JP2013170224A - Method for producing petroleum alternative liquid fuel - Google Patents

Method for producing petroleum alternative liquid fuel Download PDF

Info

Publication number
JP2013170224A
JP2013170224A JP2012035126A JP2012035126A JP2013170224A JP 2013170224 A JP2013170224 A JP 2013170224A JP 2012035126 A JP2012035126 A JP 2012035126A JP 2012035126 A JP2012035126 A JP 2012035126A JP 2013170224 A JP2013170224 A JP 2013170224A
Authority
JP
Japan
Prior art keywords
plastic
liquid fuel
petroleum
woody biomass
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012035126A
Other languages
Japanese (ja)
Inventor
Katsumi Hirano
勝巳 平野
Takuya Ito
拓哉 伊藤
Takesuke Tsunoda
雄亮 角田
Motoyuki Sugano
元行 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2012035126A priority Critical patent/JP2013170224A/en
Publication of JP2013170224A publication Critical patent/JP2013170224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a petroleum alternative liquid fuel from a woody biomass, etc., in higher efficiency compared with conventional methods and to provide a petroleum alternative liquid fuel produced by the method.SOLUTION: A petroleum alternative liquid fuel having high fuel properties is produced at a low temperature in higher efficiency compared with conventional methods by using a method including a step of performing co-pyrolysis of a woody biomass and a plastic material. There is also provided a petroleum alternative liquid fuel produced by the method.

Description

本発明は石油代替液体燃料の製造方法に関する。さらに詳しくは、木質バイオマスとプラスチックを共熱分解する工程を含む、石油代替液体燃料の製造方法に関する。   The present invention relates to a method for producing petroleum-substitute liquid fuel. More specifically, the present invention relates to a method for producing petroleum alternative liquid fuel, including a step of co-pyrolysis of woody biomass and plastic.

近年、石油等の化石燃料に変わり得る燃料として、廃材、木材チップ等の木質バイオマスを原料とする石油代替液体燃料が製造されている。しかし、従来の製造方法では、木質バイオマスのみを溶媒存在下で加熱し熱分解するため、分解反応中に未分解物や分解物同士が重縮合して残渣が形成されてしまい、低い収率でしか石油代替液体燃料が製造できないという問題があった。
また、得られた石油代替燃料も芳香族化合物や含酸素化合物を多く含むため、燃料としての物性が低く、高極性化合物も多く含むため、既存の石油由来燃料と混合して利用できるのは一部のみであるという問題もあった。そこで、木質バイオマスを原料とし、より高い効率で石油代替液体燃料が製造できる方法の提供が望まれている。
In recent years, as a fuel that can be changed to fossil fuels such as petroleum, petroleum-substitute liquid fuels using woody biomass such as waste materials and wood chips as raw materials have been manufactured. However, in the conventional manufacturing method, only woody biomass is heated and thermally decomposed in the presence of a solvent, so that undecomposed products and decomposed products are polycondensed during the decomposition reaction to form a residue, resulting in a low yield. However, there was a problem that liquid fuel alternative to petroleum could not be produced.
In addition, since the obtained petroleum substitute fuel contains a large amount of aromatic compounds and oxygen-containing compounds, it has low physical properties as a fuel and also contains a lot of highly polar compounds, so it can be used by mixing with existing petroleum-derived fuels. There was also a problem that only the department. Therefore, it is desired to provide a method capable of producing petroleum alternative liquid fuel with higher efficiency using woody biomass as a raw material.

このような問題を鑑み、本発明者らは本発明において、木質バイオマスとプラスチックを共熱分解することにより、石油代替液体燃料を製造することを検討した。
プラスチックやこれを形成するポリエチレン、ポリスチレン、ポリプロピレン等の成分を原料として用いて、石油代替液体燃料を製造する技術として、例えば、特許文献1において、炭化水素含有残渣のひとつとしてプラスチックを挙げ、アルカリ金属をドープしたケイ酸アルミニウムを触媒として、温度300〜400℃で接触分解することにより、ディーゼル油を製造する方法が開示されている。
また、特許文献2では、紙、木屑、生ゴミ等の油化不適物が混入した廃プラスチックを油化する方法として、まずプラスチックの分解反応温度より低い温度で、水を添加して廃プラスチックから異物(油化不適物)を除去し、その後溶融状態で残っている油化に適したプラスチックを、油分を回収するのに適した分解温度で処理する技術が開示されている。
しかし、これらの方法は、あくまでもプラスチックやプラスチックを形成する成分を油化することを目的とするものであり、木質バイオマスと廃プラスチックを共熱分解することにより、石油代替液体燃料を得ることを目的とするものではなかった。
In view of such a problem, the present inventors studied to produce petroleum alternative liquid fuel by co-pyrolysis of woody biomass and plastic in the present invention.
As a technology for producing a petroleum alternative liquid fuel using plastics and components such as polyethylene, polystyrene, and polypropylene as raw materials, for example, in Patent Document 1, plastic is cited as one of hydrocarbon-containing residues, and alkali metals A method of producing diesel oil by catalytic cracking at a temperature of 300 to 400 ° C. using aluminum silicate doped with bismuth as a catalyst is disclosed.
Moreover, in patent document 2, as a method of liquefying waste plastic mixed with oily inadequate materials such as paper, wood chips, and raw garbage, first, water is added at a temperature lower than the decomposition reaction temperature of the plastic to start from the waste plastic. There has been disclosed a technique for removing foreign substances (unsuitable for oil formation) and then processing a plastic suitable for oil formation remaining in a molten state at a decomposition temperature suitable for recovering oil.
However, these methods are only for the purpose of liquefying plastics and the components that form plastics, and are intended to obtain petroleum alternative liquid fuels by co-pyrolysis of woody biomass and waste plastics. It was not something to do.

木質バイオマスとプラスチックを組み合わせて用いる方法としては、例えば、特許文献3において、発泡ポリスチレンを主成分とする発泡プラスチック成形品を材料とした燃料において、これに木質チップを混合しても良好な燃料とできることも開示されている。しかし、この文献では、これらを原料として、石油代替液体燃料を得ることは示唆も検討もされていない。   As a method of using a combination of woody biomass and plastic, for example, in Patent Document 3, in a fuel made of a foamed plastic molded product mainly composed of foamed polystyrene, a good fuel can be obtained by mixing wood chips with this. It is also disclosed what can be done. However, this document does not suggest or examine the use of these as raw materials to obtain petroleum substitute liquid fuel.

特開2005−163013号公報JP 2005-163013 A 特開平9−78072号公報JP-A-9-78072 特開平6−1987号公報JP-A-6-1987

本発明は木質バイオマス等から、従来の方法に比べてより高い効率で、石油代替液体燃料を製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a petroleum-substitute liquid fuel from woody biomass or the like with higher efficiency than conventional methods.

本発明者らは上記課題を解決するために鋭意検討を行ったところ、木質バイオマスとプラスチックを共熱分解することにより、従来の方法に比べて低い温度で、燃料物性の高い石油代替液体燃料をより高い効率で製造できることを見出し、本発明を完成するに至った。
本発明で完成された製造方法では、木質バイオマスとプラスチックとを共熱分解することにより、生じた木材分解物とプラスチック分解物とが化合するため、木材分解物同士や未分解物が重縮合して起こる残渣の形成が抑制され、石油代替液体燃料の収率が向上する。また、得られる燃料の物性も向上し、芳香族化合物、含酸素化合物が少なく、脂肪族性が増して極性が低下したものであるため、石油由来燃料と混合しても相分離せず、全てを利用できるという利点がある。
また、木材分解物から生成するラジカルによって、廃プラスチックの分解が促進されるため、従来検討されているプラスチックの液化温度よりも低い温度で石油代替液体燃料を製造することが可能となる。さらに、本発明の製造方法では触媒を必要としないため、回収のための機構が不要という利点もある。
The inventors of the present invention have made extensive studies to solve the above-described problems. As a result, by co-pyrolysis of woody biomass and plastic, a low-temperature petroleum alternative liquid fuel can be obtained at a lower temperature than conventional methods. The present inventors have found that it can be produced with higher efficiency and have completed the present invention.
In the manufacturing method completed in the present invention, the wood decomposition product and the plastic decomposition product are combined by co-pyrolysis of woody biomass and plastic, so that the wood decomposition products and undecomposed products are polycondensed. As a result, the formation of residues is suppressed and the yield of petroleum alternative liquid fuel is improved. In addition, the physical properties of the resulting fuel are improved, since there are few aromatic compounds and oxygen-containing compounds, the aliphaticity is increased and the polarity is lowered, so even when mixed with petroleum-derived fuel, phase separation does not occur. There is an advantage that can be used.
Moreover, since the decomposition of waste plastics is promoted by radicals generated from the wood decomposition products, it becomes possible to produce petroleum substitute liquid fuel at a temperature lower than the liquefaction temperature of plastics that have been studied conventionally. Furthermore, since the production method of the present invention does not require a catalyst, there is an advantage that a mechanism for recovery is unnecessary.

すなわち、本発明は、次の(1)〜(5)で示される、石油代替液体燃料の製造方法等に関する。
(1)木質バイオマスとプラスチックを300℃以上450℃以下で共熱分解する工程を含む石油代替液体燃料の製造方法。
(2)木質バイオマスとプラスチックを重量比2:8〜8:2に混合して行う上記(1)に記載の石油代替液体燃料の製造方法。
(3)プラスチックが、ポリエチレン、ポリスチレンまたはポリプロピレンのいずれか一種以上を原料として含むプラスチックである、上記(1)または(2)に記載の石油代替液体燃料の製造方法。
(4)木質バイオマスがスギ、アカマツ、イエローポプラ、ヒノキ、ホワイトパインまたはレッドオークのいずれか一種以上を含む木質バイオマスである上記(1)〜(3)のいずれかに記載の石油代替液体燃料の製造方法。
(5)上記(1)〜(4)のいずれかに記載の製造方法によって製造される石油代替液体燃料。
That is, the present invention relates to a method for producing petroleum alternative liquid fuel, etc., as shown in the following (1) to (5).
(1) A method for producing petroleum-substitute liquid fuel comprising a step of co-pyrolysis of woody biomass and plastic at 300 ° C. or higher and 450 ° C. or lower.
(2) The method for producing a petroleum alternative liquid fuel according to the above (1), wherein the woody biomass and the plastic are mixed at a weight ratio of 2: 8 to 8: 2.
(3) The method for producing a petroleum alternative liquid fuel according to the above (1) or (2), wherein the plastic is a plastic containing any one or more of polyethylene, polystyrene or polypropylene as a raw material.
(4) The petroleum alternative liquid fuel according to any one of the above (1) to (3), wherein the woody biomass is a woody biomass containing any one or more of cedar, red pine, yellow poplar, cypress, white pine or red oak. Production method.
(5) A petroleum alternative liquid fuel produced by the production method according to any one of (1) to (4) above.

本発明の製造方法により、間伐材、建築廃材、廃プラスチックおよびこれらの混合廃棄物を主原料として、高質な石油代替液体燃料を効率的に製造することが可能となる。本発明の製造方法では、溶媒や触媒を回収する必要がなく、低い温度で反応を行うことが可能なため、専用の工場等を必須とせず、排出された場所でこれらの原料を直接現地処理することにより、簡便に石油代替液体燃料を製造することが可能である。   According to the production method of the present invention, it is possible to efficiently produce high-quality petroleum alternative liquid fuel using thinned wood, building waste, waste plastic, and mixed waste thereof as main raw materials. In the production method of the present invention, it is not necessary to recover the solvent and catalyst, and the reaction can be carried out at a low temperature. Therefore, a dedicated factory is not required, and these raw materials are directly processed in the discharged place. By doing so, it is possible to easily manufacture an alternative liquid fuel for petroleum.

木質バイオマスとプラスチックの混合比による生成物収率の変化(反応条件:350[℃]/60[min.]/触媒なし)を示した図である(試験例1)。It is the figure which showed the change (reaction conditions: 350 [degreeC] / 60 [min.] / No catalyst) of the product yield by the mixing ratio of woody biomass and a plastic (Test Example 1). 木質バイオマスとプラスチックの混合比による生成物収率の変化(反応条件:350[℃]/60[min.]/触媒あり)を示した図である(試験例1)。It is the figure which showed the change of the product yield (reaction conditions: 350 [degreeC] / 60 [min.] / With a catalyst) by the mixing ratio of woody biomass and a plastic (Test Example 1). 木質バイオマスとプラスチックの混合比による生成物収率の変化(反応条件:400[℃]/0[min.]/触媒なし)を示した図である(試験例1)。It is the figure which showed the change of the product yield (reaction conditions: 400 [degreeC] / 0 [min.] / No catalyst) by the mixing ratio of woody biomass and a plastic (Test Example 1). HI(反応条件:400[℃]/0[min.]/触媒なし)のIRスペクトルの変化を示した図である(試験例1)。It is the figure which showed the change of IR spectrum of HI (reaction conditions: 400 [degreeC] / 0 [min.] / No catalyst) (Test Example 1). 木質バイオマスとプラスチックの混合比による生成物収率の変化(反応条件:400[℃]/60[min.]/触媒なし)を示した図である(試験例1)。It is the figure which showed the change (reaction conditions: 400 [degreeC] / 60 [min.] / No catalyst) of the product yield by the mixing ratio of woody biomass and a plastic (Test Example 1). HI(反応条件:400[℃]/60[min.]/触媒なし)のIRスペクトルの変化を示した図である(試験例1)。It is the figure which showed the change of IR spectrum of HI (reaction conditions: 400 [degreeC] / 60 [min.] / No catalyst) (Test Example 1). HS(反応条件:400[℃]/60[min.]/触媒なし)の沸点分布の変化を示した図である(試験例1)。It is the figure which showed the change of the boiling point distribution of HS (Reaction condition: 400 [degreeC] / 60 [min.] / No catalyst) (Test Example 1). 木質バイオマスとプラスチックの混合比による生成物収率の変化(反応条件:400[℃]/60[min.]/触媒あり)を示した図である(試験例2)。It is the figure which showed the change of the product yield (reaction condition: 400 [degreeC] / 60 [min.] / With a catalyst) by the mixing ratio of woody biomass and a plastic (Test Example 2). 軽油留分(反応条件:400[℃]/0[min.]/触媒あり)のGC−MS TICの変化を示した図である(試験例2)。It is the figure which showed the change of GC-MS TIC of the light oil fraction (reaction conditions: 400 [degreeC] / 0 [min.] / With catalyst) (Test Example 2). 重油留分(反応条件:400[℃]/0[min.]/触媒あり)のIRスペクトルの変化を示した図である(試験例2)。It is the figure which showed the change of IR spectrum of a heavy oil fraction (reaction conditions: 400 [degreeC] / 0 [min.] / With catalyst) (Test Example 2).

