JP2013172499A - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
JP2013172499A
JP2013172499A JP2012033553A JP2012033553A JP2013172499A JP 2013172499 A JP2013172499 A JP 2013172499A JP 2012033553 A JP2012033553 A JP 2012033553A JP 2012033553 A JP2012033553 A JP 2012033553A JP 2013172499 A JP2013172499 A JP 2013172499A
Authority
JP
Japan
Prior art keywords
power
contact
contact power
wireless communication
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033553A
Other languages
Japanese (ja)
Inventor
Tatsuya Izumi
達也 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2012033553A priority Critical patent/JP2013172499A/en
Publication of JP2013172499A publication Critical patent/JP2013172499A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission system capable of reducing charging cost.SOLUTION: A power transmission system 100 transmits electrical power from a power supply device 10 to a power incoming device 20 in a non-contact manner. The power supply device 10 includes a communication part 13 and a power supply coil 12. The power incoming device 20 includes a communication part 29, a power incoming coil 21, and a rectifier unit 22. The power supply device 10 or power incoming device 20 includes a timer input part 30 that presets the charging start time of a power storage device 23. The power transmission system 100 determines a power transmission environment from the power supply device 10 to the power incoming device 20 by performing pre-charging, and shifts to a stand-by state when the power transmission environment is an environment capable of transmitting electrical power. After the charging start time, the power transmission environment is determined again by performing pre-charging again. When the power transmission environment is an environment capable of transmitting electrical power, the power storage device 23 is charged.

Description

本発明は、非接触で電力伝送を行うための非接触電力伝送システムに関するものである。   The present invention relates to a non-contact power transmission system for performing non-contact power transmission.

環境に配慮した車両として、電気自動車やハイブリッド車などの電動車両が実用化されている。電気自動車では、車両外部の電源(例えば、電源コンセント)から車載の蓄電装置(例えば、バッテリ)を充電可能になっている。例えば、自宅や共用施設などに設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより充電を行う。一方、ハイブリッド車でも、同様に、車両外部の電源から車載の蓄電装置を充電可能にしたプラグインハイブリッド車が実用化されている。   As environmentally friendly vehicles, electric vehicles such as electric vehicles and hybrid vehicles have been put into practical use. In an electric vehicle, an in-vehicle power storage device (for example, a battery) can be charged from a power source (for example, a power outlet) outside the vehicle. For example, charging is performed by connecting a power outlet provided at home or a common facility to a charging port provided in the vehicle with a charging cable. On the other hand, plug-in hybrid vehicles that enable charging of an in-vehicle power storage device from a power source outside the vehicle have also been put to practical use.

ところで、車両外部から車両への給電手法として、ケーブルを用いない非接触給電が近年注目されている。非接触給電手法としては、例えば、電磁結合を利用した手法(電磁誘導を用いた手法、電磁波を用いた手法、共鳴法など)が研究されている。特許文献1には、共鳴法を利用した非接触給電システムが開示されている。   Incidentally, in recent years, non-contact power feeding without using a cable has attracted attention as a power feeding method from the outside of the vehicle to the vehicle. As a non-contact power feeding method, for example, a method using electromagnetic coupling (a method using electromagnetic induction, a method using electromagnetic waves, a resonance method, etc.) has been studied. Patent Document 1 discloses a contactless power feeding system using a resonance method.

共鳴法では、送電側の共鳴器(自己共振コイル)と受電側の共鳴器(自己共振コイル)との位置ずれ(距離)が伝送効率に影響する。伝送効率を向上させるためには、送電側(インフラ側)と受電側(車両側)の間で通信を行いながら、運転者の駐車動作により、送電側の共鳴器と受電側の共鳴器との位置合わせを行う必要がある。   In the resonance method, the positional deviation (distance) between the power transmitting side resonator (self-resonant coil) and the power receiving side resonator (self-resonant coil) affects the transmission efficiency. In order to improve the transmission efficiency, communication between the power transmission side (infrastructure side) and the power reception side (vehicle side) is performed by the driver's parking operation, so that the resonator on the power transmission side and the resonator on the power reception side are connected. Need to align.

国際公開第2011/001524号パンフレットInternational Publication No. 2011/001524 Pamphlet

ところで、特許文献1に開示の非接触給電システムでは、車両が駐車すると直ぐに給電フローを開始する。しかしながら、電気料金は昼夜で異なるので、例えば電気料金が高い昼間の時間帯に駐車行為を行うと、充電コストが高いという問題があった。   By the way, in the non-contact power feeding system disclosed in Patent Document 1, the power feeding flow is started as soon as the vehicle is parked. However, since the electricity charges differ between day and night, for example, if parking is performed during the daytime when the electricity charges are high, there is a problem that the charging cost is high.

そこで、本発明は、充電コストを低減することが可能な非接触電力伝送システムを提供することを目的としている。   Then, this invention aims at providing the non-contact electric power transmission system which can reduce charging cost.

本発明の非接触電力伝送システムは、非接触給電装置から非接触受電装置へ非接触で電力伝送を行うものである。非接触給電装置は、非接触受電装置と無線通信を行う給電用無線通信部と、給電用無線通信部による無線通信に応じて、電磁結合を利用して非接触受電装置に電力供給を行うための給電コイルとを備え、非接触受電装置は、非接触給電装置と無線通信を行う受電用無線通信部と、受電用無線通信部による無線通信に応じて、電磁結合を利用して非接触給電装置から電力取得を行うための受電コイルと、受電コイルからの交流電力を整流して、蓄電装置を充電するための直流電圧を生成する整流器ユニットとを備え、非接触給電装置又は非接触受電装置が、蓄電装置の充電開始時刻を予め設定するタイマー入力部を更に備える。この非接触電力伝送システムでは、非接触給電装置と非接触受電装置との間でプリチャージを行うことによって、非接触給電装置から非接触受電装置への電力伝送環境を非接触給電装置又は非接触受電装置によって判断し、電力伝送環境が電力伝送可能な環境である場合に、非接触給電装置及び非接触受電装置は待機状態に移行し、充電開始時刻経過後、非接触給電装置と非接触受電装置との間で再プリチャージを行うことによって、電力伝送環境を非接触給電装置又は非接触受電装置によって再度判断し、当該電力伝送環境が電力伝送可能な環境である場合に、非接触給電装置及び非接触受電装置によって蓄電装置の充電を行う。   The contactless power transmission system of the present invention performs power transmission in a contactless manner from a contactless power feeding device to a contactless power receiving device. The non-contact power supply device supplies power to the non-contact power receiving device using electromagnetic coupling according to the wireless communication by the power supply wireless communication unit that performs wireless communication with the non-contact power receiving device and the wireless communication by the power supply wireless communication unit. The non-contact power receiving device includes a power receiving wireless communication unit that performs wireless communication with the non-contact power feeding device, and non-contact power feeding using electromagnetic coupling according to wireless communication by the power receiving wireless communication unit. A non-contact power feeding device or a non-contact power receiving device comprising: a power receiving coil for acquiring power from the device; and a rectifier unit that rectifies AC power from the power receiving coil and generates a DC voltage for charging the power storage device However, it further includes a timer input unit for presetting the charging start time of the power storage device. In this non-contact power transmission system, the pre-charging is performed between the non-contact power feeding device and the non-contact power receiving device, so that the power transmission environment from the non-contact power feeding device to the non-contact power receiving device is determined. When the power transmission environment is an environment where power transmission is possible, the contactless power feeding device and the contactless power receiving device shift to a standby state, and after the charging start time has elapsed, the contactless power feeding device and the contactless power receiving device When the power transmission environment is determined again by the non-contact power feeding device or the non-contact power receiving device by re-precharging with the device, and the power transmission environment is an environment capable of power transmission, the non-contact power feeding device In addition, the power storage device is charged by the non-contact power receiving device.

この非接触電力伝送システムによれば、タイマー入力部によって、充電開始時刻を予め設定することができるので、例えば電気料金が比較的に安い時間帯に充電を行うことができる。したがって、充電コストを低減することが可能となる。   According to this non-contact power transmission system, since the charging start time can be set in advance by the timer input unit, for example, charging can be performed in a time zone where the electricity rate is relatively low. Therefore, the charging cost can be reduced.

