JP2013170357A - Pumping/pouring system for ground water - Google Patents

Pumping/pouring system for ground water Download PDF

Info

Publication number
JP2013170357A
JP2013170357A JP2012033453A JP2012033453A JP2013170357A JP 2013170357 A JP2013170357 A JP 2013170357A JP 2012033453 A JP2012033453 A JP 2012033453A JP 2012033453 A JP2012033453 A JP 2012033453A JP 2013170357 A JP2013170357 A JP 2013170357A
Authority
JP
Japan
Prior art keywords
groundwater
pumping
water
well casing
aquifer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033453A
Other languages
Japanese (ja)
Inventor
Shigenobu Miyamoto
重信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Original Assignee
University of Fukui NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC filed Critical University of Fukui NUC
Priority to JP2012033453A priority Critical patent/JP2013170357A/en
Publication of JP2013170357A publication Critical patent/JP2013170357A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pumping/pouring system of simple constitution capable of preventing oxygen from being mixed with ground water substantially completely at low cost.SOLUTION: A pumping/pouring system for ground water that includes well casings 11, 12 which extend up to water-bearing layers W1, W2 and taking ground water in from intake parts 17, 18, and water pipes 13, 14 for pumping or pouring which are inserted into the well casings 11, 12 and extend into ground water in the well casings 11, 12 has width-reduction area formation members 15 which are inserted into gaps between outer surfaces of the water pipes 13, 14 and inner surfaces of the well casings 11, 12 and make intervals of the gaps small to form width-reduction areas. The width-reduction area formation members 15 determine such widths that levels of the ground water are always positioned above lower ends of the width-reduction areas and convection carrying oxygen into the ground water in the width-reduction areas is not generated.

Description

本発明は、帯水層から地下水を揚水して冷暖房等に利用するための揚水システム又は帯水層に地下水を注水する注水システムに関する。   The present invention relates to a pumping system for pumping groundwater from an aquifer and using it for air conditioning or the like, or a water injection system for pouring groundwater into an aquifer.

土壌中には鉄及びマンガンが多く存在することから地下水には鉄やマンガン等の金属が含まれているが、土壌中の有機物の分解で酸素が消費されて地下水にはほとんど酸素が含まれていないことから、これら金属はイオン状態で地下水中に存在している。そのため、これら金属イオンを含有する地下水を帯水層から揚水したり、揚水した地下水を帯水層に注水したりすると、地下水が大気と接触して地下水中に酸素が取り込まれ、金属イオンが酸化する。   Since soil contains a lot of iron and manganese, groundwater contains metals such as iron and manganese, but oxygen is consumed by decomposition of organic matter in the soil, and groundwater contains almost no oxygen. Because there is no such metal, these metals exist in the groundwater in an ionic state. Therefore, when groundwater containing these metal ions is pumped from the aquifer, or when pumped groundwater is poured into the aquifer, the groundwater comes into contact with the atmosphere, oxygen is taken into the groundwater, and the metal ions are oxidized. To do.

例えば、鉄イオン(Fe2+)は酸化して水酸化第二鉄(Fe(OH))となるが、この水酸化第二鉄の一部が微粒子状又はコロイド状の水酸化鉄となって地下水中に懸諾し、揚水ポンプや熱交換器のスクリーンに赤錆を付着させる。この赤錆は、揚水ポンプや熱交換器の能力を低下させたり故障させたりする原因となることから、定期的に揚水ポンプや熱交換器のスクリーンを洗浄又は交換して赤錆を除去しなければならないという問題がある。 For example, iron ions (Fe 2+ ) are oxidized to ferric hydroxide (Fe (OH) 3 ), and a part of the ferric hydroxide becomes particulate or colloidal iron hydroxide. Suspend in groundwater and attach red rust to the screens of pumps and heat exchangers. Since this red rust causes the capacity of the pump and heat exchanger to deteriorate or break down, the screen of the pump and heat exchanger must be periodically cleaned or replaced to remove the red rust. There is a problem.

また、水酸化鉄が井戸ケーシングの底部や帯水層に溜まって注水時水位が上昇し、地下水を注水することができなくなるという問題がある。
さらに、地下水中に酸素が取り込まれることで好気性のバクテリアが繁殖し、送水管や井戸ケーシングの内部に悪臭を発生させる原因になるという問題がある。
このように、地下水を利用した熱交換システムは省エネルギーや熱交換率の向上の面で優れるものの、金属イオンを多く含む地下水は回避される傾向にあり、地下水利用の熱交換システムの普及を妨げている一因になっている。
In addition, iron hydroxide accumulates at the bottom of the well casing and in the aquifer, raising the water level during water injection, which makes it impossible to inject groundwater.
Furthermore, there is a problem that aerobic bacteria propagate due to oxygen being taken into the groundwater, and cause odors inside the water pipe and well casing.
In this way, although heat exchange systems using groundwater are excellent in terms of energy saving and improving the heat exchange rate, groundwater containing a large amount of metal ions tends to be avoided, hindering the spread of heat exchange systems using groundwater. It is one of the reasons.

このような問題を解決するべく、揚水又は注水の際の地下水と大気との接触を防止しようとする試みがいくつかなされている。
例えば、特許文献1(特公平8−26537号公報)では、地下水に空気が混入しないように、井戸ケーシング内の地下水位よりも上に密閉した空気室を作るとともに、地下水に混入した空気を分離する空気分離装置を設ける方法が提案されている。
In order to solve such problems, some attempts have been made to prevent contact between the groundwater and the atmosphere during pumping or water injection.
For example, in Patent Document 1 (Japanese Patent Publication No. 8-25537), an air chamber sealed above the groundwater level in the well casing is made and air mixed in the groundwater is separated so that air is not mixed into the groundwater. A method of providing an air separation device is proposed.

また、特許文献2(特開2009−121062号公報)では、送水管(井戸ケーシング)の上方を密閉して前記送水管内を不活性ガスで充たすとともに、送水管内の酸素濃度を測定するための濃度計を設ける方法が提案されている。
さらに、上記の文献とは他に、水膨張ゴムなどを使って井戸ケーシングを密閉しようとする試みもなされている。
Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2009-122102), the density | concentration for measuring the oxygen concentration in a water pipe while sealing the upper part of a water pipe (well casing) and filling the inside of the water pipe with an inert gas. A method of providing a total has been proposed.
Furthermore, in addition to the above-mentioned documents, attempts have been made to seal the well casing using water expansion rubber or the like.

特公平8−26537号公報Japanese Patent Publication No. 8-26537 特開2009−121062号公報JP 2009-121062 A

しかし、上記文献に記載の技術は、いずれも井戸ケーシングを密閉して大気を遮断しようとするものであるが、常に水位が変動する井戸ケーシング内を完全な密閉状態に保つことは極めて困難であるという問題がある。
また、井戸ケーシング内に不活性ガスを注入したり、混入した空気を分離したりする方法は、大掛かりな装置が必要となってコスト高になるという問題がある。
さらに、上記文献の方法等は、新たな装置や溶存酸素の濃度を計測する機器を設置する必要があるため、既存の揚水/注水システムにそのまま適用することが困難で、揚水/注水システムを新たに構築しなければならないという問題がある。
However, all of the techniques described in the above documents attempt to shut off the atmosphere by sealing the well casing, but it is extremely difficult to keep the inside of the well casing where the water level fluctuates constantly in a completely sealed state. There is a problem.
Further, the method of injecting an inert gas into the well casing or separating the mixed air has a problem that a large-scale device is required and the cost is increased.
Furthermore, since the method described in the above document requires the installation of a new device or a device for measuring the concentration of dissolved oxygen, it is difficult to apply it to an existing pumping / pouring system as it is. There is a problem that must be built.

本発明は上記の問題点に鑑みてなされたもので、簡素な構成で安価に実施することができ、地下水への酸素混入をほぼ完全に防止できる揚水/注水システムの提供を目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a pumping / water injection system that can be implemented at a low cost with a simple configuration and can almost completely prevent oxygen from being mixed into groundwater.

上記の課題の解決にあたり本発明の発明者は、福井市内の数カ所の井戸ケーシングにおける地下水の深さと溶存酸素量の関係を調査した。その結果を、図3及び図4のグラフ示す。図3及び図4において縦軸は水深(m)、横軸は溶存酸素量(ppm)を示している。なお、図3は平成23年7月に調査したときのもの、図4は、図3と同じ場所についての平成23年9月に調査したときのものである。
図3のグラフから、溶存酸素量は地下水面付近で多く、水深が深くなるほど減って、1.5mを越えるとほぼ0になることがわかる。ところが、9月のデータでは、図4に示すように一定の深さまで溶存酸素量が多く、一定の深さを越えると急激に溶存酸素の量が減ずる結果が見られた。
In solving the above problems, the inventors of the present invention investigated the relationship between the depth of groundwater and the amount of dissolved oxygen in several well casings in Fukui City. The results are shown in the graphs of FIGS. 3 and 4, the vertical axis represents the water depth (m), and the horizontal axis represents the dissolved oxygen content (ppm). Note that FIG. 3 is a survey conducted in July 2011, and FIG. 4 is a survey conducted in September 2011 for the same place as FIG.
From the graph of FIG. 3, it can be seen that the amount of dissolved oxygen is large near the groundwater surface and decreases as the water depth increases, and becomes almost zero when the water depth exceeds 1.5 m. However, in the data for September, as shown in FIG. 4, the dissolved oxygen amount was large up to a certain depth, and when the depth exceeded the certain depth, the amount of dissolved oxygen decreased rapidly.

図3のグラフから図4のグラフへの変遷について本発明の発明者が検討したところ、井戸ケーシング内の地下水の対流によって溶存酸素が地下水の表面から一定の深さまで運ばれたものと推測した。特に、冷房時の温排水を帯水層に注水すると、井戸ケーシング内の地下水の温度成層が崩れて対流が発生し、水面から多量の酸素が地下水内に取り込まれるものと推測できる。そこで、空気に接触している地下水の表面から地下水の深部に酸素を運ぶような地下水の対流を抑制すれば、井戸ケーシングを完全に密閉しなくても、地下水中金属イオンの酸化による析出とバクテリアの繁殖を防止できることに想到した。   When the inventor of the present invention examined the transition from the graph of FIG. 3 to the graph of FIG. 4, it was assumed that dissolved oxygen was transported from the surface of the groundwater to a certain depth by convection of the groundwater in the well casing. In particular, when the warm drainage during cooling is poured into the aquifer, it can be assumed that the temperature stratification of the groundwater in the well casing collapses and convection occurs, and a large amount of oxygen is taken into the groundwater from the water surface. Therefore, if groundwater convection that transports oxygen from the surface of groundwater that is in contact with air to the depth of groundwater is suppressed, precipitation and bacteria due to oxidation of metal ions in groundwater can be avoided without completely sealing the well casing. I thought that it was possible to prevent breeding.

すなわち、請求項1に記載の揚水/注水システムは、帯水層まで延び取水部を有する井戸ケーシングと、この井戸ケーシング内に挿入され前記井戸ケーシング内の地下水中まで延びる揚水用又は注水用の送水管とを有する地下水の揚水/注水システムにおいて、前記送水管の外面と前記井戸ケーシングの内面との間の隙間に挿入され、前記隙間の間隔を小さくして縮幅域を形成する縮幅域形成部材を有し、前記縮幅域形成部材は、前記縮幅域の下端より上方に地下水の水位が常に位置し、かつ、前記縮幅域内で酸素を運搬するような地下水の対流を生じさせないように前記隙間の幅を決定する構成としてある。   That is, the pumping / pouring system according to claim 1 is a well casing having a water intake portion extending to an aquifer, and a pump for pumping or pouring water that is inserted into the well casing and extends to the ground water in the well casing. In a groundwater pumping / pouring system having a water pipe, a reduced width region is formed which is inserted into a gap between an outer surface of the water pipe and an inner surface of the well casing and forms a reduced width region by reducing the gap interval. The reduced-width region forming member has a groundwater level always above the lower end of the reduced-width region, and does not cause convection of groundwater that transports oxygen within the reduced-width region. Further, the width of the gap is determined.

本発明の揚水/注水システムを冷暖房等の熱交換に利用するのであれば、請求項2に記載するように、前記縮幅域形成部材を断熱材で形成して送水管の外面に巻き付けるとよい。
本発明の揚水/注水システムでは、請求項3に記載するように、揚水した地下水を前記帯水層と同一又は別の帯水層に注水するようにしてもよい。このようにすることで、地下水の汲み上げ過ぎによる地盤沈下を防止することができる。
If the pumping / water injection system of the present invention is used for heat exchange such as cooling and heating, the reduced width region forming member may be formed of a heat insulating material and wound around the outer surface of the water pipe as described in claim 2. .
In the pumping / pouring system of the present invention, as described in claim 3, the pumped ground water may be poured into the same or different aquifer. By doing so, ground subsidence due to excessive pumping of groundwater can be prevented.

本発明によれば、地下水への酸素混入をほぼ完全に防止して赤錆の発生を抑制し、注水側の帯水層において注水時水位が上昇することなく、スクリーンの目詰まりによる揚水ポンプや熱交換機の能力低下又は故障を防止できるとともに、バクテリアの発生を抑制することができ、頻繁な定期点検や清掃等を不要にして作業者の負担を軽減することができる。
このように、本発明によれば、鉄分を多く含む既存の帯水層の有効利用を促進して、省エネルギー性や熱交換率の向上を図ることができる揚水/注水システムを低廉なコストで提供することが可能になる。
According to the present invention, it is possible to almost completely prevent oxygen from being mixed into the groundwater to suppress the occurrence of red rust, and without causing the water level at the time of water injection to rise in the aquifer on the water injection side, It is possible to prevent a decrease in the capacity or failure of the exchange and to suppress the generation of bacteria, thereby reducing the burden on the operator by eliminating frequent periodic inspections and cleaning.
As described above, according to the present invention, a pumping / water injection system capable of promoting effective use of an existing aquifer containing a large amount of iron and improving energy saving and heat exchange rate is provided at low cost. It becomes possible to do.

以下、本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
図1は、地下水利用の冷暖房装置に本発明の揚水/注水システムを適用した実施形態にかかり、装置の全体構成を説明する概略図、図2は、図1の揚水/注水システムにおける一部を破断した主要部の拡大図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram for explaining an overall configuration of an apparatus according to an embodiment in which the pumping / pouring system of the present invention is applied to a cooling / heating apparatus using groundwater, and FIG. 2 is a part of the pumping / pouring system of FIG. It is an enlarged view of the fracture | ruptured main part.

揚水/注水システム1は、地表面Gから地中に打ち込まれ、第一の帯水層W1まで達する第一の井戸ケーシング11と、この井戸ケーシング11の底部の取水部17から取り入れた第一の帯水層W1の地下水中まで先端が延びる揚水用の送水管13とを有している。この送水管13は、井戸ケーシング11の上端から地表面Gに出て、冷暖房用の熱交換器Hに接続されている。   The pumping / water injection system 1 is driven from the ground surface G into the ground, and the first well casing 11 reaching the first aquifer W <b> 1 and the first water intake portion 17 at the bottom of the well casing 11. And a pumping pipe 13 for pumping whose tip extends to the groundwater of the aquifer W1. The water supply pipe 13 exits from the upper end of the well casing 11 to the ground surface G and is connected to a heat exchanger H for cooling and heating.

また、第一の帯水層W1とは別の第二の帯水層W2には、地表面Gから第二の井戸ケーシング12が打ち込まれている。そして、この井戸ケーシング12の底部には取水部18から取り入れた第二の帯水層W2の地下水中まで延びる送水管14が設けられている。送水管13及び送水管14は熱交換器Hに接続され、ポンプPによって第一の帯水層W1から揚水された地下水が送水管13を経て熱交換器Hに送られ、この熱交換器Hで熱交換に供された地下水は、送水管14を経て第二の帯水層W2に注水される。   The second well casing 12 is driven from the ground surface G into the second aquifer W2 different from the first aquifer W1. And the water supply pipe 14 extended to the ground water of the 2nd aquifer W2 taken in from the intake part 18 is provided in the bottom part of this well casing 12. FIG. The water pipe 13 and the water pipe 14 are connected to a heat exchanger H, and groundwater pumped from the first aquifer W1 by the pump P is sent to the heat exchanger H through the water pipe 13, and the heat exchanger H The groundwater that has been subjected to the heat exchange is poured into the second aquifer W <b> 2 through the water pipe 14.

送水管13及び送水管14は、鉄イオンが溶出しない樹脂管が好ましく、酸素透過率の高い材料(例えばポリエチレン)よりも、酸素透過率の低い材料(例えば塩化ビニル)で形成されているのが好ましい。金属管を用いる場合は、地下水の水質に留意して、腐食の少ない金属管や、例えばアルミ内挿のポリエチレン3層管を用いることもできる。   The water pipe 13 and the water pipe 14 are preferably resin pipes from which iron ions do not elute, and are formed of a material having a lower oxygen permeability (for example, vinyl chloride) than a material having a higher oxygen permeability (for example, polyethylene). preferable. In the case of using a metal pipe, it is possible to use a metal pipe with little corrosion, for example, a polyethylene three-layer pipe with aluminum insertion, in consideration of the quality of groundwater.

この揚水/注水システム1では、帯水層W1,W2の流れが緩く、例えば、ポンプPによって第一の帯水層W1から揚水された地下水が送水管13を経て熱交換器Hに送水され、夏の冷房として利用された後、温度の上昇した地下水が送水管14を経て第二の帯水層W2に戻されるようになっている。そして、冬に地下水の流れを切り換えて揚水側と注水側を逆にすることで、第二の帯水層W2に戻された温度の高い地下水を暖房用として利用できるようになっている。   In this pumping / water injection system 1, the flow of the aquifers W1 and W2 is loose. For example, groundwater pumped from the first aquifer W1 by the pump P is supplied to the heat exchanger H through the water supply pipe 13, After being used for cooling in summer, the groundwater whose temperature has risen is returned to the second aquifer W2 through the water pipe 14. And by switching the flow of groundwater in winter and reversing the pumping side and the water injection side, the groundwater with high temperature returned to the second aquifer W2 can be used for heating.

送水管13の外面には縮幅域形成部材としての嵌装体15が嵌装されている。嵌装体15は、送水管13の外面と第一の井戸ケーシング11の内面との間の隙間の中に介在して縮幅域19を形成する。嵌装体15を断熱材で形成することで、揚水した地下水の温度変化を抑制して、冷暖房等の効率を高めることができる。このような嵌装体15としては、水道管等の保温用に一般的に使用されている市販のパイプカバーを利用することができる。   A fitting body 15 as a reduced width region forming member is fitted on the outer surface of the water pipe 13. The fitting body 15 is interposed in a gap between the outer surface of the water pipe 13 and the inner surface of the first well casing 11 to form a reduced width region 19. By forming the fitting body 15 with a heat insulating material, the temperature change of the pumped ground water can be suppressed and the efficiency of air conditioning and the like can be increased. As the fitting body 15, a commercially available pipe cover that is generally used for heat insulation such as a water pipe can be used.

この実施形態では、注水側も揚水側と同じように構成されている。すなわち、送水管14の外面に嵌装体15が嵌装されていて、送水管14の外面と第二の井戸ケーシング12の内面との間に縮幅域19が形成されている。
嵌装体15の長さは、図2に示すように、少なくとも揚水時水位が嵌装体15の下端よりも常に上方にあればよい。
In this embodiment, the water injection side is configured in the same manner as the water pumping side. That is, the fitting body 15 is fitted on the outer surface of the water pipe 14, and a reduced width region 19 is formed between the outer surface of the water pipe 14 and the inner surface of the second well casing 12.
As shown in FIG. 2, the length of the fitting body 15 may be such that at least the water level during pumping is always above the lower end of the fitting body 15.

また、嵌装体15によって形成される縮幅域19の幅Sは、地下水の水位が変動しても、縮幅域19内で地下水の表面から深部まで酸素を運搬するような地下水の対流を生じさせないものを選択する。幅Sが小さすぎると、嵌装体15の井戸ケーシング11,12への挿入がしにくくなり、幅Sが大きすぎると、地下水の対流によって酸素が地下水中に運ばれる。幅Sは、井戸ケーシングや送水管の径及び長さ、地下水温度、嵌装体15の種類等の種々の条件によって多少変化するが、1mm〜12mmの範囲内で選択するのが好ましく、3mm〜10mmの範囲内で選択するのがより好ましい。   In addition, the width S of the reduced width region 19 formed by the fitting body 15 is such that convection of groundwater that conveys oxygen from the surface of the groundwater to the deep portion within the reduced width region 19 even if the groundwater level fluctuates. Select the one that does not occur. If the width S is too small, it will be difficult to insert the fitting 15 into the well casings 11 and 12, and if the width S is too large, oxygen will be carried into the groundwater by convection of the groundwater. The width S varies somewhat depending on various conditions such as the diameter and length of the well casing and the water pipe, the groundwater temperature, the type of the fitting 15 and the like, but is preferably selected within the range of 1 mm to 12 mm. It is more preferable to select within the range of 10 mm.

幅Sは、例えば図2に示すように地下水中にDOセンサ20を設け、地下水の溶存酸素の濃度を計測することで決定することができる。例えば、幅Sを大きなものから順次小さなものに変化させていき、揚水と注水を繰り返しても、深度ごとの溶存酸素濃度分布が図3に示すような結果となった場合には、地下水の表面から深部まで酸素を運搬するような地下水の対流が生じていないとして、そのときの寸法を「幅S」として決定する。   The width S can be determined, for example, by providing a DO sensor 20 in the groundwater as shown in FIG. 2 and measuring the concentration of dissolved oxygen in the groundwater. For example, if the dissolved oxygen concentration distribution at each depth is as shown in FIG. 3 even when pumping and water injection are repeated, the width S is changed from the largest to the smaller one, and the surface of the groundwater Assuming that there is no convection in the groundwater that carries oxygen from the depth to the depth, the dimension at that time is determined as “width S”.

[実施例]
以下に本発明の実施例について説明する。
[実施例]
(1) 井戸ケーシング 内径77mm
(2) 嵌装体 発泡ウレタンを内包したポリエチレン製パイプ
外径67mm 内径32mm
(3) 送水管 硬質塩化ビニル製
酸素透過係数 240cc・20μm・24hrs・atm
内径25mm、外径32mm
(4) 隙間の寸法S 5mm
(5) 地下水中の鉄分量 52ppm
[比較例]
比較例として、嵌装体を装着しない従来の揚水/注水システムで実験を行った。
[Example]
Examples of the present invention will be described below.
[Example]
(1) Well casing inner diameter 77mm
(2) Fitting body Polyethylene pipe containing urethane foam
Outer diameter 67mm Inner diameter 32mm
(3) Water pipe Made of hard vinyl chloride
Oxygen permeability constant 240cc · 20μm 3 · 24hrs · atm
Inner diameter 25mm, outer diameter 32mm
(4) Clearance dimension S 5mm
(5) Iron content in groundwater 52ppm
[Comparative example]
As a comparative example, an experiment was conducted with a conventional pumping / water injection system without a fitting.

[結論]
毎日8時間、第一の井戸ケーシング11から毎分20リットルで地下水を揚水し、別の帯水層の第二の井戸ケーシング12へ注水した。
その結果、実施例では、2ヶ月半の間運転を続けてもの第二の井戸ケーシング12の注水時水位に上昇は認められず、熱交換器や揚水ポンプのスクリーンにも目詰まりは認められなかった。
これに対し比較例では、2ヶ月半で第二の井戸ケーシング12の注水時水位が上昇し、揚水した地下水の全てを第二の井戸ケーシング12に注水することが困難になった。また、熱交換器や揚水ポンプのスクリーンにも酸化鉄が付着していた。
以上から、本発明では地下水中の鉄イオン(Fe2+)の酸化が効果的に抑制されていることがわかる。
[Conclusion]
The groundwater was pumped from the first well casing 11 at a rate of 20 liters per minute for 8 hours every day and poured into the second well casing 12 of another aquifer.
As a result, in the embodiment, no increase was observed in the water level during the water injection of the second well casing 12 even though the operation was continued for two and a half months, and no clogging was observed in the screens of the heat exchanger and the pump. It was.
On the other hand, in the comparative example, the water level at the time of water injection of the second well casing 12 rose in two and a half months, and it became difficult to inject all of the pumped ground water into the second well casing 12. Also, iron oxide adhered to the screens of heat exchangers and pumps.
From the above, it can be seen that in the present invention, oxidation of iron ions (Fe 2+ ) in groundwater is effectively suppressed.