本発明の「石油代替液体燃料」とは、既存の石油を燃料とする内燃機関にそのまま利用でき、石油と同等の用途に利用できる、石油に代わり得る液状の燃料のことをいう。
本発明の「石油代替液体燃料」は、木質バイオマスとプラスチックとを混合したものを、共に熱分解することによって得られる「石油代替液体燃料」であればいずれのものも含まれる。本発明の「石油代替液体燃料」は、主原料が木質バイオマスかプラスチックであれば、その他の成分を含む原料から得られるものであっても良い。その他の成分は、本発明の「石油代替液体燃料」の製造を阻害しない物質であることが好ましい。
The “petroleum substitute liquid fuel” of the present invention refers to a liquid fuel that can be used as it is in an internal combustion engine using existing petroleum as fuel and can be used for applications equivalent to petroleum and can be used in place of petroleum.
The “petroleum substitute liquid fuel” of the present invention includes any “petroleum substitute liquid fuel” as long as it is obtained by pyrolyzing a mixture of woody biomass and plastic. The “petroleum alternative liquid fuel” of the present invention may be obtained from a raw material containing other components as long as the main raw material is woody biomass or plastic. The other components are preferably substances that do not inhibit the production of the “petroleum substitute liquid fuel” of the present invention.

本発明の「石油代替液体燃料の製造方法」は、木質バイオマスとプラスチックとを、従来知られているプラスチックの液化温度よりも低い温度であって、本発明の「石油代替液体燃料」が製造できる温度で共熱分解する工程を含む製造方法であればよい。
従来知られているプラスチックの液化温度よりも低い温度であって、本発明の「石油代替液体燃料」が製造できる温度としては、例えば300℃以上450℃以下であれば良く、より好ましくは300℃以上400℃以下、さらに好ましくは350℃以上400℃以下であれば良い。温度が低ければ低いほど、本発明の「石油代替液体燃料」の製造において利用する熱量が少なくてすみ、製造におけるコストを下げることが可能となる。
また、本発明の共熱分解は、電磁誘導撹拌式オートクレーブ(株式会社鈴木理化学製作所製)等で行うことができるが、必要な資材等を封入し、窒素ガスを充填した後、液化のために所定の温度まで加熱し、一定時間その温度を保つことで行うことができる。所定温度の保持時間は、共熱分解が行える時間であればよく、60分以内であれば十分である。所定温度まで加熱する段階で共熱分解が行われるのであれば、保持時間は0分であってもよい。
The “method for producing petroleum-substitute liquid fuel” according to the present invention can produce wood biomass and plastic at a temperature lower than the conventionally known liquefaction temperature of plastic, and can produce the “oil-substitute liquid fuel” according to the present invention. Any manufacturing method including a step of co-pyrolysis at temperature may be used.
The temperature lower than the conventionally known plastic liquefaction temperature, and the temperature at which the “petroleum substitute liquid fuel” of the present invention can be produced may be, for example, 300 ° C. or more and 450 ° C. or less, more preferably 300 ° C. The temperature may be not lower than 400 ° C., more preferably not lower than 350 ° C. and not higher than 400 ° C. The lower the temperature, the less heat is used in the production of the “petroleum substitute liquid fuel” of the present invention, and the production cost can be reduced.
In addition, the co-pyrolysis of the present invention can be performed with an electromagnetic induction stirring type autoclave (manufactured by Suzuki Rikagaku Co., Ltd.) or the like, but after enclosing necessary materials and filling with nitrogen gas, for liquefaction. It can be performed by heating to a predetermined temperature and maintaining the temperature for a certain period of time. The holding time at the predetermined temperature may be a time during which co-pyrolysis can be performed, and is sufficient if it is within 60 minutes. If co-pyrolysis is performed at the stage of heating to a predetermined temperature, the holding time may be 0 minutes.

本発明の「石油代替液体燃料の製造方法」では、木質バイオマスかプラスチックを主原料として用い、木質バイオマスとプラスチックの重量比2:8〜8:2となるように混合して、共熱分解することが好ましい。木質バイオマスとプラスチックの重量比は、反応条件に応じて適宜選択すればよく、例えば、2:8としても良く、5:5としても良く、8:2としても良い。
本発明の「石油代替液体燃料の製造方法」において使用される木質バイオマスは、本発明の「石油代替液体燃料」が製造できるものであればいずれのものであっても良く、例えば、スギ等の間伐材や建築廃材、ワラ、バカス等の農業において得られる廃棄物等が挙げられる。また、スギ、アカマツ、イエローポプラ、ヒノキ、ホワイトパインまたはレッドオークのいずれか一種以上を含む木質バイオマス等も、本発明の木質バイオマスとして用いることができる。
これらの木質バイオマスは、原料として得られた物をそのまま共熱分解のための機械に導入しても良いが、機械に合わせて木質バイオマスの大きさを適宜調整して用いてもよい。木質バイオマスの大きさの調整にどのような機械、道具を用いてもよく、例えば、タワーミル等を用いてもよい。
In the “method for producing petroleum-substitute liquid fuel” according to the present invention, wood biomass or plastic is used as a main raw material, and the wood biomass and plastic are mixed so that the weight ratio of wood biomass to plastic is 2: 8 to 8: 2. It is preferable. The weight ratio between the woody biomass and the plastic may be appropriately selected according to the reaction conditions, and may be, for example, 2: 8, 5: 5, or 8: 2.
The woody biomass used in the “method for producing a petroleum alternative liquid fuel” of the present invention may be any wood biomass that can produce the “oil alternative liquid fuel” of the present invention. Examples include thinned wood, building waste, and waste obtained in agriculture such as straw and bacas. Moreover, woody biomass containing at least one of cedar, red pine, yellow poplar, cypress, white pine or red oak can be used as the woody biomass of the present invention.
For these woody biomass, the material obtained as a raw material may be introduced as it is into a machine for co-pyrolysis, or may be used by appropriately adjusting the size of the woody biomass according to the machine. Any machine or tool may be used to adjust the size of the woody biomass, for example, a tower mill or the like.

また、本発明の「石油代替液体燃料の製造方法」において使用されるプラスチックは、本発明の「石油代替液体燃料」が製造できるものであればいずれのものであっても良く、ポリエチレン、ポリスチレンまたはポリプロピレンの一種以上を含むプラスチックのうち、廃プラスチック等が挙げられる。   The plastic used in the “method for producing petroleum alternative liquid fuel” of the present invention may be any plastic as long as it can produce the “petroleum alternative liquid fuel” of the present invention, such as polyethylene, polystyrene or Among plastics including one or more types of polypropylene, waste plastics can be used.

以下、実施例、試験例によって本発明を詳細に説明するが、本発明はそれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a test example demonstrate this invention in detail, this invention is not limited to it.

石油代替液体燃料の製造方法
木質バイオマスとプラスチックとを混合し、300℃以上450℃以下で共熱分解することで石油代替液体燃料を製造した。
Production method of petroleum alternative liquid fuel Woody biomass and plastic were mixed and subjected to co-pyrolysis at 300 ° C to 450 ° C to produce petroleum alternative liquid fuel.

[試験例1]
実施例1の製造方法に従い、石油代替液体燃料の製造を行った。
1.供試材の調整
1)木質バイオマス
スギをタワーミルによって粒径が150μm以下まで粉砕したものを用いた。
2)プラスチック
汎用プラスチックの排出割合(排出割合:廃プラスチックとして排出されるプラスチックに含まれる各成分の割合)に準拠し、重量比がポリエチレンは20.8、ポリプロピレンは8.9、ポリスチレンは9.1となるように混合したもの(以下、3Pと示す場合がある)を用いた。
3)供試材
上記1)の木質バイオマスと、上記2)のプラスチックの重量比が、8:2、5:5、または2:8となるように、上記1)および2)を混合したものを供試材とした。また、木質バイオマスのみのもの(重量比10:0)またはプラスチックのみのもの(重量比0:10)も比較として用いた。
[Test Example 1]
According to the production method of Example 1, a petroleum alternative liquid fuel was produced.
1. Preparation of test material 1) Woody biomass Sugi was crushed by a tower mill to a particle size of 150 μm or less.
2) Plastics Based on the discharge ratio of general-purpose plastics (discharge ratio: ratio of each component contained in plastic discharged as waste plastic), the weight ratio is 20.8 for polyethylene, 8.9 for polypropylene, and 9. for polystyrene. What was mixed so that it might become 1 (it may be shown as 3P below) was used.
3) Test material A mixture of 1) and 2) above so that the weight ratio of the woody biomass of 1) above and the plastic of 2) above is 8: 2, 5: 5, or 2: 8. Was used as a test material. Also, wood biomass only (weight ratio 10: 0) or plastic only (weight ratio 0:10) was used as a comparison.

2.熱分解反応
次の1)〜4)の工程により、熱分解反応、反応後得られたものの分離、解析等を行った。
1)上記1、3)の供試材を各20g、溶媒として反応に関与しないと考えられる無極性の鉱油60gを内容積200mlの電磁誘導撹拌式オートクレーブ(株式会社鈴木理化学製作所製)に封入した。また、必要に応じて触媒としてNaY型ゼオライト4gを共に封入した。その後、窒素ガスを0.5MPa充填した。
2)上記1)で充填した内容物に対して200rpmで水平撹拌を行いながら外部電気炉によって所定温度まで加熱し、所定の保持時間、温度を保持して反応を行わせた。各反応の反応条件(所定温度、保持時間および触媒の有無)を表1、表2に示した。
3)上記2)の反応終了後、直ちに室温まで空冷した。熱分解反応によって生じたガス(Gas)はテドラーバックに全量捕集してガスクロマトグラフィー(GC−TCD)による組成分析を行った。また、内容物は直接回収後、ヘキサンを用いた抽出操作を行ってヘキサン可溶分(以下、HSと示す場合がある)とヘキサン不溶分(以下、HIと示す場合がある)に分離した。これによって得られたHSが、本発明の「石油代替液体燃料」に該当するものとなる。
4)上記3)によって得られたHSおよびHIについてはフーリエ変換型赤外分光(FT−IR)を用いた官能基分析およびCHNコーダーを用いた元素組成分析を行った。HSについては、さらに、ガスクロマトグラフ質量分析(GC−MS)を用いた化合物の定性および蒸留ガスクロマトグラフィー(DGC−FID)を用いた沸点分布測定も行った。
2. Thermal decomposition reaction The following steps 1) to 4) were performed for thermal decomposition reaction, separation and analysis of the product obtained after the reaction.
1) 20 g of each of the above test materials 1 and 3) and 60 g of a non-polar mineral oil that is considered not to be involved in the reaction as a solvent were sealed in an electromagnetic induction stirring autoclave (manufactured by Suzuki Riken Co., Ltd.) having an internal volume of 200 ml. . Further, 4 g of NaY type zeolite was enclosed as a catalyst as required. Thereafter, nitrogen gas was charged at 0.5 MPa.
2) The contents filled in 1) above were heated to a predetermined temperature by an external electric furnace while performing horizontal stirring at 200 rpm, and the reaction was carried out while maintaining the temperature for a predetermined holding time. Tables 1 and 2 show reaction conditions (predetermined temperature, holding time, and presence / absence of catalyst) of each reaction.
3) Immediately after the completion of the reaction in 2) above, the mixture was air-cooled to room temperature. A total amount of gas (Gas) generated by the thermal decomposition reaction was collected in a Tedlar bag and subjected to composition analysis by gas chromatography (GC-TCD). Further, after the contents were directly recovered, an extraction operation using hexane was performed to separate the contents into a hexane-soluble component (hereinafter sometimes referred to as HS) and a hexane-insoluble component (hereinafter sometimes referred to as HI). The HS obtained in this way corresponds to the “petroleum substitute liquid fuel” of the present invention.
4) With respect to HS and HI obtained in the above 3), functional group analysis using Fourier transform infrared spectroscopy (FT-IR) and elemental composition analysis using CHN coder were performed. For HS, further, qualitative analysis of compounds using gas chromatography mass spectrometry (GC-MS) and boiling point distribution measurement using distillation gas chromatography (DGC-FID) were also performed.

