JP2013170220A - Fluororesin aqueous dispersion, aqueous fluorine coating material and article coated with the coating material - Google Patents

Fluororesin aqueous dispersion, aqueous fluorine coating material and article coated with the coating material Download PDF

Info

Publication number
JP2013170220A
JP2013170220A JP2012035039A JP2012035039A JP2013170220A JP 2013170220 A JP2013170220 A JP 2013170220A JP 2012035039 A JP2012035039 A JP 2012035039A JP 2012035039 A JP2012035039 A JP 2012035039A JP 2013170220 A JP2013170220 A JP 2013170220A
Authority
JP
Japan
Prior art keywords
mass
parts
vinyl
monomer
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035039A
Other languages
Japanese (ja)
Other versions
JP5957940B2 (en
Inventor
Akinori Kazuta
昭典 數田
Takashi Mukai
隆 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2012035039A priority Critical patent/JP5957940B2/en
Publication of JP2013170220A publication Critical patent/JP2013170220A/en
Application granted granted Critical
Publication of JP5957940B2 publication Critical patent/JP5957940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluororesin aqueous dispersion, which can be produced in an easy process, and with which a coating film with high weather resistance can be formed, and which shows excellent long-term storage stability.SOLUTION: A fluororesin aqueous dispersion is obtained, for example, through the following steps: a first step of copolymerizing a monomer mixture (I) essentially comprising a fluoroolefin compound (a1) and a vinyl monomer (a2) having a hydroxyl group; a second step of adding a monomer mixture (II) essentially comprising a fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group and a vinyl monomer (a3) having a carboxyl group to the reaction product obtained in the first step to further copolymerize it to obtain a fluororesin (A); and a third step of neutralizing the carboxyl group possessed by the fluororesin (A) with a basic compound, and dispersing it in an aqueous medium.

Description

本発明は、水性媒体中にフッ素共重合体を分散させたフッ素樹脂水性分散体、この分散体を用いた水性フッ素塗料、及び該塗料で塗装された物品に関する。   The present invention relates to an aqueous fluororesin dispersion in which a fluorocopolymer is dispersed in an aqueous medium, an aqueous fluorine paint using this dispersion, and an article coated with the paint.

フッ素樹脂を用いた塗料は、耐候性、耐薬品性等に優れるため、建築用塗料や自動車上塗り用塗料等の保護被膜を形成する材料として、幅広く利用されている。特に、水酸基を有するフッ素樹脂、水酸基と反応性を有する硬化剤及び有機溶剤を含有する二液硬化型塗料用樹脂組成物は、優れた塗膜物性を有している(例えば、特許文献1参照。)。   A paint using a fluororesin is widely used as a material for forming a protective coating such as an architectural paint or an automobile top coat because it has excellent weather resistance, chemical resistance, and the like. In particular, a two-part curable coating resin composition containing a hydroxyl group-containing fluororesin, a hydroxyl group-reactive curing agent, and an organic solvent has excellent coating film properties (see, for example, Patent Document 1). .)

しかし、前記特許文献1に記載の二液硬化型塗料用樹脂組成物は、トルエン、キシレン等の芳香族系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤等の比較的溶解性の高い有機溶剤(強溶剤)を含有しているため、塗装面を侵食することから塗装の補修等には使用困難であった。また、これらの有機溶剤は環境負荷が大きく、特に近年は環境対応の観点からその使用が難しい状況にあった。   However, the two-component curable coating resin composition described in Patent Document 1 includes aromatic solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, and ketones such as methyl ethyl ketone and methyl isobutyl ketone. Since it contains an organic solvent (strong solvent) with relatively high solubility, such as a solvent, it erodes the painted surface and is difficult to use for repairing the coating. In addition, these organic solvents have a large environmental load, and in recent years, their use has been difficult from the viewpoint of environmental friendliness.

このため、塗装面への侵食性が低く、環境負荷も低い、粉体塗料用樹脂や乳化重合による水性塗料樹脂用樹脂が開発されている。しかし、粉体塗料用樹脂は、塗膜を得るためには高温焼付けが必要であり、現場施工には適さない問題があった。また、乳化重合法を用いて水性フッ素樹脂を製造する方法が知られているが、この乳化重合型水性フッ素樹脂は、常温造膜性が十分ではなく、また塗膜作製後に塗膜中に残留する乳化剤が原因となって耐水性が低下したり、乳化剤が水で洗い流されてできた痕が細孔となって、そこから塗膜が侵食されたりし、フッ素樹脂の長所である耐候性が十分に活かせない問題もあった。   For this reason, powder coating resins and aqueous coating resin resins by emulsion polymerization have been developed that have low erosion on the painted surface and low environmental impact. However, the resin for powder coatings has a problem that it is not suitable for on-site construction because high temperature baking is required to obtain a coating film. In addition, a method of producing an aqueous fluororesin using an emulsion polymerization method is known, but this emulsion polymerization type aqueous fluororesin is not sufficient in room temperature film-forming property and remains in the coating film after the coating film is prepared. The water resistance is reduced due to the emulsifier, or the traces made by washing the emulsifier with water become pores, and the coating film is eroded from there, and the weather resistance that is an advantage of fluororesin is There were also problems that could not be fully utilized.

上記の乳化重合型水性樹脂の問題を解決すべく、耐水性に影響する乳化剤を使用しない自己分散型(ディスパージョン型)の水性フッ素樹脂が提案されている(例えば、特許文献2参照。)。この自己分散型の水性フッ素樹脂は、フッ素樹脂にカルボキシル基等の酸基を導入し、その酸基を塩基性化合物で中和して、水性媒体中での自己分散性を付与したものである。この自己分散型の水性フッ素樹脂は、現場施工が可能で、常温での造膜性に優れ、機械的安定性にも優れるが、安定な水分散性を得るためには多くの酸基を樹脂に導入する必要があるため、塗膜の耐水性低下にともない耐候が低下するという問題があった。   In order to solve the problems of the emulsion polymerization type aqueous resin, a self-dispersion type (dispersion type) aqueous fluororesin that does not use an emulsifier that affects water resistance has been proposed (for example, see Patent Document 2). This self-dispersing aqueous fluororesin is obtained by introducing an acid group such as a carboxyl group into the fluororesin and neutralizing the acid group with a basic compound to impart self-dispersibility in an aqueous medium. . This self-dispersing water-based fluororesin can be applied on-site, has excellent film-forming properties at room temperature, and has excellent mechanical stability. Therefore, there has been a problem that the weather resistance decreases as the water resistance of the coating film decreases.

少ない酸基でフッ素樹脂の水分散安定性を向上させる方法として、酸基が多い成分と酸基が少ない成分とを混合して分散させることで、フッ素樹脂水性分散体の分散性を向上させる提案がされている(例えば、特許文献3参照。)。しかしながら、この方法では、フッ素樹脂が有する水酸基に対して、メタクリル酸等の酸基と不飽和基を有する化合物をエステル化反応させて樹脂に不飽和基を導入し、さらにこの不飽和基にアクリル酸やメタクリル酸など酸基を有する単量体と、(メタ)アクリル酸エステル等とを共重合してグラフト鎖を導入する必要があり、フッ素樹脂の製造操作が煩雑になる問題があった。また、フッ素樹脂水性分散体の貯蔵安定性が低いという問題もあった。   Proposal to improve the dispersibility of fluororesin aqueous dispersion by mixing and dispersing components with many acid groups and components with few acid groups as a method to improve water dispersion stability of fluororesins with few acid groups (For example, refer to Patent Document 3). However, in this method, a compound having an acid group such as methacrylic acid and an unsaturated group is esterified with the hydroxyl group of the fluororesin to introduce an unsaturated group into the resin, and acrylic acid is further added to the unsaturated group. It is necessary to introduce a graft chain by copolymerizing a monomer having an acid group such as acid or methacrylic acid with a (meth) acrylic acid ester, and there is a problem that the operation for producing the fluororesin becomes complicated. There is also a problem that the storage stability of the fluororesin aqueous dispersion is low.

特公平6−062910号公報Japanese Examined Patent Publication No. 6-062910 特開平8−337620号公報JP-A-8-337620 特開平2−233749号公報Japanese Patent Laid-Open No. 2-233749

本発明が解決しようとする課題は、簡便な方法で製造することができ、高耐候性の塗膜を形成することが可能で、かつ長期の貯蔵安定性に優れたフッ素樹脂水性分散体を提供することである。また、該分散体を含有する水性フッ素塗料及び該塗料で塗装された物品を提供することである。   The problem to be solved by the present invention is to provide a fluororesin aqueous dispersion that can be produced by a simple method, can form a highly weather-resistant coating film, and has excellent long-term storage stability. It is to be. Another object of the present invention is to provide an aqueous fluorine paint containing the dispersion and an article coated with the paint.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、組成が異なる単量体混合物を2段階で共重合反応させて得られたカルボキシル基を有するフッ素共重合体を塩基性化合物で中和した後、水媒体中で分散させたフッ素樹脂水性分散体は、高耐候性の塗膜を形成することが可能で、かつ長期的に貯蔵安定性に優れることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have obtained a basic compound from a fluorine copolymer having a carboxyl group obtained by copolymerizing a monomer mixture having a different composition in two stages. It was found that the aqueous dispersion of fluororesin dispersed in an aqueous medium after neutralizing with the above can form a highly weather-resistant coating film and has excellent long-term storage stability. Completed.

すなわち、本発明は、フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を共重合反応させる第1工程、
第1工程で得られた反応物に、フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を加えて、さらに共重合反応させて、フッ素共重合体(A)を得る第2工程、
前記フッ素共重合体(A)が有するカルボキシル基を塩基性化合物で中和して、水媒体中で分散させる第3工程を経て、得られることを特徴とするフッ素共重合体水性分散体に関する。
That is, the present invention comprises a first step of copolymerizing a monomer mixture (I) essentially comprising a fluoroolefin compound (a1) and a vinyl monomer (a2) having a hydroxyl group,
Monomer mixture (II) in which the reaction product obtained in the first step essentially comprises a fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group and a vinyl monomer (a3) having a carboxyl group. ) And further copolymerization reaction to obtain a fluorine copolymer (A),
The present invention relates to an aqueous fluorocopolymer dispersion, which is obtained through a third step of neutralizing a carboxyl group of the fluorocopolymer (A) with a basic compound and dispersing it in an aqueous medium.

また、フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を共重合反応させる第1工程、
第1工程で得られた反応物に、フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を加えて、さらに共重合反応させて、フッ素共重合体(A)を得る第2工程、
前記フッ素共重合体(A)が有するカルボキシル基を塩基性化合物で中和して、水媒体中で分散させる第3工程を経て、得られることを特徴とするフッ素樹脂水性分散体に関する。
Also, a first step of copolymerizing a monomer mixture (II) essentially comprising a fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group and a vinyl monomer (a3) having a carboxyl group ,
To the reactant obtained in the first step, the monomer mixture (I) essentially comprising the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group is added, and further copolymerized, A second step of obtaining a fluorine copolymer (A),
The present invention relates to a fluororesin aqueous dispersion, which is obtained through a third step of neutralizing a carboxyl group of the fluorocopolymer (A) with a basic compound and dispersing it in an aqueous medium.

さらに、本発明は、上記フッ素樹脂水性分散体を用いた水性フッ素塗料、及び該塗料で塗装された物品に関する。   Furthermore, the present invention relates to an aqueous fluorine paint using the aqueous fluororesin dispersion and an article coated with the paint.

本発明のフッ素樹脂水性分散体は、乳化剤を用いず、環境負荷の低い水性媒体に分散されており、常温乾燥により高耐候性の塗膜を形成することが可能で、機械的安定性に優れ、かつ長期の貯蔵安定性にも優れている。したがって、水性フッ素塗料に用いることができる。また、本発明のフッ素樹脂水性分散体を用いた水性フッ素塗料は、溶剤系フッ素塗料と同様に、高い耐候性、耐光性、耐薬品性を有するため、例えば、直射日光が当たり、特に高い耐候性が要求される一般建造物の屋根や、高い化学的耐久性を要求されるコンビナート地域の工場建屋の外装に保護被膜を形成する塗料として有用である。   The aqueous fluororesin dispersion of the present invention does not use an emulsifier, is dispersed in an aqueous medium with a low environmental load, can form a highly weather-resistant coating film by drying at room temperature, and has excellent mechanical stability. In addition, it has excellent long-term storage stability. Therefore, it can be used for an aqueous fluorine paint. In addition, the water-based fluorine paint using the aqueous fluororesin dispersion of the present invention has high weather resistance, light resistance, and chemical resistance like the solvent-based fluorine paint, so that it is exposed to direct sunlight, for example, and has particularly high weather resistance. It is useful as a paint to form a protective coating on the roof of general buildings that require high properties and the exterior of factory buildings in complex areas where high chemical durability is required.

本発明のフッ素樹脂水性分散体は、下記の2つの態様により得ることができる。   The aqueous fluororesin dispersion of the present invention can be obtained by the following two aspects.

第1の態様は、フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を共重合反応させる第1工程、
第1工程で得られた反応物に、フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を加えて、さらに共重合反応させて、フッ素共重合体(A)を得る第2工程、
前記フッ素共重合体(A)が有するカルボキシル基を塩基性化合物で中和して、水媒体中で分散させる第3工程を経て、フッ素樹脂水性分散体を得る方法である。
The first aspect is a first step of copolymerizing the monomer mixture (I) essentially comprising the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group,
Monomer mixture (II) in which the reaction product obtained in the first step essentially comprises a fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group and a vinyl monomer (a3) having a carboxyl group. ) And further copolymerization reaction to obtain a fluorine copolymer (A),
This is a method of obtaining a fluororesin aqueous dispersion through a third step in which the carboxyl group of the fluorocopolymer (A) is neutralized with a basic compound and dispersed in an aqueous medium.