ここで、給電コイルと受電コイルとの間に異物が侵入したり、給電コイルと受電コイルとの相対位置がずれていたりすると、非接触給電装置から非接触受電装置へ適切な電力が伝送されず、蓄電装置を適切に充電することができない。更には、非接触給電装置の負荷が増大し、安全性に問題が生じることがある。また、給電コイルと受電コイルとの間に動物等が侵入する場合にも安全性に問題がある。   Here, if a foreign object enters between the power feeding coil and the power receiving coil, or if the relative position between the power feeding coil and the power receiving coil is shifted, appropriate power is not transmitted from the non-contact power feeding device to the non-contact power receiving device. The power storage device cannot be charged properly. Furthermore, the load of the non-contact power feeding apparatus increases, which may cause a safety problem. There is also a problem in safety when an animal or the like enters between the power supply coil and the power reception coil.

そこで、この非接触電力伝送システムでは、プリチャージを行うことによって、非接触給電装置から非接触受電装置への電力伝送環境を判断し、電力伝送環境が電力伝送可能な環境である場合に待機状態に移行する。例えば、プリチャージにおいて、非接触給電装置から非接触受電装置への伝送電力が、蓄電装置を充電するための設定電力相当の電力である場合に、給電コイルと受電コイルとの間に異物や動物等が侵入しておらず、また、給電コイルと受電コイルとの相対位置が合っており、非接触給電装置から非接触受電装置への電力伝送環境が電力伝送可能な環境であると判断する。これによって、充電開始時刻に確実に充電を行うことができる。   Therefore, in this non-contact power transmission system, the pre-charging is performed to determine the power transmission environment from the non-contact power feeding device to the non-contact power receiving device, and when the power transmission environment is an environment capable of power transmission, Migrate to For example, in the precharge, when the transmission power from the non-contact power supply device to the non-contact power reception device is the power equivalent to the set power for charging the power storage device, a foreign object or animal is interposed between the power supply coil and the power reception coil. And the relative positions of the power feeding coil and the power receiving coil are matched, and it is determined that the power transmission environment from the non-contact power feeding device to the non-contact power receiving device is an environment where power can be transmitted. Thus, charging can be performed reliably at the charging start time.

ところで、非接触給電の場合、待機状態中に、何らかの外的要因によって電力伝送環境が変化してしまうことがある。例えば、給電コイルと受電コイルとの間に異物や動物等が侵入して、電力伝送を適切に行うことができない環境に変化する可能性がある。   By the way, in the case of non-contact power feeding, the power transmission environment may change due to some external factor during the standby state. For example, a foreign object, an animal, or the like may enter between the power feeding coil and the power receiving coil, and there is a possibility of changing to an environment where power transmission cannot be performed appropriately.

しかしながら、この非接触電力伝送システムによれば、充電開始時刻が経過したときにも、再度プリチャージを行うことによって上記した電力伝送環境を再度判断し、電力伝送環境が電力伝送可能な環境である場合に蓄電装置の充電を開始するので、より確実に充電を行うことができる。   However, according to this non-contact power transmission system, even when the charging start time elapses, the above power transmission environment is determined again by performing precharging again, and the power transmission environment is an environment in which power transmission is possible. In this case, since charging of the power storage device is started, charging can be performed more reliably.

上記した非接触受電装置は、待機状態中に電力伝送環境を変更する場合には、受電用無線通信部によって非接触給電装置に充電中止を通知することが好ましい。   When the above-described non-contact power receiving apparatus changes the power transmission environment during the standby state, it is preferable to notify the non-contact power feeding apparatus of the charging stop by the power receiving wireless communication unit.

ここで、非接触給電の場合、ユーザがタイマー設定を忘れて、充電開始時刻に車両(非接触受電装置)を出車させてしまう(電力伝送環境、例えば、給電コイルと受電コイルとの相対位置を変更してしまう)可能性があり、このような場合、非接触給電装置はエラー状態となってしまう。   Here, in the case of non-contact power feeding, the user forgets to set the timer and leaves the vehicle (non-contact power receiving device) at the charging start time (power transmission environment, for example, the relative position between the power feeding coil and the power receiving coil) In such a case, the non-contact power feeding device will be in an error state.

しかしながら、この非接触電力伝送システムによれば、受電用無線通信部によって非接触給電装置に充電中止を通知することによって充電中止を指示することができるので、非接触給電装置はエラー状態となることがない。   However, according to this non-contact power transmission system, it is possible to instruct the non-contact power supply apparatus to stop charging by notifying the non-contact power supply apparatus of the non-contact power supply apparatus, so that the non-contact power supply apparatus enters an error state. There is no.

また、上記した非接触電力伝送システムは、充電開始時刻経過後、再プリチャージを行う前に、受電用無線通信部によって非接触給電装置に接続要求を行ってもよい。また、上記した非接触電力伝送システムは、充電開始時刻経過後、再プリチャージを行う前に、受電用無線通信部によって非接触給電装置の探索を行ってもよい。   In addition, the above-described non-contact power transmission system may make a connection request to the non-contact power feeding device by the power receiving wireless communication unit before re-precharging after the charging start time has elapsed. In addition, the above-described contactless power transmission system may search for a contactless power feeding device by the power receiving wireless communication unit before performing re-precharge after the charging start time has elapsed.

本発明によれば、充電コストを低減することができる。   According to the present invention, the charging cost can be reduced.

本発明の一実施形態に係る非接触電力伝送システムの電力系統の構成を示す模式図である。It is a schematic diagram which shows the structure of the electric power system of the non-contact electric power transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非接触電力伝送システムの電力及び制御系統を示す回路ブロック図である。It is a circuit block diagram which shows the electric power and control system of the non-contact electric power transmission system which concern on one Embodiment of this invention. 図2に示す本実施形態の非接触給電装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the non-contact electric power supply apparatus of this embodiment shown in FIG. 図2に示す本実施形態の車両(非接触受電装置)の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the vehicle (non-contact power receiving apparatus) of this embodiment shown in FIG.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

図1は、本発明の一実施形態に係る非接触電力伝送システムの電力系統の構成を示す模式図であり、図2は、本発明の一実施形態に係る非接触電力伝送システムの電力及び制御系統を示す回路ブロック図である。図1及び図2に示す非接触電力伝送システム100は、自宅や共用施設(例えば、ガソリンスタンド)の充電用駐車スペースに設けられる非接触給電装置10と、電気自動車やハイブリット車などの電動車両(非接触受電装置)20とを備え、非接触給電装置10から車両20へ非接触で電力伝送を行うものである。   FIG. 1 is a schematic diagram illustrating a configuration of a power system of a contactless power transmission system according to an embodiment of the present invention, and FIG. 2 illustrates power and control of the contactless power transmission system according to an embodiment of the present invention. It is a circuit block diagram which shows a system | strain. A non-contact power transmission system 100 shown in FIGS. 1 and 2 includes a non-contact power feeding apparatus 10 provided in a charging parking space at home or a common facility (for example, a gas station), and an electric vehicle such as an electric vehicle or a hybrid vehicle ( A non-contact power receiving device) 20 for power transmission from the non-contact power feeding device 10 to the vehicle 20 in a non-contact manner.

非接触給電装置10は、インバータユニット11と、給電コイルユニット12と、無線通信部13と、駐車検知センサ14とを備える。一方、車両20は、受電コイルユニット21と、整流器ユニット22と、駆動用バッテリ(蓄電装置)23と、整流器リレー24と、電池監視ユニット25と、電源管理ECU(Electronic Control Unit)26と、給電制御ECU(ElectronicControl Unit)27と、給電開始スイッチ28と、無線通信部29と、タイマー入力装置30を備える。   The non-contact power feeding device 10 includes an inverter unit 11, a power feeding coil unit 12, a wireless communication unit 13, and a parking detection sensor 14. On the other hand, the vehicle 20 includes a power receiving coil unit 21, a rectifier unit 22, a driving battery (power storage device) 23, a rectifier relay 24, a battery monitoring unit 25, a power management ECU (Electronic Control Unit) 26, and power feeding. A control ECU (Electronic Control Unit) 27, a power supply start switch 28, a wireless communication unit 29, and a timer input device 30 are provided.

まず、非接触給電装置10では、インバータユニット11は、インバータを有し、電気事業者からの系統電源(商用電源)を高周波電力に変換する。インバータユニット11は、この高周波電力(高周波電流)を給電コイルユニット12に供給する。   First, in the non-contact power supply apparatus 10, the inverter unit 11 has an inverter, and converts a system power supply (commercial power supply) from an electric power company into high-frequency power. The inverter unit 11 supplies this high frequency power (high frequency current) to the feeding coil unit 12.