3.結果
1)反応条件が反応温度350℃、保持時間60分、触媒あり(反応条件:350[℃]/60[min.]/触媒あり、と示す場合がある)、または、反応温度350℃、保持時間60分、触媒なし(反応条件:350[℃]/60[min.]/触媒なし、と示す場合がある)の場合
反応条件:350[℃]/60[min.]/触媒なし、の場合の収率を表1、図1に示した。また、反応条件:350[℃]/60[min.]/触媒あり、の場合の収率を表1、図2に示した。これらに示されるように、触媒の有無に関わらず、いずれの反応条件においても、木質バイオマスとプラスチックを混合して反応させた場合、予測された計算値に比べてHSの収率が向上することが確認できた。
なお、計算値は、木質バイオマスのみのもの(重量比10:0)またはプラスチックのみのもの(重量比0:10)を同じ反応条件で反応させた場合の各成分(Gas、HS、HI)の収率について、加成則が成り立つと仮定して、それぞれの添加割合で相加平均を取った値である。
この計算値に比べて、木質バイオマスとプラスチックを混合して反応させた場合のHSの収率が向上していることから、木質バイオマスとプラスチックを混合したことにより、石油代替液体燃料の製造において、相加的ではなく、相乗的な効果が得られることが示唆された。
3. Result 1) The reaction conditions are a reaction temperature of 350 ° C., a holding time of 60 minutes, and there is a catalyst (reaction conditions: 350 [° C.] / 60 [min.] / There may be indicated as a catalyst). In the case of holding time 60 minutes, no catalyst (reaction conditions: 350 [° C.] / 60 [min.] / No catalyst may be indicated) reaction conditions: 350 [° C.] / 60 [min. ] / No catalyst is shown in Table 1 and FIG. Reaction conditions: 350 [° C.] / 60 [min. ] / With catalyst, the yield is shown in Table 1 and FIG. As shown in these figures, regardless of the presence or absence of a catalyst, the yield of HS is improved compared to the predicted calculated value when wood biomass and plastic are mixed and reacted under any reaction conditions. Was confirmed.
In addition, the calculated value is that of each component (Gas, HS, HI) when the wood biomass only (weight ratio 10: 0) or the plastic only (weight ratio 0:10) is reacted under the same reaction conditions. Assuming that the additive rule holds, the yield is a value obtained by taking an arithmetic average at each addition ratio.
Compared to this calculated value, the yield of HS when wood biomass and plastic are mixed and reacted is improved. By mixing wood biomass and plastic, in the production of petroleum alternative liquid fuel, It was suggested that a synergistic effect was obtained rather than additive.

2)反応条件が、反応温度400℃、保持時間0分、触媒なし(反応条件:400[℃]/0[min.]/触媒なし、と示す場合がある)の場合
反応条件:400[℃]/0[min.]/触媒なし、の場合の収率を表2、図3に示した。これらに示されるように、木質バイオマスとプラスチックを混合して反応させた場合、重量比が8:2となるように混合した場合でも、重量比が5:5となるように混合した場合でも、いずれも予測された計算値に比べてHSの収率が向上することが確認できた。従って、この結果より、木質バイオマスとプラスチックを混合したことにより、石油代替液体燃料の製造において相乗的な効果が得られることが示唆された。
2) When the reaction conditions are a reaction temperature of 400 ° C., a holding time of 0 minutes, and no catalyst (reaction conditions: 400 [° C.] / 0 [min.] / No catalyst may be indicated) Reaction conditions: 400 [° C. ] / 0 [min. ] / No catalyst is shown in Table 2 and FIG. As shown in these figures, when wood biomass and plastic are mixed and reacted, even when they are mixed so that the weight ratio is 8: 2, even when they are mixed so that the weight ratio is 5: 5, In either case, it was confirmed that the yield of HS was improved as compared with the predicted calculated value. Therefore, it was suggested from this result that a synergistic effect can be obtained in the production of petroleum alternative liquid fuel by mixing woody biomass and plastic.

また、官能基分析の結果、図4に示した。その結果、木質バイオマスとプラスチックを混合して反応させた場合(重量比8:2)のHIのピークは、木質バイオマスのみのもの(重量比10:0)を反応させた場合と類似していることが確認できた。一方で、プラスチックのみのもの(重量比0:10)を反応させた場合のHIのピークはほとんど存在しておらず、この結果から、木質バイオマスがプラスチックの分解を促進しているものと示唆された。
従って、この結果より、木質バイオマスとプラスチックを混合することによって、プラスチックの液化が進み、より効率的に石油代替液体燃料が製造できることが示唆された。
The results of functional group analysis are shown in FIG. As a result, the peak of HI when wood biomass and plastic are mixed and reacted (weight ratio 8: 2) is similar to that when wood biomass alone (weight ratio 10: 0) is reacted. I was able to confirm. On the other hand, there is almost no HI peak when plastic alone (weight ratio 0:10) is reacted, and this result suggests that woody biomass promotes the decomposition of plastic. It was.
Therefore, from this result, it was suggested that by mixing woody biomass and plastic, liquefaction of plastic progressed and petroleum alternative liquid fuel could be produced more efficiently.

3)反応条件が、反応温度400℃、保持時間60分、触媒なし(反応条件:400[℃]/60[min.]/触媒なし、と示す場合がある)の場合
反応条件:400[℃]/60[min.]/触媒なし、の場合の収率を図5に示した。図5に示されるように、木質バイオマスとプラスチックを混合して反応させた場合、重量比が8:2となるように混合した場合でも、重量比が5:5となるように混合した場合でも、いずれも予測された計算値に比べてHSの収率が向上することが確認できた。従って、この結果より、木質バイオマスとプラスチックを混合したことにより、石油代替液体燃料の製造において相乗的な効果が得られることが示唆された。
3) When the reaction conditions are a reaction temperature of 400 ° C., a holding time of 60 minutes, and no catalyst (reaction conditions: 400 [° C.] / 60 [min.] / No catalyst may be indicated) Reaction conditions: 400 [° C. ] / 60 [min. ] / No catalyst is shown in FIG. As shown in FIG. 5, when wood biomass and plastic are mixed and reacted, even when mixed so that the weight ratio becomes 8: 2, even when mixed so that the weight ratio becomes 5: 5 In any case, it was confirmed that the yield of HS was improved compared to the predicted calculated value. Therefore, it was suggested from this result that a synergistic effect can be obtained in the production of petroleum alternative liquid fuel by mixing woody biomass and plastic.

また、官能基分析の結果を図6に示した。その結果、木質バイオマスとプラスチックを混合して反応させた場合(重量比8:2または5:5)のHIのピークは、木質バイオマスのみのもの(重量比10:0)を反応させた場合と類似していることが確認できた。一方で、プラスチックのみのもの(重量比0:10)を反応させた場合のHIのピークはほとんど存在しておらず、この結果から、木質バイオマスがプラスチックの分解を促進しているものと示唆された。   The results of functional group analysis are shown in FIG. As a result, the peak of HI when wood biomass and plastic are mixed and reacted (weight ratio 8: 2 or 5: 5) is the same as when wood biomass only (weight ratio 10: 0) is reacted. It was confirmed that they were similar. On the other hand, there is almost no HI peak when plastic alone (weight ratio 0:10) is reacted, and this result suggests that woody biomass promotes the decomposition of plastic. It was.

