JP2013170990A - Separation collection chip and separation collection method - Google Patents

Separation collection chip and separation collection method Download PDF

Info

Publication number
JP2013170990A
JP2013170990A JP2012036399A JP2012036399A JP2013170990A JP 2013170990 A JP2013170990 A JP 2013170990A JP 2012036399 A JP2012036399 A JP 2012036399A JP 2012036399 A JP2012036399 A JP 2012036399A JP 2013170990 A JP2013170990 A JP 2013170990A
Authority
JP
Japan
Prior art keywords
flow path
channel
layer
plasma
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012036399A
Other languages
Japanese (ja)
Inventor
Satoshi Konishi
聡 小西
Makoto Hosaka
誠 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMASHINA SEIKI KK
Ritsumeikan Trust
Original Assignee
YAMASHINA SEIKI KK
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMASHINA SEIKI KK, Ritsumeikan Trust filed Critical YAMASHINA SEIKI KK
Priority to JP2012036399A priority Critical patent/JP2013170990A/en
Publication of JP2013170990A publication Critical patent/JP2013170990A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce an amount of plasma uncollectable by a safety margin layer while preventing blood corpuscles from mixing in a flow path flowing plasma.SOLUTION: The plasma collection chip is provided with: a separation flow path 4 for separating a blood sample S into a plasma layer 21 on one side in the flow path width direction and a corpuscle layer 22 on the other side in the flow path width direction; and a collection flow path 6 which is provided on the downstream side of the separation flow path 4 and has a first flow path part 11 for flowing plasma in the plasma layer 21 and a second flow path part 12 for flowing blood corpuscles in the corpuscle layer 22. The collection flow path 6 has: a cross section change flow path part 9 which is expanded in the flow path width direction and reduced in the flow path thickness direction compared with the separation flow path 4; and a branching wall 17 which is provided on the side of plasma layer 21 away from a boundary surface 23 between the plasma layer 21 and the corpuscle layer 22 which flow in the cross section change flow path 9 branches the cross section change flow path part 9 into the first flow path part 11 and the second flow path part 12.

Description

本発明は、複数の成分を含む混合液を成分毎に分離して回収するための分離回収チップ、及び、成分毎に分離して回収する方法であり、具体的には、血液試料に含まれる血球と血漿とを分離して血漿を回収する分離回収チップ、及び、血球と血漿とを分離して血漿を回収する方法に関する。   The present invention is a separation / recovery chip for separating and recovering a mixed solution containing a plurality of components for each component, and a method for separating and recovering each component, specifically, included in a blood sample The present invention relates to a separation and recovery chip that separates blood cells and plasma and collects plasma, and a method of separating blood cells and plasma and recovering plasma.

近年、血液検査をチップ上で行うための技術開発が進んでおり、特に、このチップを小型化することで、必要となる血液試料の減量化、及び、試薬量の低減による検査の低コスト化が期待されている。
ところで、血液検査の主たる項目は、血液試料中の可溶性部分に基づくことから、血液試料中のほぼ半分を占める血球は、血液検査にとって不要な部分(邪魔な部分)となる。そこで、検査に先立って、血液試料から血漿のみを取り出すことが必要とされている。
In recent years, technological development for performing blood tests on a chip has progressed. In particular, by reducing the size of this chip, the required blood sample can be reduced, and the cost of testing can be reduced by reducing the amount of reagents. Is expected.
By the way, since the main item of the blood test is based on the soluble portion in the blood sample, the blood cells that occupy almost half of the blood sample become unnecessary portions (intrusive portions) for the blood test. Therefore, it is necessary to extract only plasma from the blood sample prior to the examination.

血球と血漿とを分離する方法としては、フィルタを用いる方法、遠心器による方法、及び、重力による方法(例えば、特許文献1参照)等が挙げられ、これら各方法において、血液試料を流す流路が内部に形成されたマイクロチップが用いられている。
特許文献1に記載のマイクロチップでは、図8(A)の流路の縦断面図に示すように、基板体の内部に、分離用流路99と、この分離用流路99から分岐している第一及び第二の流路94,95とが形成されており、第一の流路94の流入口と第二の流路95の流入口とが上下に設けられている。
血液試料が分離用流路99を流れると血球が沈殿し、この流路99の下流側では血球が下側を流れ、この血球による血球層91が下側にある第二の流路95に流入する。これに対して、血球以外の成分である血漿の大部分は、分離用流路99の上側を流れ、上側にある第一の流路94に流入する。
Examples of a method for separating blood cells and plasma include a method using a filter, a method using a centrifuge, a method using gravity (see, for example, Patent Document 1), and the like. A microchip in which is formed inside is used.
In the microchip described in Patent Document 1, as shown in the longitudinal sectional view of the flow path in FIG. 8A, the separation flow path 99 and the separation flow path 99 are branched into the substrate body. The first and second flow paths 94 and 95 are formed, and the inlet of the first flow path 94 and the inlet of the second flow path 95 are provided vertically.
When the blood sample flows through the separation channel 99, blood cells settle, the blood cells flow downward on the downstream side of the channel 99, and the blood cell layer 91 formed by the blood cells flows into the second channel 95 on the lower side. To do. In contrast, most of the plasma, which is a component other than blood cells, flows on the upper side of the separation channel 99 and flows into the first channel 94 on the upper side.

国際公開2007−136057号公報(図1参照)International Publication No. 2007-136057 (see FIG. 1)

前記特許文献1に記載の流路構造によれば、下側の流路95に血球が流れ、上側の流路94に血漿が流れ、血漿を血球から分離して回収することが可能となる。
しかし、血漿を流す上側の流路94へ、血球が混入しないようにするためには、流路94,95の分岐部となる分岐壁93を、血漿層90と血球層91との境界面92上に設けるのではなく、図8(A)(B)に示すように、境界面92から所定の寸法ΔLについて血漿層90側に設け、境界面92と分岐壁93との間に安全マージン層M(図8(B)のダブルハッチで示している部分)を設ける必要がある。
According to the flow channel structure described in Patent Document 1, blood cells flow in the lower flow channel 95, plasma flows in the upper flow channel 94, and the plasma can be separated from the blood cells and collected.
However, in order to prevent blood cells from entering the upper flow path 94 through which the plasma flows, the branch wall 93 serving as a branch portion of the flow paths 94 and 95 is provided with a boundary surface 92 between the plasma layer 90 and the blood cell layer 91. As shown in FIGS. 8A and 8B, the safety margin layer is provided between the boundary surface 92 and the branch wall 93 with a predetermined dimension ΔL from the boundary surface 92 on the plasma layer 90 side. It is necessary to provide M (portion indicated by a double hatch in FIG. 8B).

この安全マージン層Mは、血漿を回収するための上側の流路94へ血球が混入しないようにするための余裕層であり、この安全マージン層Mによれば、例えば、境界面92が血漿層90側に安全マージン層Mの範囲内で変動しても、上側の流路94へ血球が混入しないようにすることができる。
しかし、安全マージン層Mは血漿層90に含まれていることから、この安全マージン層Mの血漿は、上側の流路94へ流れずに、血球と共に下側の流路95へと流れてしまい、この血漿は検査に用いられずに無駄となってしまう。
The safety margin layer M is a margin layer for preventing blood cells from entering the upper flow path 94 for collecting plasma. According to the safety margin layer M, for example, the boundary surface 92 has a plasma layer. Even if it fluctuates within the range of the safety margin layer M on the 90 side, blood cells can be prevented from entering the upper flow path 94.
However, since the safety margin layer M is included in the plasma layer 90, the plasma in the safety margin layer M does not flow to the upper flow path 94 but flows to the lower flow path 95 together with the blood cells. This plasma is wasted without being used for testing.

そこで、安全マージン層Mによって回収することのできない血漿量を低減するためには、分岐壁93を境界面92の近傍に設定すればよい。しかし、この場合、血漿を流す上側の流路94へ血球が混入する確率が高くなってしまい、特に、血液試料の流入開始時等において境界面92が変動すると、その確率がより一層高くなってしまう。
このように、安全マージン層Mによって回収不能な血漿量の低減と、血漿を流す流路94への血球の混入防止とは、トレードオフの関係にある。
なお、このような血球及び血漿を含む血液試料以外に、複数の成分を含む他の混合液(粒子混合液)の場合も、分離・回収に関して前記のようなトレードオフの関係となる。
Therefore, in order to reduce the amount of plasma that cannot be collected by the safety margin layer M, the branch wall 93 may be set in the vicinity of the boundary surface 92. However, in this case, there is a high probability that blood cells will be mixed into the upper flow path 94 through which plasma flows. In particular, if the boundary surface 92 fluctuates at the start of inflow of the blood sample, the probability becomes even higher. End up.
Thus, there is a trade-off relationship between the reduction of the amount of plasma that cannot be collected by the safety margin layer M and the prevention of blood cell mixing into the flow path 94 through which the plasma flows.
In addition to such a blood sample containing blood cells and plasma, other mixed liquids (particle mixed liquids) containing a plurality of components also have the above-mentioned trade-off relationship with respect to separation / recovery.

そこで、本発明の目的は、一つの成分(血球)が他の成分(血漿)へ混入するのを防止しつつ、安全マージン層によって回収不能となる所定の成分の量(血漿量)を、従来に比べて削減することが可能となる分離回収チップ及び分離回収方法を提供することにある。血液試料の場合、血漿を流す流路へ血球が混入するのを防止しつつ、安全マージン層によって回収不能な血漿量を、従来に比べて削減することが可能となる分離回収チップ及び分離回収方法を提供することにある。   Accordingly, an object of the present invention is to reduce the amount of a predetermined component (plasma amount) that cannot be collected by a safety margin layer while preventing one component (blood cell) from being mixed into another component (plasma). An object of the present invention is to provide a separation / recovery chip and a separation / recovery method that can be reduced as compared with the above. In the case of a blood sample, a separation / recovery chip and a separation / recovery method capable of reducing the amount of plasma that cannot be collected by a safety margin layer compared to conventional methods while preventing blood cells from mixing into the flow path for plasma. Is to provide.