給電コイルユニット12は、給電コイルを有し、この給電コイルと受電コイルユニット21における受電コイルとの電磁誘導作用を利用して、インバータユニット11から供給される電力を受電コイルユニット21に非接触で供給する。例えば、給電コイルユニット12は、充電用駐車スペースの床面に設けられている。   The power feeding coil unit 12 has a power feeding coil, and uses the electromagnetic induction action between the power feeding coil and the power receiving coil in the power receiving coil unit 21 to supply power supplied from the inverter unit 11 to the power receiving coil unit 21 in a non-contact manner. Supply. For example, the feeding coil unit 12 is provided on the floor surface of the charging parking space.

無線通信部13は、車両20における無線通信部29と無線で通信を行うものであり、非接触給電装置10と車両20との間で各種情報の送受信を行う。非接触給電装置10から車両20へ送信する情報としては、後述する接続応答、プリチャージOK/NG、給電停止要求などであり、車両20から非接触給電装置10へ送信する情報としては、後述する接続要求、プリチャージ要求、整流器ユニット22の出力電力(電流)、バッテリの充電状態、給電停止要求などである。なお、本実施形態では、無線通信部13は、インバータユニット11に搭載されている。   The wireless communication unit 13 communicates wirelessly with the wireless communication unit 29 in the vehicle 20, and transmits and receives various types of information between the contactless power supply device 10 and the vehicle 20. Information transmitted from the non-contact power supply apparatus 10 to the vehicle 20 includes a connection response, precharge OK / NG, a power supply stop request, which will be described later, and information transmitted from the vehicle 20 to the non-contact power supply apparatus 10 will be described later. The connection request, the precharge request, the output power (current) of the rectifier unit 22, the state of charge of the battery, the power supply stop request, and the like. In the present embodiment, the wireless communication unit 13 is mounted on the inverter unit 11.

駐車検知センサ14は、車両20が充電用駐車スペースに駐車されたか否かを検知し、駐車された場合に無線通信部13を起動する(オン状態とする)。一方、駐車検知センサ14は、車両20が充電用駐車スペースから出車した場合に無線通信部13を停止する(オフ状態とする)。駐車検知センサ14としては、荷重センサ、超音波センサ、赤外線センサなどの様々なセンサが適用可能である。   The parking detection sensor 14 detects whether or not the vehicle 20 is parked in the charging parking space, and activates the wireless communication unit 13 when the vehicle 20 is parked (set to an on state). On the other hand, the parking detection sensor 14 stops the wireless communication unit 13 when the vehicle 20 leaves the charging parking space (sets to an off state). Various sensors such as a load sensor, an ultrasonic sensor, and an infrared sensor can be applied as the parking detection sensor 14.

次に、車両20では、受電コイルユニット21は、受電コイルを有し、上述したように電磁誘導作用を利用して、給電コイルユニット12から非接触で交流電力を取得する。例えば、受電コイルユニット21は、車体底面に設けられている。   Next, in the vehicle 20, the power receiving coil unit 21 has a power receiving coil, and acquires AC power from the power feeding coil unit 12 in a non-contact manner using the electromagnetic induction action as described above. For example, the power receiving coil unit 21 is provided on the bottom surface of the vehicle body.

整流器ユニット22は、受電コイルユニット21によって取得した交流電力を整流して直流電力に変換する。また、整流器ユニット22は、DC/DCコンバータを有し、整流した直流電力をバッテリ電圧相当まで昇降圧する。また、整流器ユニット22は、電圧センサを有しており、整流器リレー24を介して駆動用バッテリ23の電圧をモニタすることによって、駆動用バッテリ23が満充電状態、又は、満充電に近い状態であるか否かをモニタすることができる。整流器ユニット22は、整流器リレー24を介して駆動用バッテリ23に接続される。   The rectifier unit 22 rectifies the AC power acquired by the power receiving coil unit 21 and converts it into DC power. Moreover, the rectifier unit 22 has a DC / DC converter, and raises / lowers the rectified DC power to the battery voltage equivalent. Further, the rectifier unit 22 has a voltage sensor, and by monitoring the voltage of the drive battery 23 via the rectifier relay 24, the drive battery 23 is in a fully charged state or a state close to full charge. Whether or not there is can be monitored. The rectifier unit 22 is connected to the drive battery 23 via the rectifier relay 24.

駆動用バッテリ23は、整流器ユニット22からの直流電圧によって再充電可能な直流電源である。例えば、駆動用バッテリ23としては、リチウムイオンやニッケル水素などの二次電池が適用可能である。   The driving battery 23 is a DC power source that can be recharged by a DC voltage from the rectifier unit 22. For example, as the driving battery 23, a secondary battery such as lithium ion or nickel metal hydride can be applied.

整流器リレー24は、充電を行う際に、整流器ユニット22を駆動用バッテリ23に接続するものである。充電を行わない場合には、整流器リレー24は、整流器ユニット22と駆動用バッテリ23との接続を解除する。   The rectifier relay 24 connects the rectifier unit 22 to the drive battery 23 when charging. When charging is not performed, the rectifier relay 24 releases the connection between the rectifier unit 22 and the drive battery 23.

電池監視ユニット25は、駆動用バッテリ23の状態をセルごとに監視し、各セルの状態を統合した電池状態を電源管理ECU26へ送信する。例えば、電池監視ユニット25は、各セルの充電状態のバランスを監視したり、セルごとに異常検知を行ったりする(フェールセーフ)。なお、本実施形態では、電池監視ユニット25は、駆動用バッテリ23に搭載されている。   The battery monitoring unit 25 monitors the state of the driving battery 23 for each cell, and transmits a battery state in which the state of each cell is integrated to the power management ECU 26. For example, the battery monitoring unit 25 monitors the balance of the charging state of each cell, or performs abnormality detection for each cell (fail safe). In the present embodiment, the battery monitoring unit 25 is mounted on the driving battery 23.

電源管理ECU26は、給電時及び走行時に、駆動用バッテリ23の状態を管理する。駆動用バッテリ23の状態としては、SOC(State Of Charge)、電圧、電流、温度などである。   The power management ECU 26 manages the state of the drive battery 23 during power feeding and during travel. The state of the driving battery 23 includes SOC (State Of Charge), voltage, current, temperature, and the like.

給電制御ECU27は、非接触給電装置10から車両20へ給電を行う際の統括制御を行うものである。例えば、給電制御ECU27は、非接触給電装置10から車両20へ給電を行う際に、整流器リレー24をオン状態として、整流器ユニット22によって駆動用バッテリ23を充電可能とし、整流器ユニット22の出力調整を行う。一方、非接触給電装置10から車両20へ給電が行われないときには、給電制御ECU27は、整流器リレー24をオフ状態として、駆動用バッテリ23を整流器ユニット22から切り離す。また、給電制御ECU27は、車両20が駐車スペースに駐車する際に、電源管理ECU26及び無線通信部29の起動制御を行い、車両20が駐車スペースから駐車する際に、電源管理ECU26及び無線通信部29の停止制御を行う。なお、整流器ユニット22、電源管理ECU26、及び、無線通信部29と給電制御ECU27との間は、例えばCAN(Controller Area Network)によって接続されている。   The power supply control ECU 27 performs overall control when power is supplied from the non-contact power supply apparatus 10 to the vehicle 20. For example, when the power supply control ECU 27 supplies power to the vehicle 20 from the non-contact power supply device 10, the rectifier relay 24 is turned on so that the drive battery 23 can be charged by the rectifier unit 22, and the output adjustment of the rectifier unit 22 is adjusted. Do. On the other hand, when power is not supplied from the non-contact power supply apparatus 10 to the vehicle 20, the power supply control ECU 27 turns off the rectifier relay 24 and disconnects the drive battery 23 from the rectifier unit 22. The power supply control ECU 27 performs activation control of the power management ECU 26 and the wireless communication unit 29 when the vehicle 20 is parked in the parking space, and the power management ECU 26 and the wireless communication unit when the vehicle 20 is parked from the parking space. 29 stop control is performed. Note that the rectifier unit 22, the power management ECU 26, and the wireless communication unit 29 and the power supply control ECU 27 are connected by, for example, a CAN (Controller Area Network).

また、給電制御ECU27は、ユーザによる給電開始スイッチ28の操作に応じて、整流器リレー24をオン状態とし、上述した整流器ユニット22による駆動用バッテリ23の充電を可能とする。   Further, the power supply control ECU 27 turns on the rectifier relay 24 in accordance with the operation of the power supply start switch 28 by the user, and enables the drive battery 23 to be charged by the rectifier unit 22 described above.