また、第2の態様は、フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を共重合反応させる第1工程、
第1工程で得られた反応物に、フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を加えて、さらに共重合反応させて、フッ素共重合体(A)を得る第2工程、
前記フッ素共重合体(A)が有するカルボキシル基を塩基性化合物で中和して、水媒体中で分散させる第3工程を経て、フッ素樹脂水性分散体を得る方法である。
In the second embodiment, the monomer mixture (II) comprising the fluoroolefin compound (a1), the vinyl monomer (a2) having a hydroxyl group, and the vinyl monomer (a3) having a carboxyl group as essential components is used. A first step of polymerization reaction;
To the reactant obtained in the first step, the monomer mixture (I) essentially comprising the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group is added, and further copolymerized, A second step of obtaining a fluorine copolymer (A),
This is a method of obtaining a fluororesin aqueous dispersion through a third step in which the carboxyl group of the fluorocopolymer (A) is neutralized with a basic compound and dispersed in an aqueous medium.

前記フルオロオレフィン化合物(a1)は、炭素−炭素不飽和二重結合を有し、この二重結合を形成している炭素原子にフッ素原子が結合している化合物である。このフルオロオレフィン化合物(a1)としては、例えば、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、テトラフルオロエチレン、ブロモトリフルオロエチレン、クロロトリフルオロエチレン、ペンタフルオロプロピレン、ヘキサフルオロプロピレン、フルオロアルキルトリフルオロビニルエーテル等が挙げられる。これらの中でも、耐候性、常温造膜性等に優れることから、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレンが好ましい。また、これらのフルオロオレフィン化合物(a1)は、単独で用いることも2種以上併用することもできる。   The said fluoro olefin compound (a1) is a compound which has a carbon-carbon unsaturated double bond, and the fluorine atom has couple | bonded with the carbon atom which forms this double bond. Examples of the fluoroolefin compound (a1) include vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, bromotrifluoroethylene, chlorotrifluoroethylene, pentafluoropropylene, hexafluoropropylene, and fluoroalkyltrifluoro. Examples include vinyl ether. Among these, tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene are preferable because of excellent weather resistance, room temperature film-forming property, and the like. Moreover, these fluoroolefin compounds (a1) can be used alone or in combination of two or more.

前記ビニル単量体(a2)は、水酸基と重合性を有する炭素−炭素不飽和二重結合とを有する化合物である。このビニル単量体(a2)としては、例えば、2−ヒドロキシエチルビニルエーテル、3−ヒドロキシプロピルビニルエーテル、2−ヒドロキシプロピルビニルエーテル、4−ヒドロキシブチルビニルエーテル、2−ヒドロキシ−2−メチルプロピルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル等のヒドロキシアルキルビニルエーテル化合物;エチレングリコールアリルエーテル、ジエチレングリコールアリルエーテル等のヒドロキシアリルエーテル化合物;2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート化合物などが挙げられる。これらの中でも、共重合性に優れ、工業的に入手が容易なことから、2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテルが好ましい。また、これらのビニル単量体(a2)は、単独で用いることも2種以上併用することもできる。   The vinyl monomer (a2) is a compound having a hydroxyl group and a polymerizable carbon-carbon unsaturated double bond. Examples of the vinyl monomer (a2) include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, and 6-hydroxy. Hydroxyalkyl vinyl ether compounds such as hexyl vinyl ether and cyclohexanedimethanol monovinyl ether; Hydroxyallyl ether compounds such as ethylene glycol allyl ether and diethylene glycol allyl ether; Hydroxy such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate Examples include alkyl (meth) acrylate compounds. Among these, 2-hydroxyethyl vinyl ether and 4-hydroxybutyl vinyl ether are preferable because of excellent copolymerizability and industrial availability. Moreover, these vinyl monomers (a2) can be used alone or in combination of two or more.

なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。   In the present invention, “(meth) acrylate” refers to one or both of methacrylate and acrylate, and “(meth) acrylic acid” refers to one or both of methacrylic acid and acrylic acid.

前記ビニル単量体(a3)は、カルボキシル基と重合性を有する炭素−炭素不飽和二重結合とを有する化合物である。このビニル単量体(a3)としては、例えば、(メタ)アクリル酸、ω−カルボキシ−ポリカプロラクトンモノアクリレート、クロトン酸、3−ブテン酸、4−ペンテン酸、2−ヘキセン酸、3−ヘキセン酸、5−ヘキセン酸、2−ヘプテン酸、3−ヘプテン酸、6−ヘプテン酸、3−オクテン酸、7−オクテン酸、2−ノネン酸、3−ノネン酸、8−ノネン酸、9−デセン酸、10−ウンデセン酸、3−アリルオキシプロピオン酸、アリルオキシ吉草酸等の1つのカルボキシル基を有する単量体;イタコン酸、マレイン酸、フマル酸等の2つのカルボキシル基を有する単量体;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノブチル、フマル酸モノイソブチル、フマル酸モノ−t−ブチル、フマル酸モノヘキシル、フマル酸モノオクチル、フマル酸モノ−2−エチルヘキシル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、マレイン酸モノイソブチル、マレイン酸モノ−t−ブチル、マレイン酸モノヘキシル、マレイン酸モノオクチル、マレイン酸モノ−2−エチルヘキシル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル、イタコン酸モノイソブチル、イタコン酸モノヘキシル、イタコン酸モノオクチル、イタコン酸モノ−2−エチルヘキシル等の2つのカルボキシル基を有する単量体のモノアルキルエステル化合物;アジピン酸モノビニル、コハク酸モノビニル、マレイン酸モノビニル等のジカルボン酸のモノビニル化合物などが挙げられる。これらのビニル単量体(a3)は、単独で用いることも2種以上併用することもできる。   The vinyl monomer (a3) is a compound having a carboxyl group and a polymerizable carbon-carbon unsaturated double bond. Examples of the vinyl monomer (a3) include (meth) acrylic acid, ω-carboxy-polycaprolactone monoacrylate, crotonic acid, 3-butenoic acid, 4-pentenoic acid, 2-hexenoic acid, and 3-hexenoic acid. 5-hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 6-heptenoic acid, 3-octenoic acid, 7-octenoic acid, 2-nonenoic acid, 3-nonenoic acid, 8-nonenoic acid, 9-decenoic acid Monomers having one carboxyl group such as 10-undecenoic acid, 3-allyloxypropionic acid and allyloxyvaleric acid; monomers having two carboxyl groups such as itaconic acid, maleic acid and fumaric acid; fumaric acid Monomethyl, monoethyl fumarate, monobutyl fumarate, monoisobutyl fumarate, mono-t-butyl fumarate, monohexyl fumarate, monoo fumarate Chill, mono-2-ethylhexyl fumarate, monomethyl maleate, monoethyl maleate, monobutyl maleate, monoisobutyl maleate, mono-t-butyl maleate, monohexyl maleate, monooctyl maleate, mono-2-maleate Monoalkyl ester of monomer having two carboxyl groups such as ethylhexyl, monomethyl itaconate, monoethyl itaconate, monobutyl itaconate, monoisobutyl itaconate, monohexyl itaconate, monooctyl itaconate, mono-2-ethylhexyl itaconate Compounds: monovinyl compounds of dicarboxylic acids such as monovinyl adipate, monovinyl succinate and monovinyl maleate. These vinyl monomers (a3) can be used alone or in combination of two or more.

上記のビニル単量体(a3)の中でも、本発明のフッ素共重合体水性分散体の貯蔵安定性がより向上することから、カルボキシル基とビニル基との間の原子数(カルボキシル基及びビニル基に含まれる原子は加えない。)が4以上の単量体が好ましく、6〜20の範囲の単量体がより好ましく、8〜15の範囲の単量体がさらに好ましい。このようなビニル単量体(a3)としては、3−アリルオキシプロピオン酸(カルボキシル基とビニル基との間の原子数4)、10−ウンデセン酸(カルボキシル基とビニル基との間の原子数8)、ω−カルボキシ−ポリカプロラクトンモノアクリレート(カプロラクトンの繰り返し単位数2のもの;カルボキシル基とビニル基との間の原子数14)等が挙げられる。   Among the above vinyl monomers (a3), the storage stability of the aqueous fluorocopolymer dispersion of the present invention is further improved, so the number of atoms between the carboxyl group and the vinyl group (carboxyl group and vinyl group) Is not added.) Is preferably a monomer of 4 or more, more preferably in the range of 6-20, and even more preferably in the range of 8-15. As such a vinyl monomer (a3), 3-allyloxypropionic acid (number of atoms between carboxyl group and vinyl group: 4), 10-undecenoic acid (number of atoms between carboxyl group and vinyl group) 8), ω-carboxy-polycaprolactone monoacrylate (having two repeating units of caprolactone; 14 atoms between the carboxyl group and the vinyl group).

また、前記ビニル単量体(a2)及び(a3)以外に、カルボキシル基及び水酸基を有さないビニル単量体(a4)を前記フッ素共重合体(A)の原料として用いても構わない。このようなビニル単量体(a4)としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、t−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、2−エチルヘキシルビニルエーテル、ドデシルビニルエーテル、トリデシルビニルエーテル、ヘキサデシルビニルエーテル、オクタデシルビニルエーテル等のアルキルビニルエーテル化合物;シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル化合物;ベンジルビニルエーテル、フェネチルビニルエーテル等のアラルキルビニルエーテル化合物;等のビニルエーテルモノマー;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等の直鎖状カルボン酸のビニルエステル化合物、ピバリン酸ビニル、2−エチルヘキサン酸ビニル、ネオノナン酸ビニル、ネオデカン酸ビニル等の分岐状カルボン酸のビニルエステル化合物;シクロヘキサンカルボン酸ビニル等の環状脂肪族カルボン酸のビニルエステル化合物;安息香酸ビニル、p−t−ブチル安息香酸ビニル等の芳香族カルボン酸のビニルエステル化合物;エチレン、プロピレン等のオレフィン化合物;塩化ビニル、塩化ビニリデン等のハロゲン化オレフィン化合物、エチルアリルエーテル、ブチルアリルエーテル等のアリルエーテル化合物、酢酸アリル、プロピオン酸アリル等のアリルエステル化合物;メチル(メタ)アクリレート、ブチル(メタ)アクリレート等の(メタ)アクリル酸のアルキルエステル化合物などが挙げられる。これらのビニル単量体(a4)を前記ビニル単量体(a2)及び(a3)と共重合することで、水性フッ素塗料とした際に他の塗料成分との相溶性が良好になることから好ましい。また、これらのビニル単量体(a4)の中でも、他の単量体と共重合しやすく、工業的に入手しやすいことから、エチルビニルエーテル、シクロヘキシルビニルエーテルが好ましい。なお、これらのビニル単量体(a4)は、単独で用いることも2種以上併用することもできる。   Moreover, you may use the vinyl monomer (a4) which does not have a carboxyl group and a hydroxyl group other than the said vinyl monomers (a2) and (a3) as a raw material of the said fluorine copolymer (A). Examples of the vinyl monomer (a4) include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, t-butyl vinyl ether, n-pentyl vinyl ether, and n-hexyl. Alkyl vinyl ether compounds such as vinyl ether, n-octyl vinyl ether, 2-ethylhexyl vinyl ether, dodecyl vinyl ether, tridecyl vinyl ether, hexadecyl vinyl ether and octadecyl vinyl ether; cycloalkyl vinyl ether compounds such as cyclohexyl vinyl ether; aralkyl vinyl ether compounds such as benzyl vinyl ether and phenethyl vinyl ether Vinyl ether monomer such as acetic acid Nyl, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate vinyl ester compounds, vinyl pivalate, 2-ethylhexanoic acid Vinyl ester compounds of branched carboxylic acids such as vinyl, vinyl neononanoate and vinyl neodecanoate; vinyl ester compounds of cyclic aliphatic carboxylic acids such as vinyl cyclohexanecarboxylate; vinyl benzoate, vinyl tert-butylbenzoate, etc. Vinyl ester compounds of aromatic carboxylic acids; Olefin compounds such as ethylene and propylene; Halogenated olefin compounds such as vinyl chloride and vinylidene chloride; Allyl ether compounds such as ethyl allyl ether and butyl allyl ether; Allyl acetate and propio Allyl ester compound allyl and the like; methyl (meth) acrylate, butyl (meth) acrylate, etc. (meth) and the like alkyl ester of acrylic acid. By copolymerizing these vinyl monomers (a4) with the vinyl monomers (a2) and (a3), compatibility with other paint components is improved when an aqueous fluorine paint is used. preferable. Among these vinyl monomers (a4), ethyl vinyl ether and cyclohexyl vinyl ether are preferable because they are easily copolymerized with other monomers and easily available industrially. These vinyl monomers (a4) can be used alone or in combination of two or more.

また、前記ビニル単量体(a4)として、前記フルオロオレフィン化合物(a1)以外のフッ素原子を有する単量体として、2,2,3,3−テトラフルオロプロピルビニルエーテル、2,2,3,3,4,4,5,5−オクタフルオロペンチルビニルエーテル、パーフルオロメチルビニルエーテル、パーフルオロエチルビニルエーテル、パーフルオロプロピルビニルーエテル、パーフルオロオクチルビニルエーテル、パーフルオロシクロヘキシルビニルエーテル等のフルオロアルキルビニルエーテル化合物を用いても構わない。   Further, as the vinyl monomer (a4), as a monomer having a fluorine atom other than the fluoroolefin compound (a1), 2,2,3,3-tetrafluoropropyl vinyl ether, 2,2,3,3 , 4, 4, 5, 5-octafluoropentyl vinyl ether, perfluoromethyl vinyl ether, perfluoroethyl vinyl ether, perfluoropropyl vinyl ether, perfluorooctyl vinyl ether, perfluorocyclohexyl vinyl ether, and other fluoroalkyl vinyl ether compounds may be used. I do not care.

本発明のフッ素樹脂水性分散体を製造するためには、まず、前記フッ素共重合体(A)を製造する。このフッ素共重合体(A)の製造方法としては、例えば、下記の2つの方法が挙げられる。   In order to produce the fluororesin aqueous dispersion of the present invention, first, the fluorocopolymer (A) is produced. As a manufacturing method of this fluorine copolymer (A), the following two methods are mentioned, for example.

(製造方法1)
[第1工程]
前記フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を共重合反応させる。
[第2工程]
第1工程で得られた反応物に、前記フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を加えて、さらに共重合反応させる。
(Manufacturing method 1)
[First step]
The monomer mixture (I) essentially comprising the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group is copolymerized.
[Second step]
In the reaction product obtained in the first step, a monomer mixture in which the fluoroolefin compound (a1), the vinyl monomer (a2) having a hydroxyl group, and the vinyl monomer (a3) having a carboxyl group are essential ( II) is added and a further copolymerization reaction is carried out.

(製造方法2)
[第1工程]
前記フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を共重合反応させる。
[第2工程]
第1工程で得られた反応物に、前記フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を加えて、さらに共重合反応させる。
(Manufacturing method 2)
[First step]
A monomer mixture (II) essentially comprising the fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group, and a vinyl monomer (a3) having a carboxyl group is subjected to a copolymerization reaction.
[Second step]
To the reaction product obtained in the first step, the monomer mixture (I) essentially comprising the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group is added, and a copolymerization reaction is further performed.

なお、上記の製造方法1及び製造方法2において、第1工程及び第2工程で用いる単量体混合物(I)又は単量体混合物(II)は、一度に仕込んでも、複数回に分けて仕込んでも構わない。   In addition, in said manufacturing method 1 and manufacturing method 2, even if monomer mixture (I) or monomer mixture (II) used at the 1st process and the 2nd process is charged at once, it is charged in multiple times. It doesn't matter.

前記単量体混合物(I)には、前記フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とするが、その他、前記ビニル単量体(a4)が、単量体混合物中に含まれていても構わない。   In the monomer mixture (I), the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group are essential. In addition, the vinyl monomer (a4) is a monomer. It may be contained in the mixture.

前記単量体混合物(I)中の各単量体の使用量は、水性フッ素塗料とした際に他の塗料成分との相溶性が良好になり、塗膜の耐候性及び耐薬品性が良好になることから、前記フルオロオレフィン化合物(a1)1モルに対して、前記ビニル単量体(a2)及び(a4)の合計で、0.6〜1.5モルの範囲が好ましく、0.8〜1.2モルの範囲がより好ましく、0.9〜1.1モルの範囲がさらに好ましい。また、前記ビニル単量体(a2)及び(a4)の合計中の前記ビニル単量体(a2)のモル比率は、10〜100モル%の範囲が好ましく、15〜60モル%の範囲がより好ましく、20〜50モル%の範囲がさらに好ましい。なお、前記単量体混合物(I)中には、カルボキシル基を有するビニル単量体(a3)を含んでいても構わないが、前記単量体混合物(I)中のモル比率は、2モル%以下とすることが好ましく、1.5モル%以下とすることがより好ましく、1モル%以下とすることがさらに好ましい。   The amount of each monomer used in the monomer mixture (I) is good in compatibility with other paint components when used as an aqueous fluorine paint, and the weather resistance and chemical resistance of the paint film are good. Therefore, the total amount of the vinyl monomers (a2) and (a4) is preferably in the range of 0.6 to 1.5 mol with respect to 1 mol of the fluoroolefin compound (a1), 0.8 The range of -1.2 mol is more preferable, and the range of 0.9-1.1 mol is more preferable. The molar ratio of the vinyl monomer (a2) in the total of the vinyl monomers (a2) and (a4) is preferably in the range of 10 to 100 mol%, more preferably in the range of 15 to 60 mol%. The range of 20 to 50 mol% is more preferable. The monomer mixture (I) may contain a vinyl monomer (a3) having a carboxyl group, but the molar ratio in the monomer mixture (I) is 2 mol. % Or less, more preferably 1.5 mol% or less, still more preferably 1 mol% or less.

また、前記単量体混合物(II)は、前記フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とするが、その他、前記ビニル単量体(a4)が、単量体混合物中に含まれていても構わない。   The monomer mixture (II) essentially comprises the fluoroolefin compound (a1), a vinyl monomer having a hydroxyl group (a2), and a vinyl monomer having a carboxyl group (a3). The vinyl monomer (a4) may be contained in the monomer mixture.

前記単量体混合物(II)中の各単量体の使用量は、耐候性及び耐薬品性が良好になり、水性フッ素塗料とした際に他の塗料成分との相溶性が良好になることから、前記フルオロオレフィン化合物(a1)1モルに対して、前記ビニル単量体(a2)、(a3)及び(a4)の合計で、0.6〜1.5モルの範囲が好ましく、0.8〜1.2モルの範囲がより好ましく、0.9〜1.1モルの範囲がさらに好ましい。また、前記ビニル単量体(a2)、(a3)及び(a4)の合計中の前記ビニル単量体(a2)のモル比率は、10〜97モル%の範囲が好ましく、15〜60モル%の範囲がより好ましく、20〜50モル%の範囲がさらに好ましい。さらに、前記ビニル単量体(a2)、(a3)及び(a4)の合計中の前記ビニル単量体(a3)のモル比率は、3〜60モル%の範囲が好ましく、5〜50モル%の範囲がより好ましく、8〜40モル%の範囲がさらに好ましい。   The amount of each monomer used in the monomer mixture (II) is good in weather resistance and chemical resistance, and when used as an aqueous fluorine paint, compatibility with other paint components is good. Therefore, the total of the vinyl monomers (a2), (a3) and (a4) is preferably in the range of 0.6 to 1.5 mol with respect to 1 mol of the fluoroolefin compound (a1). The range of 8-1.2 mol is more preferable, and the range of 0.9-1.1 mol is more preferable. The molar ratio of the vinyl monomer (a2) in the total of the vinyl monomers (a2), (a3) and (a4) is preferably in the range of 10 to 97 mol%, and 15 to 60 mol%. Is more preferable, and the range of 20 to 50 mol% is more preferable. Furthermore, the molar ratio of the vinyl monomer (a3) in the total of the vinyl monomers (a2), (a3) and (a4) is preferably in the range of 3 to 60 mol%, and 5 to 50 mol%. Is more preferable, and the range of 8 to 40 mol% is more preferable.

なお、前記単量体混合物(I)において、前記ビニル単量体(a2)及び(a4)の合計中の前記ビニル単量体(a2)のモル比率が100モル%未満の場合と、前記単量体混合物(II)において、前記ビニル単量体(a2)、(a3)及び(a4)の合計中の前記ビニル単量体(a2)及び(a3)の合計モル比率が100モル%未満の場合は、残部は前記ビニル単量体(a4)となる。   In the monomer mixture (I), when the molar ratio of the vinyl monomer (a2) in the total of the vinyl monomers (a2) and (a4) is less than 100 mol%, In the monomer mixture (II), the total molar ratio of the vinyl monomers (a2) and (a3) in the total of the vinyl monomers (a2), (a3) and (a4) is less than 100 mol%. In this case, the balance is the vinyl monomer (a4).

上記の製造方法1及び2で行う共重合反応に用いる重合開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物;t−ブチルパーオキシピバレート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシカーボネート等の過酸化物などが挙げられる。これらの重合開始剤は、単独で用いることも2種以上併用することもできる。   Examples of the polymerization initiator used in the copolymerization reaction performed in the above production methods 1 and 2 include azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile; t-butyl peroxypivalate, t-butyl. Peroxybenzoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, di-t-butyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene Examples thereof include peroxides such as hydroperoxide, methyl ethyl ketone peroxide, and diisopropyl peroxycarbonate. These polymerization initiators can be used alone or in combination of two or more.

また、前記重合開始剤の使用量としては、重合開始剤の種類、重合温度、共重合体の分子量等に応じて適宜決定することができるが、共重合させる単量体の合計100質量部に対して0.01〜10質量部の範囲が好ましい。   The amount of the polymerization initiator used can be appropriately determined according to the type of polymerization initiator, the polymerization temperature, the molecular weight of the copolymer, etc., but the total amount of monomers to be copolymerized is 100 parts by mass. The range of 0.01 to 10 parts by mass is preferable.

また、上記の製造方法1及び2で行う共重合反応の際に、必要に応じて、ラウリルメルカプタン、2−メルカプトエタノ−ル、チオグリセロール、エチルチオグリコ−ル酸、オクチルチオグリコ−ル酸等の連鎖移動剤を使用しても構わない。   In the copolymerization reaction performed in the above production methods 1 and 2, as required, lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid, octylthioglycolic acid, etc. The chain transfer agent may be used.

さらに、共重合反応は有機溶剤中で行うことが好ましい。共重合反応を阻害しない有機溶剤であれば、各種のものが使用可能であるが、本発明の目的であるフッ素樹脂水性分散体を得るためには、水に混和可能な有機溶剤を主とすることが好ましい。水に混和可能な有機溶剤としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、t−ブタノール、3−メトキシ−1−ブタノール等のアルキルアルコール;メチルセロソルブ、エチルセロソルブ、n−プロピルセロソルブ、ブチルセロソルブ、メチルカルビトール、エチルカルビトール、プロピレングリコール−n−ブチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル;メチルセロソルブアセテート、エチルセロソルブアセテート等のグリコールエーテルエステル;ジオキサン、アセトン、メチルエチルケトン、ジメチルホルムアミド、ダイアセトンアルコール、テトラヒドロフランなどが挙げられる。   Further, the copolymerization reaction is preferably performed in an organic solvent. Various organic solvents can be used as long as they do not inhibit the copolymerization reaction, but in order to obtain the fluororesin aqueous dispersion that is the object of the present invention, an organic solvent miscible with water is mainly used. It is preferable. Examples of the water-miscible organic solvent include alkyl alcohols such as methanol, ethanol, n-propanol, isopropanol, t-butanol, and 3-methoxy-1-butanol; methyl cellosolve, ethyl cellosolve, n-propyl cellosolve, and butyl cellosolve. Glycol ethers such as methyl carbitol, ethyl carbitol, propylene glycol-n-butyl ether, diethylene glycol dimethyl ether and dipropylene glycol dimethyl ether; glycol ether esters such as methyl cellosolve acetate and ethyl cellosolve acetate; dioxane, acetone, methyl ethyl ketone, dimethylformamide, Examples include diacetone alcohol and tetrahydrofuran.

上記の有機溶剤の中でも、アセトン、メチルエチルケトン、イソプロパノール等の低沸点溶剤や、ブタノール、ブチルセロソルブ等の水と共沸可能な溶剤を、反応溶剤や分散助剤として用いた場合、これらの有機溶剤を常圧又は減圧下で容易に留去することができ、有機溶剤の含有量を低減したフッ素樹脂水性分散体を得ることができる。   Among the above organic solvents, when a low boiling point solvent such as acetone, methyl ethyl ketone, or isopropanol, or a solvent that can be azeotroped with water such as butanol or butyl cellosolve is used as a reaction solvent or a dispersion aid, these organic solvents are usually used. It can be easily distilled off under pressure or reduced pressure, and a fluororesin aqueous dispersion with a reduced content of organic solvent can be obtained.

また、上記の共重合反応における反応温度は、通常のラジカル重合の反応温度域で行うことができるが、0〜150℃の範囲が好ましく、40〜100℃の範囲がより好ましい。反応時間としては、1〜50時間の範囲が好ましく、3〜30時間の範囲がより好ましい。   Moreover, although the reaction temperature in said copolymerization reaction can be performed in the reaction temperature range of normal radical polymerization, the range of 0-150 degreeC is preferable and the range of 40-100 degreeC is more preferable. As reaction time, the range of 1-50 hours is preferable, and the range of 3-30 hours is more preferable.

上記の製造方法1及び2の第2工程で得られるフッ素共重合体(A)の酸価は、水分散性が良好となり、高い貯蔵安定性が得られ、水性フッ素塗料とした際の塗膜の耐水性も良好となることから、5〜35の範囲が好ましく、8〜33の範囲がより好ましく、10〜32の範囲がさらに好ましい。   The acid value of the fluorocopolymer (A) obtained in the second step of the production methods 1 and 2 has good water dispersibility, high storage stability, and a coating film when used as an aqueous fluorine paint. Since the water resistance is also good, the range of 5 to 35 is preferable, the range of 8 to 33 is more preferable, and the range of 10 to 32 is more preferable.

本発明のフッ素樹脂水性分散体を、後述する硬化剤(B)を配合した水性フッ素塗料に用いる際に、該塗料の塗膜の機械的強度が優れたものとなることから、上記の製造方法1及び2の第2工程で得られるフッ素共重合体(A)の水酸基価は、20〜200の範囲が好ましく、30〜150の範囲がより好ましく、30〜120の範囲がさらに好ましい。なお、フッ素共重合体(A)が有する水酸基は、後述する硬化剤(B)反応して架橋点となる。   When the fluororesin aqueous dispersion of the present invention is used in an aqueous fluorocoating compounded with the curing agent (B) described later, the coating film of the coating has excellent mechanical strength, and thus the above production method The range of 20 to 200 is preferable, the range of 30 to 150 is more preferable, and the range of 30 to 120 is more preferable. In addition, the hydroxyl group which a fluorine copolymer (A) has becomes a crosslinking point by reaction of the hardening | curing agent (B) mentioned later.

また、上記の製造方法1及び2の第2工程で得られるフッ素共重合体(A)の重量平均分子量(Mw)は、水分散性が良好となり、高い貯蔵安定性が得られ、水性フッ素塗料とした際の塗膜の機械的強度も良好となることから、5,000〜100,000の範囲が好ましく、10,000〜60,000の範囲がより好ましく、12,000〜40,000の範囲がさらに好ましい。ここで、重量平均分子量(Mw)はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。   Moreover, the weight average molecular weight (Mw) of the fluorine copolymer (A) obtained in the second step of the production methods 1 and 2 has good water dispersibility, high storage stability, and water-based fluorine paint. Since the mechanical strength of the coating film is good, the range is preferably 5,000 to 100,000, more preferably 10,000 to 60,000, and 12,000 to 40,000. A range is further preferred. Here, the weight average molecular weight (Mw) is a value converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement. The measurement conditions for GPC are as follows.

[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg / mL)
Standard sample: A calibration curve was prepared using the following standard polystyrene.

(標準ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

上記の製造方法1及び2の第3工程でカルボキシル基の中和に用いる塩基性化合物としては、例えば、アンモニア;トリメチルアミン、トリエチルアミン、ブチルアミン等のアルキルアミン;ジメチルアミノエタノール、ジエタノールアミン、アミノメチルプロパノール等のアミノアルコール;エチレンジアミン、ジエチレントリアミン等の多価アミン;モルホリンなどが挙げられる。これらの中でも、水及び有機溶剤との混和性が良く、揮発性で塗膜とする際に塗膜に残留しにくいことから、ジメチルアミノエタノールが好ましい。また、これらの塩基性化合物は、単独で用いることも2種以上併用することもできる。   Examples of the basic compound used for neutralizing the carboxyl group in the third step of the production methods 1 and 2 include ammonia; alkylamines such as trimethylamine, triethylamine, and butylamine; dimethylaminoethanol, diethanolamine, aminomethylpropanol, and the like. Examples include amino alcohols; polyvalent amines such as ethylenediamine and diethylenetriamine; morpholine. Among these, dimethylaminoethanol is preferable because it is miscible with water and an organic solvent and is volatile and hardly remains in the coating film. These basic compounds can be used alone or in combination of two or more.

前記フッ素共重合体(A)の塩基性化合物で中和した樹脂を分散させる水媒体としては、水を主成分とするもので、少なくとも50質量%が水であるものが好ましい。水とともに水媒体として用いることができるものとしては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、3−メトキシ−1−ブタノール等のアルキルアルコール;メチルセロソルブ、エチルセロソルブ、n−プロピルセロソルブ、ブチルセロソルブ、ヘキシルセロソルブ、メチルカルビール、エチルカルビトール、プロピレングリコール−n−ブチルエーテル等のグリコールエーテル;メチルセロソルブアセテート、エチルセロソルブアセテート等のグリコールエーテルエステル;またはジオキサン、ジメチルホルムアミド、ダイアセトンアルコール、テトラヒドロフランなどが挙げられる。また、これらの水媒体は、単独で用いることも2種以上併用することもできる。   The aqueous medium in which the resin neutralized with the basic compound of the fluorine copolymer (A) is dispersed is preferably one containing water as a main component and at least 50% by mass of water. Examples of the water medium that can be used together with water include alkyl alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, and 3-methoxy-1-butanol; methyl cellosolve , Ethyl cellosolve, n-propyl cellosolve, butyl cellosolve, hexyl cellosolve, glycol ethers such as methylcarbyl, ethyl carbitol, propylene glycol-n-butyl ether; glycol ether esters such as methyl cellosolve acetate, ethyl cellosolve acetate; or dioxane, dimethyl Examples include formamide, diacetone alcohol, and tetrahydrofuran. Moreover, these aqueous media can be used alone or in combination of two or more.

本発明の水性フッ素塗料は、上記のフッ素樹脂水性分散体、及び水酸基又はカルボキシ基と反応する官能基を有する硬化剤(B)を含有するものである。前記硬化剤(B)は、本発明のフッ素樹脂水性分散体とともに水性塗料として配合可能で、フッ素樹脂水分散体が有する水酸基又はカルボキシル基と反応する官能基を有する化合物であれば使用可能である。この硬化剤(B)のうち、水酸基と反応する官能基を有する化合物としては、例えば、ポリイソシアネート化合物、ブロックポリイソシアネート化合物、ポリエポキシ化合物、ポリシクロカーボネート化合物、アミノ樹脂、ポリカルボキシ化合物、ポリヒドロキシ化合物、ポリオキサゾリン化合物、ポリカルボジイミド化合物等が挙げられる。これらの中でも、現場施工など常温乾燥する場合は、水分散が可能なポリイソシアネート化合物が、使用方法の簡便さや得られる塗膜物性に優れることから好ましい。   The water-based fluorine paint of the present invention contains the above-mentioned fluororesin aqueous dispersion and a curing agent (B) having a functional group that reacts with a hydroxyl group or a carboxy group. The curing agent (B) can be used as a water-based paint together with the fluororesin aqueous dispersion of the present invention, and any compound having a functional group that reacts with a hydroxyl group or a carboxyl group of the fluororesin aqueous dispersion can be used. . Among the curing agents (B), examples of the compound having a functional group that reacts with a hydroxyl group include polyisocyanate compounds, block polyisocyanate compounds, polyepoxy compounds, polycyclocarbonate compounds, amino resins, polycarboxy compounds, and polyhydroxy compounds. A compound, a polyoxazoline compound, a polycarbodiimide compound, etc. are mentioned. Among these, when drying at room temperature such as on-site construction, a water-dispersible polyisocyanate compound is preferable because of its simplicity of use and excellent coating film properties.

また、前記硬化剤(B)は、本発明では水性フッ素塗料に配合するため、水分散性を有するものが好ましい。例えば、ポリイソシアネートの水分散性を有するものとしては、アニオン性基、カチオン性基、ノニオン性基等の親水性基を有するポリイソシアネートが挙げられ、中でも、耐水性に優れる塗膜が得られることから、親水性基としてノニオン性基を有するポリイソシアネートが好ましく、具体的には、ポリオキシエチレン基を有するポリイソシアネートが好ましい。このような水分散性ポリイソシアネートとして、例えば、DIC株式会社製の「バーノック DNW−5500」等が挙げられる。   Moreover, since the said hardening | curing agent (B) is mix | blended with a water-based fluorine paint in this invention, what has water dispersibility is preferable. For example, polyisocyanates having water dispersibility include polyisocyanates having hydrophilic groups such as anionic groups, cationic groups, and nonionic groups. Among them, a coating film having excellent water resistance can be obtained. Therefore, a polyisocyanate having a nonionic group as a hydrophilic group is preferred, and specifically, a polyisocyanate having a polyoxyethylene group is preferred. Examples of such water-dispersible polyisocyanates include “Bernock DNW-5500” manufactured by DIC Corporation.

前記硬化剤(B)は、単独で用いることも2種以上併用することもでき、水酸基と反応する官能基を有するものと、カルボキシル基と反応する官能基を有するものとを併用することも可能である。   The curing agent (B) can be used alone or in combination of two or more types, and those having a functional group that reacts with a hydroxyl group and those having a functional group that reacts with a carboxyl group can be used in combination. It is.

前記硬化剤(B)として、ポリイソシアネート化合物を用いる場合、良好な機械的強度の塗膜が得られることから、その使用量としては、ポリイソシアネート化合物が有するイソシアネート基(NCO)と、フッ素樹脂水性分散体中のフッ素共重合体(A)が有する水酸基(OH)との当量比(NCO/OH)が0.5〜2.0となる範囲が好ましく、0.7〜1.5となる範囲がより好ましく、1.0〜1.3となる範囲がより好ましい。   When a polyisocyanate compound is used as the curing agent (B), a coating film having good mechanical strength can be obtained. As the amount used, the isocyanate group (NCO) of the polyisocyanate compound and the fluororesin aqueous A range in which the equivalent ratio (NCO / OH) to the hydroxyl group (OH) of the fluorocopolymer (A) in the dispersion is 0.5 to 2.0 is preferable, and a range in which 0.7 to 1.5 is achieved. Is more preferable, and a range of 1.0 to 1.3 is more preferable.

本発明の水性フッ素塗料には、必要に応じて、無機顔料、有機顔料、体質顔料、染料、ワックス、界面活性剤、安定剤、流動調整剤、消泡剤、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、光安定剤、酸化防止剤、可塑剤等の各種添加剤を配合することができる。   The aqueous fluorine paint of the present invention includes inorganic pigments, organic pigments, extender pigments, dyes, waxes, surfactants, stabilizers, flow regulators, antifoaming agents, leveling agents, rheology control agents, ultraviolet rays as necessary. Various additives such as an absorbent, a light stabilizer, an antioxidant, and a plasticizer can be blended.

また、本発明の水性フッ素塗料は、塗装する際に使用される被塗装物としては、例えば、鉄、ニッケル、アルミニウム、銅、鉛等の金属;これらの金属を含む合金;前記金属又は合金のメッキや化成処理が施された各種の表面処理金属;ポリスチレン、ポリメチルメタクリレート、ABS樹脂、ポリフェニレンオキサイド、ポリウレタン、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の熱可塑性樹脂;不飽和ポリエステル樹脂、フェノール樹脂、架橋ポリウレタン等の熱硬化性樹脂;前記金属、樹脂等の成形品;コンクリート、スレート、タイル、瓦、ガラス、木製建築資材等の建設部材などが挙げられる。   In addition, the water-based fluorine paint of the present invention includes, for example, metals such as iron, nickel, aluminum, copper, and lead; alloys containing these metals; Various surface-treated metals that have been plated or chemically treated; thermoplastic resins such as polystyrene, polymethyl methacrylate, ABS resin, polyphenylene oxide, polyurethane, polyethylene, polyvinyl chloride, polypropylene, polybutylene terephthalate, and polyethylene terephthalate; unsaturated Examples thereof include thermosetting resins such as polyester resins, phenol resins, and crosslinked polyurethanes; molded articles such as the above metals and resins; and construction members such as concrete, slate, tile, tile, glass, and wooden building materials.

さらに、本発明の水性フッ素塗料の塗膜は、特に化学的安定性に優れており、塗膜寿命が長いことから、屋根基材や化学工場建屋等の過酷な環境での使用される物品、高層ビル外壁や大型橋梁等の塗り替え困難な建築物用物品を保護する材料として好適に用いることができる。   Furthermore, the coating film of the aqueous fluorine paint of the present invention is particularly excellent in chemical stability and has a long coating film life, so that it can be used in harsh environments such as roof substrates and chemical factory buildings, It can be suitably used as a material for protecting building articles such as high-rise building outer walls and large bridges that are difficult to repaint.

また、本発明の水性フッ素塗料は、重防食塗装など長期保護機能が要求される用途において、厚膜で塗装することも可能であり、乾燥後の塗膜厚さが40μm以上の塗膜を形成することもできる。   In addition, the water-based fluorine paint of the present invention can be coated with a thick film in applications requiring a long-term protection function such as heavy anticorrosion coating, and a coating film thickness of 40 μm or more after drying is formed. You can also

次に、本発明を実施例及び比較例により具体的に説明する。なお、重合体の酸価は、JIS試験方法K 0070−1992に準拠して測定したものである。また、数平均分子量(Mn)及び重量平均分子量(Mw)は、下記のGPC測定条件で測定したものである。   Next, the present invention will be specifically described with reference to examples and comparative examples. In addition, the acid value of a polymer is measured based on JIS test method K0070-1992. The number average molecular weight (Mn) and the weight average molecular weight (Mw) are measured under the following GPC measurement conditions.

[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg / mL)
Standard sample: A calibration curve was prepared using the following standard polystyrene.