(1)本発明は、血球及び血漿を含む血液試料が層流となって流れる流路を備え、この流路において血球と血漿とを分離して血漿を回収するための分離回収チップであって、前記血液試料を流路幅方向一方側の血漿層と流路幅方向他方側の血球層とに分離するための分離用流路と、この分離用流路の下流側に設けられ、前記血漿層の血漿を流入させる第一流路部及び前記血球層の血球を流入させる第二流路部を有する回収流路とを備え、前記回収流路は、前記分離用流路と比較して前記流路幅方向に拡大されかつ流路厚さ方向に縮小されている断面変化流路部と、この断面変化流路部を流れる血漿層と血球層との境界面よりも血漿層側に設けられ当該断面変化流路部を前記第一流路部と前記第二流路部とに分岐させる分岐部とを有していることを特徴とする。   (1) The present invention is a separation / recovery chip that includes a flow path in which a blood sample containing blood cells and plasma flows in a laminar flow, and separates the blood cells and plasma in the flow path to recover the plasma. A separation channel for separating the blood sample into a plasma layer on one side in the channel width direction and a blood cell layer on the other side in the channel width direction; provided on the downstream side of the separation channel; A recovery flow path having a first flow path section through which plasma in a layer flows in and a second flow path section through which blood cells in the blood cell layer flow in, the recovery flow path being compared with the flow path for separation. A cross-section change flow path portion that is expanded in the width direction and reduced in the flow path thickness direction, and is provided on the plasma layer side from the boundary surface between the plasma layer and the blood cell layer that flows through the cross-section change flow path portion. A branching portion for branching the cross-section changing flow path portion into the first flow path portion and the second flow path portion; The features.

本発明によれば、回収流路の断面変化流路部では、分離用流路と比較して流路幅方向の寸法が拡大されかつ流路厚さ方向の寸法が縮小されているので、この断面変化流路部を流れる血液試料の血漿層を、流路幅方向に拡大させかつ流路厚さ方向に縮小することができる。このため、断面変化流路部を流れる血漿層と血球層との境界面よりも血漿層側に、従来と同じ幅の安全マージン層を有するようにして、分岐部を設けても、その安全マージン層の横断面を従来に比べて小さくすることができ、この結果、安全マージン層によって回収不能な血漿量を、従来に比べて削減することが可能となる。また、従来と同じ幅(血漿を流入させる第一流路部への血球の混入を防止可能とする幅)の安全マージン層を有するようにして、分岐部を設けることで、血漿を流す第一流路部へ血球が混入するのを防止することができる。なお、前記流路厚さ方向とは、血液試料の流れ方向と流路幅方向との双方に直交する方向である。   According to the present invention, in the cross-section changing flow path portion of the recovery flow path, the dimension in the flow path width direction and the dimension in the flow path thickness direction are reduced compared to the separation flow path. The plasma layer of the blood sample flowing through the cross-section changing flow path portion can be expanded in the flow path width direction and reduced in the flow path thickness direction. Therefore, even if a safety margin layer having the same width as the conventional one is provided on the plasma layer side with respect to the boundary surface between the plasma layer and the blood cell layer flowing through the cross-section change flow path portion, the safety margin can be provided. The cross section of the layer can be made smaller than before, and as a result, the amount of plasma that cannot be collected by the safety margin layer can be reduced compared to the conventional case. In addition, the first flow path for flowing plasma by providing a branching portion with a safety margin layer having the same width as the conventional one (width that can prevent blood cells from being mixed into the first flow path portion through which plasma flows). It is possible to prevent blood cells from entering the part. The flow channel thickness direction is a direction orthogonal to both the flow direction of the blood sample and the flow channel width direction.

(2)また、前記断面変化流路部の断面積は、前記分離用流路の断面積と同じであるのが好ましい。
この場合、分離用流路と断面変化流路部とにおける血液試料の流速を同じとすることができ、分離用流路で形成された血漿層と血球層との層流状態を、断面変化流路部においても保つことが可能となり、断面変化流路部から第一流路部へと血漿層中の血漿を安定して流入させることが可能となる。
(2) Moreover, it is preferable that the cross-sectional area of the said cross-section change flow-path part is the same as the cross-sectional area of the said flow path for isolation | separation.
In this case, the flow rate of the blood sample in the separation channel and the cross-section change channel part can be made the same, and the laminar flow state between the plasma layer and the blood cell layer formed in the separation channel is changed to the cross-section change flow. It is possible to maintain the passage portion, and the plasma in the plasma layer can be stably allowed to flow from the cross-section changing flow passage portion to the first flow passage portion.

(3)また、前記分離用流路は、慣性力に基づいて血漿層と血球層とに分離するために当該慣性力の作用方向が前記流路幅方向他方側となる流路構成を有し、前記断面変化流路部において、流路幅方向他方側への拡大量は、流路幅方向一方側への拡大量よりも大きいのが好ましい。
この場合、血漿層が形成される流路幅方向一方側では、流路幅方向の拡大量が小さく、流路幅の拡大による血漿層の乱れを防ぐことができる。この結果、断面変化流路部から第一流路部へと血漿層中の血漿を安定して流入させることが可能となる。
(3) Further, the separation channel has a channel configuration in which an action direction of the inertial force is on the other side in the channel width direction in order to separate the plasma layer and the blood cell layer based on the inertial force. In the cross-section changing flow path portion, it is preferable that the amount of expansion toward the other side in the flow path width direction is larger than the amount of expansion toward the one side in the flow path width direction.
In this case, on the one side in the flow path width direction where the plasma layer is formed, the amount of expansion in the flow path width direction is small, and the plasma layer can be prevented from being disturbed due to the expansion of the flow path width. As a result, the plasma in the plasma layer can be stably allowed to flow from the cross-section changing flow path portion to the first flow path portion.

(4)また、前記分離回収チップは、前記分離用流路の下流側流路部と前記回収流路の前記断面変化流路部との間に設けられ、当該下流側流路部から当該断面変化流路部へと流路断面を連続的又は段階的に変化させる遷移流路を更に備えているのが好ましい。
この場合、血漿層を、流路幅方向に徐々に拡大させることでき、また、流路厚さ方向に徐々に縮小させることが可能となる。
(4) Further, the separation / recovery chip is provided between the downstream flow path portion of the separation flow path and the cross-sectional change flow path portion of the recovery flow path, and the cross section from the downstream flow path portion. It is preferable to further include a transition channel that changes the channel cross section continuously or stepwise to the change channel part.
In this case, the plasma layer can be gradually expanded in the flow channel width direction, and can be gradually reduced in the flow channel thickness direction.

(5)また、本発明は、血球及び血漿を含む血液試料を層流として流路を流し、この血液試料中の血球と血漿とを分離して血漿を回収する分離回収方法であって、前記血液試料が流路に沿って流れるに伴い当該血液試料を流路幅方向一方側の血漿層と流路幅方向他方側の血球層とに分離し、前記血漿層を流路幅方向に拡大させかつ流路厚さ方向に縮小させ、この血漿層と血球層との境界面よりも血漿層側で分岐させた流路部に、当該血漿層の血漿を流入させることを特徴とする。   (5) Further, the present invention is a separation and recovery method for recovering plasma by flowing a blood sample containing blood cells and plasma as a laminar flow and separating the blood cells and plasma in the blood sample. As the blood sample flows along the channel, the blood sample is separated into a plasma layer on one side in the channel width direction and a blood cell layer on the other side in the channel width direction, and the plasma layer is expanded in the channel width direction. In addition, the plasma layer is reduced in the thickness direction, and plasma in the plasma layer is caused to flow into a flow channel portion branched on the plasma layer side from the boundary surface between the plasma layer and the blood cell layer.

本発明によれば、血液試料の血漿層を、流路幅方向に拡大させかつ流路厚さ方向に縮小させ、この血漿層と血球層との境界面よりも血漿層側で、従来と同じ幅の安全マージン層を有するようにして、分岐させた流路部に血漿を流入させた場合、その安全マージン層の横断面を従来に比べて小さくすることができるため、安全マージン層によって回収不能な血漿量を、従来に比べて削減することが可能となる。また、従来と同じ幅(血漿を流入させる流路部への血球の混入を防止可能とする幅)の安全マージン層を有するようにして、分岐させた流路部に血漿を流入させることで、血漿を流すこの流路部へ血球が混入するのを防止することができる。   According to the present invention, the plasma layer of the blood sample is enlarged in the flow channel width direction and reduced in the flow channel thickness direction, and is the same as the conventional one on the plasma layer side with respect to the boundary surface between the plasma layer and the blood cell layer. When plasma flows into a branched flow channel with a width safety margin layer, the safety margin layer can be made smaller in cross section than before, so it cannot be recovered by the safety margin layer. As a result, it is possible to reduce the amount of plasma compared to the conventional art. In addition, by having a safety margin layer of the same width as before (a width that can prevent blood cells from being mixed into the flow channel portion through which plasma flows in), the plasma flows into the branched flow channel portion, It is possible to prevent blood cells from being mixed into this flow path portion through which plasma flows.

(6)また、本発明は、複数の成分を含む混合液が層流となって流れる流路を備え、この流路において前記混合液を成分毎に分離して回収するための分離回収チップであって、前記混合液を流路幅方向一方側から他方側へ向かって成分毎の層に分離するための分離用流路と、この分離用流路の下流側に設けられ、分離させた各層に含まれる成分をそれぞれ流入させる流路部を複数有する回収流路とを備え、前記回収流路は、前記分離用流路と比較して前記流路幅方向に拡大されかつ流路厚さ方向に縮小されている断面変化流路部と、この断面変化流路部を流れる層間の境界面よりも流路幅方向に設けられ当該断面変化流路部を複数の前記流路部に分岐させる分岐部とを有していることを特徴とする。   (6) Further, the present invention is a separation and recovery chip for providing a flow path in which a mixed liquid containing a plurality of components flows in a laminar flow, and separating and recovering the mixed liquid for each component in the flow path. A separation channel for separating the mixed liquid into layers for each component from one side to the other side in the channel width direction, and each layer provided and separated on the downstream side of the separation channel A recovery flow path having a plurality of flow path portions through which the components contained in each flow in, the recovery flow path being enlarged in the flow path width direction and in the flow path thickness direction as compared with the separation flow path And a branch that is provided in the channel width direction with respect to the boundary surface between the layers flowing through the cross-section change flow path section and branches the cross-section change flow path section into the plurality of flow path sections. It has the part.

本発明によれば、回収流路の断面変化流路部では、分離用流路と比較して流路幅方向の寸法が拡大されかつ流路厚さ方向の寸法が縮小されているので、この断面変化流路部を流れる混合液の各層を、流路幅方向に拡大させかつ流路厚さ方向に縮小することができる。このため、断面変化流路部を流れる所定の層(第一の層)とこれに幅方向他方側に隣りの層(第二の層)との境界面よりも当該所定の層(第一の層)側に、従来と同じ幅の安全マージン層を有するようにして、分岐部を設けても、その安全マージン層の横断面を従来に比べて小さくすることができ、この結果、安全マージン層によって回収不能な前記所定の層(第一の層)の成分の量を、従来に比べて削減することが可能となる。また、従来と同じ幅の安全マージン層を有するようにして、分岐部を設けることで、前記所定の層(第一の層)の成分を流す流路部へ、他の層(第二の層)の成分が混入するのを防止することができる。なお、混合液は成分毎に分離されるが、回収されるのは、複数の成分の内の一つ又は複数であってもよい。   According to the present invention, in the cross-section changing flow path portion of the recovery flow path, the dimension in the flow path width direction and the dimension in the flow path thickness direction are reduced compared to the separation flow path. Each layer of the mixed liquid flowing through the cross-section changing flow path portion can be enlarged in the flow path width direction and reduced in the flow path thickness direction. For this reason, the predetermined layer (first layer) is more than the boundary surface between the predetermined layer (first layer) flowing through the cross-section changing flow path portion and the adjacent layer (second layer) on the other side in the width direction. Even if a branch portion is provided with a safety margin layer having the same width as the conventional one on the layer) side, the cross section of the safety margin layer can be made smaller than the conventional one. This makes it possible to reduce the amount of the component of the predetermined layer (first layer) that cannot be recovered compared to the conventional case. In addition, by providing a branch portion so as to have a safety margin layer having the same width as the conventional one, another layer (second layer) is provided to the flow path portion through which the component of the predetermined layer (first layer) flows. ) Can be prevented from being mixed. In addition, although a liquid mixture is isolate | separated for every component, what may be collect | recovered may be one or more of several components.

(7)また、本発明は、複数の成分を含む混合液を層流として流路を流し、この混合液を成分毎に分離して回収する分離回収方法であって、前記混合液が流路に沿って流れるに伴い流路幅方向一方側から他方側へ向かって当該混合液を成分毎の層に分離し、層毎に分離した前記混合液を流路幅方向に拡大させかつ流路厚さ方向に縮小させ、層間の境界面よりも流路幅方向一方側で分岐させた流路部に、当該流路幅方向一方側の層に含まれる成分を流入させることを特徴とする。   (7) Further, the present invention is a separation and recovery method in which a mixed liquid containing a plurality of components is flowed through a flow path as a laminar flow, and the mixed liquid is separated and recovered for each component. The mixed liquid is separated into layers for each component from one side to the other side in the flow path width direction as it flows along the flow path, and the mixed liquid separated for each layer is expanded in the flow path width direction and the flow path thickness. The component contained in the layer on the one side in the channel width direction is caused to flow into the channel part that is reduced in the vertical direction and branched on one side in the channel width direction from the boundary surface between the layers.

本発明によれば、混合液の各層を、流路幅方向に拡大させかつ流路厚さ方向に縮小させ、この所定の層と(第一の層)とこれに幅方向他方側に隣りの層(第二の層)との境界面よりも当該所定の層(第一の層)で、従来と同じ幅の安全マージン層を有するようにして、分岐させた流路部に、所定の層(第一の層)の成分を流入させた場合、その安全マージン層の横断面を従来に比べて小さくすることができるため、安全マージン層によって回収不能な前記所定の層(第一の層)の成分の量を、従来に比べて削減することが可能となる。また、従来と同じ幅の安全マージン層を有するようにして、分岐させた流路部に、前記所定の層(第一の層)の成分を流入させることで、この流路部へ他の層(第二の層)の成分が混入するのを防止することができる。   According to the present invention, each layer of the mixed solution is enlarged in the flow channel width direction and reduced in the flow channel thickness direction, and this predetermined layer (first layer) and this are adjacent to the other side in the width direction. The predetermined layer (first layer) has a safety margin layer having the same width as that of the conventional layer at the boundary layer with the layer (second layer). When the component of (first layer) is introduced, the cross section of the safety margin layer can be made smaller than the conventional one, so that the predetermined layer (first layer) that cannot be recovered by the safety margin layer It is possible to reduce the amount of the component compared to the prior art. In addition, by having a component of the predetermined layer (first layer) flow into the branched flow path portion so as to have a safety margin layer having the same width as the conventional one, another layer is introduced into this flow path portion. It is possible to prevent the (second layer) component from being mixed.

本発明によれば、安全マージン層によって回収不能な血漿量(所定の層の成分の量)を、従来に比べて削減することが可能となり、また、従来と同じ幅の安全マージン層を有するようにして、分岐させた流路部に血漿(所定の層の成分)を流入させることで、この流路部へ血球(他の層の成分)が混入するのを防止することができる。   According to the present invention, it becomes possible to reduce the amount of plasma that cannot be collected by the safety margin layer (the amount of components in the predetermined layer) compared to the conventional case, and to have a safety margin layer having the same width as the conventional one. Thus, blood plasma (components of other layers) can be prevented from being mixed into the flow channel portion by allowing plasma (components of a predetermined layer) to flow into the branched flow channel portion.

本発明の分離回収チップの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the isolation | separation collection | recovery chip | tip of this invention. 分離用流路の下流側部分、遷移流路及び回収流路の上流側部分の拡大説明図である。It is an enlarged explanatory view of the downstream part of the separation channel, the transition channel, and the upstream part of the recovery channel. 図2の平面図である。FIG. 3 is a plan view of FIG. 2. (A)は、図3のN−N矢視の断面図であり、(B)は、従来例の断面図である。(A) is sectional drawing of the NN arrow of FIG. 3, (B) is sectional drawing of a prior art example. 分離回収チップが有している流路の変形例を説明する説明図である。It is explanatory drawing explaining the modification of the flow path which the separation-and-recovery chip | tip has. 分離回収チップの他の実施形態を示す斜視図である。It is a perspective view showing other embodiments of a separation recovery chip. 分離回収チップが有している流路の変形例を説明する説明図である。It is explanatory drawing explaining the modification of the flow path which the separation-and-recovery chip | tip has. 従来のチップが備えている流路の断面図であり、(A)は流路の縦断面図であり、(B)は(A)のB−B矢視の断面図である。It is sectional drawing of the flow path with which the conventional chip | tip is provided, (A) is a longitudinal cross-sectional view of a flow path, (B) is sectional drawing of the BB arrow of (A).

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の分離回収チップの概略構成を示す斜視図である。この分離回収チップ1(以下、単にチップ1ともいう)は、基板本体2の内部に流路3が形成されて成るものであり、本実施形態では、基板本体2は平面視円形であり薄板状の部材から構成されている。なお、図1では、内部の構成(流路3)を説明するために、基板本体2を切断して示している。流路3は、分離用流路4と、遷移流路5と、回収流路6とを有している。この流路3では、複数の成分を含む混合液が層流となって流れ、この流路3においてこの混合液を成分毎に分離して、複数の成分の内の一つ又は複数又は全てを回収するが、本実施形態では、前記混合液は、血球及び血漿を含む血液試料Sであり、この血液試料Sが層流となって流路3を流れ、この流路3において血球と血漿とを分離して血漿を回収する場合について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a schematic configuration of a separation and recovery chip of the present invention. This separation / recovery chip 1 (hereinafter also simply referred to as chip 1) is formed by forming a flow path 3 inside a substrate body 2. In this embodiment, the substrate body 2 has a circular shape in plan view and a thin plate shape. It is comprised from the member of. In FIG. 1, the substrate body 2 is cut and illustrated in order to explain the internal configuration (flow path 3). The flow path 3 includes a separation flow path 4, a transition flow path 5, and a recovery flow path 6. In this flow path 3, a mixed liquid containing a plurality of components flows in a laminar flow, and in this flow path 3, the mixed liquid is separated for each component, and one, a plurality, or all of the plurality of components are separated. In this embodiment, the mixed solution is a blood sample S containing blood cells and plasma, and the blood sample S flows through the flow path 3 as a laminar flow. A case will be described in which plasma is collected after separation.

分離用流路4の一端部には、血液試料Sを注入する注入部7が設けられており、注入された血液試料Sは分離用流路4から遷移流路5を経て回収流路6へと流れる。回収流路6は、後にも説明するが第一流路部11と第二流路部12とを有しており、第一流路部11の端部に第一液溜め部13が設けられ、第二流路部12の端部に第二液溜め部14が設けられている。つまり、この流路3では、分離用流路4の注入部7が上流側となり、回収流路6の端部(第一液溜め部13、第二液溜め部14)が下流側となる。   One end of the separation channel 4 is provided with an injection part 7 for injecting the blood sample S. The injected blood sample S passes from the separation channel 4 to the recovery channel 6 via the transition channel 5. And flow. As will be described later, the recovery flow path 6 has a first flow path section 11 and a second flow path section 12, and a first liquid reservoir section 13 is provided at the end of the first flow path section 11. A second liquid reservoir portion 14 is provided at the end of the two flow path portion 12. That is, in this flow path 3, the injection part 7 of the separation flow path 4 is on the upstream side, and the ends of the recovery flow path 6 (the first liquid reservoir part 13 and the second liquid reservoir part 14) are on the downstream side.

分離用流路4は、血液試料Sを血漿層21と血球層22との二層に分離するための流路であり、本実施形態では、分離用流路4は円弧形状(渦巻き形状)に形成されている。この分離用流路4では、円弧(分離用流路4)の半径方向が、流路幅方向となり、この流路幅方向と血液試料Sの流れ方向とに直交する方向が厚さ方向となる。なお、分離用流路4の下流端における流路幅方向と、遷移流路5及び回収流路6における流路幅方向とは同方向であり、分離用流路4の下流端における厚さ方向と、遷移流路5及び回収流路6における厚さ方向とは同方向である。   The separation channel 4 is a channel for separating the blood sample S into two layers of a plasma layer 21 and a blood cell layer 22, and in this embodiment, the separation channel 4 has an arc shape (spiral shape). Is formed. In the separation channel 4, the radial direction of the arc (separation channel 4) is the channel width direction, and the direction perpendicular to the channel width direction and the flow direction of the blood sample S is the thickness direction. . The channel width direction at the downstream end of the separation channel 4 and the channel width direction at the transition channel 5 and the recovery channel 6 are the same direction, and the thickness direction at the downstream end of the separation channel 4 And the thickness direction in the transition flow path 5 and the recovery flow path 6 is the same direction.

