaches a predetermined abnormal state, the secondary battery is disconnected from the assembled battery, and the same number of secondary batteries as the disconnected secondary batteries are removed. Disconnect from other batteries
The assembled battery control method according to claim 4.
JP2012035042A 2012-02-21 2012-02-21 Battery pack control system and battery pack control method Expired - Fee Related JP5916429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035042A JP5916429B2 (en) 2012-02-21 2012-02-21 Battery pack control system and battery pack control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035042A JP5916429B2 (en) 2012-02-21 2012-02-21 Battery pack control system and battery pack control method

Publications (2)

Publication Number Publication Date
JP2013172552A true JP2013172552A (en) 2013-09-02
JP5916429B2 JP5916429B2 (en) 2016-05-11

Family

ID=49266166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035042A Expired - Fee Related JP5916429B2 (en) 2012-02-21 2012-02-21 Battery pack control system and battery pack control method

Country Status (1)

Country Link
JP (1) JP5916429B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956798A (en) * 2014-05-19 2014-07-30 国家电网公司 Equalizing charge all-in-one machine
WO2017046900A1 (en) * 2015-09-16 2017-03-23 株式会社ユーパーツ Secondary battery regeneration device and regeneration method
WO2019116145A1 (en) * 2017-12-11 2019-06-20 株式会社半導体エネルギー研究所 Charging control device and electronic device having secondary battery
EP3517986A3 (en) * 2017-12-25 2019-08-21 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
JP2021045017A (en) * 2019-09-13 2021-03-18 矢崎総業株式会社 Battery control unit and cell system
WO2022255104A1 (en) * 2021-05-31 2022-12-08 日本碍子株式会社 Storage battery set and storage battery system
JP7453942B2 (en) 2021-07-28 2024-03-21 矢崎総業株式会社 Storage battery control device, power storage system, and storage battery control method
JP7486691B1 (en) 2022-11-29 2024-05-17 三菱電機株式会社 POWER STORAGE DEVICE AND POWER CONVERSION DEVICE INCLUDING POWER STORAGE DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP2000354333A (en) * 1999-06-08 2000-12-19 Sony Corp Power unit and battery unit
JP2001309563A (en) * 2000-02-15 2001-11-02 Sekisui Chem Co Ltd Building power supply system and battery device
JP2011172433A (en) * 2010-02-22 2011-09-01 Denso Corp Battery voltage monitoring device
WO2011127251A2 (en) * 2010-04-09 2011-10-13 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP2000354333A (en) * 1999-06-08 2000-12-19 Sony Corp Power unit and battery unit
JP2001309563A (en) * 2000-02-15 2001-11-02 Sekisui Chem Co Ltd Building power supply system and battery device
JP2011172433A (en) * 2010-02-22 2011-09-01 Denso Corp Battery voltage monitoring device
WO2011127251A2 (en) * 2010-04-09 2011-10-13 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956798A (en) * 2014-05-19 2014-07-30 国家电网公司 Equalizing charge all-in-one machine
WO2017046900A1 (en) * 2015-09-16 2017-03-23 株式会社ユーパーツ Secondary battery regeneration device and regeneration method
JP7104065B2 (en) 2017-12-11 2022-07-20 株式会社半導体エネルギー研究所 Charge control device
WO2019116145A1 (en) * 2017-12-11 2019-06-20 株式会社半導体エネルギー研究所 Charging control device and electronic device having secondary battery
JPWO2019116145A1 (en) * 2017-12-11 2021-01-21 株式会社半導体エネルギー研究所 Charge control device and electronic device with secondary battery
US11984562B2 (en) 2017-12-11 2024-05-14 Semiconductor Energy Laboratory Co., Ltd. Charging-control device and electronic device with secondary battery
US11563238B2 (en) 2017-12-11 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Charging-control device and electronic device with secondary battery
EP3517986A3 (en) * 2017-12-25 2019-08-21 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
US11193980B2 (en) 2017-12-25 2021-12-07 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
JP7295750B2 (en) 2019-09-13 2023-06-21 矢崎総業株式会社 Battery control unit and battery system
JP2021045017A (en) * 2019-09-13 2021-03-18 矢崎総業株式会社 Battery control unit and cell system
WO2022255104A1 (en) * 2021-05-31 2022-12-08 日本碍子株式会社 Storage battery set and storage battery system
JP7453942B2 (en) 2021-07-28 2024-03-21 矢崎総業株式会社 Storage battery control device, power storage system, and storage battery control method
JP7486691B1 (en) 2022-11-29 2024-05-17 三菱電機株式会社 POWER STORAGE DEVICE AND POWER CONVERSION DEVICE INCLUDING POWER STORAGE DEVICE

Also Published As

Publication number Publication date
JP5916429B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5916429B2 (en) Battery pack control system and battery pack control method
JP5587421B2 (en) Power system
US20130154569A1 (en) Electric energy storage system and method of maintaining the same
JP4967162B2 (en) Secondary battery pack
JP2013162597A (en) Assembled battery discharge control system and assembled battery discharge control method
EP2658027A1 (en) Power supply system
KR20150081731A (en) Battery pack, energy storage system including the battery pack, and method of operating the battery pack
CN112655131B (en) Power storage device and charging method
US9331494B2 (en) Battery system
US20140266049A1 (en) Detection and prevention of short formation in battery cells
JP2015195674A (en) Power storage battery assembly control system
JP2013192389A (en) Discharge control system and discharge control method for battery pack
WO2020080543A1 (en) Power storage system
JP7466198B2 (en) Energy Storage System
JP4633615B2 (en) Battery pack and method of charging the battery pack
JP2012209994A (en) Charge control device for lithium ion battery pack, control method and lithium ion battery pack system
JP2006223050A (en) Power supply system
JP2011029010A (en) Lithium ion secondary battery system and power supply method to management device
JP4015126B2 (en) DC power supply system
JP5409163B2 (en) Lithium-ion battery management device, management method, and lithium-ion battery system
JP6214131B2 (en) Battery pack charging system and battery pack charging method
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP5541682B2 (en) Lithium-ion battery charging system and charging method
JP5489779B2 (en) Lithium-ion battery charging system and charging method
JP2013146159A (en) Charge control system and charge control method of battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees