JP2013170888A - Radiation shield vessel - Google Patents

Radiation shield vessel Download PDF

Info

Publication number
JP2013170888A
JP2013170888A JP2012034301A JP2012034301A JP2013170888A JP 2013170888 A JP2013170888 A JP 2013170888A JP 2012034301 A JP2012034301 A JP 2012034301A JP 2012034301 A JP2012034301 A JP 2012034301A JP 2013170888 A JP2013170888 A JP 2013170888A
Authority
JP
Japan
Prior art keywords
radiation
layer
radiation shielding
shielding container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012034301A
Other languages
Japanese (ja)
Inventor
Yutaka Michiwaki
裕 道脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Infrastructure Systems Co Ltd
Next Innovation GK
Original Assignee
IHI Corp
IHI Infrastructure Systems Co Ltd
Next Innovation GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Infrastructure Systems Co Ltd, Next Innovation GK filed Critical IHI Corp
Priority to JP2012034301A priority Critical patent/JP2013170888A/en
Publication of JP2013170888A publication Critical patent/JP2013170888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation shield vessel that accommodates a substance containing radioactive materials, and shields radiation rays emitted from the accommodated substance containing the radioactive materials.SOLUTION: A radiation shield vessel 1 for accommodating a substance 2 containing radioactive materials, includes: a pair of layers 10 and 11; and a radiation ray absorption layer 12 that is provided between the pair of layers 10 and 11 and absorbs radiation rays. The pair of layers 10 and 11 are a solid layer, and the radiation ray absorption layer 12 is a fluid layer.

Description

本発明は、放射性物質を含む物質を収容し、収容した放射性物質を含む物質から放出される放射線を遮蔽する放射線遮蔽容器に関する。   The present invention relates to a radiation shielding container that contains a substance containing a radioactive substance and shields radiation emitted from the contained substance containing the radioactive substance.

日本では、2011年3月11日の大震災の後、原子力発電所の事故があり、大量の放射性物質が飛散したと考えられている。これ以降、ゴミ焼却場の焼却灰、下水処理場の汚泥、河川、海洋、被災地の瓦礫等から、放射能物質が確認され、低レベル放射性廃棄物が大量に発生している。更に、除染作業が本格化するに伴い、低レベル放射性廃棄物は、増加の一途を辿るものと思慮する。   In Japan, it is thought that after the great earthquake of March 11, 2011, there was an accident at a nuclear power plant and a large amount of radioactive material was scattered. Since then, radioactive materials have been confirmed from incineration ash at garbage incineration plants, sludge from sewage treatment plants, rivers, oceans, rubble from disaster areas, and a large amount of low-level radioactive waste has been generated. Furthermore, as the decontamination work becomes full-scale, low-level radioactive waste is considered to continue to increase.

低レベル放射性廃棄物は、現在のところ、余裕深度処分、浅地中ピット処分或いは浅地中トレンチ処分することになっている。しかしながら、低レベル放射性廃棄物は、処分所で処理されるまでの間、一時的に保管しておく必要がある。更に、低レベル放射性廃棄物は、除染作業を行う除染作業現場から一時保管所まで、又は、一時保管所から処分所まで運搬する必要がある。この際、低レベル放射性廃棄物を収容する収容容器には、安定した放射線の遮蔽性能が望まれる。   At present, low-level radioactive waste is to be disposed at a deep depth, in a shallow pit, or in a shallow trench. However, low-level radioactive waste must be temporarily stored until it is processed at the repository. Furthermore, low-level radioactive waste needs to be transported from a decontamination work site where decontamination work is performed to a temporary storage, or from a temporary storage to a disposal site. At this time, a stable radiation shielding performance is desired for the storage container for storing the low-level radioactive waste.

本発明は、以上のような背景に基づいて成されたものであり、放射性物質を含む物質を収容し、収容した放射性物質を含む物質から放出される放射線を安定して遮蔽する放射線遮蔽容器を提供することを目的とする。   The present invention has been made on the basis of the background as described above, and includes a radiation shielding container that contains a substance containing a radioactive substance and stably shields radiation emitted from the contained substance containing the radioactive substance. The purpose is to provide.

本発明に係る放射線遮蔽容器体は、放射性物質を含む物質を収容する収容部を有する容器本体と、容器本体の収容部を閉塞する蓋体とを備えている。そして、容器本体の少なくとも一面及び/又は蓋体は、一対の層と、一対の層の間に設けられ、放射線を吸収する放射線吸収層とを有している。更に、一対の層は、固体層であり、放射線吸収層は、流体層である。   A radiation shielding container according to the present invention includes a container main body having a storage portion that stores a substance containing a radioactive substance, and a lid that closes the storage portion of the container main body. At least one surface of the container body and / or the lid includes a pair of layers and a radiation absorbing layer that is provided between the pair of layers and absorbs radiation. Further, the pair of layers is a solid layer, and the radiation absorbing layer is a fluid layer.

本発明は、容器本体の少なくとも一面及び/又は蓋体に設けられた放射線吸収層によって、容器本体の収容部に収容された放射性物質を含む物質から放出される放射線を低減することが出来る。従って、本発明では、保管及び運搬の際に、放射性物質を含む物質を収容する収容容器として用いることが出来る。   In the present invention, radiation emitted from a substance containing a radioactive substance housed in a housing part of the container body can be reduced by the radiation absorbing layer provided on at least one surface of the container body and / or the lid. Therefore, in this invention, it can be used as a storage container for storing a substance containing a radioactive substance during storage and transportation.

また、本発明では、放射線吸収層が流体層であるので、予め放射線吸収層を一対の層の間に注入しておくことに限らず、放射性物質を含む物質を収容する収容作業現場に運搬後に、放射線吸収層を一対の層の間に注入することが出来る。従って、本発明では、収容作業現場まで、放射線吸収層を一対の層の間に設けていない軽量化した状態で、運搬することが出来る。   Further, in the present invention, since the radiation absorbing layer is a fluid layer, it is not limited to injecting the radiation absorbing layer between the pair of layers in advance, but after being transported to a storage work site that stores a substance containing a radioactive substance. The radiation absorbing layer can be injected between the pair of layers. Therefore, in this invention, it can be conveyed to the accommodation work site in the weight-reduced state which does not provide the radiation absorption layer between a pair of layers.

また、流体である放射線吸収層が水を主成分として構成される場合には、放射性物質を含む物質から放射される放射線が中性子線を含む場合においても、γ線のみならず中性子線に対しても効果的にその放射線強度を減衰させることが可能となる。   In addition, when the radiation absorbing layer, which is a fluid, is composed of water as a main component, even when the radiation emitted from a substance containing a radioactive substance contains neutron rays, not only γ rays but also neutron rays It is also possible to effectively attenuate the radiation intensity.

本発明を適用した放射線遮蔽容器を示した断面図である。It is sectional drawing which showed the radiation shielding container to which this invention is applied. 容器本体及び蓋体を示した断面図である。It is sectional drawing which showed the container main body and the cover body. 容器本体及び蓋体に新たな層を設けた放射線遮蔽容器を示した断面図である。It is sectional drawing which showed the radiation shielding container which provided the new layer in the container main body and the cover body. 容器本体及び蓋体に係合部及び被係合部を設けた放射線遮蔽容器を示した断面図である。It is sectional drawing which showed the radiation shielding container which provided the engaging part and the to-be-engaged part in the container main body and the cover body. 容器本体を複数個積み重ねた放射線遮蔽容器を示した断面図である。It is sectional drawing which showed the radiation shielding container which piled up the container main body in multiple numbers. 容器本体の側面を底面に対して鋭角(鈍角)に設けた放射線遮蔽容器を示した断面図である。It is sectional drawing which showed the radiation shielding container which provided the side surface of the container main body at an acute angle (obtuse angle) with respect to the bottom face.

以下、本発明を適用した放射線遮蔽容器について図面を参照して説明する。   Hereinafter, a radiation shielding container to which the present invention is applied will be described with reference to the drawings.

図1に示すように、本発明を適用した放射線遮蔽容器1は、放射性物質を含む物質2を収容する収容部3aを有する容器本体3と、容器本体3の収容部3aを閉塞する蓋体4とを備えている。   As shown in FIG. 1, a radiation shielding container 1 to which the present invention is applied includes a container body 3 having a housing part 3 a that houses a substance 2 containing a radioactive substance, and a lid 4 that closes the housing part 3 a of the container body 3. And.

容器本体3は、図1に示すように、上部に開口部が形成された有底筒状に設けられ、内部に収容部3aを有する。更に、容器本体3の収容部3a内には、放射性物質を含む物質2が収容されている。例えば、収容部3a内に収容される放射性物質を含む物質2は、放射能物質が確認された、ゴミ焼却場の焼却灰、下水処理場の汚泥、河川、海洋、被災地の瓦礫等から成る低レベル放射性廃棄物である。なお、これらはあくまで一例であり、放射性物質を含む物質2は、これらに限定されるものではない。   As shown in FIG. 1, the container body 3 is provided in a bottomed cylindrical shape having an opening formed in the upper portion, and has a housing portion 3 a inside. Furthermore, the substance 2 containing a radioactive substance is accommodated in the accommodating part 3a of the container body 3. For example, the substance 2 containing a radioactive substance accommodated in the accommodating part 3a is composed of incineration ash from a garbage incineration site, sludge from a sewage treatment plant, rivers, oceans, debris from a disaster area, etc. Low level radioactive waste. These are merely examples, and the substance 2 containing a radioactive substance is not limited to these.

蓋体4は、容器本体3の平面視形状と略同じ平面視形状を有する板状に設けられている。蓋体4は、容器本体3の上面3bに配置され、容器本体3の収容部3aを閉塞して密閉する。また、蓋体4の容器本体3の収容部3aに対向する面には、突部4aが設けられている。この突部4aは、収容部3a内において上部近傍に嵌合されて、収容部3aの密閉性を高めるとともに、蓋体4の容器本体3に対するずれ防止を図る。   The lid body 4 is provided in a plate shape having a plan view shape substantially the same as the plan view shape of the container body 3. The lid 4 is disposed on the upper surface 3b of the container body 3, and closes and seals the accommodating portion 3a of the container body 3. In addition, a protrusion 4 a is provided on the surface of the lid body 4 that faces the housing portion 3 a of the container body 3. The protrusion 4a is fitted in the vicinity of the upper portion in the accommodating portion 3a to improve the sealing performance of the accommodating portion 3a and prevent the lid 4 from being displaced from the container body 3.

また、容器本体3及び蓋体4は、それぞれ、図2に示すように、内層10と、外層11と、内層10及び外層11の間に設けられ、放射線を吸収する放射線吸収層12とを有する。   Further, as shown in FIG. 2, each of the container body 3 and the lid body 4 includes an inner layer 10, an outer layer 11, and a radiation absorbing layer 12 that is provided between the inner layer 10 and the outer layer 11 and absorbs radiation. .

内層10は、収容部3a側に設けられた固体層である。内層10は、下記表1に示す元素周期表の第1の周期から第7の周期の元素を少なくとも1つ含む材質で形成されている。より具体的には内層10は、例えば、鉄系素材や鉛系素材等主成分とする金属類、陶器素材や磁器素材等を主成分とするセラミックス類、板ガラスやガラスカレット等のガラス質を主成分とするガラス類、コンクリート、アスファルト、天然樹脂や合成樹脂類やゴム類等の高分子化合物類、木類或いはそれらから構成される複合材料によって、例えば繊維強化材化するなどして構成される。勿論、内層10の表面には防錆層や耐食層、耐水層、防水層、ガスバリア層、緩衝層、耐酸性や耐塩基性等を有する耐薬品層、耐蝕層、耐熱層耐紫外線層等を設けても好い。   The inner layer 10 is a solid layer provided on the housing 3a side. The inner layer 10 is formed of a material containing at least one element having a first period to a seventh period in the element periodic table shown in Table 1 below. More specifically, the inner layer 10 is mainly made of, for example, metals mainly composed of iron-based materials and lead-based materials, ceramics mainly composed of ceramic materials and porcelain materials, and glassy materials such as plate glass and glass cullet. Glass, concrete, asphalt as components, polymer compounds such as natural resins, synthetic resins and rubbers, trees, or composite materials composed of them, for example, made into fiber reinforcement, etc. . Of course, the surface of the inner layer 10 includes a rust preventive layer, a corrosion resistant layer, a water resistant layer, a waterproof layer, a gas barrier layer, a buffer layer, a chemical resistant layer having acid resistance and base resistance, a corrosion resistant layer, a heat resistant layer, an ultraviolet resistant layer, etc. It is also good to provide.

Figure 2013170888
Figure 2013170888

外層11は、内層10と所定の間隔をあけて外部側に設けられた固体層である。外層11は、上記表1に示す元素周期表の第1の周期から第7の周期の元素を少なくとも1つ含む材質で形成されている。より具体的には外層11は、例えば、鉄系素材や鉛系素材等主成分とする金属類、陶器素材や磁器素材等を主成分とするセラミックス類、板ガラスやガラスカレット等のガラス質を主成分とするガラス類、コンクリート、アスファルト、天然樹脂や合成樹脂類やゴム類等の高分子化合物類、木類或いはそれらから構成される複合材料によって、例えば繊維強化材化するなどして構成される。勿論、外層11の表面には防錆層や耐食層、耐水層、防水層、ガスバリア層、緩衝層、耐酸性や耐塩基性等を有する耐薬品層、耐蝕層、耐熱層耐紫外線層等を設けても好い。   The outer layer 11 is a solid layer provided on the outer side with a predetermined distance from the inner layer 10. The outer layer 11 is formed of a material containing at least one element having the first to seventh periods in the periodic table of elements shown in Table 1 above. More specifically, the outer layer 11 is mainly composed of, for example, metals mainly composed of iron-based materials and lead-based materials, ceramics mainly composed of ceramic materials and porcelain materials, and glassy materials such as plate glass and glass cullet. Glass, concrete, asphalt as components, polymer compounds such as natural resins, synthetic resins and rubbers, trees, or composite materials composed of them, for example, made into fiber reinforcement, etc. . Of course, the surface of the outer layer 11 includes a rust preventive layer, a corrosion resistant layer, a water resistant layer, a waterproof layer, a gas barrier layer, a buffer layer, a chemical resistant layer having acid resistance and base resistance, a corrosion resistant layer, a heat resistant layer, an ultraviolet resistant layer, and the like. It is also good to provide.

放射線吸収層12は、内層10と外層11との間に設けられた流体層である。放射線吸収層12は、上記表1に示す元素周期表の第1の周期から第7の周期の元素を少なくとも1つ含む材質で形成されている。例えば、放射線吸収層12は、入手が容易な水や海水等である。特に、放射線吸収層12を、水を主成分として成る流体によって構成した場合には、水分子に含まれる水素原子の数量が非常に多くなる。水素原子は、中性子線の質量と非常に近く、多量の水分子中においてファンデルワールス力を多分に受けながら、また水素結合をしながら略静止状態にあることから、それらの水素原子に外部から飛来してきた中性子線が衝突すると、中性子線の運動エネルギーが著しく減衰し、平均18回程度の水素原子との衝突によって放射線として有していた強力な運動エネルギーの殆どを失うことになる。従って、放射線吸収層12を、水を主成分として成る流体によって構成した場合には、放射線の一種であるγ線を減衰させられるだけでなく、中性子線の運動エネルギーも吸収させることが出来て好ましい。   The radiation absorbing layer 12 is a fluid layer provided between the inner layer 10 and the outer layer 11. The radiation absorbing layer 12 is formed of a material containing at least one element having a first period to a seventh period in the periodic table of elements shown in Table 1 above. For example, the radiation absorbing layer 12 is water or seawater that is easily available. In particular, when the radiation absorbing layer 12 is composed of a fluid containing water as a main component, the number of hydrogen atoms contained in water molecules is very large. The hydrogen atoms are very close to the mass of the neutron beam and are almost stationary due to the van der Waals force in a large amount of water molecules and hydrogen bonds. When a neutron beam that has come into collision collides, the kinetic energy of the neutron beam is remarkably attenuated, and most of the strong kinetic energy possessed as radiation is lost by collision with hydrogen atoms on the average of about 18 times. Therefore, when the radiation absorbing layer 12 is composed of a fluid containing water as a main component, it is preferable because not only γ rays, which are a kind of radiation, can be attenuated but also the kinetic energy of neutron rays can be absorbed. .

放射線吸収層12は、予め内層10及び外層11の間に注入しておくようにしても良く、放射線遮蔽容器1を放射性物質を含む物質2を収容する収容作業現場に運搬後に、内層10及び外層11の間に注入するようにしても良い。更に、放射線吸収層12は、収容作業現場に運搬後に、収容部3a内に放射性物質を含む物質2を収容する前に内層10及び外層11の間に注入するようにしても良く、収容後に内層10及び外層11の間に注入するようにしても良い。   The radiation absorbing layer 12 may be injected between the inner layer 10 and the outer layer 11 in advance, and after transporting the radiation shielding container 1 to a storage work site that contains the substance 2 containing a radioactive substance, the inner layer 10 and the outer layer 11 may be injected. Further, the radiation absorbing layer 12 may be injected between the inner layer 10 and the outer layer 11 after the transportation to the housing work site and before the substance 2 containing the radioactive substance is housed in the housing portion 3a. It may be injected between 10 and the outer layer 11.

更に、放射線吸収層12は、下記(1)式によって規定される厚さを有するように設けられている。   Further, the radiation absorbing layer 12 is provided so as to have a thickness defined by the following formula (1).