注入部7から注入され分離用流路4を流れる血液試料Sのうちの血球は、遠心力によって径方向外側へ移動する。このため、分離用流路4の下流側部分(下流側流路部8)では、径方向外側に血球層22が形成され、径方向内側に血漿層21が形成される。
つまり、分離用流路4によれば、血液試料Sが、この分離用流路4を流れるに伴って、流路幅方向一方側(径方向内側)の血漿層21と、流路幅方向他方側(径方向外側)の血球層22との二層に分離させることができる。
このように、分離用流路4では、血液試料Sが、流路幅方向一方側から他方側へ向かって成分毎の層に分離される。なお、本実施形態では、前記のとおり混合液が血液試料Sであり、血漿層21と血球層22との二層に分離する場合を説明するが、混合液の種類に応じて、三層以上に分離して回収してもよい(図7参照)。
Blood cells in the blood sample S injected from the injection part 7 and flowing through the separation channel 4 move radially outward by centrifugal force. For this reason, in the downstream portion (downstream channel portion 8) of the separation channel 4, the blood cell layer 22 is formed on the radially outer side, and the plasma layer 21 is formed on the radially inner side.
That is, according to the separation channel 4, as the blood sample S flows through the separation channel 4, the plasma layer 21 on one side in the channel width direction (inside in the radial direction) and the other in the channel width direction. It can be separated into two layers with the blood cell layer 22 on the side (radially outer side).
Thus, in the separation channel 4, the blood sample S is separated into layers for each component from one side to the other side in the channel width direction. In the present embodiment, as described above, the case where the mixed solution is the blood sample S and is separated into two layers of the plasma layer 21 and the blood cell layer 22 will be described. However, depending on the type of the mixed solution, three or more layers are used. They may be separated and recovered (see FIG. 7).

分離用流路4の流路断面の形状は、血漿層21と血球層22との二層に分離するために最適化された形状に設定されている。本実施形態に係る分離用流路4の流路断面は矩形であり、また、その流路断面は、流路4の長手方向(血液試料Sの流れ方向)に沿って一定であり、変化しない。
図2は、分離用流路4の下流側部分(下流側流路部8)、遷移流路5及び回収流路6の上流側部分の拡大説明図である。図3は、その平面図である。図2において、下流側流路部8の下流端の幅方向(流路幅方向)をX方向とし、血液試料Sの流れ方向をY方向とすると、これらX方向とY方向とに直交するZ方向が厚さ方向(流路厚さ方向)となる。
分離用流路4の幅方向の寸法w1と厚さ方向の寸法h1との比(h1/W1)については、様々な値を採用することが可能であり、流路3を流れる血液試料Sの流量に基づいて、寸法h1が決定され、寸法w1をパラメータとして変更される。なお、この決定・変更のための制約条件として、流体的な条件に加えて、チップ1の製作上の条件も考慮される。具体例として、寸法h1を数十μmとすることができ(例えば、20μm,30μm,50μm等)、これに対して寸法w1を数百μmとすることができる。または、寸法h1と寸法w1とをそれぞれ1mm程度とすることも可能である。
The shape of the channel cross section of the separation channel 4 is set to a shape optimized for separation into two layers of a plasma layer 21 and a blood cell layer 22. The flow channel cross section of the separation flow channel 4 according to the present embodiment is rectangular, and the flow channel cross section is constant along the longitudinal direction of the flow channel 4 (the flow direction of the blood sample S) and does not change. .
FIG. 2 is an enlarged explanatory view of the downstream part (downstream channel part 8) of the separation channel 4, the upstream part of the transition channel 5 and the recovery channel 6. FIG. 3 is a plan view thereof. In FIG. 2, when the width direction (flow channel width direction) of the downstream end of the downstream flow channel portion 8 is the X direction and the flow direction of the blood sample S is the Y direction, the Z direction orthogonal to the X direction and the Y direction is shown. The direction is the thickness direction (flow channel thickness direction).
Various values can be adopted for the ratio (h1 / W1) of the dimension w1 in the width direction and the dimension h1 in the thickness direction of the separation channel 4, and the blood sample S flowing in the channel 3 can be used. Based on the flow rate, the dimension h1 is determined, and the dimension w1 is changed as a parameter. In addition to the fluid condition, the manufacturing condition of the chip 1 is also considered as a constraint condition for the determination / change. As a specific example, the dimension h1 can be several tens of μm (for example, 20 μm, 30 μm, 50 μm, etc.), and the dimension w1 can be several hundred μm. Alternatively, the dimension h1 and the dimension w1 can each be about 1 mm.

図1と図2と図3において、回収流路6は、分離用流路4よりも下流側に設けられており、分離用流路4(下流側流路部8)と比較して流路断面が変化している断面変化流路部9と、分離用流路4において分離させた各層に含まれる成分をそれぞれ流入させる流路部を、成分毎に複数有している。つまり、回収流路6は、断面変化流路部9と、血漿層21の血漿を流入させる第一流路部11と、血球層22の血球を流入させる第二流路部12とを有している。
なお、本実施形態では、成分毎の流路部として、第一流路部11と第二流路部12との二つを有しているが、分離・回収する成分が例えば三つの場合、第一流路部11と第二流路部12と第三流路部15とを有している(図7参照)。
1, 2, and 3, the recovery channel 6 is provided on the downstream side of the separation channel 4, and is a channel compared to the separation channel 4 (downstream channel unit 8). Each of the components has a plurality of cross-section changing flow path portions 9 whose cross sections change and flow path portions into which components contained in the respective layers separated in the separation flow path 4 are allowed to flow. That is, the recovery flow path 6 includes a cross-section change flow path section 9, a first flow path section 11 that allows plasma in the plasma layer 21 to flow in, and a second flow path section 12 that flows in blood cells in the blood cell layer 22. Yes.
In this embodiment, the first flow path portion 11 and the second flow path portion 12 are provided as flow path portions for each component. However, when there are three components to be separated and recovered, for example, It has the one flow path part 11, the 2nd flow path part 12, and the 3rd flow path part 15 (refer FIG. 7).

断面変化流路部9の流路断面は矩形であり、血液試料Sの流れ方向に沿って直線状に延びている。また、断面変化流路部9は、回収流路6の上流側部分であり、回収流路6の下流側部分が第一流路部11と第二流路部12となる。
遷移流路5は、分離用流路4の下流側流路部8と回収流路6の断面変化流路部9との間に設けられ、下流側流路部8から断面変化流路部9へと流路断面を連続的に変化させる傾斜状の流路からなる。この遷移流路5の流路断面は矩形である。
The cross section of the cross section changing flow path section 9 is rectangular, and extends linearly along the flow direction of the blood sample S. The cross-section changing flow path portion 9 is an upstream portion of the recovery flow path 6, and the downstream portion of the recovery flow path 6 is a first flow path portion 11 and a second flow path portion 12.
The transition flow path 5 is provided between the downstream flow path section 8 of the separation flow path 4 and the cross-section change flow path section 9 of the recovery flow path 6, and the cross-section change flow path section 9 extends from the downstream flow path section 8. It consists of an inclined channel that continuously changes the channel cross-section. The transition channel 5 has a rectangular channel cross section.

断面変化流路部9では、分離用流路4の下流側流路部8と比較して、流路幅方向(X方向)の寸法が拡大され、かつ、流路厚さ方向(Z方向)の寸法が縮小されている。つまり、断面変化流路部9の流路幅方向の寸法w2は、分離用流路4の下流端における流路幅方向の寸法w1よりも大きく(w2>w1)、かつ、断面変化流路部9の流路厚さ方向の寸法h2は、分離用流路4の下流端における流路厚さ方向の寸法h1よりも小さい(h2<h1)。そして、本実施形態では、断面変化流路部9の流路断面は流れ方向に沿って変化せず一定であり、また、断面変化流路部9の断面積(w2×h2)は、分離用流路4の下流側流路部8の下流端の断面積(w1×h1)と同じである。   In the cross-section changing flow path section 9, the dimension in the flow path width direction (X direction) is expanded and the flow path thickness direction (Z direction) as compared with the downstream flow path section 8 of the separation flow path 4. The dimensions have been reduced. That is, the dimension w2 in the flow path width direction of the cross-section change flow path section 9 is larger than the dimension w1 in the flow path width direction at the downstream end of the separation flow path 4 (w2> w1), and the cross-section change flow path section. The dimension h2 in the channel thickness direction 9 is smaller than the dimension h1 in the channel thickness direction at the downstream end of the separation channel 4 (h2 <h1). In the present embodiment, the cross-section of the cross-section change flow path section 9 is constant without changing along the flow direction, and the cross-sectional area (w2 × h2) of the cross-section change flow path section 9 is for separation. This is the same as the cross-sectional area (w1 × h1) at the downstream end of the downstream-side channel portion 8 of the channel 4.

このように、断面変化流路部9では、分離用流路4の下流端と比較して、流路幅方向の寸法が拡大されかつ流路厚さ方向の寸法が縮小されているので、この断面変化流路部9を流れる血液試料Sの血漿層21を、流路幅方向に拡大させかつ流路厚さ方向に縮小することができる。つまり、分離用流路4の下流端では、血漿層21の流路幅方向の寸法がL1であるのに対して、断面変化流路部9では、血漿層21の流路幅方向の寸法がL2(L2>L1)となる。そして、分離用流路4の下流端では、血漿層21の流路厚さ方向の寸法が、当該下流端の流路厚さ方向の寸法と同じh1であるのに対して、断面変化流路部9では、血漿層21の流路厚さ方向の寸法が、断面変化流路部9の流路厚さ方向の寸法と同じh2(h2<h1)となる。   As described above, in the cross-section changing flow path section 9, the dimension in the flow path width direction is enlarged and the dimension in the flow path thickness direction is reduced compared to the downstream end of the separation flow path 4. The plasma layer 21 of the blood sample S flowing through the cross-section changing flow path section 9 can be expanded in the flow path width direction and reduced in the flow path thickness direction. That is, at the downstream end of the separation channel 4, the dimension in the channel width direction of the plasma layer 21 is L1, whereas in the cross-section change channel unit 9, the dimension in the channel width direction of the plasma layer 21 is L2 (L2> L1). And, at the downstream end of the separation channel 4, the dimension of the plasma layer 21 in the channel thickness direction is the same h1 as the dimension of the downstream end in the channel thickness direction, whereas the cross-section change channel In the part 9, the dimension of the plasma layer 21 in the channel thickness direction is h2 (h2 <h1), which is the same as the dimension of the cross-sectional change channel part 9 in the channel thickness direction.