(標準ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

(実施例1)
[第1工程]
内部を窒素で置換したステンレス製のオートクレーブに、ジエチレングリコールジメチルエーテル(以下、「MDM」と略記する。)75質量部、メタノール144.2質量部、エチルビニルエーテル(以下、「EVE」と略記する。)25.9質量部、4−ヒドロキシブチルビニルエーテル(以下、「HBVE」と略記する。)26.7質量部、シクロヘキシルビニルエーテル(以下、「CHVE」と略記する。)21質量部、光安定剤(BASFジャパン株式会社製「チヌビン292」、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)セバケート及びメチル(1,2,2,6,6−ペンタメチル−4−ピペリジニル)セバケートの混合物;以下、「HALS」と略記する。)16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したクロロトリフルオロエチレン(以下、「CTFE」と略記する。)88.1質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE264.1質量部を2.5時間かけて圧入した。CTFEの圧入開始と同時に、EVE77.5質量部、HBVE79.9質量部、CHVE63質量部、MDM116.1質量部、及びt−ブチルパーオキシピバレート11.6質量部からなる混合物を2.5時間かけて圧入した。
Example 1
[First step]
In a stainless steel autoclave substituted with nitrogen inside, 75 parts by mass of diethylene glycol dimethyl ether (hereinafter abbreviated as “MDM”), 144.2 parts by mass of methanol, and ethyl vinyl ether (hereinafter abbreviated as “EVE”) 25 9.9 parts by mass, 4-hydroxybutyl vinyl ether (hereinafter abbreviated as “HBVE”) 26.7 parts by mass, cyclohexyl vinyl ether (hereinafter abbreviated as “CHVE”) 21 parts by mass, light stabilizer (BASF Japan) “Tinuvin 292” manufactured by Co., Ltd., a mixture of bis (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate and methyl (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate; Hereinafter, abbreviated as “HALS”.) 16.2 parts by mass and t- They were charged 3.9 parts by chill peroxypivalate. Next, 88.1 parts by mass of liquefied chlorotrifluoroethylene (hereinafter abbreviated as “CTFE”) was injected into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, while maintaining the temperature at 63 ° C., 264.1 parts by mass of liquefied CTFE was injected over 2.5 hours. Simultaneously with the start of CTFE injection, a mixture consisting of 77.5 parts by weight of EVE, 79.9 parts by weight of HBVE, 63 parts by weight of CHVE, 116.1 parts by weight of MDM, and 11.6 parts by weight of t-butyl peroxypivalate was added for 2.5 hours. Press-fit.

[第2工程]
第1工程での単量体の圧入終了後、続けてオートクレーブ内に、液化したCTFE213.2質量部を1.5時間かけて圧入した。また、EVE54.9質量部、HBVE53.9質量部、CHVE1.1質量部、10−ウンデセン酸(以下、「UDA」と略記する。)107.7質量部、MDM103.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート10.3質量部からなる混合物を2.5時間かけて圧入した。この圧入終了後、圧入ライン洗浄のためにMDM42.2質量部を圧入した。オートクレーブを63℃に保温し、第一工程でのCTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1531.4質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)73.4質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧留去し、フッ素共重合体(A−1)の75質量%溶液を得た。このフッ素共重合体(A−1)の酸価は31.7mgKOH/gであり、数平均分子量(Mn)は4,700であり、重量平均分子量(Mw)は18,100であった。
[Second step]
After completion of the monomer injection in the first step, 213.2 parts by mass of liquefied CTFE was continuously injected into the autoclave over 1.5 hours. Also, EVE 54.9 parts by mass, HBVE 53.9 parts by mass, CHVE 1.1 parts by mass, 10-undecenoic acid (hereinafter abbreviated as “UDA”) 107.7 parts by mass, MDM 103.2 parts by mass, and polymerization initiation A mixture consisting of 10.3 parts by mass of t-butyl peroxypivalate as an agent was injected over 2.5 hours. After the press-fitting, 42.2 parts by mass of MDM was press-fitted for washing the press-fitting line. The autoclave was kept at 63 ° C. and reacted for 12 hours from the start of CTFE injection in the first step. Then, the internal pressure of the autoclave was returned to normal pressure, and 1531.4 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 73.4 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. did. Subsequently, filtration was performed, and the filtrate was distilled off under reduced pressure to obtain a 75 mass% solution of the fluorine copolymer (A-1). The acid value of this fluorocopolymer (A-1) was 31.7 mgKOH / g, the number average molecular weight (Mn) was 4,700, and the weight average molecular weight (Mw) was 18,100.

[第3工程]
第2工程で得られたフッ素共重合体溶液500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン15.1質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水422.4質量部を徐々に加えて、不揮発分39.3質量%のフッ素樹脂水性分散体(1)を得た。
[Third step]
500 parts by mass of the fluorocopolymer solution obtained in the second step is put into a 2 liter four-necked flask, heated to 40 ° C., 15.1 parts by mass of dimethylethanolamine is added, and the mixture is stirred for 1 hour to be uniform. After that, the temperature was raised to 60 ° C., and 422.4 parts by mass of ion-exchanged water was gradually added while stirring to obtain an aqueous fluororesin dispersion (1) having a nonvolatile content of 39.3% by mass.

上記で得られたフッ素樹脂水性分散体(1)について、下記の貯蔵安定性、塗膜のゲル分率、水性フッ素樹脂塗料に用いた際の塗膜特性(光沢及び鉛筆硬度)を評価した。   Regarding the fluororesin aqueous dispersion (1) obtained above, the following storage stability, gel fraction of the coating film, and coating film properties (gloss and pencil hardness) when used in the aqueous fluororesin coating were evaluated.

<貯蔵安定性の評価>
フッ素樹脂水性分散体(1)を40℃の恒温槽に保管し、1週間後、2週間後及び4週間後に外観を目視で観察し、下記の基準で貯蔵安定性を評価した。
◎:沈殿物の発生、ゲル化、白濁がなかった。
○:沈殿物の発生、ゲル化はないが、やや白濁した。
△:ゲル化には至らないが、増粘した。
×:沈殿物の発生又はゲル化があった。
<Evaluation of storage stability>
The fluororesin aqueous dispersion (1) was stored in a constant temperature bath at 40 ° C., the appearance was visually observed after 1 week, 2 weeks and 4 weeks, and the storage stability was evaluated according to the following criteria.
(Double-circle): There was no generation | occurrence | production of precipitation, gelatinization, and cloudiness.
○: Precipitation did not occur and gelation occurred, but it became slightly cloudy.
(Triangle | delta): It did not reach gelation, but increased viscosity.
X: Generation | occurrence | production of precipitation or gelation occurred.

<フッ素樹脂水性分散体塗膜のゲル分率>
ポリプロピレン板上に上記で得られた水性フッ素樹脂水分散体(1)を塗布して、108℃で2時間乾燥させた。乾燥した塗膜をポリプロピレン板から剥離して秤量した後、アセトンに24時間浸漬した。アセトンに溶解せずに残った塗膜を108℃で2時間乾燥させた後、その質量をアセトンに浸漬する前の質量で除した値の百分率をゲル分率とした。
<Gel fraction of fluororesin aqueous dispersion coating film>
The aqueous fluororesin aqueous dispersion (1) obtained above was applied onto a polypropylene plate and dried at 108 ° C. for 2 hours. The dried coating film was peeled off from the polypropylene plate and weighed, and then immersed in acetone for 24 hours. After the coating film remaining without being dissolved in acetone was dried at 108 ° C. for 2 hours, the percentage obtained by dividing the mass by the mass before being immersed in acetone was defined as the gel fraction.

<水性フッ素樹脂塗料の調製及び塗膜の作製>
フッ素樹脂水性分散体(1)76.3質量部(フッ素樹脂として30質量部)、酸化チタン(石原産業株式会社製「タイペークCR−97」)70質量部、及びイオン交換水20.4質量部を混合し、顔料混合物を得た。この顔料混合物のPWC(固形分質量に対する顔料質量の百分率)は70質量%であり、不揮発分は60質量%であった。この顔料混合物を、バッチ式ミルを用いて分散し、顔料分散体を得た。この顔料分散体100質量部に対して、フッ素樹脂水性分散体(1)114.5質量部、界面活性剤(ビックケミー・ジャパン株式会社製「BYK−348」)0.6質量部、消泡剤(サンノプコ株式会社製「SNデフォーマー777」)0.2質量部、及びイオン交換水4質量部を加えた後、均一に混合して、PWC40質量%、不揮発分48質量%である塗料主剤を得た。次いで、前記塗料主剤100質量部に、硬化剤(DIC株式会社製「バーノックDNW−5500」、水分散性ポリイソシアネート、不揮発分80質量%)14.3質量部を加えた後、均一に混合して、水性フッ素樹脂塗料(1)を得た。
<Preparation of water-based fluororesin paint and production of coating film>
Aqueous fluororesin dispersion (1) 76.3 parts by mass (30 parts by mass as a fluororesin), 70 parts by mass of titanium oxide (“Taipeku CR-97” manufactured by Ishihara Sangyo Co., Ltd.), and 20.4 parts by mass of ion-exchanged water Were mixed to obtain a pigment mixture. The pigment mixture had a PWC (percentage of the pigment mass with respect to the solid mass) of 70% by mass and a non-volatile content of 60% by mass. This pigment mixture was dispersed using a batch mill to obtain a pigment dispersion. With respect to 100 parts by mass of this pigment dispersion, 114.5 parts by mass of the fluororesin aqueous dispersion (1), 0.6 parts by mass of a surfactant (“BYK-348” manufactured by Big Chemie Japan Co., Ltd.), an antifoaming agent (San Nopco Co., Ltd. “SN deformer 777”) 0.2 parts by mass and 4 parts by mass of ion-exchanged water were added and mixed uniformly to obtain a paint main agent having a PWC of 40% by mass and a nonvolatile content of 48% by mass. It was. Next, after adding 14.3 parts by mass of a curing agent (“Bernock DNW-5500” manufactured by DIC Corporation, water-dispersible polyisocyanate, non-volatile content 80% by mass) to 100 parts by mass of the paint base, the mixture is uniformly mixed. Thus, an aqueous fluororesin coating material (1) was obtained.

上記で得られた水性フッ素樹脂塗料(1)を、リン酸亜鉛処理鋼板(日本テストパネル株式会社製のJIS G3141(SPCC−SD)PB−44)に、8ミル(203μm)のアプリケーターを用いて塗装した後、23℃の恒温室で7日間乾燥させて、厚さ50μmの塗膜を作製した。   The aqueous fluororesin paint (1) obtained above is applied to a zinc phosphate-treated steel sheet (JIS G3141 (SPCC-SD) PB-44 manufactured by Nippon Test Panel Co., Ltd.) using an 8 mil (203 μm) applicator. After painting, the film was dried in a thermostatic chamber at 23 ° C. for 7 days to prepare a coating film having a thickness of 50 μm.

<塗膜の光沢度の測定>
上記で得られた塗膜について、光沢度計(村上カラーリサーチラボラトリー社製「グロスメーターGM−26D」)を用いて、60°光沢度、及び20°光沢度をそれぞれ5点測定して、その平均値を測定値とした。
<Measurement of glossiness of coating film>
About the coating film obtained above, using a gloss meter (“Gloss meter GM-26D” manufactured by Murakami Color Research Laboratory), 60 ° glossiness and 20 ° glossiness were each measured at 5 points. The average value was taken as the measured value.

<塗膜の鉛筆硬度の測定>
上記で得られた塗膜について、JIS試験方法 K5600−5−4:1999に準拠して、鉛筆に三菱鉛筆株式会社製「ユニ」を用いて、鉛筆硬度を測定した。
<Measurement of pencil hardness of coating film>
About the coating film obtained above, based on JIS test method K5600-5-4: 1999, pencil hardness was measured using "Uni" by Mitsubishi Pencil Co., Ltd. for the pencil.

(実施例2)
[第1工程]
内部を窒素で置換したステンレス製のオートクレーブに、MDM75質量部、メタノール144.2質量部、EVE20.6質量部、HBVE20.2質量部、CHVE0.4質量部、UDA40.4質量部、HALS16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したCTFE80質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE133.2質量部を1.5時間かけて圧入した。CTFEの圧入開始と同時に、EVE34.3質量部、HBVE33.7質量部、CHVE0.7質量部、UDA67.3質量部、MDM64.5質量部、及びt−ブチルパーオキシピバレート6.4質量部からなる混合物を1.5時間かけて圧入した。
(Example 2)
[First step]
In an autoclave made of stainless steel whose inside is replaced with nitrogen, MDM 75 parts by mass, methanol 144.2 parts by mass, EVE 20.6 parts by mass, HBVE 20.2 parts by mass, CHVE 0.4 parts by mass, UDA 40.4 parts by mass, HALS 16.2 As a polymerization initiator, 3.9 parts by mass of t-butyl peroxypivalate was charged. Next, 80 parts by mass of liquefied CTFE was pressed into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, while maintaining the temperature at 63 ° C., 133.2 parts by mass of liquefied CTFE was injected over 1.5 hours. Simultaneously with the start of CTFE injection, EVE 34.3 parts by mass, HBVE 33.7 parts by mass, CHVE 0.7 parts by mass, UDA 67.3 parts by mass, MDM 64.5 parts by mass, and t-butyl peroxypivalate 6.4 parts by mass The mixture consisting of was pressed over 1.5 hours.

[第2工程]
第1工程での単量体の圧入終了後、続けてオートクレーブ内に、液化したCTFE352.2質量部を2.5時間かけて圧入した。また、EVE103.4質量部、HBVE106.6質量部、CHVE84質量部、MDM154.8質量部、t−ブチルパーオキシピバレート15.5質量部からなる混合物を3.5時間かけて圧入した。この圧入終了後、圧入ライン洗浄のためにMDM42.2質量部を圧入した。オートクレーブを63℃に保温し、第一工程でのCTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1470.5質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)74.1質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧留去し、フッ素共重合体(A−2)の76.1質量%溶液を得た。このフッ素共重合体(A−2)の酸価は30.1mgKOH/gであり、数平均分子量(Mn)は5,800であり、重量平均分子量(Mw)は18,000であった。
[Second step]
After the completion of the monomer injection in the first step, 352.2 parts by mass of liquefied CTFE was continuously injected into the autoclave over 2.5 hours. Moreover, the mixture which consists of 103.4 mass parts of EVE, 106.6 mass parts of HBVE, 84 mass parts of CHVE, 154.8 mass parts of MDM, and 15.5 mass parts of t-butyl peroxypivalate was press-fitted over 3.5 hours. After the press-fitting, 42.2 parts by mass of MDM was press-fitted for washing the press-fitting line. The autoclave was kept at 63 ° C. and reacted for 12 hours after the start of CTFE injection in the first step. Then, the internal pressure of the autoclave was returned to normal pressure, and 1470.5 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 74.1 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. did. Subsequently, filtration was performed, and the filtrate was distilled off under reduced pressure to obtain a 76.1% by mass solution of the fluorine copolymer (A-2). The acid value of this fluorocopolymer (A-2) was 30.1 mgKOH / g, the number average molecular weight (Mn) was 5,800, and the weight average molecular weight (Mw) was 18,000.

[第3工程]
第2工程で得られたフッ素共重合体溶液500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン14.6質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水436.7質量部を徐々に加えて、不揮発分39.0質量%のフッ素樹脂水性分散体(2)を得た。
[Third step]
500 parts by mass of the fluorocopolymer solution obtained in the second step is placed in a 2 liter four-necked flask, heated to 40 ° C., 14.6 parts by mass of dimethylethanolamine is added, and the mixture is stirred for 1 hour to be uniform. Then, the temperature was raised to 60 ° C., and 436.7 parts by mass of ion-exchanged water was gradually added while stirring to obtain an aqueous fluororesin dispersion (2) having a nonvolatile content of 39.0% by mass.

上記で得られたフッ素樹脂水性分散体(2)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(2)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(2)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (2) obtained above, it operated similarly to Example 1 and evaluated and measured the storage stability and the gel fraction of the coating film. Further, using the fluororesin aqueous dispersion (2) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (2) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

(実施例3)
[第1工程]
内部を窒素で置換したステンレス製のオートクレーブに、MDM75質量部、メタノール144.2質量部、EVE8.1質量部、HBVE20.2質量部、CHVE24.2質量部、UDA32.3質量部、HALS16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したCTFE76.7質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE127.9質量部を1.5時間かけて圧入した。CTFEの圧入開始と同時に、EVE13.4質量部、HBVE33.7質量部、CHVE40.4質量部、UDA53.9質量部、MDM64.5質量部、及びt−ブチルパーオキシピバレート6.4質量部からなる混合物を1.5時間かけて圧入した。
(Example 3)
[First step]
In an autoclave made of stainless steel whose inside is replaced with nitrogen, MDM 75 parts by mass, methanol 144.2 parts by mass, EVE 8.1 parts by mass, HBVE 20.2 parts by mass, CHVE 24.2 parts by mass, UDA 32.3 parts by mass, HALS 16.2 As a polymerization initiator, 3.9 parts by mass of t-butyl peroxypivalate was charged. Next, 76.7 parts by mass of liquefied CTFE was injected into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, while maintaining the temperature at 63 ° C., 127.9 parts by mass of liquefied CTFE was injected over 1.5 hours. Simultaneously with the start of CTFE injection, EVE 13.4 parts by mass, HBVE 33.7 parts by mass, CHVE 40.4 parts by mass, UDA 53.9 parts by mass, MDM 64.5 parts by mass, and t-butyl peroxypivalate 6.4 parts by mass The mixture consisting of was pressed over 1.5 hours.

[第2工程]
第1工程での単量体の圧入終了後、続けてオートクレーブ内に、液化したCTFE333.9質量部を2.5時間かけて圧入した。また、EVE52.8質量部、HBVE106.6質量部、CHVE152.9質量部、MDM154.8質量部、t−ブチルパーオキシピバレート15.5質量部からなる混合物を3.5時間かけて圧入した。この圧入終了後、圧入ライン洗浄のためにMDM42.2質量部を圧入した。オートクレーブを63℃に保温し、第一工程でのCTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1518.8質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)76.8質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧留去し、フッ素共重合体(A−3)の75.9質量%溶液を得た。このフッ素共重合体(A−3)の酸価は25.4mgKOH/gであり、数平均分子量(Mn)は5,300であり、重量平均分子量(Mw)は19,700であった。
[Second step]
After completion of the monomer injection in the first step, 333.9 parts by mass of liquefied CTFE was continuously injected into the autoclave over 2.5 hours. Further, a mixture consisting of 52.8 parts by mass of EVE, 106.6 parts by mass of HBVE, 152.9 parts by mass of CHVE, 154.8 parts by mass of MDM, and 15.5 parts by mass of t-butyl peroxypivalate was injected over 3.5 hours. . After the press-fitting, 42.2 parts by mass of MDM was press-fitted for washing the press-fitting line. The autoclave was kept at 63 ° C. and reacted for 12 hours from the start of CTFE injection in the first step. Then, the internal pressure of the autoclave was returned to normal pressure, and 1518.8 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 76.8 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. did. Subsequently, filtration was performed, and the filtrate was distilled off under reduced pressure to obtain a 75.9 mass% solution of the fluorine copolymer (A-3). The acid value of this fluorocopolymer (A-3) was 25.4 mgKOH / g, the number average molecular weight (Mn) was 5,300, and the weight average molecular weight (Mw) was 19,700.

[第3工程]
第2工程で得られたフッ素共重合体溶液500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン12.2質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水436.6質量部を徐々に加えて、不揮発分39.3質量%のフッ素樹脂水性分散体(4)を得た。
[Third step]
500 parts by mass of the fluorocopolymer solution obtained in the second step is put into a 2 liter four-necked flask, heated to 40 ° C., 12.2 parts by mass of dimethylethanolamine is added, and the mixture is stirred for 1 hour to be uniform. Then, the temperature was raised to 60 ° C., and 436.6 parts by mass of ion-exchanged water was gradually added with stirring to obtain a fluororesin aqueous dispersion (4) having a nonvolatile content of 39.3% by mass.

上記で得られたフッ素樹脂水性分散体(3)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(3)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(3)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (3) obtained above, it operated similarly to Example 1 and evaluated and measured the storage stability and the gel fraction of the coating film. Also, using the fluororesin aqueous dispersion (3) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (3) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

(実施例4)
[第1工程]
内部を窒素で置換したステンレス製のオートクレーブに、MDM75質量部、メタノール144.2質量部、EVE28.3質量部、HBVE20.2質量部、CHVE2質量部、UDA26.3質量部、HALS16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したCTFE84.8質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE141.4質量部を1.5時間かけて圧入した。CTFEの圧入開始と同時に、EVE47.1質量部、HBVE33.7質量部、CHVE3.4質量部、UDA43.7質量部、MDM64.5質量部、及びt−ブチルパーオキシピバレート6.4質量部からなる混合物を1.5時間かけて圧入した。
Example 4
[First step]
In an autoclave made of stainless steel whose inside is replaced with nitrogen, MDM 75 parts by mass, methanol 144.2 parts by mass, EVE 28.3 parts by mass, HBVE 20.2 parts by mass, CHVE 2 parts by mass, UDA 26.3 parts by mass, HALS 16.2 parts by mass , And 3.9 parts by mass of t-butyl peroxypivalate as a polymerization initiator was charged. Next, 84.8 parts by mass of liquefied CTFE was injected into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, 141.4 parts by mass of liquefied CTFE was injected over 1.5 hours while maintaining the temperature at 63 ° C. Simultaneously with the start of CTFE injection, EVE 47.1 parts by mass, HBVE 33.7 parts by mass, CHVE 3.4 parts by mass, UDA 43.7 parts by mass, MDM 64.5 parts by mass, and t-butyl peroxypivalate 6.4 parts by mass The mixture consisting of was pressed over 1.5 hours.

[第2工程]
第1工程での単量体の圧入終了後、続けてオートクレーブ内に、液化したCTFE371.6質量部を2.5時間かけて圧入した。また、EVE157.2質量部、HBVE106.6質量部、CHVE10.8質量部、MDM154.8質量部、t−ブチルパーオキシピバレート15.5質量部からなる混合物を3.5時間かけて圧入した。この圧入終了後、圧入ライン洗浄のためにMDM42.2質量部を圧入した。オートクレーブを63℃に保温し、第一工程でのCTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1451.8質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)73.0質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧留去し、フッ素共重合体(A−4)の77.0質量%溶液を得た。このフッ素共重合体(A−4)の19.9mgKOH/gであり、数平均分子量(Mn)は6,800であり、重量平均分子量(Mw)は18,900であった。
[Second step]
After completion of the monomer injection in the first step, 371.6 parts by mass of liquefied CTFE was continuously injected into the autoclave over 2.5 hours. Further, a mixture comprising 157.2 parts by mass of EVE, 106.6 parts by mass of HBVE, 10.8 parts by mass of CHVE, 154.8 parts by mass of MDM, and 15.5 parts by mass of t-butyl peroxypivalate was press-fitted over 3.5 hours. . After the press-fitting, 42.2 parts by mass of MDM was press-fitted for washing the press-fitting line. The autoclave was kept at 63 ° C. and reacted for 12 hours from the start of CTFE injection in the first step. Then, the internal pressure of the autoclave was returned to normal pressure, and 1451.8 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 73.0 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. did. Subsequently, filtration was performed, and the filtrate was distilled off under reduced pressure to obtain a 77.0% by mass solution of the fluorine copolymer (A-4). It was 19.9 mgKOH / g of this fluorine copolymer (A-4), the number average molecular weight (Mn) was 6,800, and the weight average molecular weight (Mw) was 18,900.

[第3工程]
第2工程で得られたフッ素共重合体溶液500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン9.7質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水452.4質量部を徐々に加えて、不揮発分40.2質量%のフッ素樹脂水性分散体(5)を得た。
[Third step]
Put 500 parts by mass of the fluorocopolymer solution obtained in the second step into a 2 liter four-necked flask, heat to 40 ° C., add 9.7 parts by mass of dimethylethanolamine, and stir for 1 hour to homogenize. After that, the temperature was raised to 60 ° C., and 452.4 parts by mass of ion-exchanged water was gradually added while stirring to obtain an aqueous fluororesin dispersion (5) having a nonvolatile content of 40.2% by mass.

上記で得られたフッ素樹脂水性分散体(4)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(4)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(4)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (4) obtained above, it operated similarly to Example 1 and evaluated and measured the storage stability and the gel fraction of the coating film. Further, using the fluororesin aqueous dispersion (4) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (4) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

(実施例5)
[第1工程]
内部を窒素で置換したステンレス製のオートクレーブに、MDM75質量部、メタノール144.2質量部、EVE32.3質量部、HBVE20.2質量部、CHVE2質量部、UDA20.2質量部、HALS16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したCTFE86.8質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE144.7質量部を1.5時間かけて圧入した。CTFEの圧入開始と同時に、EVE53.9質量部、HBVE33.7質量部、CHVE3.4質量部、UDA33.7質量部、MDM64.5質量部、及びt−ブチルパーオキシピバレート6.4質量部からなる混合物を1.5時間かけて圧入した。
(Example 5)
[First step]
In an autoclave made of stainless steel whose inside is replaced with nitrogen, MDM 75 parts by mass, methanol 144.2 parts by mass, EVE 32.3 parts by mass, HBVE 20.2 parts by mass, CHVE 2 parts by mass, UDA 20.2 parts by mass, HALS 16.2 parts by mass , And 3.9 parts by mass of t-butyl peroxypivalate as a polymerization initiator was charged. Next, 86.8 parts by mass of liquefied CTFE was injected into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, while maintaining the temperature at 63 ° C., 144.7 parts by mass of liquefied CTFE was injected over 1.5 hours. Simultaneously with the start of CTFE injection, EVE 53.9 parts by mass, HBVE 33.7 parts by mass, CHVE 3.4 parts by mass, UDA 33.7 parts by mass, MDM 64.5 parts by mass, and t-butyl peroxypivalate 6.4 parts by mass The mixture consisting of was pressed over 1.5 hours.

[第2工程]
第1工程での単量体の圧入終了後、続けてオートクレーブ内に、液化したCTFE371.5質量部を2.5時間かけて圧入した。また、EVE157.2質量部、HBVE106.6質量部、CHVE10.8質量部、MDM154.8質量部、t−ブチルパーオキシピバレート15.5質量部からなる混合物を3.5時間かけて圧入した。この圧入終了後、圧入ライン洗浄のためにMDM42.2質量部を圧入した。オートクレーブを63℃に保温し、第一工程でのCTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1463.5質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)74.0質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧留去し、フッ素共重合体(A−5)の77.8質量%溶液を得た。このフッ素共重合体(A−5)の酸価は15.4mgKOH/gであり、数平均分子量(Mn)は6,500であり、重量平均分子量(Mw)は22,200であった。
[Second step]
After the completion of the press-fitting of the monomer in the first step, 371.5 parts by mass of liquefied CTFE was press-fitted into the autoclave over 2.5 hours. Further, a mixture comprising 157.2 parts by mass of EVE, 106.6 parts by mass of HBVE, 10.8 parts by mass of CHVE, 154.8 parts by mass of MDM, and 15.5 parts by mass of t-butyl peroxypivalate was press-fitted over 3.5 hours. . After the press-fitting, 42.2 parts by mass of MDM was press-fitted for washing the press-fitting line. The autoclave was kept at 63 ° C. and reacted for 12 hours from the start of CTFE injection in the first step. Then, the internal pressure of the autoclave was returned to normal pressure, and 1463.5 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 74.0 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. did. Subsequently, filtration was performed, and the filtrate was distilled off under reduced pressure to obtain a 77.8% by mass solution of the fluorocopolymer (A-5). The acid value of this fluorocopolymer (A-5) was 15.4 mgKOH / g, the number average molecular weight (Mn) was 6,500, and the weight average molecular weight (Mw) was 22,200.