Figure 2013170888
x:放射線吸収層の厚さ
μ:放射線吸収層を構成する物質固有のγ線に対する減衰係数
ε:比例定数(原始減衰係数)
e:自然対数の底
ρ:放射線吸収層を構成する物質の質量体積密度
:放射線遮蔽容器に透過前の放射線強度
I:放射線遮蔽容器に透過後の放射線強度
Figure 2013170888
x: thickness of the radiation absorbing layer μ: attenuation coefficient with respect to γ rays specific to the material constituting the radiation absorbing layer ε: proportional constant (primary attenuation coefficient)
e: base of natural logarithm ρ: mass volume density of the substance constituting the radiation absorbing layer I 0 : radiation intensity before transmission through the radiation shielding container I: radiation intensity after transmission through the radiation shielding container

ここで、原始減衰係数εについて説明する。γ線の物質中での減衰のメカニズムは、物質(電子を含む)と光(γ線)との光電効果並びに物質(電子を含む)と光(γ線)の散乱現象であるコンプトン効果によるものが支配的であると考えられる。つまり、γ線の減衰係数μは、原子核子や電子の数量の関数であり放射線吸収層を構成する物質の質量体積密度ρに比例すると考えられる。すなわち、μ∝ρと表される。従って、物質固有に定まる減衰係数μは、μ=ερと表される。ここでεは比例定数扱いとする原始減衰係数である。   Here, the primitive damping coefficient ε will be described. The mechanism of γ-ray decay in matter is due to the photoelectric effect of matter (including electrons) and light (γ-rays) and the Compton effect, which is the scattering phenomenon of matter (including electrons) and light (γ-rays). Is considered dominant. That is, the γ-ray attenuation coefficient μ is a function of the number of atomic nucleons and electrons, and is considered to be proportional to the mass volume density ρ of the material constituting the radiation absorbing layer. That is, it is expressed as μ∝ρ. Therefore, the attenuation coefficient μ determined by the substance is expressed as μ = ερ. Here, ε is a primitive attenuation coefficient treated as a proportional constant.

下記表2は、γ線の減衰性をまとめたものである。表2の左欄は、γ線のエネルギーの大きさ毎の各種物質の線吸収係数(γ線に対する減衰係数)の実測値をまとめたものである(三井金属エンジニアリング株式会社のHP参照。)。表2の右欄は、左欄の値をそれぞれの質量体積密度ρで割った値を示している。表2から分かるように、減衰の大きさは、γ線のエネルギーの大きさによって異なる。その一方で、同じエネルギーレベルを物質間で比較すると、原始減衰係数εは、ほぼ一定であると考えられる。   Table 2 below summarizes the attenuation of γ rays. The left column of Table 2 summarizes the actual measured values of the linear absorption coefficient (attenuation coefficient with respect to γ-rays) of various substances for each magnitude of γ-ray energy (refer to the Mitsui Kinzoku Engineering Co., Ltd. website). The right column of Table 2 shows values obtained by dividing the values in the left column by the respective mass volume densities ρ. As can be seen from Table 2, the magnitude of attenuation differs depending on the magnitude of γ-ray energy. On the other hand, when the same energy level is compared between materials, the primitive attenuation coefficient ε is considered to be substantially constant.

Figure 2013170888
Figure 2013170888

具体的に、放射線吸収層12が例えば水であり、収容部3aに収容された放射性物質を含む物質2から放出されるγ線のエネルギーが2MeVであり、このγ線を20分の1まで減衰するのに必要な放射線吸収層12の厚さを算出する。表2のγ線のエネルギーが2MeVの場合の水の原始減衰係数ε=0.048cm/gを用いれば、水の減衰係数μは、μ=ερ=0.048×1.00=0.048(cm−1)となる。従って、放射線吸収層12の厚さxは、x=−(1/0.048)log(1/20)=62.4(cm)と算出される。 Specifically, the radiation absorbing layer 12 is, for example, water, and the energy of γ rays emitted from the substance 2 containing the radioactive substance accommodated in the accommodating portion 3a is 2 MeV, and the γ rays are attenuated to 1/20. The thickness of the radiation absorbing layer 12 necessary for this is calculated. If the primitive attenuation coefficient of water ε = 0.048 cm 2 / g when the energy of γ rays in Table 2 is 2 MeV, the attenuation coefficient μ of water is μ = ερ = 0.048 × 1.00 = 0. 048 (cm −1 ). Therefore, the thickness x of the radiation absorbing layer 12 is calculated as x = − (1 / 0.048) log e (1/20) = 62.4 (cm).

すなわち、放射線遮蔽容器1は、放射線吸収層12が水であり、収容部3aに収容された放射性物質を含む物質2から放出されるγ線のエネルギーが2MeVであり、このγ線を20分の1まで減衰するのに必要な放射線吸収層12の厚さは62.4cmである。換言すると、放射線遮蔽容器1は、放射線吸収層12が水の場合、放射線吸収層12の厚さを62.4cmとすることで、収容部3aに収容された放射性物質を含む物質2から放出されたエネルギーが2MeVのγ線を、20分の1まで減衰することが出来る。   That is, in the radiation shielding container 1, the radiation absorbing layer 12 is water, the energy of γ rays emitted from the substance 2 containing the radioactive substance accommodated in the accommodating portion 3a is 2 MeV, and the γ rays are reduced to 20 minutes. The thickness of the radiation absorbing layer 12 required to attenuate to 1 is 62.4 cm. In other words, when the radiation absorbing layer 12 is water, the radiation shielding container 1 is released from the substance 2 containing the radioactive substance accommodated in the accommodating portion 3a by setting the thickness of the radiation absorbing layer 12 to 62.4 cm. Γ-rays with 2 MeV energy can be attenuated to 1/20.

以上のように、放射線遮蔽容器1は、容器本体3及び蓋体4に設けられた流体層からなる放射線吸収層12によって、容器本体3の収容部3aに収容された放射性物質を含む物質2から放出される放射線を低減することが出来る。従って、放射線遮蔽容器1は、保管及び運搬の際に、放射性物質を含む物質を収容する収容容器として用いることが出来る。   As described above, the radiation shielding container 1 is formed from the substance 2 containing the radioactive substance accommodated in the accommodating portion 3a of the container body 3 by the radiation absorbing layer 12 composed of the fluid layer provided on the container body 3 and the lid body 4. The emitted radiation can be reduced. Therefore, the radiation shielding container 1 can be used as a storage container for storing a substance containing a radioactive substance during storage and transportation.