また、給電制御ECU27は、ユーザによるタイマー入力装置30の操作に応じて、駆動用バッテリ23の充電開始時刻を予め設定する。給電制御ECU27は、充電開始時刻前には、車両20を低消費電力モード(待機状態)で動作させ、充電開始時刻が経過したら、バッテリの充電を開始させる。   Further, the power supply control ECU 27 presets the charging start time of the driving battery 23 in accordance with the operation of the timer input device 30 by the user. The power supply control ECU 27 operates the vehicle 20 in the low power consumption mode (standby state) before the charging start time, and starts charging the battery when the charging start time elapses.

無線通信部29は、非接触給電装置10における無線通信部13と無線で通信を行うものであり、車両20と非接触給電装置10との間で上述した各種情報の送受信を行う。なお、本実施形態では、無線通信部29は、整流器ユニット22に搭載されている。   The wireless communication unit 29 wirelessly communicates with the wireless communication unit 13 in the contactless power supply device 10 and transmits and receives the various types of information described above between the vehicle 20 and the contactless power supply device 10. In the present embodiment, the wireless communication unit 29 is mounted on the rectifier unit 22.

次に、非接触給電装置10から車両(非接触受電装置)20への非接触電力伝送方法について説明する。図3は、非接触給電装置10の動作を示すフローチャートであり、図4は、車両20の動作を示すフローチャートである。   Next, a non-contact power transmission method from the non-contact power feeding apparatus 10 to the vehicle (non-contact power receiving apparatus) 20 will be described. FIG. 3 is a flowchart showing the operation of the non-contact power feeding apparatus 10, and FIG. 4 is a flowchart showing the operation of the vehicle 20.

まず、図3に示すように、非接触給電装置10側では、駐車検知センサ14によって、駐車車両の有無を連続的又は断続的に検知している(S101)。このとき、動作のために電力を要する無線通信部13は停止状態である。   First, as shown in FIG. 3, on the non-contact power feeding apparatus 10 side, the presence or absence of a parked vehicle is detected by the parking detection sensor 14 continuously or intermittently (S101). At this time, the wireless communication unit 13 that requires power for operation is in a stopped state.

一方、図4に示すように、車両20側では、給電制御ECU27によって、駐車スペースに駐車したか否かを連続的又は断続的に監視している(S201)。このとき、動作のために電力を要する電源管理ECU26及び無線通信部29は停止状態である。例えば、給電制御ECU27は、ギアのパーキング操作によって、駐車完了を判断する。   On the other hand, as shown in FIG. 4, on the vehicle 20 side, the power supply control ECU 27 continuously or intermittently monitors whether or not the vehicle is parked in the parking space (S201). At this time, the power management ECU 26 and the wireless communication unit 29 that require power for operation are in a stopped state. For example, the power supply control ECU 27 determines the completion of parking by a gear parking operation.

駐車が完了すると、バッテリの満充電に対する充電割合をモニタし、充電割合に応じて充電を行うか否かを判断する。例えば、充電割合が所定値(例えば、満充電状態の80%:第1の所定割合)以下の場合には、充電のために給電側の探索を開始し、充電割合が所定値より大きい場合には、満充電状態、又は、満充電に近い状態であると判断して、給電側の探索を行わない。   When parking is completed, the charging ratio with respect to the full charge of the battery is monitored, and it is determined whether or not charging is performed according to the charging ratio. For example, when the charging rate is equal to or less than a predetermined value (for example, 80% of the fully charged state: the first predetermined rate), a search on the power feeding side is started for charging, and the charging rate is greater than the predetermined value. Determines that it is in a fully charged state or a state close to full charging, and does not search for the power supply side.

具体的には、給電制御ECU27によって、整流器リレーをオン状態とし(S202)、整流器ユニット22によって、満充電に対する充電割合と相関するバッテリ電圧をモニタする(S203)。バッテリ電圧が所定値(例えば、満充電状態のときの電圧の80%の電圧値:第1の所定割合に相関する第1の所定値)以下の場合には、給電制御ECU27によって無線通信部29を起動し、無線通信部29によって、非接触給電装置10側の通信機器の探索を開始する(S204)。また、給電制御ECU27は、電源管理ECU26も起動する。なお、バッテリ電圧が所定値より大きい場合には、満充電状態、又は、満充電に近い状態であると判断し、後述するステップS220へ移行する。   Specifically, the power supply control ECU 27 turns on the rectifier relay (S202), and the rectifier unit 22 monitors the battery voltage correlated with the charging ratio with respect to the full charge (S203). When the battery voltage is equal to or lower than a predetermined value (for example, a voltage value of 80% of the voltage in the fully charged state: a first predetermined value correlated with the first predetermined ratio), the power supply control ECU 27 performs the wireless communication unit 29. And the wireless communication unit 29 starts searching for a communication device on the non-contact power feeding apparatus 10 side (S204). The power supply control ECU 27 also activates the power management ECU 26. If the battery voltage is greater than the predetermined value, it is determined that the battery is fully charged or nearly full, and the process proceeds to step S220 described below.

一方、図3に示すように、非接触給電装置10側では、駐車検知センサ14によって、充電用駐車スペースに駐車した車両20を検知し、無線通信部13を起動し、無線機能を有効にする(S102)。   On the other hand, as shown in FIG. 3, on the non-contact power feeding apparatus 10 side, the parking detection sensor 14 detects the vehicle 20 parked in the charging parking space, activates the wireless communication unit 13, and enables the wireless function. (S102).

すると、図4に示すように、車両20側では、無線通信部29によって、非接触給電装置10の無線通信部13を認識し(S205)、接続要求を送信する(S206)。なお、無線機器が見つからない場合には、後述するステップS220へ移行する。   Then, as shown in FIG. 4, on the vehicle 20 side, the wireless communication unit 29 recognizes the wireless communication unit 13 of the non-contact power feeding apparatus 10 (S205) and transmits a connection request (S206). If no wireless device is found, the process proceeds to step S220 described later.

車両20側から接続要求が送信されると、図3に示すように、非接触給電装置10側では、無線通信部13によって、接続要求を認識し(S103)、接続応答を送信する(S104)。なお、接続要求がない場合、駐車車両の検知から所定時間経過するまで接続要求を待ち、所定時間経過したら、駐車車両は充電の意思を有さないと判断して、後述するステップS119へ移行する(S105)。   When the connection request is transmitted from the vehicle 20 side, as shown in FIG. 3, the wireless communication unit 13 recognizes the connection request on the non-contact power supply apparatus 10 side (S103) and transmits a connection response (S104). . If there is no connection request, the connection request is waited until a predetermined time has elapsed since the detection of the parked vehicle. When the predetermined time has elapsed, it is determined that the parked vehicle has no intention to charge, and the process proceeds to step S119 described later. (S105).

非接触給電装置10側から接続応答が送信されると、図4に示すように、車両20側では、無線通信部29によって、接続応答を認識し(S207)、プリチャージ要求を送信する(S208)。なお、接続応答がない場合には、後述するステップS220へ移行する。   When a connection response is transmitted from the non-contact power supply apparatus 10 side, as shown in FIG. 4, the vehicle 20 side recognizes the connection response by the wireless communication unit 29 (S207), and transmits a precharge request (S208). ). When there is no connection response, the process proceeds to step S220 described later.

車両20側からプリチャージ要求が送信されると、図3に示すように、非接触給電装置10側では、無線通信部13によってプリチャージ要求を認識し(S106)、インバータユニット11及び給電コイルユニット12によってプリチャージ出力を開始する(S107)。なお、プリチャージ要求がない場合、接続要求の検知から所定時間経過するまでプリチャージ要求を待ち、接続要求の検知から所定時間経過したら、駐車車両は充電の意思を有さないと判断して、後述するステップS119へ移行する(S108)。   When the precharge request is transmitted from the vehicle 20 side, as shown in FIG. 3, the wireless communication unit 13 recognizes the precharge request on the non-contact power supply device 10 side (S106), and the inverter unit 11 and the power supply coil unit. 12 starts precharge output (S107). If there is no precharge request, it waits for a precharge request until a predetermined time elapses from the detection of the connection request, and when a predetermined time elapses from the detection of the connection request, it is determined that the parked vehicle has no intention of charging, The process proceeds to step S119 described later (S108).