さらに、回収流路6は、断面変化流路部9を、第一流路部11と第二流路部12とに分岐させる分岐部として分岐壁17を有しており、分岐壁17は、回収流路6の下流側部分を、第一流路部11と第二流路部12とに区画している。第一流路部11は、断面変化流路部9を流れている血漿層21の血漿を流入させ、第二流路部12は、断面変化流路部9を流れている血球層22を流入させる。
そして、この分岐壁17の上流端、つまり、分岐点Kは、断面変化流路部9を流れる血漿層21と血球層22との境界面23よりも血漿層21側に設けられている。境界面23から分岐点Kまでの、流路幅方向の寸法をΔLとしている。
Further, the recovery flow path 6 has a branch wall 17 as a branch section that branches the cross-section changing flow path section 9 into the first flow path section 11 and the second flow path section 12. A downstream portion of the flow path 6 is partitioned into a first flow path section 11 and a second flow path section 12. The first flow path portion 11 allows the plasma of the plasma layer 21 flowing through the cross-section change flow path portion 9 to flow in, and the second flow path portion 12 allows the blood cell layer 22 flowing through the cross-section change flow path portion 9 to flow in. .
The upstream end of the branch wall 17, that is, the branch point K is provided on the plasma layer 21 side with respect to the boundary surface 23 between the plasma layer 21 and the blood cell layer 22 flowing through the cross-section changing flow path portion 9. The dimension in the flow path width direction from the boundary surface 23 to the branch point K is ΔL.

このΔLの領域は、境界面23と分岐壁17との間に形成される安全マージン層Mであり、この安全マージン層Mは、血漿を回収するための第一流路部11へ血球が混入しないようにするための余裕層(余裕代)である。この安全マージン層Mによれば、境界面23が血漿層21側に、安全マージン層Mの範囲内(ΔLの範囲内)で変動しても、第一流路部11へ血球が混入しないようにすることができる。しかし、この安全マージン層Mの血漿は、第一流路部11へ流れずに、第二流路部12へと血球と共に流れてしまい、第二流路部12に流れた血漿は検査に用いられない。   This region ΔL is a safety margin layer M formed between the boundary surface 23 and the branch wall 17, and this safety margin layer M does not mix blood cells into the first flow path portion 11 for collecting plasma. It is a margin layer (margin allowance) for doing so. According to the safety margin layer M, even if the boundary surface 23 fluctuates toward the plasma layer 21 within the range of the safety margin layer M (within the range of ΔL), blood cells are prevented from entering the first flow path portion 11. can do. However, the plasma in the safety margin layer M does not flow to the first flow path portion 11 but flows to the second flow path portion 12 together with blood cells, and the plasma that has flowed to the second flow path portion 12 is used for the test. Absent.

図4(A)は、図3のN−N矢視の断面図であり、図4(B)は、従来例の断面図である。図4(B)に示す従来例は、本実施形態のような断面変化流路部9を回収流路6が有しておらず、従来例の回収流路106の流路断面は、その上流側の分離用流路4の流路断面と同じである。なお、分離用流路4に関しては、従来例と本実施形態とは同じである。図4(B)は、従来例の流路構造のうち、図3のN−N矢視に相当する部分の断面図である。   4A is a cross-sectional view taken along line NN in FIG. 3, and FIG. 4B is a cross-sectional view of a conventional example. In the conventional example shown in FIG. 4B, the recovery channel 6 does not have the cross-sectional change channel part 9 as in this embodiment, and the channel cross section of the recovery channel 106 in the conventional example is the upstream side. This is the same as the channel cross section of the separation channel 4 on the side. The separation channel 4 is the same as the conventional example and the present embodiment. FIG. 4B is a cross-sectional view of a portion corresponding to the NN arrow in FIG. 3 in the conventional channel structure.

先ず、図4(B)の従来例について説明する。この回収流路106の流路幅方向の寸法及び流路厚さ方向の寸法は、その上流側の分離用流路4と同じw1及びh1である。
このため、回収流路106における血漿層121の流路幅方向の寸法は、分離用流路4における血漿層121の流路幅方向の寸法と同じL1であり、回収流路106における血漿層121の流路厚さ方向の寸法は、分離用流路4における血漿層121の流路厚さ方向の寸法と同じh1である。回収流路106の壁面106aから前記寸法L1の位置が、血漿層121と血球層122との境界面123となる。
そして、この境界面123から血漿層121側に、分岐壁117が設けられている。分岐壁117と境界面123との間が安全マージン層Mとなり、安全マージン層Mの流路幅方向の寸法がΔLである。このため、図4(B)の場合、クロスハッチが付されている流路断面を通過する血漿が、安全マージン層Mによって第一流路部111へ流れることができず、第二流路部112へと流れてしまう。
First, the conventional example of FIG. 4B will be described. The dimensions of the recovery channel 106 in the channel width direction and the channel thickness direction are the same w1 and h1 as the separation channel 4 on the upstream side.
Therefore, the dimension in the flow path width direction of the plasma layer 121 in the recovery flow path 106 is the same L1 as the dimension in the flow path width direction of the plasma layer 121 in the separation flow path 4, and the plasma layer 121 in the recovery flow path 106. The dimension in the channel thickness direction is h1 which is the same as the dimension in the channel thickness direction of the plasma layer 121 in the separation channel 4. The position of the dimension L <b> 1 from the wall surface 106 a of the recovery channel 106 becomes the boundary surface 123 between the plasma layer 121 and the blood cell layer 122.
A branch wall 117 is provided on the plasma layer 121 side from the boundary surface 123. A safety margin layer M is formed between the branch wall 117 and the boundary surface 123, and the dimension of the safety margin layer M in the flow path width direction is ΔL. For this reason, in the case of FIG. 4B, the plasma passing through the cross section of the flow path with the cross hatch cannot flow to the first flow path section 111 by the safety margin layer M, and the second flow path section 112. It will flow to.

次に、図4(A)の本実施形態について説明する。回収流路6が有する断面変化流路部9の流路幅方向の寸法w2は、分離用流路4の流路幅方向の寸法w1よりも大きく(W2>W1)、この断面変化流路部9の厚さ方向の寸法h2は、分離用流路4の流路厚さ方向の寸法h1よりも小さい(h2<h1)。
このため、断面変化流路部9における血漿層21の流路幅方向の寸法L2は、分離用流路4における血漿層21の流路幅方向の寸法L1よりも大きく(L2>L1)、断面変化流路部9における血漿層21の流路厚さ方向の寸法h2は、分離用流路4における血漿層21の流路厚さ方向の寸法h2よりも小さい(h2<h1)。断面変化流路部9の壁面9aから前記寸法L2の位置が、血漿層21と血球層22との境界面23となる。
そして、この境界面23から血漿層21側に、分岐壁17が設けられている。分岐壁17と境界面23との間が安全マージン層Mとなり、安全マージン層Mの流路幅方向の寸法は、図4(B)の従来例と同じΔLである。なお、この安全マージン層Mの流路幅方向の寸法ΔLは、本実施形態と従来例との双方において、血漿を流入させる第一流路部11,111への血球の混入を防止可能とする幅である。
このため、図4(A)の場合、クロスハッチが付されている流路断面を通過する血漿が、安全マージン層Mによって第一流路部11へ流れることができず、第二流路部12へと流れてしまう。
Next, this embodiment of FIG. 4A will be described. The dimension w2 in the flow path width direction of the cross-sectional change flow path portion 9 included in the recovery flow path 6 is larger than the dimension w1 in the flow path width direction of the separation flow path 4 (W2> W1). The dimension h2 in the thickness direction 9 is smaller than the dimension h1 in the channel thickness direction of the separation channel 4 (h2 <h1).
For this reason, the dimension L2 in the flow path width direction of the plasma layer 21 in the cross section changing flow path section 9 is larger than the dimension L1 in the flow path width direction of the plasma layer 21 in the separation flow path 4 (L2> L1). The dimension h2 in the flow path thickness direction of the plasma layer 21 in the change flow path section 9 is smaller than the dimension h2 in the flow path thickness direction of the plasma layer 21 in the separation flow path 4 (h2 <h1). The position of the dimension L2 from the wall surface 9a of the cross-section changing flow path portion 9 becomes the boundary surface 23 between the plasma layer 21 and the blood cell layer 22.
A branch wall 17 is provided on the plasma layer 21 side from the boundary surface 23. Between the branch wall 17 and the boundary surface 23 is a safety margin layer M, and the dimension of the safety margin layer M in the flow path width direction is ΔL, which is the same as that in the conventional example of FIG. The dimension ΔL of the safety margin layer M in the flow path width direction is a width that can prevent blood cells from being mixed into the first flow path portions 11 and 111 through which plasma flows in both the present embodiment and the conventional example. It is.
For this reason, in the case of FIG. 4A, the plasma passing through the cross-section of the flow path with the cross hatch cannot flow to the first flow path section 11 by the safety margin layer M, and the second flow path section 12 It will flow to.

このように、図4(A)の本実施形態において、境界面23よりも血漿層21側に、図4(B)の従来例と同じ幅ΔLの安全マージン層Mを有するようにして、分岐壁17を設けても、その安全マージン層Mの横断面を、従来例に比べて小さくすることができる。この結果、この安全マージン層Mによって回収することのできない血漿量を、従来例に比べて削減することが可能となる。
例えば、断面変化流路部9における流路断面の流路幅方向の寸法W2が、分離用流路4のそれ(w1)の2倍であり、断面変化流路部9における流路断面の流路厚さ方向の寸法h2が、分離用流路4のそれ(h1)の1/2倍である場合、ΔLは、従来例と本実施形態とでは同じであることから、安全マージン層Mの横断面に関して比較すると、本実施形態では、従来例の1/2とすることができる。このため、安全マージン層Mによって回収不能な血漿量を、従来に比べて1/2に削減することが可能となる。
Thus, in this embodiment of FIG. 4 (A), the plasma layer 21 side is closer to the plasma layer 21 than the boundary surface 23 so as to have the safety margin layer M having the same width ΔL as the conventional example of FIG. 4 (B). Even if the wall 17 is provided, the cross section of the safety margin layer M can be made smaller than in the conventional example. As a result, the amount of plasma that cannot be collected by the safety margin layer M can be reduced as compared with the conventional example.
For example, the dimension W2 in the channel width direction of the channel cross section in the cross section changing flow path portion 9 is twice that (w1) of the separation flow path 4, and the flow of the cross section in the cross section changing flow path portion 9 is When the dimension h2 in the path thickness direction is 1/2 times that of the separation channel 4 (h1), ΔL is the same between the conventional example and the present embodiment. In comparison with the cross section, in this embodiment, it can be ½ of the conventional example. For this reason, the amount of plasma that cannot be collected by the safety margin layer M can be reduced by half compared to the conventional case.