また、放射線遮蔽容器1は、放射線吸収層12が流体層であるので、予め放射線吸収層12を内層10及び外層11の間に注入しておくことに限らず、放射性物質を含む物質2を収容する収容作業現場に運搬後に、放射線吸収層12を内層10及び外層11の間に注入することが出来る。従って、放射線遮蔽容器1は、収容作業現場まで、放射線吸収層12を内層10及び外層11の間に設けていない軽量化した状態で、運搬することが出来る。勿論、放射線吸収層12を成す流体としては、液相体の他、ゲル状体、スラリー状体、粉体、粒体、或いはそれらの混合体、若しくは、内層10と外層11の間の空間への注入時には、流体でありながら、注入後に硬化して固体化するものであってもよい。   Moreover, since the radiation absorption layer 12 is a fluid layer, the radiation shielding container 1 is not limited to injecting the radiation absorption layer 12 between the inner layer 10 and the outer layer 11 in advance, and contains a substance 2 containing a radioactive substance. The radiation absorbing layer 12 can be injected between the inner layer 10 and the outer layer 11 after being transported to the receiving work site. Therefore, the radiation shielding container 1 can be transported to the accommodation work site in a lightened state in which the radiation absorbing layer 12 is not provided between the inner layer 10 and the outer layer 11. Of course, as the fluid constituting the radiation absorbing layer 12, in addition to a liquid phase, a gel, a slurry, a powder, a granule, a mixture thereof, or a space between the inner layer 10 and the outer layer 11 is used. At the time of injection, it may be a fluid that hardens and solidifies after injection.

なお、内層10及び外層11には、図3に示すように、更なる層13を設けるようにしても良い。具体的に、更なる層13は、内層10の収容部3a側の面、内層10の放射線吸収層12側の面、外層11の放射線吸収層12側の面、外層11の外部側の面に、一層又は複数層設けられている。また、更なる層13は、これらの面のうちの少なくとも一面に、一層又は複数層設けるようにしても良い。このような更なる層13は、固体層又は流体層であって、上記表1に示す元素周期表の第1の周期から第7の周期の元素を少なくとも1つ含む材質で形成されている。従って、放射線遮蔽容器1は、機械的強度や耐久性の向上を図ることが出来る。   In addition, you may make it provide the further layer 13 in the inner layer 10 and the outer layer 11, as shown in FIG. Specifically, the further layer 13 is formed on the surface of the inner layer 10 on the accommodating portion 3a side, the surface of the inner layer 10 on the radiation absorbing layer 12 side, the surface of the outer layer 11 on the radiation absorbing layer 12 side, and the surface of the outer layer 11 on the outer side. One layer or a plurality of layers are provided. Further, the additional layer 13 may be provided in one or more layers on at least one of these surfaces. Such a further layer 13 is a solid layer or a fluid layer, and is formed of a material containing at least one element of the first period to the seventh period of the element periodic table shown in Table 1 above. Therefore, the radiation shielding container 1 can improve mechanical strength and durability.

また、容器本体3及び蓋体4は、内層10及び/又は外層11を、放射線吸収層12と同様に、放射線を吸収する吸収層として用いるようにしても良い。更に、容器本体3及び蓋体4は、更なる層13が設けられている場合、更なる層13を、放射線吸収層12と同様に、放射線を吸収する吸収層として用いるようにしても良い。但し、更なる層13は、流体に限らず固体であってもよい。この際、容器本体3及び蓋体4は、下記(2)式を満たすように設けられる。勿論、ここでの比I/Iは、減衰率であって基準として事前設定可能な設定値であり、容器本体3に収容される放射性物質を含む物質から放出される減衰前の放射線強度に対する、n層の放射線吸収層12を通過しながら減衰されて外部に透過して出てくる放射線強度の比である。このように放射線吸収層12をn層に多層化した場合であっても、放射線遮蔽容器1は、容器本体3の収容部3aに収容された放射性物質を含む物質2から放出される放射線を低減することが出来る。更に、放射線遮蔽容器1は、内層10、外層11及び更なる層13を吸収層として用いる分、放射線吸収層12の厚さを薄くするなどの調整が出来、全体として小型化の調整などを図ることが出来る。 Further, in the container body 3 and the lid body 4, the inner layer 10 and / or the outer layer 11 may be used as an absorption layer that absorbs radiation similarly to the radiation absorption layer 12. Further, when the container body 3 and the lid body 4 are provided with the additional layer 13, the additional layer 13 may be used as an absorption layer that absorbs radiation similarly to the radiation absorption layer 12. However, the further layer 13 is not limited to fluid but may be solid. At this time, the container body 3 and the lid body 4 are provided so as to satisfy the following expression (2). Of course, the ratio I n / I 0 here is an attenuation rate and is a set value that can be preset as a reference, and the radiation intensity before attenuation emitted from the substance containing the radioactive substance contained in the container body 3 Is a ratio of the radiation intensity which is attenuated while passing through the n radiation absorbing layers 12 and is transmitted to the outside. Even when the radiation absorbing layer 12 is multi-layered in this way, the radiation shielding container 1 reduces the radiation emitted from the substance 2 containing the radioactive substance housed in the housing portion 3a of the container body 3. I can do it. Furthermore, the radiation shielding container 1 can be adjusted such that the thickness of the radiation absorbing layer 12 is reduced by using the inner layer 10, the outer layer 11 and the further layer 13 as the absorbing layer, thereby reducing the overall size. I can do it.