ここで、プリチャージとは、本格的な給電に先立ち、電力伝送環境のテストを行うものであり、本格的な給電よりも小さい電力で行う。給電コイルと受電コイルとの間に異物が侵入したり、給電コイルと受電コイルとの相対位置がずれていたりすると、非接触給電装置10から車両20へ適切な電力が伝送されず、バッテリを適切に充電することができない。更には、非接触給電装置10の負荷が増大し、安全性に問題が生じることがある。また、給電コイルと受電コイルとの間に動物等が侵入する場合にも安全性に問題がある。そこで、プリチャージにおいて、非接触給電装置10から車両20への伝送電力が、バッテリを充電するための設定電力相当の電力である場合に、給電コイルと受電コイルとの間に異物や動物等が侵入しておらず、また、給電コイルと受電コイルとの相対位置が合っており、非接触給電装置10から車両20への電力伝送環境が電力伝送可能な環境であると判断する。   Here, precharging is a test of the power transmission environment prior to full-scale power supply, and is performed with smaller power than full-scale power supply. If foreign matter enters between the power feeding coil and the power receiving coil, or if the relative position between the power feeding coil and the power receiving coil is shifted, appropriate power is not transmitted from the non-contact power feeding device 10 to the vehicle 20, and the battery is properly used. Can't be charged. Furthermore, the load of the non-contact power supply apparatus 10 may increase, which may cause a safety problem. There is also a problem in safety when an animal or the like enters between the power supply coil and the power reception coil. Therefore, in the precharge, when the transmission power from the non-contact power supply apparatus 10 to the vehicle 20 is equivalent to the set power for charging the battery, there is a foreign object or animal between the power supply coil and the power reception coil. It is determined that the power transmission environment from the non-contact power feeding device 10 to the vehicle 20 is an environment in which power transmission is possible because the power supply coil and the power reception coil are in the proper positions.

具体的には、プリチャージ中、非接触給電装置10側では、無線通信部13によって、車両20側から整流器ユニット22の出力電力(電流)情報を取得し、整流器ユニット22の出力電力(電流)が所定値以上であるか否かの判断を行う(S109)。整流器ユニット22の出力電力(電流)が所定値以上である場合、電力伝送環境が電力伝送可能な環境であると判断して、無線通信部13によって、車両20側へプリチャージOKの通知を行う(S110)。一方、整流器ユニット22の出力電力(電流)が所定値未満である場合には、電力伝送環境に何らかの問題がある判断して、無線通信部13によって、車両20側へプリチャージNGの通知を行い(S111)、後述するステップS118へ移行する。   Specifically, during the precharge, on the non-contact power feeding device 10 side, the wireless communication unit 13 acquires the output power (current) information of the rectifier unit 22 from the vehicle 20 side, and the output power (current) of the rectifier unit 22 is obtained. Is determined to be greater than or equal to a predetermined value (S109). When the output power (current) of the rectifier unit 22 is equal to or greater than a predetermined value, it is determined that the power transmission environment is an environment in which power transmission is possible, and the wireless communication unit 13 notifies the vehicle 20 side of precharge OK. (S110). On the other hand, when the output power (current) of the rectifier unit 22 is less than the predetermined value, it is determined that there is some problem in the power transmission environment, and the wireless communication unit 13 notifies the vehicle 20 side of the precharge NG. (S111), the process proceeds to step S118 described later.

なお、プリチャージNGの場合、ユーザへ駐車位置調整を通知し、非接触給電装置10側の給電コイルに対する車両20側の受電コイルの位置を調整し、再度、上記動作を行う。   In the case of precharge NG, the parking position adjustment is notified to the user, the position of the power receiving coil on the vehicle 20 side with respect to the power feeding coil on the non-contact power feeding device 10 side is adjusted, and the above operation is performed again.

非接触給電装置10側からプリチャージOKが通知されると、図4に示すように、車両20側では、無線通信部29によってプリチャージOKを認識し(S209)、本充電を待つ。一方、無線通信部29によってプリチャージNGを認識した場合には、後述するステップS219へ移行する。   When the precharge OK is notified from the non-contact power supply apparatus 10 side, as shown in FIG. 4, the vehicle 20 side recognizes the precharge OK by the wireless communication unit 29 (S209) and waits for the main charge. On the other hand, when the precharge NG is recognized by the wireless communication unit 29, the process proceeds to step S219 described later.

プリチャージOKを認識すると、給電開始フラグがオン状態であるか否かを確認する。給電開始フラグは、タイマー入力装置30及び給電制御ECU27によって充電開始時刻が設定されたときにオフ状態となる(S210)。充電開始時刻設定があり、給電開始フラグがオフ状態である場合には、無線通信部29によって、給電中断要求を送信し(S211)、低消費電力モード(待機状態)に移行する(S212)。例えば、低消費電力モードでは、整流器ユニット22、電源管理ECU26、給電制御ECU27、及び、無線通信部29を低消費電力で動作させる。また、整流器リレー24をオフ状態とする。   When the precharge OK is recognized, it is confirmed whether or not the power supply start flag is on. The power supply start flag is turned off when the charging start time is set by the timer input device 30 and the power supply control ECU 27 (S210). When there is a charge start time setting and the power supply start flag is in the OFF state, the wireless communication unit 29 transmits a power supply interruption request (S211), and shifts to the low power consumption mode (standby state) (S212). For example, in the low power consumption mode, the rectifier unit 22, the power management ECU 26, the power supply control ECU 27, and the wireless communication unit 29 are operated with low power consumption. Further, the rectifier relay 24 is turned off.

一方、図3に示すように、非接触給電装置10側では、無線通信部13によって、給電中断要求を認識し(S112)、低消費電力モード(待機状態)に移行する(S113)。例えば、低消費電力モードでは、インバータユニット11及び無線通信装置13を低消費電力で動作させる。   On the other hand, as shown in FIG. 3, the wireless communication unit 13 recognizes a power supply interruption request on the non-contact power supply apparatus 10 side (S112), and shifts to a low power consumption mode (standby state) (S113). For example, in the low power consumption mode, the inverter unit 11 and the wireless communication device 13 are operated with low power consumption.

ここで、非接触給電の場合、ユーザがタイマー設定を忘れて、充電開始時刻に車両(非接触受電装置)20を出車させてしまう(電力伝送環境、例えば、給電コイルと受電コイルとの相対位置を変更してしまう)可能性があり、このような場合、非接触給電装置10はエラー状態となってしまう。   Here, in the case of non-contact power feeding, the user forgets to set the timer and leaves the vehicle (non-contact power receiving device) 20 at the charging start time (power transmission environment, for example, the relative relationship between the power feeding coil and the power receiving coil). In such a case, the non-contact power feeding device 10 enters an error state.

そこで、図4に示すように、低消費電力モード中に、車両を出車させる場合にはユーザに充電キャンセルを促し、ユーザによって充電キャンセルがなされた場合に(S213)、無線通信部29によってキャンセル要求(充電中止通知)を送信し(S214)、後述するステップS219へ移行する。   Therefore, as shown in FIG. 4, when leaving the vehicle during the low power consumption mode, the user is prompted to cancel the charge, and when the user cancels the charge (S213), the wireless communication unit 29 cancels the charge. A request (charge stop notification) is transmitted (S214), and the process proceeds to step S219 described later.

一方、非接触給電装置10側では、図3に示すように、無線通信部13によって、車両20側からのキャンセル要求を認識すると、後述するステップS119へ移行する(S114)。その後、無線通信部13によって、車両20側からの接続要求を連続的又は断続的に監視しつつ待機する(S115)。   On the other hand, as shown in FIG. 3, when the wireless communication unit 13 recognizes a cancel request from the vehicle 20 side on the non-contact power feeding apparatus 10 side, the process proceeds to step S119 described later (S114). Thereafter, the wireless communication unit 13 waits while continuously or intermittently monitoring a connection request from the vehicle 20 side (S115).

次に、図4に示すように、車両20側では、充電開始時刻になると、充電開始フラグをオン状態とし(S216)、上記したステップS201からステップS210までの処理を再度行う。すなわち、充電開始時刻経過後、非接触給電装置10側の通信機器探索、非接触給電装置10側への接続要求、及び、プリチャージを順次に再度行い、電力伝送環境を再度判断する。そして、電力伝送環境が変化している場合には、再度電力伝送環境の調整を行う。   Next, as shown in FIG. 4, on the vehicle 20 side, when the charging start time is reached, the charging start flag is turned on (S216), and the processing from step S201 to step S210 described above is performed again. That is, after the charging start time elapses, the communication device search on the non-contact power supply apparatus 10 side, the connection request to the non-contact power supply apparatus 10 side, and the precharge are sequentially performed again to determine the power transmission environment again. If the power transmission environment has changed, the power transmission environment is adjusted again.