[第3工程]
第2工程で得られたフッ素共重合体溶液500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン7.6質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水464.9質量部を徐々に加えて、不揮発分39.5質量%のフッ素樹脂水性分散体(5)を得た。
[Third step]
500 parts by mass of the fluorocopolymer solution obtained in the second step is put into a 2 liter four-necked flask, heated to 40 ° C., 7.6 parts by mass of dimethylethanolamine is added, and the mixture is stirred for 1 hour to be uniform. Then, the temperature was raised to 60 ° C., and 464.9 parts by mass of ion-exchanged water was gradually added while stirring to obtain a fluororesin aqueous dispersion (5) having a nonvolatile content of 39.5% by mass.

上記で得られたフッ素樹脂水性分散体(5)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(5)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(5)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (5) obtained above, it operated similarly to Example 1 and evaluated and measured the storage stability and the gel fraction of the coating film. Further, using the fluororesin aqueous dispersion (5) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (5) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

(実施例6)
[第1工程]
内部を窒素で置換したステンレス製のオートクレーブに、MB75質量部、メタノール144.2質量部、EVE36.3質量部、HBVE20.2質量部、CHVE2質量部、UDA13.3質量部、HALS16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したCTFE89.7質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE149.4質量部を1.5時間かけて圧入した。CTFEの圧入開始と同時に、EVE60.6質量部、HBVE33.7質量部、CHVE3.4質量部、UDA22.2質量部、MB64.5質量部、及びt−ブチルパーオキシピバレート6.4質量部からなる混合物を1.5時間かけて圧入した。
(Example 6)
[First step]
In an autoclave made of stainless steel whose inside is replaced with nitrogen, MB 75 parts by mass, methanol 144.2 parts by mass, EVE 36.3 parts by mass, HBVE 20.2 parts by mass, CHVE 2 parts by mass, UDA 13.3 parts by mass, HALS 16.2 parts by mass , And 3.9 parts by mass of t-butyl peroxypivalate as a polymerization initiator was charged. Next, 89.7 parts by mass of liquefied CTFE was injected into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, while maintaining the temperature at 63 ° C., 149.4 parts by mass of liquefied CTFE was injected over 1.5 hours. Simultaneously with the start of CTFE injection, EVE 60.6 parts by mass, HBVE 33.7 parts by mass, CHVE 3.4 parts by mass, UDA 22.2 parts by mass, MB 64.5 parts by mass, and t-butyl peroxypivalate 6.4 parts by mass The mixture consisting of was pressed over 1.5 hours.

[第2工程]
第1工程での単量体の圧入終了後、続けてオートクレーブ内に、液化したCTFE372.6質量部を2.5時間かけて圧入した。また、EVE156.2質量部、HBVE106.6質量部、CHVE10.8質量部、MB154.8質量部、t−ブチルパーオキシピバレート15.5質量部からなる混合物を3.5時間かけて圧入した。この圧入終了後、圧入ライン洗浄のためにMB42.2質量部を圧入した。オートクレーブを63℃に保温し、第一工程でのCTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1484.9質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)75質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧留去し、フッ素共重合体(A−6)の75.9質量%溶液を得た。このフッ素共重合体(A−6)の酸価は10.3mgKOH/gであり、数平均分子量(Mn)は6,900であり、重量平均分子量(Mw)は19,700であった。
[Second step]
After completion of the monomer injection in the first step, 372.6 parts by mass of liquefied CTFE was continuously injected into the autoclave over 2.5 hours. Further, a mixture comprising 156.2 parts by mass of EVE, 106.6 parts by mass of HBVE, 10.8 parts by mass of CHVE, 154.8 parts by mass of MB, and 15.5 parts by mass of t-butyl peroxypivalate was press-fitted over 3.5 hours. . After completion of this press-fitting, 42.2 parts by mass of MB was press-fitted for washing the press-fitting line. The autoclave was kept at 63 ° C. and reacted for 12 hours after the start of CTFE injection in the first step. Then, the internal pressure of the autoclave was returned to normal pressure, and 1484.9 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 75 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. Subsequently, filtration was performed, and the filtrate was distilled off under reduced pressure to obtain a 75.9 mass% solution of the fluorine copolymer (A-6). The acid value of this fluorocopolymer (A-6) was 10.3 mg KOH / g, the number average molecular weight (Mn) was 6,900, and the weight average molecular weight (Mw) was 19,700.

[第3工程]
第2工程で得られたフッ素共重合体溶液500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン4.9質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水443.8質量部を徐々に加えて、不揮発分40.2質量%のフッ素樹脂水性分散体(7)を得た。
[Third step]
500 parts by mass of the fluorocopolymer solution obtained in the second step is put into a 2 liter four-necked flask, heated to 40 ° C., 4.9 parts by mass of dimethylethanolamine is added, and the mixture is stirred for 1 hour to be uniform. Then, the temperature was raised to 60 ° C., and 443.8 parts by mass of ion-exchanged water was gradually added while stirring to obtain an aqueous fluororesin dispersion (7) having a nonvolatile content of 40.2% by mass.

上記で得られたフッ素樹脂水性分散体(6)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(6)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(6)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (6) obtained above, it operated similarly to Example 1 and evaluated and measured the storage stability and the gel fraction of the coating film. Moreover, using the fluororesin aqueous dispersion (6) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (6) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

(比較例1)
窒素ガス置換した4つ口フラスコに、水酸基を有するフッ素樹脂(DIC株式会社製「フルオネートK−700」、不揮発分50質量%、フッ素樹脂の水酸基価48mgKOH/g)280質量部、無水メタクリル酸3質量部、及びトリエチルアミン0.5質量部を仕込み、内容物を撹拌しながら80℃まで昇温し、同温度を保ちながら2時間撹拌することによって、メタクリロイル基を導入したフッ素樹脂を得た。このメタクリロイル基を導入したフッ素樹脂283.5質量部に、メタクリル酸6質量部、メタクリル酸イソブチル51質量部、及びt−ブチルパーオキシ−2−エチルヘキサネート2.8質量部を加えて均一に混合し、混合物を得た。次いで、窒素ガス置換した4つ口フラスコに、得られた混合物のうちの100質量部を入れて80℃まで昇温した。80℃を保ちながら、残りの混合物を4時間かけて滴下し、滴下終了後、さらに80℃で4時間撹拌することで、アクリル変性フッ素樹脂溶液を得た。このアクリル変性フッ素樹脂溶液の不揮発分は57.4質量%であり、酸価は25.6mgKOH/gであった。
(Comparative Example 1)
Fluorine resin having a hydroxyl group (“Fluonate K-700” manufactured by DIC Corporation, nonvolatile content 50% by mass, hydroxyl value of fluororesin 48 mgKOH / g) 280 parts by mass, and methacrylic anhydride 3 The fluororesin which introduce | transduced the methacryloyl group was obtained by charging a mass part and 0.5 mass part of triethylamine, heating up to 80 degreeC, stirring the contents, and stirring for 2 hours, maintaining the same temperature. To 283.5 parts by mass of this fluororesin-introduced fluororesin, uniformly add 6 parts by mass of methacrylic acid, 51 parts by mass of isobutyl methacrylate, and 2.8 parts by mass of t-butylperoxy-2-ethylhexanate. Mix to obtain a mixture. Next, 100 parts by mass of the obtained mixture was put into a four-necked flask purged with nitrogen gas, and the temperature was raised to 80 ° C. While maintaining 80 ° C., the remaining mixture was added dropwise over 4 hours. After completion of the addition, the mixture was further stirred at 80 ° C. for 4 hours to obtain an acrylic-modified fluororesin solution. This acrylic modified fluororesin solution had a nonvolatile content of 57.4% by mass and an acid value of 25.6 mgKOH / g.

上記で得られたアクリル変性フッ素樹脂溶液52.3質量部(アクリル変性フッ素樹脂として30質量部)、及び水酸基を有するフッ素樹脂(DIC株式会社製「フルオネートK−700」、不揮発分50質量%、フッ素樹脂の水酸基価48mgKOH/g)140質量部を窒素ガス置換した4つ口フラスコに仕込み、40℃まで加熱してからジメチルエタノールアミン1質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水150質量部を徐々に加えて水分散体を得た。得られた水分散体を減圧して濃縮することで、不揮発分40.8質量%のフッ素樹脂水性分散体(R1)を得た。   52.3 parts by mass of the acrylic-modified fluororesin solution obtained above (30 parts by mass as an acrylic-modified fluororesin), and a fluororesin having a hydroxyl group (“Fluorate K-700” manufactured by DIC Corporation, nonvolatile content 50% by mass, After charging 140 parts by mass of a fluororesin with a hydroxyl value of 48 mgKOH / g) into a four-necked flask substituted with nitrogen gas, heating to 40 ° C., adding 1 part by mass of dimethylethanolamine, and stirring for 1 hour to make it uniform. The temperature was raised to 60 ° C., and 150 parts by mass of ion-exchanged water was gradually added while stirring to obtain an aqueous dispersion. The obtained aqueous dispersion was concentrated under reduced pressure to obtain a fluororesin aqueous dispersion (R1) having a nonvolatile content of 40.8% by mass.

上記で得られたフッ素樹脂水性分散体(R1)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率、水性フッ素樹脂塗料に用いた際の塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (R1) obtained above, the same operation as in Example 1 was carried out, the storage stability, the gel fraction of the coating film, and the coating film characteristics (glossy) when used in the aqueous fluororesin coating material. And pencil hardness).

(比較例2)
比較例1で得られたアクリル変性フッ素樹脂溶液43.6質量部(アクリル変性フッ素樹脂として25質量部)、及び水酸基を有するフッ素樹脂(DIC株式会社製「フルオネートK−700」、不揮発分50質量%、フッ素樹脂の水酸基価48mgKOH/g)150質量部を窒素ガス置換した4つ口フラスコに仕込み、40℃まで加熱してからジメチルエタノールアミン0.7質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水150質量部を徐々に加えて水分散体を得た。得られた水分散体を減圧して濃縮することで、不揮発分40.2質量%のフッ素樹脂水性分散体(R2)を得た。
(Comparative Example 2)
43.6 parts by mass of the acrylic-modified fluororesin solution obtained in Comparative Example 1 (25 parts by mass as the acrylic-modified fluororesin), and a fluororesin having a hydroxyl group (“Fluonate K-700” manufactured by DIC Corporation, non-volatile content 50 masses) %, The hydroxyl value of fluororesin of 48 mg KOH / g) was charged into a four-necked flask in which 150 parts by mass of nitrogen gas was replaced, heated to 40 ° C., 0.7 parts by mass of dimethylethanolamine was added, and the mixture was stirred for 1 hour to be uniform. Then, the temperature was raised to 60 ° C., and 150 parts by mass of ion-exchanged water was gradually added while stirring to obtain an aqueous dispersion. The obtained aqueous dispersion was concentrated under reduced pressure to obtain a fluororesin aqueous dispersion (R2) having a nonvolatile content of 40.2% by mass.

上記で得られたフッ素樹脂水性分散体(R2)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(R2)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(R2)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   The fluororesin aqueous dispersion (R2) obtained above was operated in the same manner as in Example 1, and the storage stability and the gel fraction of the coating film were evaluated and measured. Further, using the fluororesin aqueous dispersion (R2) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (R2) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

(比較例3)
内部を窒素で置換したステンレス製のオートクレーブに、MDM75質量部、メタノール144.2質量部、EVE23.7質量部、HBVE24.1質量部、CHVE12.8質量部、UDA16.2質量部、HALS16.2質量部、及び重合開始剤としてt−ブチルパーオキシピバレート3.9質量部を仕込んだ。次いで、オートクレーブ内に、液化したCTFE84.8質量部を圧入した後、オートクレーブを63℃に昇温した。続いて、温度を63℃に保持したまま、液化したCTFE480.6質量部を4時間かけて圧入した。CTFEの圧入開始と同時に、EVE134.6質量部、HBVE136.3質量部、CHVE72.3質量部、UDA91.5質量部、MDM236.2質量部、及びt−ブチルパーオキシピバレート21.9質量部からなる混合物を5時間かけて圧入した。
(Comparative Example 3)
In an autoclave made of stainless steel whose inside is replaced with nitrogen, MDM 75 parts by mass, methanol 144.2 parts by mass, EVE 23.7 parts by mass, HBVE 24.1 parts by mass, CHVE 12.8 parts by mass, UDA 16.2 parts by mass, HALS 16.2 As a polymerization initiator, 3.9 parts by mass of t-butyl peroxypivalate was charged. Next, 84.8 parts by mass of liquefied CTFE was injected into the autoclave, and then the autoclave was heated to 63 ° C. Subsequently, 480.6 parts by mass of liquefied CTFE was injected over 4 hours while maintaining the temperature at 63 ° C. Simultaneously with the start of CTFE injection, EVE 134.6 parts by mass, HBVE 136.3 parts by mass, CHVE 72.3 parts by mass, UDA 91.5 parts by mass, MDM 236.2 parts by mass, and t-butyl peroxypivalate 21.9 parts by mass The mixture consisting of was pressed over 5 hours.