本発明は上記の説明に限定されるものではない。
例えば、上記の説明では注水側の送水管14を備えるものとして説明したが、例えば、融雪装置に本発明の揚水/注水システム1を適用するような場合は、注水側の送水管14は必ずしも必要ではない。
また、嵌装体15は、地下水の水位が常に嵌装体15の下端より上にあるように設ければよいが、図2に示すように、揚水時だけでなく、自然時及び注水時にも地下水の水位が嵌装体15によって形成される縮幅域の中に常時位置するように設けてもよい。
The present invention is not limited to the above description.
For example, in the above description, the water supply side water supply pipe 14 is provided. However, for example, when the pumping / water injection system 1 of the present invention is applied to a snow melting device, the water supply side water supply pipe 14 is not necessarily required. is not.
In addition, the fitting body 15 may be provided so that the water level of the groundwater is always above the lower end of the fitting body 15, but as shown in FIG. You may provide so that the water level of groundwater may always be located in the reduced width area formed by the fitting body 15.

本発明は、地下水を揚水して利用する揚水システム又は帯水層に地下水を注水する注水システムに広く適用が可能であり、冷房又は暖房装置や融雪装置、トイレ等の洗浄装置にも適用が可能である。   INDUSTRIAL APPLICABILITY The present invention can be widely applied to a pumping system that pumps and uses groundwater or a water injection system that pours groundwater into an aquifer, and can also be applied to cleaning devices such as cooling or heating devices, snow melting devices, and toilets It is.

地下水利用の冷暖房装置に本発明の揚水/注水システムを適用した実施形態にかかり、装置の全体構成を説明する概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explaining the whole structure of the apparatus concerning embodiment which applied the pumping / water injection system of this invention to the air conditioning apparatus using groundwater. 図1の揚水/注水システムにおける一部を破断した主要部の拡大図である。It is an enlarged view of the principal part which fractured | ruptured a part in the pumping / water injection system of FIG. 福井市内の数カ所における井戸ケーシング内の地下水の深さと溶存酸素量の関係を調査した結果にかかり、平成23年7月のものである。It depends on the result of investigating the relationship between the depth of groundwater in the well casing and the amount of dissolved oxygen in several places in Fukui City. 福井市内の数カ所における井戸ケーシング内の地下水の深さと溶存酸素量の関係を調査した結果にかかり、平成23年9月のものである。It depends on the result of investigating the relationship between the depth of groundwater in the well casing and the amount of dissolved oxygen in several places in Fukui City.

1 揚水/注水システム
11 第一の井戸ケーシング
12 第二の井戸ケーシング
13 送水管
14 送水管
15 嵌装体
19 縮幅域
H 熱交換器
P ポンプ
DESCRIPTION OF SYMBOLS 1 Pumping / injection system 11 1st well casing 12 2nd well casing 13 Water supply pipe 14 Water supply pipe 15 Fitting body 19 Shrinkage width area H Heat exchanger P Pump

Claims (3)