すると、図3に示すように、非接触給電装置10側では、無線通信部13によって、車両20側からの接続要求を認識し(S115)、上記したステップS104、及び、ステップS106からS112までの処理を再度行う。   Then, as shown in FIG. 3, the wireless communication unit 13 recognizes the connection request from the vehicle 20 side (S115) on the non-contact power feeding device 10 side, and the above-described steps S104 and S106 to S112 are performed. Repeat the process.

一方、図4に示すように、車両20側では、ステップS210において、充電開始時刻の設定がなく、給電開始フラグがオン状態である場合には、無線通信部29によって、給電開始要求を送信する(S217)。   On the other hand, as shown in FIG. 4, on the vehicle 20 side, when the charging start time is not set and the power supply start flag is on in step S210, the wireless communication unit 29 transmits a power supply start request. (S217).

すると、図3に示すように、非接触給電装置10側では、無線通信部13によって、給電開始要求を認識し(S112)、本格的な給電を開始する(S116)。給電中、非接触給電装置10側では、無線通信部13によって、車両20側からバッテリ充電状態の情報を取得し、バッテリ充電状態を連続的に又は断続的に監視する。また、非接触給電装置10側では、無線通信部13によって、車両20側からの給電停止の要求を連続的に又は断続的に監視する(S117)。そして、バッテリが満充電状態に達した場合には、充電完了と判断して、給電出力を停止し(S118)、接続を解除する(S119)。また、給電停止の要求を受信した場合には、何らかの問題により車両20側が充電の意思を有さなくなったと判断して、給電出力を停止し(S118)、接続を解除する(S119)。   Then, as shown in FIG. 3, the wireless communication unit 13 recognizes a power supply start request on the non-contact power supply apparatus 10 side (S112) and starts full-scale power supply (S116). During power feeding, on the non-contact power feeding apparatus 10 side, the wireless communication unit 13 acquires information on the battery charge state from the vehicle 20 side, and continuously or intermittently monitors the battery charge state. On the non-contact power feeding apparatus 10 side, the wireless communication unit 13 monitors the power feeding stop request from the vehicle 20 side continuously or intermittently (S117). When the battery reaches a fully charged state, it is determined that charging is complete, the power supply output is stopped (S118), and the connection is released (S119). If a request for stopping power supply is received, it is determined that the vehicle 20 has no intention of charging due to some problem, power supply output is stopped (S118), and connection is released (S119).

一方、図4を参照し、給電中、車両20側では、無線通信部13によって、非接触給電装置10側からの給電停止の要求を連続的に又は断続的に監視する(S218)。そして、給電停止の要求を受信した場合には、何らかの問題により非接触給電装置10側が給電できなくなったと判断して、接続を解除する(S219)。   On the other hand, referring to FIG. 4, during power feeding, on the vehicle 20 side, the wireless communication unit 13 continuously or intermittently monitors a request for power feeding stop from the non-contact power feeding device 10 side (S218). When a request for stopping power supply is received, it is determined that the contactless power supply apparatus 10 cannot supply power due to some problem, and the connection is released (S219).

その後、車両20側では、給電制御ECU27によって、整流器リレー24をオフ状態とする(S220)。その後、車両20側では、ユーザによる給電開始スイッチ28の操作、すなわち、ユーザの給電要求の有無を連続的に又は断続的に監視し、給電要求がある場合には、ステップS201へ戻って上記動作を再度行う。また、車両20側では、駐車解除を連続的に又は断続的に監視し、車両が駐車スペースから出車した場合に、ステップS201へ戻る(S221)。   Thereafter, on the vehicle 20 side, the rectifier relay 24 is turned off by the power supply control ECU 27 (S220). Thereafter, on the vehicle 20 side, the operation of the power supply start switch 28 by the user, that is, the presence or absence of the user's power supply request is continuously or intermittently monitored. If there is a power supply request, the process returns to step S201 and the above operation is performed. Again. On the vehicle 20 side, parking cancellation is monitored continuously or intermittently, and when the vehicle leaves the parking space, the process returns to step S201 (S221).

一方、図3に戻り、非接触給電装置10側では、給電終了後、再度接続要求がある場合にはステップS104へ戻り(S120)、接続要求がない場合には、駐車検知センサ14によって、駐車車両の出車を連続的又は断続的に監視する(S121)。そして、駐車車両が出車した場合には、無線通信部13を停止して、無線機能を無効にし(S122)、ステップS101へ戻る。   On the other hand, referring back to FIG. 3, the contactless power supply apparatus 10 returns to step S104 when there is a connection request again after the end of power supply (S120), and when there is no connection request, the parking detection sensor 14 performs parking. The departure of the vehicle is monitored continuously or intermittently (S121). And when a parked vehicle leaves, the wireless communication part 13 is stopped, a wireless function is invalidated (S122), and it returns to step S101.

本実施形態の非接触電力伝送システム100によれば、タイマー入力装置30によって、充電開始時刻を予め設定することができるので、例えば電気料金が比較的に安い夜の時間帯に充電を行うことができる。したがって、充電コストを低減することが可能となる。   According to the non-contact power transmission system 100 of the present embodiment, since the charging start time can be set in advance by the timer input device 30, for example, charging can be performed at night time when the electricity rate is relatively low. it can. Therefore, the charging cost can be reduced.

また、本実施形態の非接触電力伝送システム100によれば、車両20駐車後、プリチャージを行うことによって非接触給電装置10から車両20への電力伝送環境を判断し、電力伝送環境が電力伝送可能な環境である場合に低消費電力モード(待機状態)に移行するので、充電開始時刻に確実に充電を行うことができる。   Further, according to the contactless power transmission system 100 of the present embodiment, after the vehicle 20 is parked, the power transmission environment from the contactless power supply apparatus 10 to the vehicle 20 is determined by performing precharging, and the power transmission environment is the power transmission. Since it shifts to the low power consumption mode (standby state) when it is a possible environment, charging can be performed reliably at the charging start time.

ここで、非接触給電の場合、待機状態中に、何らかの外的要因によって電力伝送環境が変化してしまうことがある。例えば、給電コイルと受電コイルとの間に異物や動物等が侵入して、電力伝送を適切に行うことができない環境に変化する可能性がある。   Here, in the case of non-contact power supply, the power transmission environment may change due to some external factor during the standby state. For example, a foreign object, an animal, or the like may enter between the power feeding coil and the power receiving coil, and there is a possibility of changing to an environment where power transmission cannot be performed appropriately.

しかしながら、本実施形態の非接触電力伝送システム100によれば、充電開始時刻が経過したときにも、再度プリチャージを行うことによって電力伝送環境を再度判断し、電力伝送環境が電力伝送可能な環境である場合に蓄電装置の充電を開始するので、より確実に充電を行うことができる。   However, according to the non-contact power transmission system 100 of the present embodiment, even when the charging start time has elapsed, the power transmission environment is determined again by performing precharging again, so that the power transmission environment can be used for power transmission. In this case, charging of the power storage device is started, so that charging can be performed more reliably.

なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、本実施形態では、充電開始時刻経過後(S215)、ステップS201へ戻り、駐車車両の存在確認(S201)、バッテリ電圧のモニタ(S202、S203)、給電側の通信機器探索(S204、S205)、接続要求(S206、S207)、及び、プリチャージ(S208、S209)を順次に再度行ったが、これに限定されない。例えば、充電開始時刻経過後、ステップS202へ戻ってバッテリ電圧のモニタから再度行ってもよいし、ステップS204へ戻って給電側の通信機器探索から再度行ってもよいし、ステップS206へ戻って接続要求から再度行ってもよいし、ステップS208へ戻ってプリチャージから再度行ってもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the present embodiment, after the charging start time has elapsed (S215), the process returns to step S201, the presence of a parked vehicle is confirmed (S201), the battery voltage is monitored (S202, S203), and the communication device search on the power feeding side (S204, S205). ), The connection request (S206, S207), and the precharge (S208, S209) are sequentially performed again, but the present invention is not limited to this. For example, after the charging start time elapses, the process may return to step S202 and start again from the battery voltage monitor, or may return to step S204 and start again from the communication device search on the power feeding side, or return to step S206 and connect. It may be performed again from the request, or may be performed again from the precharge by returning to step S208.