Figure 2013170888
n:放射線吸収層12の層数
:j番目の層の厚さ
μ:j番目の層を構成する物質固有のγ線に対する減衰係数
ε:j番目の層を構成する物質固有の比例定数(原始減衰係数)
ρ:j番目の層を構成する物質固有の質量体積密度
:放射線遮蔽容器透過前の放射線強度
:n層の放射線吸収層を有する放射線遮蔽容器透過後の放射線強度
Figure 2013170888
n: number of radiation absorbing layers 12 x j : thickness of j-th layer μ j : attenuation coefficient for γ-rays specific to the material constituting the j-th layer ε j : specific to the material constituting the j-th layer Proportional constant (primary damping coefficient)
ρ j : Mass volume density specific to the substance constituting the j-th layer I 0 : Radiation intensity before passing through the radiation shielding container I n : Radiation intensity after passing through the radiation shielding container having n radiation absorbing layers

また、放射線吸収層12は、容器本体3の少なくとも一面に設けられていれば良い。例えば、放射線遮蔽容器1は、保管所の床面が遮蔽処理されていたり、他の放射線遮蔽容器1上に積み重ねて保管及び運搬される場合等では、容器本体3の底面には放射線吸収層12を設けずに、底面を除いた面だけに放射線吸収層12を設けるようにしても良い。更に、放射線遮蔽容器1は、例えば、他の放射線遮蔽容器1と側面が接した状態で保管及び運搬される場合等では、その側面には放射線吸収層12を設けずに、その側面を除いた面だけに放射線吸収層12を設けるようにしても良い。更に、放射線遮蔽容器1は、例えば、他の放射線遮蔽容器1を上部に積み重ねて保管及び運搬される場合等では、蓋体4には放射線吸収層12を設けずに、容器本体3だけに放射線吸収層12を設けるようにしても良い。   Moreover, the radiation absorption layer 12 should just be provided in at least one surface of the container main body 3. FIG. For example, the radiation shielding container 1 has a radiation absorbing layer 12 on the bottom surface of the container body 3 when the floor of the storage place is shielded or when the radiation shielding container 1 is stored and transported by being stacked on another radiation shielding container 1. The radiation absorbing layer 12 may be provided only on the surface excluding the bottom surface. Further, for example, when the radiation shielding container 1 is stored and transported in a state in which the side surface is in contact with another radiation shielding container 1, the side surface is removed without providing the radiation absorbing layer 12 on the side surface. The radiation absorbing layer 12 may be provided only on the surface. Furthermore, the radiation shielding container 1 does not include the radiation absorbing layer 12 in the lid body 4 when the other radiation shielding containers 1 are stacked and stored and transported, for example. The absorption layer 12 may be provided.

また、放射線遮蔽容器1は、容器本体3及び/又は蓋体4に、他の放射線遮蔽容器1と係合する係合部20と、他の放射線遮蔽容器1の係合部20に係合される被係合部21とを有するようにしても良い。例えば、係合部20は、図4に示すように、容器本体3の底面及び側面に設けられた凸部であって、被係合部21は、蓋体4及び容器本体3の側面に設けられた凹部である。従って、放射線遮蔽容器1は、複数個を積み重ねて又は並べて保管及び運搬する際に、係合部20と被係合部21とが係合することで、ずれ止めを図ることが出来る。なお、係合部20及び被係合部21は、上述したものに限定されるものではなく、放射線遮蔽容器1と他の放射線遮蔽容器1とが係合することでずれ止めを図ることが出来るものであれば、如何なるものであっても良い。   Further, the radiation shielding container 1 is engaged with the container main body 3 and / or the lid 4, the engaging portion 20 that engages with the other radiation shielding container 1, and the engaging portion 20 of the other radiation shielding container 1. The engaged portion 21 may be included. For example, as shown in FIG. 4, the engaging portion 20 is a convex portion provided on the bottom surface and the side surface of the container body 3, and the engaged portion 21 is provided on the side surface of the lid body 4 and the container body 3. Recessed portion. Therefore, when the radiation shielding container 1 is stored or transported by stacking or arranging a plurality of the radiation shielding containers 1, the engaging portion 20 and the engaged portion 21 are engaged with each other, thereby preventing the displacement. The engaging portion 20 and the engaged portion 21 are not limited to those described above, and can be prevented from slipping by engaging the radiation shielding container 1 with another radiation shielding container 1. Any thing can be used.

また、放射線遮蔽容器1は、容器本体3を、上部に開口部が形成された有底筒状に設けることに限定されるものではなく、上部及び下部に開口部が形成された筒状に設けるようにしても良い。更に、放射線遮蔽容器1は、図5に示すように、有底筒状の容器本体3上に、上部及び下部に開口部が形成された筒状の容器本体3を複数個積み重ねて、最上段の容器本体3の上面3bに蓋体4を設けて、積み重ねられた容器本体3の収容部3aを閉塞して密閉するようにしても良い。   Moreover, the radiation shielding container 1 is not limited to providing the container body 3 in a bottomed cylindrical shape with an opening formed in the upper part, and is provided in a cylindrical shape with openings in the upper and lower parts. You may do it. Further, as shown in FIG. 5, the radiation shielding container 1 is formed by stacking a plurality of cylindrical container bodies 3 having openings at the upper and lower parts on a bottomed cylindrical container body 3. A lid 4 may be provided on the upper surface 3b of the container body 3 so that the accommodating portions 3a of the stacked container bodies 3 are closed and sealed.

また、放射線遮蔽容器1は、図6に示すように、容器本体3の側面3cを底面3dに対して鈍角或いは鋭角に設けるようにしても良い。これにより、放射線遮蔽容器1は、容器本体3の側面自体の厚さt1を、底面3dに対して略直角に設けた側面3eの厚さt2よりも薄くしても、放射線が透過する透過距離t3が、側面3eを底面3dに対して略直角に設けた場合と略同じ距離となるので、底面3dに対して略直角に設けた側面3eの場合と略同様に、放射線を低減することが出来る。ただし、散乱効果や所謂スカイシャイン効果は支配的な放射線強度ではないことからここでは省略している。   Further, as shown in FIG. 6, the radiation shielding container 1 may be provided with the side surface 3c of the container body 3 at an obtuse angle or an acute angle with respect to the bottom surface 3d. Thereby, even if the thickness t1 of the side surface itself of the container main body 3 is smaller than the thickness t2 of the side surface 3e provided substantially perpendicular to the bottom surface 3d, the radiation shielding container 1 transmits the transmission distance through which the radiation passes. Since t3 is substantially the same distance as when the side surface 3e is provided at a substantially right angle with respect to the bottom surface 3d, radiation can be reduced in substantially the same manner as with the side surface 3e provided at a substantially right angle with respect to the bottom surface 3d. I can do it. However, since the scattering effect and the so-called skyshine effect are not dominant radiation intensity, they are omitted here.