さらに、ガスクロマトグラフィー(DGC−FID)による沸点分布測定の結果を図7に示した。その結果、木質バイオマスとプラスチックを混合して反応させたも場合(重量比8:2または5:5)のHSは、木質バイオマスのみのもの(重量比10:0)を反応させた場合のHS、および、プラスチックのみのもの(重量比0:10)を反応させた場合のHSに比べて高沸点留分がわずかに増加することが確認できた。
従って、この結果より、木質バイオマスとプラスチックを混合して反応させることで、木質バイオマス分解物とプラスチック分解物の分解物同士が反応し、木質バイオマス分解物同士の縮合によるHI生成を抑制するとともに、高沸点の成分が新たに生成していることが示唆された。
Furthermore, the result of the boiling point distribution measurement by gas chromatography (DGC-FID) is shown in FIG. As a result, HS when wood biomass and plastic are mixed and reacted (weight ratio 8: 2 or 5: 5) is HS when wood biomass only (weight ratio 10: 0) is reacted. It was confirmed that the high-boiling fraction slightly increased as compared with HS when the plastic alone (weight ratio 0:10) was reacted.
Therefore, from this result, by mixing and reacting woody biomass and plastic, the woody biomass degradation product and the degradation product of the plastic degradation product react with each other, suppressing HI generation due to condensation between the woody biomass degradation products, It was suggested that a component with a high boiling point was newly formed.

[試験例2]
実施例1の製造方法に従い、試験例1と同様に調整した供試材を用いて、石油代替液体燃料の製造を行った。
[Test Example 2]
According to the manufacturing method of Example 1, petroleum substitute liquid fuel was manufactured using the test material prepared in the same manner as in Test Example 1.

1.熱分解反応
表3に示した重量比で混合した各供試材を、反応条件を反応温度400℃、保持時間60分、触媒あり(反応条件: 400[℃]/60[min.]/触媒あり、と示す場合がある)として、上記2.の工程1)および2)と同様に熱分解反応し、反応終了後、直ちに室温まで空冷した。熱分解反応によって生じたガス(Gas)はテドラーバックに全量捕集してガスクロマトグラフィー(GC−TCD)による組成分析を行った。
反応によって、得られたガス(Gas)以外の内容物を直接回収した後、以下の手順によって分離した。
1. Thermal decomposition reaction Each test material mixed in the weight ratio shown in Table 3 has a reaction condition of a reaction temperature of 400 ° C., a holding time of 60 minutes, and a catalyst (reaction condition: 400 [° C.] / 60 [min.] / Catalyst. 2) and 2) above. In the same manner as in Steps 1) and 2), the thermal decomposition reaction was carried out. A total amount of gas (Gas) generated by the thermal decomposition reaction was collected in a Tedlar bag and subjected to composition analysis by gas chromatography (GC-TCD).
The contents other than the obtained gas (Gas) were directly recovered by the reaction, and then separated by the following procedure.

1)単蒸留装置の作成
セパラブルフラスコ(内容積300ml)を二口セパラブルカバーにて覆った。二口セパラブルカバーの上部口(口径小)にはキャピラリー管を改造した釜内液相温度計測用の熱電対カバーに用いるガラス器具を装着した。セパラブルカバーの上部口(口径大)にはクライゼン管を連結し、クライゼン管の上部口(口径大)は共栓にて密封した。クライゼン管の上部口(口径小)にはキャピラリー管を改造した気相温度測定用の熱電対カバーに用いるガラス器具を装着した。クライゼン管の横部出口には50cmの冷却管を接続した。冷却管の先には三又分岐管を接続した。三又分岐管の各下方出口に対して凝縮液成分回収用のガラス器具と装置系密閉用のガラス器具を接続した。三又分岐管の上部出口についてはゴム管を用いて液体回収用のトラップに接続した。蒸留操作中のトラップについてはドライアイスを用いて冷却した。トラップについては分岐したゴム管を用いて真空ポンプおよびニードルバルブを接続した位牌型マノメーターに接続した。いずれの接続部分においても真空用グリースを用いて密封した。釜内および気相部分については熱電対を用いて温度測定を行った。これを単蒸留装置とした。
1) Preparation of simple distillation apparatus A separable flask (internal volume 300 ml) was covered with a two-neck separable cover. A glass apparatus used for the thermocouple cover for measuring the liquid phase temperature in the kettle with a modified capillary tube was attached to the upper opening (small diameter) of the two-port separable cover. A Claisen tube was connected to the upper opening (large diameter) of the separable cover, and the upper opening (large diameter) of the Claisen pipe was sealed with a stopper. A glass apparatus used for a thermocouple cover for gas phase temperature measurement with a modified capillary tube was attached to the upper opening (small diameter) of the Claisen tube. A 50 cm cooling pipe was connected to the lateral outlet of the Claisen pipe. A trifurcated branch pipe was connected to the tip of the cooling pipe. A glass device for condensate component recovery and a glass device for sealing the system were connected to each lower outlet of the trifurcated branch pipe. The upper outlet of the trifurcated branch pipe was connected to a liquid recovery trap using a rubber pipe. The trap during the distillation operation was cooled using dry ice. The trap was connected to a position type manometer to which a vacuum pump and a needle valve were connected using a branched rubber tube. Any connecting portion was sealed with vacuum grease. The temperature in the kettle and the gas phase was measured using a thermocouple. This was used as a simple distillation apparatus.

2)分離
反応によって得られた内容物を上記の単蒸留装置に仕込み、単蒸留装置をマントルヒータおよびリボンヒータを用いて加熱した。各温度留出分については冷却管を水およびドライアイスを用いて冷却し、凝縮させた。I.B.P〜b.p.180℃留分の回収については常圧にて行った。b.p.180〜350℃留分についてはJIS−K2254(石油製品―蒸留試験方法)に準拠した減圧蒸留操作を行い、温度および圧力を操作して回収した。詳細には、温度180℃、圧力760mmHgから温度230℃、圧力30mmHg条件までの留出凝縮物をb.p.180〜350℃留分(軽油留分)とした。釜残分についてはヘキサン抽出を行い、ヘキサン可溶分を重油留分、ヘキサン不溶分を残渣とした。
I.B.P〜b.p.180℃留分については静置分離を行い、水溶性成分とガソリン留分に分別した。このようにして分離した各留分の収率を表3に示した。これによって得られた重油留分、軽油留分、ガソリン留分等が、本発明の「石油代替液体燃料」に該当するものとなる。
なお、計算値として、木質バイオマスのみのもの(重量比10:0)またはプラスチックのみのもの(重量比0:10)を同じ反応条件で反応させた場合の各留分(残渣、重油留分、軽油留分、ガソリン留分、Gas)の収率について、加成則が成り立つと仮定して、それぞれの添加割合で相加平均を取った値も表3に示した。
2) Separation The contents obtained by the reaction were charged into the above simple distillation apparatus, and the simple distillation apparatus was heated using a mantle heater and a ribbon heater. For each temperature distillate, the condenser was cooled using water and dry ice and condensed. I. B. Pb. p. The 180 ° C. fraction was collected at normal pressure. b. p. About the 180-350 degreeC fraction, the vacuum distillation operation based on JIS-K2254 (petroleum product-distillation test method) was performed, temperature and pressure were operated, and it collect | recovered. Specifically, distillate condensate from a temperature of 180 ° C. and a pressure of 760 mmHg to a temperature of 230 ° C. and a pressure of 30 mmHg is b. p. A 180-350 ° C. fraction (light oil fraction) was used. The residue from the kettle was subjected to hexane extraction, and the hexane soluble component was used as the heavy oil fraction and the hexane insoluble component was used as the residue.
I. B. Pb. p. The 180 ° C. fraction was subjected to stationary separation and separated into a water-soluble component and a gasoline fraction. The yield of each fraction thus separated is shown in Table 3. The heavy oil fraction, light oil fraction, gasoline fraction, and the like thus obtained correspond to the “petroleum alternative liquid fuel” of the present invention.
In addition, as a calculated value, each fraction (residue, heavy oil fraction, when wood biomass only (weight ratio 10: 0) or plastic only (weight ratio 0:10) is reacted under the same reaction conditions, Table 3 also shows the values obtained by calculating the arithmetic mean at the respective addition ratios, assuming that the additive law holds for the yield of light oil fraction, gasoline fraction, Gas).