そして、幅ΔLは、血漿を流入させる第一流路部11への血球の混入を防止可能とする幅として設定されていることから、本実施形態において、この幅ΔLの安全マージン層Mを有するようにして、分岐壁17が設けられているため、血漿を流す第一流路部11へ血球が混入するのを防止することができる。   The width ΔL is set as a width that can prevent blood cells from being mixed into the first flow path portion 11 through which plasma flows, and therefore, in the present embodiment, the width ΔL has a safety margin layer M having the width ΔL. Thus, since the branch wall 17 is provided, it is possible to prevent blood cells from being mixed into the first flow path portion 11 through which plasma flows.

そして、本実施形態のチップ1を用いて行うことができる分離回収方法は、血液試料Sが分離用流路4に沿って流れるに伴って、この血液試料Sを流路幅方向一方側の血漿層21と流路幅方向他方側の血球層22との二層に分離し、分離した血漿層21を断面変化流路部9によって、流路幅方向に拡大させかつ流路厚さ方向に縮小させる。そして、この血漿層21と血球層22との境界面23よりも血漿層21側で分岐させた第一流路部11に、流路厚さ方向に縮小させた血漿層21の血漿を流入させることにより行われる。
そして、第一流路部11を流れた血球を含まない血漿は、第一液溜め部13(図1参照)に溜められ、第二流路部12を流れた血球を含む血漿は、第二液溜め部14に溜められる。
A separation and recovery method that can be performed using the chip 1 of the present embodiment is such that the blood sample S flows into the plasma on one side in the channel width direction as the blood sample S flows along the separation channel 4. The layer 21 and the blood cell layer 22 on the other side in the channel width direction are separated into two layers, and the separated plasma layer 21 is expanded in the channel width direction and reduced in the channel thickness direction by the cross-section changing channel unit 9. Let Then, the plasma of the plasma layer 21 reduced in the channel thickness direction is caused to flow into the first channel portion 11 branched from the boundary surface 23 between the plasma layer 21 and the blood cell layer 22 on the plasma layer 21 side. Is done.
And the plasma which does not contain the blood cell which flowed through the 1st flow path part 11 is stored in the 1st liquid reservoir part 13 (refer FIG. 1), and the plasma which contains the blood cell which flowed through the 2nd flow path part 12 is the 2nd liquid It is stored in the reservoir 14.

以上より、従来では、安全マージン層Mによって回収不能な血漿量の低減と、血漿を流す流路部への血球の混入防止とは、トレードオフの関係にあったが、本実施形態のチップ1及び前記分離回収方法によれば、安全マージン層Mによって回収不能な血漿量を、従来に比べて削減することが可能となり、かつ、幅ΔLの安全マージン層Mを有するようにして、分岐させた第一流路部11に血漿を流入させることで、この第一流路部11へ血球が混入するのを防止することが可能となる。   As described above, conventionally, there has been a trade-off relationship between the reduction of the amount of plasma that cannot be collected by the safety margin layer M and the prevention of blood cells from being mixed into the flow path portion through which the plasma flows, but the chip 1 of the present embodiment. According to the separation and recovery method, the amount of plasma that cannot be recovered by the safety margin layer M can be reduced as compared to the conventional method, and the plasma margin is divided so as to have the safety margin layer M having a width ΔL. By allowing plasma to flow into the first flow path portion 11, it is possible to prevent blood cells from entering the first flow path portion 11.

また、本実施形態では、図2において、断面変化流路部9の断面積(w2×h2)は、分離用流路4の断面積(w1×h1)と同じとしており、分離用流路4と断面変化流路部9とにおける血液試料Sの流速を同じとしている。このため、分離用流路4で形成された血漿層21と血球層22との層流状態を、断面変化流路部9においても保つことが可能となり、断面変化流路部9から第一流路部11へと血漿層21中の血漿を安定して流入させることが可能となる。   In this embodiment, in FIG. 2, the cross-sectional area (w2 × h2) of the cross-section changing flow path portion 9 is the same as the cross-sectional area (w1 × h1) of the separation flow path 4. And the flow velocity of the blood sample S in the cross-section changing flow path portion 9 are the same. For this reason, the laminar flow state of the plasma layer 21 and the blood cell layer 22 formed in the separation channel 4 can be maintained also in the cross-section change flow path portion 9, and the cross-section change flow path portion 9 to the first flow path. It becomes possible to stably flow the plasma in the plasma layer 21 into the part 11.

そして、遷移流路5は、分離用流路4の下流側流路部8から回収流路6の断面変化流路部9へと、流路断面を連続的に変化させていることから、血漿層21を、流路幅方向に滑らかに拡大させることでき、また、流路厚さ方向に滑らかに縮小させることが可能となる。なお、本実施形態では、遷移流路5の内壁面を平面によって構成し、流路断面を連続的に変化させる場合について説明したが、流路断面の変化は連続的ではなく、段階的であってもよい。つまり、遷移流路5の内壁面を階段形状に構成してもよい。   Since the transition channel 5 continuously changes the channel cross-section from the downstream channel 8 of the separation channel 4 to the cross-section changing channel 9 of the recovery channel 6, plasma The layer 21 can be smoothly expanded in the channel width direction, and can be smoothly reduced in the channel thickness direction. In the present embodiment, the case where the inner wall surface of the transition channel 5 is configured by a plane and the channel cross section is continuously changed has been described. However, the change in the channel cross section is not continuous but stepwise. May be. That is, the inner wall surface of the transition channel 5 may be configured in a staircase shape.

さらに、本実施形態では、分離用流路4は、遠心力(慣性力)に基づいて血漿層21と血球層22とに分離するために、遠心力(慣性力)の作用方向、つまり、中心側から半径方向外側へ向かう方向を、流路幅方向の他方として、この流路幅方向の他方側に血球層22が形成される流路構成を有している。そして、この分離用流路4の下流側に設けられている断面変化流路部9において、図2と図3に示すように、その流路断面は、流路幅方向の他方側(血球層22側)へ大きく拡大しているが、流路幅方向の一方側(血漿層21側)へは拡大していない。このように、本実施形態では、断面変化流路部9において、流路幅方向他方側への拡大量が、流路幅方向一方側への拡大量よりも大きくなるように設定されている。   Furthermore, in the present embodiment, the separation flow path 4 is separated into the plasma layer 21 and the blood cell layer 22 based on the centrifugal force (inertial force). The flow path configuration is such that the blood cell layer 22 is formed on the other side in the flow path width direction, with the direction from the side toward the radially outer side being the other in the flow path width direction. Then, in the cross section changing flow path section 9 provided on the downstream side of the separation flow path 4, as shown in FIGS. 2 and 3, the flow path cross section is the other side in the flow path width direction (blood cell layer). 22 side), but does not expand to one side (plasma layer 21 side) in the channel width direction. Thus, in this embodiment, in the cross-section changing flow path section 9, the amount of expansion to the other side in the flow path width direction is set to be larger than the amount of expansion to the one side in the flow path width direction.

この場合、血漿層21が形成される流路幅方向一方側では、流路幅方向の変化(拡大量)が小さくなり、分離用流路4と断面変化流路部9との間において、血漿層21の流線の流路幅方向の変化を小さくすることができる。この結果、流路の拡大による血漿層21の乱れを防ぐことができ、断面変化流路部9から第一流路部11へと血漿層21中の血漿を安定して流入させることが可能となる。   In this case, on one side in the flow path width direction where the plasma layer 21 is formed, the change (enlargement amount) in the flow path width direction is small, and the plasma flow is reduced between the separation flow path 4 and the cross-section change flow path section 9. The change in the channel width direction of the streamline of the layer 21 can be reduced. As a result, the disturbance of the plasma layer 21 due to the expansion of the flow path can be prevented, and the plasma in the plasma layer 21 can be stably allowed to flow from the cross-section changing flow path portion 9 to the first flow path portion 11. .

また、本発明の分離回収チップ1は、図示する形態に限らず本発明の範囲内において他の形態のものであってもよく、例えば、遷移流路5を省略してもよい。   Further, the separation / recovery chip 1 of the present invention is not limited to the form shown in the drawings, and may be of other forms within the scope of the present invention. For example, the transition flow path 5 may be omitted.

また、図5に示すように、遷移流路5及び断面変化流路部9が、流れ方向に向かう流路の中心線を基準として、流路幅方向両側が対称の形状であってもよい。
また、分離用流路4に関して、流体力学的な効果を用いて血液試料を血漿層と血球層とに分離することができれば、図6に示すように、分離用流路4は直線形状であってもよい。
Moreover, as shown in FIG. 5, the transition flow path 5 and the cross-section change flow path section 9 may have a symmetrical shape on both sides in the flow path width direction with respect to the center line of the flow path that goes in the flow direction.
As for the separation channel 4, if the blood sample can be separated into a plasma layer and a blood cell layer using a hydrodynamic effect, the separation channel 4 has a linear shape as shown in FIG. May be.

また、前記実施形態(図1参照)では、遠心力に基づいて、血漿層21と血球層22とに分離する場合を説明したが、その分離方法は他の方法であってもよく、重力に基づく方法であってもよい。つまり、血液試料Sが分離用流路4を流れることで、血球が沈殿しながら流路4の底部を流れ、分離用流路4の下流側において下部で血球層22が形成され、上部で血漿層21が形成される流路構造であってもよい。つまり、図3において、「流路幅方向他方側」を下とし、「流路幅方向一方側」を上とする流路構造であってもよい。   In the embodiment (see FIG. 1), the case where the plasma layer 21 and the blood cell layer 22 are separated based on the centrifugal force has been described. However, the separation method may be other methods, It may be based on a method. That is, the blood sample S flows through the separation channel 4, so that blood cells flow through the bottom of the channel 4 while precipitating. The blood cell layer 22 is formed at the lower part on the downstream side of the separation channel 4, and the plasma is formed at the upper part. It may be a flow channel structure in which the layer 21 is formed. That is, in FIG. 3, the flow channel structure may be such that “the other side in the channel width direction” is on the bottom and “one side in the channel width direction” is on the top.