また、放射線遮蔽容器1は、トラックの荷台、電車の車体上、船の船体上等、運搬手段に予め設置されているようにしても良い。   The radiation shielding container 1 may be installed in advance on a transportation means such as a truck bed, a train body, or a ship hull.

1 放射線遮蔽容器、2放射性物質を含む物質、3 容器本体、3a 収容部、3b 上面、3c 側面、3d、底面、3e 側面、4 蓋体、4a 突部、10 内層、11 外層、12 放射線吸収層、13 更なる層、20 係合部、21 被係合部 DESCRIPTION OF SYMBOLS 1 Radiation shielding container, 2 Substance containing radioactive substance, 3 Container main body, 3a accommodating part, 3b upper surface, 3c side surface, 3d, bottom surface, 3e side surface, 4 cover body, 4a protrusion, 10 inner layer, 11 outer layer, 12 radiation absorption Layers, 13 further layers, 20 engaging parts, 21 engaged parts

Claims (8)

放射性物質を含む物質を収容する放射線遮蔽容器において、
一対の層と、
上記一対の層の間に設けられ、放射線を吸収する放射線吸収層とを備え、
上記一対の層は、固体層であり、上記放射線吸収層は、流体層であることを特徴とする放射線遮蔽容器。
In radiation shielding containers that contain substances containing radioactive substances,
A pair of layers;
A radiation absorbing layer provided between the pair of layers and absorbing radiation;
The radiation shielding container, wherein the pair of layers is a solid layer, and the radiation absorbing layer is a fluid layer.
上記放射線吸収層は、下記(1)式によって規定される厚さを有することを特徴とする請求項1に記載の放射線遮蔽容器。
Figure 2013170888
x:放射線吸収層の厚さ
μ:放射線吸収層を構成する物質固有のγ線に対する減衰係数
ε:比例定数(原始減衰係数)
e:自然対数の底
ρ:放射線吸収層を構成する物質の質量体積密度
:放射線遮蔽容器に透過前の放射線強度
I:放射線遮蔽容器に透過後の放射線強度
The radiation shielding container according to claim 1, wherein the radiation absorbing layer has a thickness defined by the following formula (1).
Figure 2013170888
x: thickness of the radiation absorbing layer μ: attenuation coefficient with respect to γ rays specific to the material constituting the radiation absorbing layer ε: proportional constant (primary attenuation coefficient)
e: base of natural logarithm ρ: mass volume density of the substance constituting the radiation absorbing layer I 0 : radiation intensity before transmission through the radiation shielding container I: radiation intensity after transmission through the radiation shielding container
当該放射線遮蔽容器は、
放射性物質を含む物質を収容する収容部を有する容器本体を備え、
上記容器本体の少なくとも一面は、上記一対の層と、上記放射線吸収層とを有することを特徴とする請求項1又は2に記載の放射線遮蔽容器。
The radiation shielding container
A container body having a container for containing a substance containing a radioactive substance;
The radiation shielding container according to claim 1, wherein at least one surface of the container body has the pair of layers and the radiation absorbing layer.
当該放射線遮蔽容器は、
上記容器本体の収容部を閉塞する蓋体を備え、
上記蓋体は、上記一対の層と、上記放射線吸収層とを有することを特徴とする請求項1乃至3の何れかに記載の放射線遮蔽容器。
The radiation shielding container
A lid that closes the housing portion of the container body;
The radiation shielding container according to claim 1, wherein the lid includes the pair of layers and the radiation absorbing layer.
上記一対の層のうちの少なくとも一方には、少なくとも一つの更なる層が設けられていることを特徴とする請求項1乃至4の何れかに記載の放射線遮蔽容器。   The radiation shielding container according to claim 1, wherein at least one of the pair of layers is provided with at least one further layer. 上記一対の層及び上記放射線吸収層、又は、上記一対の層及び上記放射線吸収層及び上記更なる層は、下記(2)式を満たすように設けられていることを特徴とする請求項1又は3乃至5の何れかに記載の放射線遮蔽容器。
Figure 2013170888
n:層数
:j番目の層の厚さ
μ:j番目の層を構成する物質固有のγ線に対する減衰係数
ε:j番目の層を構成する物質固有の比例定数(原始減衰係数)
ρ:j番目の層を構成する物質固有の質量体積密度
:放射線遮蔽容器透過前の放射線強度
:n層の放射線遮蔽容器透過後の放射線強度
The pair of layers and the radiation absorbing layer, or the pair of layers, the radiation absorbing layer, and the further layer are provided so as to satisfy the following formula (2): The radiation shielding container according to any one of 3 to 5.
Figure 2013170888
n: number of layers x j : thickness of the j-th layer μ j : attenuation coefficient for γ rays specific to the material constituting the j-th layer ε j : proportional constant (primary attenuation specific to the material constituting the j-th layer) coefficient)
ρ j : Mass volume density specific to the substance constituting the j-th layer I 0 : Radiation intensity before passing through the radiation shielding container I n : Radiation intensity after passing through the radiation shielding container of the n layer
上記容器本体は、他の放射線遮蔽容器及び/又は上記蓋体と係合する係合部と、他の放射線遮蔽容器の係合部に係合される被係合部の何れか一方又は両方を有することを特徴とする請求項3に記載の放射線遮蔽容器。   The container main body includes one or both of an engaging portion that engages with another radiation shielding container and / or the lid, and an engaged portion that engages with an engaging portion of another radiation shielding container. The radiation shielding container according to claim 3, wherein the radiation shielding container is provided. 上記蓋体は、他の放射線遮蔽容器と係合する係合部と、他の放射線遮蔽容器の係合部に係合される被係合部の何れか一方又は両方を有することを特徴とする請求項4に記載の放射線遮蔽容器。   The lid has one or both of an engaging portion that engages with another radiation shielding container and an engaged portion that engages with an engaging portion of another radiation shielding container. The radiation shielding container according to claim 4.
JP2012034301A 2012-02-20 2012-02-20 Radiation shield vessel Pending JP2013170888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034301A JP2013170888A (en) 2012-02-20 2012-02-20 Radiation shield vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034301A JP2013170888A (en) 2012-02-20 2012-02-20 Radiation shield vessel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016235722A Division JP2017044710A (en) 2016-12-05 2016-12-05 Radiation shield vessel