2.結果
反応条件:400[℃]/60[min.]/触媒あり、の場合の収率を表3、図8に示した。
その結果、木質バイオマスのみのもの(重量比10:0)を反応させた場合は、重油留分は得られなかったが、木質バイオマスとプラスチックと混合して反応させた場合(重量比2:8)、プラスチックのみのもの(重量比0:10)を反応させた場合と同様に、重油留分が得られた。
また、木質バイオマスとプラスチックを混合して反応させた場合(重量比2:8)でも、木質バイオマスとプラスチックを同量混合して反応させた場合(重量比5:5)でも計算値と比べて、残渣があきらかに少なくなり、軽油留分、ガソリン留分等の収率が向上することが確認できた。従って、この結果より、木質バイオマスとプラスチックを混合したことにより、石油代替液体燃料の製造において相乗的な効果が得られることが示唆された。
2. Result Reaction conditions: 400 [° C.] / 60 [min. ] / Yield with catalyst is shown in Table 3 and FIG.
As a result, when wood biomass only (weight ratio 10: 0) was reacted, a heavy oil fraction was not obtained, but when wood biomass and plastic were mixed and reacted (weight ratio 2: 8). ), A heavy oil fraction was obtained in the same manner as in the case of reacting only plastic (weight ratio 0:10).
In addition, even when wood biomass and plastic are mixed and reacted (weight ratio 2: 8), even when wood biomass and plastic are mixed and reacted (weight ratio 5: 5), compared with the calculated values. It was confirmed that the residue was clearly reduced and the yield of the light oil fraction, gasoline fraction, etc. was improved. Therefore, it was suggested from this result that a synergistic effect can be obtained in the production of petroleum alternative liquid fuel by mixing woody biomass and plastic.

軽油留分についてガスクロマトグラフ質量分析(GC−MS)を用いた化合物の定性を行った。その結果、図9に示したように、木質バイオマスとプラスチックと混合して反応させた場合(重量比2:8、5:5)、木質バイオマスのみのもの(重量比0:10)を反応させた場合、およびプラスチックのみのもの(重量比0:10)を反応させた場合と比べてそれぞれのピーク強度が高くなっていることが確認できた。従って、この結果から、木質バイオマスとプラスチックが相互に作用することで、分解が進行したことが示唆された。   The gas oil fraction was qualitatively analyzed using gas chromatograph mass spectrometry (GC-MS). As a result, as shown in FIG. 9, when wood biomass and plastic are mixed and reacted (weight ratio 2: 8, 5: 5), only wood biomass (weight ratio 0:10) is reacted. It was confirmed that the respective peak intensities were higher than those in the case of reacting with plastic alone (weight ratio 0:10). Therefore, from this result, it was suggested that decomposition proceeded by the interaction between woody biomass and plastic.

また、重油留分および残渣について、フーリエ変換型赤外分光(FT−IR)を用いた官能基分析を行った。その結果、図10に示したように、木質バイオマスとプラスチックと混合して反応させた場合(重量比2:8)、木質バイオマスのみのもの(重量比0:10)を反応させた場合、およびプラスチックのみのもの(重量比0:10)を反応させた場合のいずれにおいても、溶媒である鉱油が含まれていると考えられる重油留分のピークが変化しないことから、溶媒は不活性であり、反応には関与せず熱媒体としてのみ作用することが確認された。   Moreover, the functional group analysis which used the Fourier transform type | mold infrared spectroscopy (FT-IR) was performed about the heavy oil fraction and the residue. As a result, as shown in FIG. 10, when wood biomass and plastic are mixed and reacted (weight ratio 2: 8), only wood biomass (weight ratio 0:10) is reacted, and In any case where only plastic (weight ratio 0:10) is reacted, the peak of the heavy oil fraction considered to contain mineral oil as the solvent does not change, so the solvent is inactive. It was confirmed that it acts only as a heat medium without being involved in the reaction.

本発明の製造方法により、間伐材、建築廃材、廃プラスチックおよびこれらの混合廃棄物を主原料として、高質な石油代替液体燃料を効率的に製造することが可能となる。本発明によって得られる高質な石油代替液体燃料は、製造業等の分野において幅広く活用することができる。   According to the production method of the present invention, it is possible to efficiently produce high-quality petroleum alternative liquid fuel using thinned wood, building waste, waste plastic, and mixed waste thereof as main raw materials. The high-quality petroleum substitute liquid fuel obtained by the present invention can be widely used in fields such as the manufacturing industry.

Claims (5)

木質バイオマスとプラスチックを300℃以上450℃以下で共熱分解する工程を含む石油代替液体燃料の製造方法。 A method for producing petroleum-substitute liquid fuel, comprising a step of co-pyrolysis of woody biomass and plastic at 300 ° C or higher and 450 ° C or lower. 木質バイオマスとプラスチックを重量比2:8〜8:2に混合して行う請求項1に記載の石油代替液体燃料の製造方法。 The method for producing an alternative petroleum liquid fuel according to claim 1, wherein the woody biomass and the plastic are mixed at a weight ratio of 2: 8 to 8: 2. プラスチックが、ポリエチレン、ポリスチレンまたはポリプロピレンのいずれか一種以上を原料として含むプラスチックである、請求項1または2に記載の石油代替液体燃料の製造方法。 The manufacturing method of the petroleum alternative liquid fuel of Claim 1 or 2 whose plastic is a plastic which contains any one or more of polyethylene, a polystyrene, or a polypropylene as a raw material. 木質バイオマスがスギ、アカマツ、イエローポプラ、ヒノキ、ホワイトパインまたはレッドオークのいずれか一種以上を含む木質バイオマスである請求項1〜3のいずれかに記載の石油代替液体燃料の製造方法。 The method for producing a petroleum alternative liquid fuel according to any one of claims 1 to 3, wherein the woody biomass is a woody biomass containing any one or more of cedar, red pine, yellow poplar, cypress, white pine and red oak. 請求項1〜4のいずれかに記載の製造方法によって製造される石油代替液体燃料。 A petroleum alternative liquid fuel produced by the production method according to claim 1.
JP2012035126A 2012-02-21 2012-02-21 Method for producing petroleum alternative liquid fuel Pending JP2013170224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035126A JP2013170224A (en) 2012-02-21 2012-02-21 Method for producing petroleum alternative liquid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035126A JP2013170224A (en) 2012-02-21 2012-02-21 Method for producing petroleum alternative liquid fuel