また、図4に示したように安全マージン層Mの幅ΔLを従来と同じとするのではなく、従来よりも大きく設定してもよい。ただし、この場合において、幅ΔLは、従来の安全マージン層Mの流路断面と同じ流路断面となる幅に設定されるのが好ましい。つまり、図4(A)に示すように、流路幅方向の寸法を2倍、流路厚さ方向の寸法を1/2倍とする断面変化流路部9とした場合は、安全マージン層Mの幅をΔLの2倍とすることができる。この場合、安全マージン層Mによって血漿を回収できない量を、従来と同じとしながら、従来よりも安全マージン層Mの幅(2×ΔL)が大きいため、血球が血漿に混入する確率を著しく低下させることが可能となる。   Further, as shown in FIG. 4, the width ΔL of the safety margin layer M is not the same as the conventional one, but may be set larger than the conventional one. However, in this case, the width ΔL is preferably set to a width that provides the same channel cross section as that of the conventional safety margin layer M. That is, as shown in FIG. 4A, in the case of the cross-section changing flow path portion 9 in which the dimension in the flow path width direction is doubled and the dimension in the flow path thickness direction is halved, the safety margin layer The width of M can be doubled by ΔL. In this case, while the amount of plasma that cannot be collected by the safety margin layer M is the same as the conventional amount, the width (2 × ΔL) of the safety margin layer M is larger than the conventional amount, so the probability that blood cells are mixed into the plasma is significantly reduced. It becomes possible.

また、血液試料S以外に、創薬や成分分析のために化学反応評価を行う混合液についても、本発明のチップ1を適用することが可能である。すなわち、前記実施形態では、流路3を流れる混合液が血液試料Sであり、血漿層21と血球層22との二層に分離する場合について説明したが、混合液は他の液体(粒子混合液)であってもよく、また、混合液の種類に応じて分離数は変更自在である。例えば、混合液が三種類の成分A,B,Cを含む場合、図7に示すように、分離用流路4では、流路幅方向一方側から他方側へ向かって成分毎の層として、第一の層31、第二の層32、第三の層33に分離される。そして、この分離用流路4の下流側に回収流路6が設けられており、回収流路6は、分離させた各層に含まれる成分A,B,Cをそれぞれ流入させる流路部として、第一流路部11、第二流路部12、第三流路部15を有している。   In addition to the blood sample S, the chip 1 of the present invention can also be applied to a mixed solution for performing chemical reaction evaluation for drug discovery or component analysis. That is, in the above-described embodiment, the case where the liquid mixture flowing in the flow path 3 is the blood sample S and separated into two layers of the plasma layer 21 and the blood cell layer 22 has been described. The number of separations can be changed according to the type of the mixed solution. For example, when the mixed solution includes three types of components A, B, and C, as shown in FIG. 7, in the separation channel 4, as a layer for each component from one side to the other side in the channel width direction, The first layer 31, the second layer 32, and the third layer 33 are separated. And the recovery flow path 6 is provided in the downstream of this separation flow path 4, and the recovery flow path 6 is a flow path part into which the components A, B, and C contained in the separated layers are respectively introduced. The first flow path part 11, the second flow path part 12, and the third flow path part 15 are provided.

さらに、回収流路6は、前記実施形態(図3)と同様の断面変化流路部9を有している。そして、この断面変化流路部9における第一の層31の流路幅方向寸法L2−1は、分離用流路4における第一の層31の流路幅方向寸法L1−1よりも大きく(L2−1>L1−1)、断面変化流路部9における第二の層32の流路幅方向寸法L2−2は、分離用流路4における第二の層32の流路幅方向寸法L1−2よりも大きく(L2−2>L1−2)、断面変化流路部9における第三の層33の流路幅方向寸法L2−3は、分離用流路4における第三の層33の流路幅方向寸法L1−3よりも大きくなる(L2−3>L1−3)となる。また、各層31,32,33の流路厚さ方向の寸法は、断面変化流路部9において分離用流路4よりも小さくなる。   Further, the recovery flow path 6 has a cross-sectional change flow path section 9 similar to that in the above embodiment (FIG. 3). The channel width direction dimension L2-1 of the first layer 31 in the cross-section changing channel unit 9 is larger than the channel width direction dimension L1-1 of the first layer 31 in the separation channel 4 ( L2-1> L1-1), the channel width direction dimension L2-2 of the second layer 32 in the cross-section changing channel unit 9 is the channel width direction dimension L1 of the second layer 32 in the separation channel 4. −2 (L2-2> L1-2), and the flow path width direction dimension L2-3 of the third layer 33 in the cross-section changing flow path section 9 is equal to that of the third layer 33 in the separation flow path 4. It becomes larger than the dimension L1-3 of the flow path width direction (L2-3> L1-3). In addition, the dimension of each layer 31, 32, 33 in the channel thickness direction is smaller than that of the separation channel 4 in the cross-section changing channel unit 9.

また、回収流路6は、第一分岐部としての第一分岐壁17と、第二分岐部としての第二分岐壁18とを有している。断面変化流路部9を流れる三つの層31,32,33のうち、第一の層31と第二の層32との間の境界面34よりも寸法ΔL1について流路幅方向一方側に、第一分岐壁17が設けられており、第二の層32と第三の層33との間の境界面35よりも寸法ΔL2について流路幅方向他方側に、第二分岐壁18が設けられている。または、図示しないが、第二分岐部18については、境界面35よりも流路幅方向一方側に設けられていてもよい。また、図7では、第一分岐壁17と第二分岐壁18とは、流れ方向に関して同じ位置にあるが、いずれか一方は、他方よりも流れ方向に下流側に位置していてもよい。   Moreover, the collection | recovery flow path 6 has the 1st branch wall 17 as a 1st branch part, and the 2nd branch wall 18 as a 2nd branch part. Of the three layers 31, 32, and 33 that flow through the cross-section changing flow path section 9, the dimension ΔL <b> 1 on the one side in the flow path width direction from the boundary surface 34 between the first layer 31 and the second layer 32, The first branch wall 17 is provided, and the second branch wall 18 is provided on the other side in the flow path width direction with respect to the dimension ΔL2 with respect to the boundary surface 35 between the second layer 32 and the third layer 33. ing. Or although not shown in figure, about the 2nd branch part 18, you may be provided in the flow path width direction one side rather than the boundary surface 35. FIG. Moreover, in FIG. 7, although the 1st branch wall 17 and the 2nd branch wall 18 exist in the same position regarding a flow direction, any one may be located downstream in the flow direction rather than the other.

この図7の実施形態の場合、断面変化流路部9では、分離用流路4と比較して流路幅方向の寸法が拡大されかつ流路厚さ方向の寸法が縮小されているので、この断面変化流路部9を流れる層31,32,33の各層を、流路幅方向に拡大させかつ流路厚さ方向に縮小することができる。
このため、断面変化流路部9を流れる第一の層31とこれに幅方向他方側に隣りである第二の層32との境界面34よりも第一の層31側に、従来と同じ幅の安全マージン層M1を有するようにして、分岐壁17が設けられている場合、その安全マージン層M1の横断面を従来に比べて小さくすることができ、この結果、安全マージン層M1によって回収不能な第一の層31の成分Aの量を、削減することが可能となる。また、従来と同じ幅の安全マージン層M1を有するようにして、分岐壁17を設けることで、第一の層31の成分Aを流す第一流路部11へ、第二の層32の成分Bが混入するのを防止することができる。
また、断面変化流路部9を流れる第二の層32とこれに幅方向他方側に隣りである第三の層33との境界面35よりも第三の層33側に、所定の安全マージン層M2を有するようにして、分岐壁18が設けられていることで、その安全マージン層M2の横断面を小さくすることができ、この結果、安全マージン層M2によって回収不能な第三の層33の成分Cの量を、削減することが可能となる。また、所定の幅の安全マージン層M2を有するようにして、分岐壁18を設けることで、第三の層33の成分Cを流す第三流路部15へ、第二の層32の成分Bが混入するのを防止することができる。そして、第二の層32の成分Bは、第二流路12を流れることができ、回収することができる。なお、混合液は成分毎に分離されるが、回収されるのは、複数の成分の内の一つ又は複数であってもよい。
In the embodiment of FIG. 7, in the cross-section changing flow path section 9, the dimension in the flow path width direction and the dimension in the flow path thickness direction are reduced as compared with the separation flow path 4. Each of the layers 31, 32, and 33 flowing through the cross-section changing flow path portion 9 can be expanded in the flow path width direction and reduced in the flow path thickness direction.
For this reason, it is the same as the conventional one on the first layer 31 side rather than the boundary surface 34 between the first layer 31 flowing through the cross-section changing flow path portion 9 and the second layer 32 adjacent to the first layer 31 on the other side in the width direction. When the branch wall 17 is provided so as to have the safety margin layer M1 having the width, the cross section of the safety margin layer M1 can be made smaller than the conventional one, and as a result, the safety margin layer M1 collects the safety margin layer M1. It becomes possible to reduce the amount of the component A of the first layer 31 that is impossible. Further, by providing the branch wall 17 so as to have the safety margin layer M1 having the same width as the conventional one, the component B of the second layer 32 is passed to the first flow path portion 11 through which the component A of the first layer 31 flows. Can be prevented from being mixed.
Further, a predetermined safety margin is provided on the third layer 33 side from the boundary surface 35 between the second layer 32 flowing through the cross-section changing flow path portion 9 and the third layer 33 adjacent to the second layer 32 on the other side in the width direction. Since the branch wall 18 is provided so as to have the layer M2, the cross section of the safety margin layer M2 can be reduced. As a result, the third layer 33 that cannot be recovered by the safety margin layer M2 is obtained. It is possible to reduce the amount of component C. Further, by providing the branch wall 18 so as to have the safety margin layer M2 having a predetermined width, the component B of the second layer 32 is supplied to the third flow path portion 15 through which the component C of the third layer 33 flows. Can be prevented from being mixed. And the component B of the 2nd layer 32 can flow through the 2nd flow path 12, and can be collect | recovered. In addition, although a liquid mixture is isolate | separated for every component, what may be collect | recovered may be one or more of several components.