また、本実施形態では、タイマー入力装置30が車両20側に備えられる形態を例示したが、タイマー入力装置30は非接触給電装置10側に備えられてもよい。   In the present embodiment, the timer input device 30 is provided on the vehicle 20 side. However, the timer input device 30 may be provided on the non-contact power supply device 10 side.

また、本実施形態では、プリチャージ中、車両20側から非接触給電装置10側へ、整流器ユニット22の出力電力(電流)情報を送信し、非接触給電装置10側にて、プリチャージOK又はNGの判断、及び、電力伝送環境の判断を行ったが、車両20側にて、プリチャージOK又はNGの判断、及び、電力伝送環境の判断を行ってもよい。この場合、非接触給電装置10側から車両20側へ、プリチャージ出力電力(電流)情報を送信する。   Further, in the present embodiment, during the precharge, the output power (current) information of the rectifier unit 22 is transmitted from the vehicle 20 side to the contactless power supply device 10 side, and the precharge OK or the Although the determination of NG and the determination of the power transmission environment are performed, the vehicle 20 may determine the precharge OK or NG and the determination of the power transmission environment. In this case, precharge output power (current) information is transmitted from the non-contact power feeding apparatus 10 side to the vehicle 20 side.

また、本実施形態では、車両20側から非接触給電装置10側へ、バッテリ充電状態の情報を送信し、非接触給電装置10側にて、バッテリの満充電状態を判断したが、車両20側にて、バッテリの満充電状態を判断してもよい。   In the present embodiment, the battery charge state information is transmitted from the vehicle 20 side to the non-contact power supply device 10 side, and the full charge state of the battery is determined on the non-contact power supply device 10 side. The battery may be fully charged.

また、本実施形態では、車両20側の整流器ユニット22において、バッテリ電圧相当まで昇降圧する形態を例示したが、これに限定されない。例えば、非接触給電装置10側のインバータユニット11において昇降圧してもよい。   Moreover, in this embodiment, although the form which carries out pressure | voltage rise / fall to battery voltage equivalent was illustrated in the rectifier unit 22 by the side of the vehicle 20, it is not limited to this. For example, you may raise / lower pressure in the inverter unit 11 by the side of the non-contact electric power feeder 10. FIG.

また、本実施形態では、バッテリの満充電に対する充電割合に相関するパラメータとしてバッテリ電圧を例示したが、バッテリ電圧に代えて、バッテリの満充電に対する充電割合と相関する他のパラメータを用いることが可能である。この場合、整流器ユニット22は、電圧センサに代えて、バッテリの満充電に対する充電割合と相関する他のパラメータをモニタするセンサを有することとなる。   In the present embodiment, the battery voltage is exemplified as a parameter that correlates with the charge ratio with respect to the full charge of the battery. However, instead of the battery voltage, another parameter that correlates with the charge ratio with respect to the full charge of the battery can be used. It is. In this case, instead of the voltage sensor, the rectifier unit 22 has a sensor that monitors another parameter that correlates with the charging rate with respect to the full charge of the battery.

また、本実施形態では、満充電に対する充電割合と相関するパラメータをそのまま用いて満充電状態、又は、満充電に近い状態を判断したが、このパラメータから充電割合を算出し、算出した充電割合を用いて満充電状態、又は、満充電に近い状態を判断してもよい。   Further, in the present embodiment, the fully correlated state or the state close to the fully charged state is determined by using the parameter correlated with the charging rate with respect to the fully charged state as it is, but the charging rate is calculated from this parameter, and the calculated charging rate is calculated. It may be used to determine a full charge state or a state close to full charge.

また、本実施形態では、第1の所定値をユーザによって設定可能にしてもよい。ユーザによっては、駐車の度に自動的に充電が行われることを煩わしく感じることがあるが、このような煩わしさを軽減することができる。   In the present embodiment, the first predetermined value may be set by the user. Some users feel annoying that charging is performed automatically every time they park, but this annoyance can be alleviated.

また、本実施形態では、給電コイルユニット12及び受電コイルユニット21がそれぞれコイルを有し、電磁誘導作用を利用して非接触で電力伝送を行う形態を例示したが、本発明の特徴は、給電コイルユニット12及び受電コイルユニット21がそれぞれコイルとコンデンサとからなる共振回路を有し、共鳴法を利用して非接触で電力伝送を行う形態にも適用可能である。   In the present embodiment, the power feeding coil unit 12 and the power receiving coil unit 21 each have a coil, and the power transmission is performed in a non-contact manner using electromagnetic induction, but the feature of the present invention is that The coil unit 12 and the power receiving coil unit 21 each have a resonance circuit composed of a coil and a capacitor, and can be applied to a form in which electric power is transmitted in a contactless manner using a resonance method.

10…非接触給電装置、11…インバータユニット、12…給電コイルユニット(給電コイル)、13…無線通信部(給電用無線通信装置)、14…駐車検知センサ、20…車両、21…受電コイルユニット(受電コイル)、22…整流器ユニット、23…駆動用バッテリ(蓄電装置)、24…整流器リレー、25…電池監視ユニット、26…電源管理ECU、27…給電制御ECU、28…給電開始スイッチ、29…無線通信部(受電用無線通信装置)、30…タイマー入力装置、100…非接触電力伝送システム。   DESCRIPTION OF SYMBOLS 10 ... Non-contact electric power feeder, 11 ... Inverter unit, 12 ... Power feeding coil unit (power feeding coil), 13 ... Wireless communication part (wireless communication device for electric power feeding), 14 ... Parking detection sensor, 20 ... Vehicle, 21 ... Power receiving coil unit (Power receiving coil), 22 ... rectifier unit, 23 ... drive battery (power storage device), 24 ... rectifier relay, 25 ... battery monitoring unit, 26 ... power management ECU, 27 ... feed control ECU, 28 ... feed start switch, 29 ... wireless communication unit (power receiving wireless communication apparatus), 30 ... timer input device, 100 ... non-contact power transmission system.

Claims (4)

非接触給電装置から非接触受電装置へ非接触で電力伝送を行う非接触電力伝送システムであって、
前記非接触給電装置は、
前記非接触受電装置と無線通信を行う給電用無線通信部と、
前記給電用無線通信部による無線通信に応じて、電磁結合を利用して前記非接触受電装置に電力供給を行うための給電コイルと、
を備え、
前記非接触受電装置は、
前記非接触給電装置と無線通信を行う受電用無線通信部と、
前記受電用無線通信部による無線通信に応じて、電磁結合を利用して前記非接触給電装置から電力取得を行うための受電コイルと、
前記受電コイルからの交流電力を整流して、蓄電装置を充電するための直流電圧を生成する整流器ユニットと、
を備え、
前記非接触給電装置又は前記非接触受電装置が、前記蓄電装置の充電開始時刻を予め設定するタイマー入力部を更に備え、
前記非接触給電装置と前記非接触受電装置との間でプリチャージを行うことによって、前記非接触給電装置から前記非接触受電装置への電力伝送環境を前記非接触給電装置又は前記非接触受電装置によって判断し、当該電力伝送環境が電力伝送可能な環境である場合に、前記非接触給電装置及び前記非接触受電装置は待機状態に移行し、
前記充電開始時刻経過後、前記非接触給電装置と前記非接触受電装置との間で再プリチャージを行うことによって、前記電力伝送環境を前記非接触給電装置又は前記非接触受電装置によって再度判断し、当該電力伝送環境が電力伝送可能な環境である場合に、前記非接触給電装置及び前記非接触受電装置によって前記蓄電装置の充電を行う、
非接触電力伝送システム。
A non-contact power transmission system that performs non-contact power transmission from a non-contact power feeding device to a non-contact power receiving device,
The non-contact power feeding device is:
A wireless communication unit for feeding that performs wireless communication with the non-contact power receiving device;
In accordance with wireless communication by the wireless communication unit for power supply, a power supply coil for supplying power to the non-contact power receiving device using electromagnetic coupling,
With
The non-contact power receiving device is:
A power receiving wireless communication unit for performing wireless communication with the non-contact power supply device;
In response to wireless communication by the power receiving wireless communication unit, a power receiving coil for performing power acquisition from the non-contact power feeding device using electromagnetic coupling,
A rectifier unit that rectifies AC power from the power receiving coil and generates a DC voltage for charging the power storage device;
With
The non-contact power feeding device or the non-contact power receiving device further includes a timer input unit that presets a charging start time of the power storage device,
By performing precharge between the non-contact power feeding device and the non-contact power receiving device, the power transmission environment from the non-contact power feeding device to the non-contact power receiving device can be changed to the non-contact power feeding device or the non-contact power receiving device. When the power transmission environment is an environment capable of power transmission, the contactless power feeding device and the contactless power receiving device shift to a standby state,
After the charging start time elapses, the power transmission environment is determined again by the contactless power feeding device or the contactless power receiving device by performing re-precharge between the contactless power feeding device and the contactless power receiving device. When the power transmission environment is an environment capable of power transmission, the power storage device is charged by the contactless power feeding device and the contactless power receiving device.
Non-contact power transmission system.
前記非接触受電装置は、前記待機状態中に前記電力伝送環境を変更する場合には、前記受電用無線通信部によって前記非接触給電装置に充電中止を通知する、
請求項1に記載の非接触電力伝送システム。
When the non-contact power receiving device changes the power transmission environment during the standby state, the non-contact power feeding device notifies the non-contact power feeding device to stop charging.
The contactless power transmission system according to claim 1.
前記充電開始時刻経過後、前記再プリチャージを行う前に、前記受電用無線通信部によって前記非接触給電装置に接続要求を行う、
請求項1に記載の非接触電力伝送システム。
After the charging start time has elapsed and before performing the re-precharge, a connection request is made to the non-contact power feeding device by the power receiving wireless communication unit.
The contactless power transmission system according to claim 1.
前記充電開始時刻経過後、前記再プリチャージを行う前に、前記受電用無線通信部によって前記非接触給電装置の探索を行う、
請求項1に記載の非接触電力伝送システム。
After the charging start time has elapsed and before performing the re-precharge, the wireless communication unit for power reception searches for the non-contact power feeding device.
The contactless power transmission system according to claim 1.
JP2012033553A 2012-02-20 2012-02-20 Non-contact power transmission system Pending JP2013172499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033553A JP2013172499A (en) 2012-02-20 2012-02-20 Non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033553A JP2013172499A (en) 2012-02-20 2012-02-20 Non-contact power transmission system