帯水層まで延び取水部から地下水を取り入れる井戸ケーシングと、この井戸ケーシング内に挿入され前記井戸ケーシング内の地下水中まで延びる揚水用又は注水用の送水管とを有する地下水の揚水/注水システムにおいて、
前記送水管の外面と前記井戸ケーシングの内面との間の隙間に挿入され、前記隙間の間隔を小さくして縮幅域を形成する縮幅域形成部材を有し、
前記縮幅域形成部材は、前記縮幅域の下端より上方に地下水の水位が常に位置し、かつ、前記縮幅域内で酸素を運搬するような地下水の対流を生じさせないように前記隙間の幅を決定すること、
を特徴とする揚水/注水システム。
In a groundwater pumping / injecting system having a well casing extending to an aquifer and taking groundwater from a water intake, and a pumping pipe for inserting or pumping water inserted into the well casing and extending to the groundwater in the well casing,
Inserted in a gap between the outer surface of the water pipe and the inner surface of the well casing, and has a reduced width region forming member that forms a reduced width region by reducing the gap interval;
The reduced width region forming member has a width of the gap so that a groundwater level is always located above a lower end of the reduced width region and convection is not generated so as to transport oxygen in the reduced width region. To determine the
A pumping / pouring system characterized by
前記縮幅域形成部材が断熱材から形成され、前記送水管の外面に巻き付けられることを特徴とする請求項1に記載の揚水/注水システム。 The pumping / water injection system according to claim 1, wherein the reduced width region forming member is formed of a heat insulating material and is wound around an outer surface of the water pipe. 前記帯水層から揚水した地下水を前記帯水層と同一又は別の帯水層に注水することを特徴とする請求項1又は2に記載の揚水/注水システム。
The pumping / injecting system according to claim 1 or 2, wherein groundwater pumped from the aquifer is poured into the same or different aquifer as the aquifer.
JP2012033453A 2012-02-18 2012-02-18 Pumping/pouring system for ground water Pending JP2013170357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033453A JP2013170357A (en) 2012-02-18 2012-02-18 Pumping/pouring system for ground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033453A JP2013170357A (en) 2012-02-18 2012-02-18 Pumping/pouring system for ground water

Publications (1)

Publication Number Publication Date
JP2013170357A true JP2013170357A (en) 2013-09-02

Family

ID=49264488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033453A Pending JP2013170357A (en) 2012-02-18 2012-02-18 Pumping/pouring system for ground water

Country Status (1)

Country Link
JP (1) JP2013170357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110409561A (en) * 2019-08-21 2019-11-05 山东省水利科学研究院 A kind of pneumatic type underground water closing pumping and filling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110409561A (en) * 2019-08-21 2019-11-05 山东省水利科学研究院 A kind of pneumatic type underground water closing pumping and filling device
CN110409561B (en) * 2019-08-21 2024-03-22 山东省水利科学研究院 Pneumatic underground water sealing pumping and filling device

Similar Documents

Publication Publication Date Title
US8434554B2 (en) Groundwater well
US20100319347A1 (en) System for conveying and decontaminating ground water
JPWO2018043508A1 (en) Contaminated soil remediation system
WO2018087996A1 (en) System for estimating concentration of soil injection agent
JP5297044B2 (en) Underground heat exchanger
JP2013170357A (en) Pumping/pouring system for ground water
JP6163346B2 (en) Purification equipment for contaminated soil and method for purification of contaminated soil
JP6823425B2 (en) Contaminated ground purification system
KR20190053330A (en) Greenhouse cooling and heating system
JP2005185970A (en) Method and apparatus for improving quality of water
CN209368020U (en) A kind of device administered for Organic Chemicals In Groundwater
JP6504799B2 (en) Method for preventing increase of dissolved oxygen in groundwater
JP2004181407A (en) Method for treating contaminated underground water and soil by electrode reduction
CN203223195U (en) Gas drilling anti-dust device
CN209798959U (en) system for improving overflow water level of underground water storage tank
CN205778780U (en) The water filling device of low-permeability oil deposit
JP6282878B2 (en) Contaminated soil and groundwater purification system
JP4377558B2 (en) Groundwater purification structure and groundwater purification method
CN220554847U (en) Permeable reactive barrier
Maugans et al. Pit Management Strategies: Monitoring, Souring, and Freeze Controls
JP2017179717A (en) Rainwater storage system
KR101359330B1 (en) Apparatus for preventing scale within drinking water pipes
TWI619871B (en) High efficiency groundwater remediation equipment with multi-angle well screen
Millard et al. Determining the Importance of Sediment Methylation to Methylmercury Concentrations in the Nacimiento Reservoir, California
Crestani et al. Numerical and physical modeling of cutoff walls against saltwater intrusion