1:分離回収チップ 3:流路 4:分離用流路 5:遷移流路 6:回収流路 8:下流側流路部 9:断面変化流路部 11:第一流路部 12:第二流路部 17:分岐壁(分岐部) 21:血漿層 22:血球層 23:境界面 M:安全マージン層 S:血液試料   1: Separation and recovery chip 3: Channel 4: Separation channel 5: Transition channel 6: Recovery channel 8: Downstream channel 9: Cross-section change channel 11: First channel 12: Second channel Road part 17: Branch wall (branch part) 21: Plasma layer 22: Blood cell layer 23: Interface M: Safety margin layer S: Blood sample

Claims (7)

血球及び血漿を含む血液試料が層流となって流れる流路を備え、この流路において血球と血漿とを分離して血漿を回収するための分離回収チップであって、
前記血液試料を流路幅方向一方側の血漿層と流路幅方向他方側の血球層とに分離するための分離用流路と、
この分離用流路の下流側に設けられ、前記血漿層の血漿を流入させる第一流路部及び前記血球層の血球を流入させる第二流路部を有する回収流路と、を備え、
前記回収流路は、
前記分離用流路と比較して前記流路幅方向に拡大されかつ流路厚さ方向に縮小されている断面変化流路部と、
この断面変化流路部を流れる血漿層と血球層との境界面よりも血漿層側に設けられ当該断面変化流路部を前記第一流路部と前記第二流路部とに分岐させる分岐部と、
を有していることを特徴とする分離回収チップ。
A separation / recovery chip for collecting a blood sample containing blood cells and plasma in a laminar flow and separating the blood cells and plasma in the flow channel and collecting the plasma,
A separation channel for separating the blood sample into a plasma layer on one side in the channel width direction and a blood cell layer on the other side in the channel width direction;
A recovery channel provided on the downstream side of the separation channel, and having a first channel part for introducing plasma of the plasma layer and a second channel part for introducing blood cells of the blood cell layer,
The recovery channel is
A cross-section changing flow path portion that is enlarged in the flow path width direction and reduced in the flow path thickness direction as compared with the separation flow path;
A branching portion that is provided closer to the plasma layer than the boundary surface between the blood plasma layer and the blood cell layer that flows through the cross-section change flow path section, and branches the cross-section change flow path section into the first flow path section and the second flow path section. When,
A separation / recovery chip characterized by comprising:
前記断面変化流路部の断面積は、前記分離用流路の断面積と同じである請求項1に記載の分離回収チップ。   The separation / recovery chip according to claim 1, wherein a cross-sectional area of the cross-sectional change flow path portion is the same as a cross-sectional area of the separation flow path. 前記分離用流路は、慣性力に基づいて血漿層と血球層とに分離するために当該慣性力の作用方向が前記流路幅方向他方側となる流路構成を有し、
前記断面変化流路部において、流路幅方向他方側への拡大量は、流路幅方向一方側への拡大量よりも大きい請求項1又は2に記載の分離回収チップ。
The separation channel has a channel configuration in which the direction of action of the inertial force is on the other side in the channel width direction in order to separate the plasma layer and the blood cell layer based on the inertial force,
The separation / recovery chip according to claim 1, wherein in the cross-section changing flow path portion, an enlargement amount toward the other side in the flow path width direction is larger than an enlargement amount toward the one side in the flow path width direction.
前記分離用流路の下流側流路部と前記回収流路の前記断面変化流路部との間に設けられ、当該下流側流路部から当該断面変化流路部へと流路断面を連続的又は段階的に変化させる遷移流路を更に備えている請求項1〜3のいずれか一項に記載の分離回収チップ。   Provided between the downstream flow path portion of the separation flow path and the cross-sectional change flow path portion of the recovery flow path, and the flow path cross section is continuous from the downstream flow path portion to the cross-section change flow path portion The separation / recovery chip according to any one of claims 1 to 3, further comprising a transition channel that is changed in a stepwise or stepwise manner. 血球及び血漿を含む血液試料を層流として流路を流し、この血液試料中の血球と血漿とを分離して血漿を回収する分離回収方法であって、
前記血液試料が流路に沿って流れるに伴い当該血液試料を流路幅方向一方側の血漿層と流路幅方向他方側の血球層とに分離し、
前記血漿層を流路幅方向に拡大させかつ流路厚さ方向に縮小させ、
この血漿層と血球層との境界面よりも血漿層側で分岐させた流路部に、当該血漿層の血漿を流入させることを特徴とする分離回収方法。
A separation and recovery method for recovering plasma by flowing a blood sample containing blood cells and plasma as a laminar flow through a flow path, separating blood cells and plasma in the blood sample,
As the blood sample flows along the flow path, the blood sample is separated into a plasma layer on one side in the flow path width direction and a blood cell layer on the other side in the flow path width direction,
Expanding the plasma layer in the channel width direction and reducing in the channel thickness direction;
A separation and recovery method, characterized in that the plasma in the plasma layer is caused to flow into a flow path portion branched off from the boundary surface between the plasma layer and the blood cell layer on the plasma layer side.
複数の成分を含む混合液が層流となって流れる流路を備え、この流路において前記混合液を成分毎に分離して回収するための分離回収チップであって、
前記混合液を流路幅方向一方側から他方側へ向かって成分毎の層に分離するための分離用流路と、
この分離用流路の下流側に設けられ、分離させた各層に含まれる成分をそれぞれ流入させる流路部を複数有する回収流路と、を備え、
前記回収流路は、
前記分離用流路と比較して前記流路幅方向に拡大されかつ流路厚さ方向に縮小されている断面変化流路部と、
この断面変化流路部を流れる層間の境界面よりも流路幅方向に設けられ当該断面変化流路部を複数の前記流路部に分岐させる分岐部と、
を有していることを特徴とする分離回収チップ。
A separation / recovery chip for separating and recovering the mixed liquid for each component in the flow path including a flow path in which a mixed liquid containing a plurality of components flows in a laminar flow,
A separation channel for separating the mixture into layers for each component from one side to the other side in the channel width direction;
A recovery channel that is provided on the downstream side of the separation channel and has a plurality of channel units for allowing the components contained in the separated layers to flow in, respectively.
The recovery channel is
A cross-section changing flow path portion that is enlarged in the flow path width direction and reduced in the flow path thickness direction as compared with the separation flow path;
A branching section that is provided in the flow path width direction from the boundary surface between the layers flowing through the cross-section change flow path section and branches the cross-section change flow path section into the plurality of flow path sections;
A separation / recovery chip characterized by comprising:
複数の成分を含む混合液を層流として流路を流し、この混合液を成分毎に分離して回収する分離回収方法であって、
前記混合液が流路に沿って流れるに伴い流路幅方向一方側から他方側へ向かって当該混合液を成分毎の層に分離し、
層毎に分離した前記混合液を流路幅方向に拡大させかつ流路厚さ方向に縮小させ、
層間の境界面よりも流路幅方向一方側で分岐させた流路部に、当該流路幅方向一方側の層に含まれる成分を流入させることを特徴とする分離回収方法。
A separation and recovery method in which a mixed liquid containing a plurality of components flows through a flow path as a laminar flow, and the mixed liquid is separated and recovered for each component,
As the mixed liquid flows along the flow path, the mixed liquid is separated into layers for each component from one side to the other side in the width direction of the flow path,
The mixed liquid separated for each layer is enlarged in the flow channel width direction and reduced in the flow channel thickness direction,
A separation and recovery method, wherein a component contained in a layer on one side in the channel width direction is caused to flow into a channel part branched on one side in the channel width direction from the boundary surface between layers.
JP2012036399A 2012-02-22 2012-02-22 Separation collection chip and separation collection method Pending JP2013170990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036399A JP2013170990A (en) 2012-02-22 2012-02-22 Separation collection chip and separation collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036399A JP2013170990A (en) 2012-02-22 2012-02-22 Separation collection chip and separation collection method

Publications (1)

Publication Number Publication Date
JP2013170990A true JP2013170990A (en) 2013-09-02

Family

ID=49265010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036399A Pending JP2013170990A (en) 2012-02-22 2012-02-22 Separation collection chip and separation collection method

Country Status (1)

Country Link
JP (1) JP2013170990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592965A (en) * 2020-06-01 2020-08-28 南京林业大学 Micro-fluidic chip detection system and method for cell sorting and focusing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880241U (en) * 1981-11-26 1983-05-31 旭化成株式会社 blood component separator
JP2007196219A (en) * 2005-12-28 2007-08-09 Kawamura Inst Of Chem Res Device and method of separating substances
WO2007136057A1 (en) * 2006-05-24 2007-11-29 Kyoto University Microchannel for separating blood plasma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880241U (en) * 1981-11-26 1983-05-31 旭化成株式会社 blood component separator
JP2007196219A (en) * 2005-12-28 2007-08-09 Kawamura Inst Of Chem Res Device and method of separating substances
WO2007136057A1 (en) * 2006-05-24 2007-11-29 Kyoto University Microchannel for separating blood plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592965A (en) * 2020-06-01 2020-08-28 南京林业大学 Micro-fluidic chip detection system and method for cell sorting and focusing
CN111592965B (en) * 2020-06-01 2021-04-09 南京林业大学 Micro-fluidic chip detection system and method for cell sorting and focusing

Similar Documents

Publication Publication Date Title
US11634286B2 (en) Multilayer hydrodynamic sheath flow structure
Hyun et al. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients
Zhang et al. Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration
US8276760B2 (en) Serpentine structures for continuous flow particle separations
Ozkumur et al. Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells
US20210101151A1 (en) Multi-stage target cell enrichment using a microfluidic device
Shen et al. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics
Chiu et al. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing
KR101662808B1 (en) Apparatus and method for microfluidic chip filtration using spiral branch channel
US7993821B2 (en) Methods and apparatus for the isolation and enrichment of circulating tumor cells
Sim et al. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels
CN107991476B (en) Method for isolating particles using a device provided with a size-differential separation element having an elongated leading edge
US20080128331A1 (en) Particle separation and concentration system
JP2008538283A5 (en)
Mutlu et al. Non-equilibrium inertial separation array for high-throughput, large-volume blood fractionation
US8590710B2 (en) Target particles-separating device and method using multi-orifice flow fractionation channel
WO2014018562A1 (en) Droplet generation system with features for sample positioning
US9908117B2 (en) Microfluidic separation device, separation method using the same and kit for separating circulating rare cells from blood using the same
JP2011519553A5 (en)
CN111909828A (en) Micro-fluidic chip suitable for capture of circulating tumor cells
US20240116050A1 (en) Microfluidic bubble trap
Ebrahimi et al. Optimizing the design of a serpentine microchannel based on particles focusing and separation: A numerical study with experimental validation
JP2013170990A (en) Separation collection chip and separation collection method
van Kooten et al. Passive removal of immiscible spacers from segmented flows in a microfluidic probe
Lee et al. Microfluidics with new multi-stage arc-unit structures for size-based cross-flow separation of microparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322