Publications (1)

Publication Number Publication Date
JP2013170888A true JP2013170888A (en) 2013-09-02

Family

ID=49264928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034301A Pending JP2013170888A (en) 2012-02-20 2012-02-20 Radiation shield vessel

Country Status (1)

Country Link
JP (1) JP2013170888A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514934B1 (en) * 2013-05-21 2014-06-04 朱雀プラスチック株式会社 Storage container for radioactive contaminants
JP2015014548A (en) * 2013-07-07 2015-01-22 株式会社安藤・間 Radiation shield vessel, radiation shield casing, and accommodation method for radioactive waste
CN106211727A (en) * 2016-07-01 2016-12-07 中国工程物理研究院流体物理研究所 Shield and screening arrangement
JP2017044710A (en) * 2016-12-05 2017-03-02 Next Innovation合同会社 Radiation shield vessel
JP2018165720A (en) * 2018-06-15 2018-10-25 卯 石井 Radiolucency reduction container
WO2020111536A1 (en) * 2018-11-29 2020-06-04 한국원자력환경공단 Disposal container for spent nuclear fuel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063399A (en) * 1973-10-08 1975-05-29
JPS5522182A (en) * 1978-08-07 1980-02-16 Mitsubishi Metal Corp Radiation shielding structure
JPS5716398A (en) * 1980-07-02 1982-01-27 Mitsubishi Heavy Ind Ltd Shielding container
JPS5794699A (en) * 1980-10-13 1982-06-12 Kraftwerk Union Ag Shielding container for storing low and medium level radioactive waste
JPH04305198A (en) * 1991-04-02 1992-10-28 Taisei Corp Shielding structure for radiation
JP2001264483A (en) * 2000-03-22 2001-09-26 Takenaka Komuten Co Ltd Radioactive material storage facility
JP2003130990A (en) * 2001-10-25 2003-05-08 Fujix:Kk Radiation shield material and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063399A (en) * 1973-10-08 1975-05-29
JPS5522182A (en) * 1978-08-07 1980-02-16 Mitsubishi Metal Corp Radiation shielding structure
JPS5716398A (en) * 1980-07-02 1982-01-27 Mitsubishi Heavy Ind Ltd Shielding container
JPS5794699A (en) * 1980-10-13 1982-06-12 Kraftwerk Union Ag Shielding container for storing low and medium level radioactive waste
JPH04305198A (en) * 1991-04-02 1992-10-28 Taisei Corp Shielding structure for radiation
JP2001264483A (en) * 2000-03-22 2001-09-26 Takenaka Komuten Co Ltd Radioactive material storage facility
JP2003130990A (en) * 2001-10-25 2003-05-08 Fujix:Kk Radiation shield material and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016001822; グレンF.ノル: '2.3.2ガンマ線の減衰' 放射線計測ハンドブック(第2版) 第2版, 19910130, 57-58頁, 日刊工業新聞社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514934B1 (en) * 2013-05-21 2014-06-04 朱雀プラスチック株式会社 Storage container for radioactive contaminants
JP2015014548A (en) * 2013-07-07 2015-01-22 株式会社安藤・間 Radiation shield vessel, radiation shield casing, and accommodation method for radioactive waste
CN106211727A (en) * 2016-07-01 2016-12-07 中国工程物理研究院流体物理研究所 Shield and screening arrangement
JP2017044710A (en) * 2016-12-05 2017-03-02 Next Innovation合同会社 Radiation shield vessel
JP2018165720A (en) * 2018-06-15 2018-10-25 卯 石井 Radiolucency reduction container
WO2020111536A1 (en) * 2018-11-29 2020-06-04 한국원자력환경공단 Disposal container for spent nuclear fuel

Similar Documents

Publication Publication Date Title
JP2013170888A (en) Radiation shield vessel
KR100198834B1 (en) Nuclear waste containing modules and the method for the same
KR100783583B1 (en) Apparatus for nuclear waste disposal, methodd for manufacturing and installing the same
JP4919528B1 (en) Storage container for contaminants caused by radioactive cesium, and storage method for contaminants caused by radioactive cesium
KR102139163B1 (en) Disposal container of spent nuclear fuel with easy heat emission by using heat transfer member
JP2013170890A (en) Radiation shield vessel
KR102004182B1 (en) Disposal container of high-level radioactive waste using multiple barrier and barrier system using thereof
JP2013170889A (en) Radiation shield vessel
JP2017044710A (en) Radiation shield vessel
JP2013170894A (en) Radiation protection body
JP2013250170A (en) Radiation shield unit and radiation shield module
JP2013170891A (en) Radiation protection body
JP3225438U (en) Closed metal container for storing radioactive materials
JP2013170892A (en) Radiation protector
JPH07134198A (en) Method for housing and disposing radioactive contaminant and radioactive contaminant housing composite
JP2007298319A (en) Container, facility and method for disposing of radioactive waste
JP5904053B2 (en) Radiation shielding structure and embankment
Sims Investigating Effect of Clay Composition on Safety Function Performance in a Geological Disposal Facility (GDF)
RU123207U1 (en) CONTAINER FOR TRANSPORTATION AND LONG STORAGE OF WASTE HEATED FUEL ASSEMBLIES (SFA) NPP
Tsvetkova et al. Model-based estimation of the moisture regime of the marls from the Sumer Formation, Northwestern Bulgaria.
JP3183280U (en) Contaminant sealing / storage / transportation sarcophagus container
KR20070119289A (en) Radioactive waste treatability and the composition which can be used for that purpose
KR101434458B1 (en) Radioactive waste packing container
RU2530538C2 (en) Method for temporary storage of radioactive wastes
KR101046449B1 (en) Radioactive Waste Packaging Container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906