Publications (1)

Publication Number Publication Date
JP2013170224A true JP2013170224A (en) 2013-09-02

Family

ID=49264383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035126A Pending JP2013170224A (en) 2012-02-21 2012-02-21 Method for producing petroleum alternative liquid fuel

Country Status (1)

Country Link
JP (1) JP2013170224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079325A (en) * 2014-10-20 2016-05-16 株式会社Kri Biopitch production method
JP2017080662A (en) * 2015-10-27 2017-05-18 株式会社Kri Method for processing mixture of biomass and waste plastic
CN114082400A (en) * 2021-11-09 2022-02-25 陇东学院 Method for preparing biochar by co-pyrolysis of rubber and ginkgo leaves and application of biochar in removal of antibiotics in water body
WO2022220246A1 (en) 2021-04-14 2022-10-20 株式会社レボインターナショナル Organic feedstock decomposition method, and method for manufacturing liquid fuel, solid fuel, or activated carbon using same
JP7220021B2 (en) 2015-04-27 2023-02-09 ガス、テクノロジー、インスティチュート Co-treatment and its products for the control of hydropyrolysis processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265412A (en) * 2008-04-09 2008-09-17 江华鹏 Method for preparing fuel oil by biomass and waste plastic copyrolysis
US20090151233A1 (en) * 2007-12-12 2009-06-18 Chevron U.S.A. Inc. System and method for producing transportation fuels from waste plastic and biomass
CN101735844A (en) * 2010-01-06 2010-06-16 浙江大学 Method for preparing hydrocarbon compounds in biomass self-catalysis copyrolysis way
CA2805521A1 (en) * 2010-07-26 2012-02-09 Emil A. J. Wieser-Linhart Facility and method for producing fuels from biomass/plastic mixtures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151233A1 (en) * 2007-12-12 2009-06-18 Chevron U.S.A. Inc. System and method for producing transportation fuels from waste plastic and biomass
CN101265412A (en) * 2008-04-09 2008-09-17 江华鹏 Method for preparing fuel oil by biomass and waste plastic copyrolysis
CN101735844A (en) * 2010-01-06 2010-06-16 浙江大学 Method for preparing hydrocarbon compounds in biomass self-catalysis copyrolysis way
CA2805521A1 (en) * 2010-07-26 2012-02-09 Emil A. J. Wieser-Linhart Facility and method for producing fuels from biomass/plastic mixtures

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JPN6015034817; Progress in Thermochemical Biomass Conversion Vol.2, p.1388-1395 (2001). *
JPN6015034820; International Journal of Hydrogen Energy Vol.34, No.16, p.7051-7056 (2009). *
JPN6015034823; Journal of Analytical and Applied Pyrolysis Vol.67, No.2, p.325-340 (2003). *
JPN6015034825; Journal of Analytical and Applied Pyrolysis Vol.65, No.1, p.41-55 (2002). *
JPN6015034828; Fuel Vol.88, No.7, p.1251-1260 (2009). *
JPN6015034833; Development of fuel and value-added chemicals from pyrolysis of wood/waste plastic mixture , (2007). *
JPN6015034836; Chemical Research and Application Vol.20, No.3, p.233-238 (2008). *
JPN6015034837; Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry Vol.53, No.1, p.340-342 (2008). *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079325A (en) * 2014-10-20 2016-05-16 株式会社Kri Biopitch production method
JP7220021B2 (en) 2015-04-27 2023-02-09 ガス、テクノロジー、インスティチュート Co-treatment and its products for the control of hydropyrolysis processes
JP2017080662A (en) * 2015-10-27 2017-05-18 株式会社Kri Method for processing mixture of biomass and waste plastic
WO2022220246A1 (en) 2021-04-14 2022-10-20 株式会社レボインターナショナル Organic feedstock decomposition method, and method for manufacturing liquid fuel, solid fuel, or activated carbon using same
KR20230170005A (en) 2021-04-14 2023-12-18 가부시키가이샤 레보 인터내셔널 Decomposition method of organic raw materials, method of producing liquid fuel, solid fuel, or activated carbon using the same
CN114082400A (en) * 2021-11-09 2022-02-25 陇东学院 Method for preparing biochar by co-pyrolysis of rubber and ginkgo leaves and application of biochar in removal of antibiotics in water body

Similar Documents

Publication Publication Date Title
Brand et al. Effect of heating rate on biomass liquefaction: differences between subcritical water and supercritical ethanol
Özbay et al. Characterization of bio-oil obtained from fruit pulp pyrolysis
JP2013170224A (en) Method for producing petroleum alternative liquid fuel
Moraes et al. Analysis of products from pyrolysis of Brazilian sugar cane straw
Demirbas Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech trunkbarks
Santos et al. Pyrolysis of mangaba seed: Production and characterization of bio-oil
Mazaheri et al. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents
Boey et al. Pyrolysis of residual palm oil in spent bleaching clay by modified tubular furnace and analysis of the products by GC–MS
Apaydin-Varol et al. Synthetic fuel production from cottonseed: fast pyrolysis and a TGA/FT-IR/MS study
Ogunkanmi et al. Extraction of bio-oil during pyrolysis of locally sourced palm kernel shells: Effect of process parameters
Costa et al. Fractionation of tire pyrolysis oil into a light fuel fraction by steam distillation
US20110034712A1 (en) Method of extracting essential oil from biomass wastes and a device thereof
WO2009083985A3 (en) Process for the treatment of organic waste and product obtained thereof
Dewayanto et al. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis
Ateş et al. Comparison of non-catalytic and catalytic fast pyrolysis of pomegranate and grape marcs under vacuum and inert atmospheres
US20150184025A1 (en) Biomass Bio Oil Upgrade Method
Chaiya Production of bio-oil from coffee residue using pyrolysis process
Kar et al. Fast pyrolysis of chestnut cupulae: yields and characterization of the bio-oil
Coppos et al. Biofuels production by thermal cracking of soap from brown grease
CN101818096A (en) Recovery system for reclaimed lubricating distillate oil and recovery processing method
CA2908439C (en) Process for treating a hydrocarbon-based heavy residue
Klaigaew et al. Liquid phase pyrolysis of giant leucaena wood to bio-oil over NiMo/Al2O3 catalyst
CN103842420A (en) Thermal de-polymerization process of plastic waste materials
Xu et al. A novel method of upgrading bio-oil by reactive rectification
Buzetzki et al. Catalytic role of lignocellulosic materials in triacylglycerol cracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160106