Publications (1)

Publication Number Publication Date
JP2013172499A true JP2013172499A (en) 2013-09-02

Family

ID=49266124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033553A Pending JP2013172499A (en) 2012-02-20 2012-02-20 Non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP2013172499A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072777A1 (en) * 2013-11-15 2015-05-21 주식회사 한림포스텍 Power control method and device in wireless power transmission system
JP2015107026A (en) * 2013-12-02 2015-06-08 株式会社豊田自動織機 Non-contact power transmission system and power reception device
JP2015107025A (en) * 2013-12-02 2015-06-08 株式会社豊田自動織機 Non-contact power transmission system and power reception device
JP2017112691A (en) * 2015-12-15 2017-06-22 トヨタ自動車株式会社 Vehicle and non-contact power transmission system
JPWO2017006427A1 (en) * 2015-07-07 2018-03-29 東芝三菱電機産業システム株式会社 Uninterruptible power system
JP2018117502A (en) * 2017-01-20 2018-07-26 キヤノン株式会社 Power supply device, control method thereof, and program
JP2018137939A (en) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 Vehicle and electric power transmission system
KR20200033815A (en) * 2020-03-17 2020-03-30 지이 하이브리드 테크놀로지스, 엘엘씨 Method and apparatus for power control in wireless power transmitting system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11722006B2 (en) 2013-11-15 2023-08-08 Ge Hybrid Technologies, Llc Power control method and device in wireless power transmission system
US10541560B2 (en) 2013-11-15 2020-01-21 Ge Hybrid Technologies, Llc Power control method and device in wireless power transmission system
KR102095067B1 (en) 2013-11-15 2020-03-31 지이 하이브리드 테크놀로지스, 엘엘씨 Method and apparatus for power control in wireless power transmitting system
US10236719B2 (en) 2013-11-15 2019-03-19 Ge Hybrid Technologies, Llc Power control method and device in wireless power transmission system
US9871400B2 (en) 2013-11-15 2018-01-16 Hanrim Postech Co., Ltd. Power control method and device in wireless power transmission system
US10727696B2 (en) 2013-11-15 2020-07-28 Ge Hybrid Technologies, Llc Power control method and device in wireless power transmission system
KR20150056345A (en) * 2013-11-15 2015-05-26 주식회사 한림포스텍 Method and apparatus for power control in wireless power transmitting system
WO2015072777A1 (en) * 2013-11-15 2015-05-21 주식회사 한림포스텍 Power control method and device in wireless power transmission system
US10938240B2 (en) 2013-11-15 2021-03-02 Ge Hybrid Technologies, Llc Power control method and device in wireless power transmission system
WO2015083516A1 (en) * 2013-12-02 2015-06-11 株式会社 豊田自動織機 Contactless electric power transmission system and power receiving device
WO2015083517A1 (en) * 2013-12-02 2015-06-11 株式会社 豊田自動織機 Contactless electric power transmission system and power receiving device
JP2015107025A (en) * 2013-12-02 2015-06-08 株式会社豊田自動織機 Non-contact power transmission system and power reception device
JP2015107026A (en) * 2013-12-02 2015-06-08 株式会社豊田自動織機 Non-contact power transmission system and power reception device
JPWO2017006427A1 (en) * 2015-07-07 2018-03-29 東芝三菱電機産業システム株式会社 Uninterruptible power system
JP2017112691A (en) * 2015-12-15 2017-06-22 トヨタ自動車株式会社 Vehicle and non-contact power transmission system
CN110226277A (en) * 2017-01-20 2019-09-10 佳能株式会社 Power supply unit and its control method
WO2018135092A1 (en) * 2017-01-20 2018-07-26 キヤノン株式会社 Feeding device and method for controlling same
US11469624B2 (en) 2017-01-20 2022-10-11 Canon Kabushiki Kaisha Power supply apparatus and control method thereof
JP2018117502A (en) * 2017-01-20 2018-07-26 キヤノン株式会社 Power supply device, control method thereof, and program
CN110226277B (en) * 2017-01-20 2023-12-12 佳能株式会社 Power supply apparatus, control method thereof, and storage medium
JP2018137939A (en) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 Vehicle and electric power transmission system
US10894478B2 (en) 2017-02-23 2021-01-19 Toyota Jidosha Kabushiki Kaisha Vehicle and power transmission system
KR20200033815A (en) * 2020-03-17 2020-03-30 지이 하이브리드 테크놀로지스, 엘엘씨 Method and apparatus for power control in wireless power transmitting system
KR102140286B1 (en) 2020-03-17 2020-08-03 지이 하이브리드 테크놀로지스, 엘엘씨 Method and apparatus for power control in wireless power transmitting system

Similar Documents

Publication Publication Date Title
JP2013172499A (en) Non-contact power transmission system
US10052963B2 (en) Contactless power transfer system and method of controlling the same
JP5810632B2 (en) Non-contact power feeding device
JP5979310B2 (en) Power supply device, vehicle, and non-contact power supply system
KR101676591B1 (en) Contactless electricity supply system
KR101234126B1 (en) Resonance type noncontact charging device, noncontact power transmission device and noncontact power reception device
JP5152338B2 (en) Non-contact charging device and non-contact power receiving device
WO2011142419A1 (en) Resonance-type non-contact power supply system
WO2012073349A1 (en) Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
US20140103711A1 (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
US9834103B2 (en) Non-contact electric power transmission system
CN108394294B (en) Vehicle with a steering wheel
US20190118664A1 (en) Non-contact electric power transmission system, charging station, and vehicle
CN103326447A (en) Wireless charging system for electric bicycle
JP2013172501A (en) Non-contact power transmission system and non-contact power transmission method
US10457149B2 (en) Contactless power transfer system and power transmission device
JP2013172506A (en) Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method
US9623759B2 (en) Non-contact electric power transmission system and charging station
JP2013172497A (en) Non-contact power reception device, non-contact power transmission system, and non-contact power reception method
CN104821637A (en) Non-contact electric power transmission system and charging station
JP2019097355A (en) Charging system of vehicle
JP2014121124A (en) Non-contact electric power supply device and housing cracking detection method
JP2013172502A (en) Non-contact power receiving device, non-contact power transmission system, and non-contact power transmission method
JP2013172498A (en) Non-contact power supply device, non-contact power transmission system, and non-contact power supply method
JP6817830B2 (en) Contact charging device