CTFE圧入開始から12時間反応を行った後、オートクレーブの内圧を常圧に戻し、反応物を1375質量部回収した。得られた溶液を3リットルの4つ口フラスコに入れ、無機合成吸着剤(協和化学工業株式会社製「キョーワード500(G7)」)75質量部を添加して60℃で4時間撹拌した。続いてろ過を行い、ろ過液を減圧して濃縮し、フッ素共重合体(RA−1)の74.1質量%溶液を得た。このフッ素共重合体(RA−1)の酸価は30.0mgKOH/gであり、数平均分子量(Mn)は5,400であり、重量平均分子量(Mw)は14,300であった。   After reacting for 12 hours from the start of CTFE injection, the internal pressure of the autoclave was returned to normal pressure, and 1375 parts by mass of the reaction product was recovered. The obtained solution was put into a 3 liter four-necked flask, 75 parts by mass of an inorganic synthetic adsorbent (“Kyoward 500 (G7)” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours. Subsequently, filtration was performed, and the filtrate was concentrated under reduced pressure to obtain a 74.1% by mass solution of a fluorocopolymer (RA-1). The acid value of this fluorocopolymer (RA-1) was 30.0 mgKOH / g, the number average molecular weight (Mn) was 5,400, and the weight average molecular weight (Mw) was 14,300.

フッ素共重合体溶液(RA−1)500質量部を2リットルの4つ口フラスコに入れ、40℃まで加熱してからジメチルエタノールアミン13.7質量部を加え、1時間撹拌して均一にした後、60℃に昇温して、撹拌しながらイオン交換水448.6質量部を徐々に加えて、不揮発分38.2質量%のフッ素樹脂水性分散体(R3)を得た。   500 parts by mass of the fluorocopolymer solution (RA-1) was placed in a 2 liter four-necked flask, heated to 40 ° C., 13.7 parts by mass of dimethylethanolamine was added, and the mixture was stirred for 1 hour to make it uniform. Thereafter, the temperature was raised to 60 ° C., and 448.6 parts by mass of ion-exchanged water was gradually added while stirring to obtain a fluororesin aqueous dispersion (R3) having a nonvolatile content of 38.2% by mass.

上記で得られたフッ素樹脂水性分散体(R3)について、実施例1と同様に操作して、貯蔵安定性、塗膜のゲル分率を評価、測定した。また、フッ素樹脂として30質量部となる量のフッ素樹脂水性分散体(R3)を用いて、実施例1と同様に操作して、水性フッ素樹脂塗料(R3)を調製して、塗膜を作製し塗膜特性(光沢及び鉛筆硬度)を評価した。   About the fluororesin aqueous dispersion (R3) obtained above, it operated similarly to Example 1 and evaluated and measured the storage stability and the gel fraction of the coating film. Further, using the fluororesin aqueous dispersion (R3) in an amount of 30 parts by mass as the fluororesin, the same operation as in Example 1 was carried out to prepare an aqueous fluororesin paint (R3) to produce a coating film. The film properties (gloss and pencil hardness) were evaluated.

上記の実施例1〜6及び比較例3で製造したフッ素共重合体の単量体の組成、酸価、数平均分子量及び重量平均分子量を表1に示す。また、フッ素樹脂水性分散体の貯蔵安定性、塗膜のゲル分率、フッ素樹脂水性分散体を水性フッ素樹脂塗料に用いた際の塗膜特性(光沢及び鉛筆硬度)を評価した結果を表2に示す。   Table 1 shows the composition, acid value, number average molecular weight, and weight average molecular weight of the fluorine copolymer monomers produced in Examples 1 to 6 and Comparative Example 3 described above. Table 2 shows the results of evaluating the storage stability of the fluororesin aqueous dispersion, the gel fraction of the coating film, and the coating film properties (gloss and pencil hardness) when the fluororesin aqueous dispersion was used in the aqueous fluororesin coating. Shown in

Figure 2013170220
Figure 2013170220

Figure 2013170220
Figure 2013170220

表2に示した実施例1〜6の評価結果から、本発明のフッ素樹脂水性分散体は、非常に優れた貯蔵安定性を有しており、当該フッ素樹脂水性分散体を用いた水性フッ素塗料の塗膜特性も良好なものであった。   From the evaluation results of Examples 1 to 6 shown in Table 2, the aqueous fluororesin dispersion of the present invention has very excellent storage stability, and the aqueous fluorocoating material using the aqueous fluororesin dispersion The coating film characteristics were also good.

表2に示した比較例1〜3の評価結果から、以下のことが分かった。   From the evaluation results of Comparative Examples 1 to 3 shown in Table 2, the following was found.

比較例1は、特許文献3記載のフッ素樹脂水性分散体に相当するものを用いた例であるが、当該フッ素樹脂水性分散体を用いた水性フッ素塗料の塗膜特性は比較的良好であったが、貯蔵安定性に劣ることが分かった。   Comparative Example 1 is an example using a fluororesin aqueous dispersion described in Patent Document 3, but the coating properties of the aqueous fluorocoating using the fluororesin aqueous dispersion were relatively good. However, it turned out that it is inferior to storage stability.

比較例2は、特許文献3記載のフッ素樹脂水性分散体に相当するものを用いた例であるが、当該フッ素樹脂水性分散体を用いた水性フッ素塗料の塗膜特性は比較的良好であったが、貯蔵安定性に劣ることが分かった。   Comparative Example 2 is an example using an equivalent of the fluororesin aqueous dispersion described in Patent Document 3, but the coating properties of the aqueous fluorocoating using the fluororesin aqueous dispersion were relatively good. However, it turned out that it is inferior to storage stability.

比較例3は、実施例2に相当する単量体組成で、第1工程及び第2工程の2段階で共重合反応をせずに、1段階で共重合反応を行った例であるが、当該フッ素樹脂水性分散体を用いた水性フッ素塗料の塗膜特性は比較的良好であったが、貯蔵安定性に劣ることが分かった。   Comparative Example 3 is an example in which the monomer composition corresponding to Example 2 was used, and the copolymerization reaction was performed in one step without performing the copolymerization reaction in two steps of the first step and the second step. The coating properties of the aqueous fluorine paint using the aqueous fluororesin dispersion were relatively good, but the storage stability was poor.

Claims (8)

フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を共重合反応させる第1工程、
第1工程で得られた反応物に、フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を加えて、さらに共重合反応させて、フッ素共重合体(A)を得る第2工程、
前記フッ素共重合体(A)が有するカルボキシル基を塩基性化合物で中和して、水媒体中で分散させる第3工程を経て、得られることを特徴とするフッ素共重合体水性分散体。
A first step of copolymerizing a monomer mixture (I) essentially comprising a fluoroolefin compound (a1) and a vinyl monomer (a2) having a hydroxyl group;
Monomer mixture (II) in which the reaction product obtained in the first step essentially comprises a fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group and a vinyl monomer (a3) having a carboxyl group. ) And further copolymerization reaction to obtain a fluorine copolymer (A),
A fluorocopolymer aqueous dispersion obtained by a third step of neutralizing a carboxyl group of the fluorocopolymer (A) with a basic compound and dispersing in a water medium.
フルオロオレフィン化合物(a1)、水酸基を有するビニル単量体(a2)及びカルボキシル基を有するビニル単量体(a3)を必須とした単量体混合物(II)を共重合反応させる第1工程、
第1工程で得られた反応物に、フルオロオレフィン化合物(a1)及び水酸基を有するビニル単量体(a2)を必須とした単量体混合物(I)を加えて、さらに共重合反応させて、フッ素共重合体(A)を得る第2工程、
前記フッ素共重合体(A)が有するカルボキシル基を塩基性化合物で中和して、水媒体中で分散させる第3工程を経て、得られることを特徴とするフッ素樹脂水性分散体。
A first step of copolymerizing a monomer mixture (II) essentially comprising a fluoroolefin compound (a1), a vinyl monomer (a2) having a hydroxyl group and a vinyl monomer (a3) having a carboxyl group;
To the reactant obtained in the first step, the monomer mixture (I) essentially comprising the fluoroolefin compound (a1) and the vinyl monomer (a2) having a hydroxyl group is added, and further copolymerized, A second step of obtaining a fluorine copolymer (A),
A fluororesin aqueous dispersion obtained by a third step of neutralizing a carboxyl group of the fluorocopolymer (A) with a basic compound and dispersing in a water medium.
前記単量体混合物(I)又は(II)に、前記フルオロオレフィン化合物(a1)、ビニル単量体(a2)、ビニル単量体(a3)以外のその他のビニル単量体(a4)を含む請求項1又は2記載のフッ素樹脂水性分散体。   The monomer mixture (I) or (II) includes the vinyl monomer (a4) other than the fluoroolefin compound (a1), the vinyl monomer (a2), and the vinyl monomer (a3). The fluororesin aqueous dispersion according to claim 1 or 2. 前記単量体混合物(I)中の各単量体の使用量が、前記フルオロオレフィン化合物(a1)1モルに対して、前記ビニル単量体(a2)及び(a4)の合計で、0.6〜1.5モルの範囲であり、前記ビニル単量体(a2)及び(a4)の合計中の前記ビニル単量体(a2)のモル比率が10〜100モル%の範囲であり、前記単量体混合物(II)中の各単量体の使用量が、前記フルオロオレフィン化合物(a1)1モルに対して、前記ビニル単量体(a2)、(a3)及び(a4)の合計で、0.6〜1.5モルの範囲であり、前記ビニル単量体(a2)、(a3)及び(a4)の合計中の前記ビニル単量体(a2)のモル比率が、10〜97モル%の範囲であり、前記ビニル単量体(a2)、(a3)及び(a4)の合計中の前記ビニル単量体(a3)のモル比率が、3〜60モル%の範囲である請求項3記載のフッ素樹脂水性分散体。   The amount of each monomer used in the monomer mixture (I) is 0.000 in total of the vinyl monomers (a2) and (a4) with respect to 1 mol of the fluoroolefin compound (a1). 6-1.5 mol, the molar ratio of the vinyl monomer (a2) in the total of the vinyl monomers (a2) and (a4) is in the range of 10-100 mol%, The amount of each monomer used in the monomer mixture (II) is the sum of the vinyl monomers (a2), (a3) and (a4) with respect to 1 mol of the fluoroolefin compound (a1). The molar ratio of the vinyl monomer (a2) in the total of the vinyl monomers (a2), (a3) and (a4) is from 10 to 97 mol. The vinyl resin in the total of the vinyl monomers (a2), (a3) and (a4) The molar ratio of the monomer (a3), and a fluorine resin aqueous dispersion according to claim 3, wherein in the range of 3 to 60 mol%. 前記ビニル単量体(a3)が、カルボキシル基とビニル基との間の原子数が4以上の単量体である請求項1〜4記載のフッ素樹脂水性分散体。   The fluororesin aqueous dispersion according to claim 1, wherein the vinyl monomer (a3) is a monomer having 4 or more atoms between a carboxyl group and a vinyl group. 請求項1〜5のいずれか1項記載のフッ素樹脂水性分散体、及び水酸基又はカルボキシ基と反応する官能基を有する硬化剤(B)を含有することを特徴とする水性フッ素塗料。   6. A water-based fluoro paint comprising the fluororesin aqueous dispersion according to claim 1 and a curing agent (B) having a functional group that reacts with a hydroxyl group or a carboxy group. 前記硬化剤(B)が、ポリイソシアネート化合物である請求項6記載の水性フッ素塗料。   The water-based fluorine paint according to claim 6, wherein the curing agent (B) is a polyisocyanate compound. 請求項6又は7記載の水性フッ素塗料で塗装されたことを特徴とする物品。   An article coated with the water-based fluorine paint according to claim 6 or 7.
JP2012035039A 2012-02-21 2012-02-21 Fluororesin aqueous dispersion, aqueous fluorine paint, and articles coated with the paint Expired - Fee Related JP5957940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035039A JP5957940B2 (en) 2012-02-21 2012-02-21 Fluororesin aqueous dispersion, aqueous fluorine paint, and articles coated with the paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035039A JP5957940B2 (en) 2012-02-21 2012-02-21 Fluororesin aqueous dispersion, aqueous fluorine paint, and articles coated with the paint

Publications (2)

Publication Number Publication Date
JP2013170220A true JP2013170220A (en) 2013-09-02
JP5957940B2 JP5957940B2 (en) 2016-07-27

Family

ID=49264379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035039A Expired - Fee Related JP5957940B2 (en) 2012-02-21 2012-02-21 Fluororesin aqueous dispersion, aqueous fluorine paint, and articles coated with the paint

Country Status (1)

Country Link
JP (1) JP5957940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181377A1 (en) * 2017-03-27 2018-10-04 Agc株式会社 Method for producing fluoropolymer-containing powder particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072197A1 (en) * 2003-02-13 2004-08-26 Daikin Industries, Ltd. Fluorine-containing aqueous coating composition
JP2011144254A (en) * 2010-01-14 2011-07-28 Daikin Industries Ltd Aqueous dispersion of fluorine resin, and coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072197A1 (en) * 2003-02-13 2004-08-26 Daikin Industries, Ltd. Fluorine-containing aqueous coating composition
JP2009046689A (en) * 2003-02-13 2009-03-05 Daikin Ind Ltd Fluorine-containing aqueous coating composition
JP2011144254A (en) * 2010-01-14 2011-07-28 Daikin Industries Ltd Aqueous dispersion of fluorine resin, and coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181377A1 (en) * 2017-03-27 2018-10-04 Agc株式会社 Method for producing fluoropolymer-containing powder particles

Also Published As

Publication number Publication date
JP5957940B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP5448407B2 (en) Fluorine-containing aqueous coating composition
JP5290508B2 (en) Water-based paint composition
JP6056867B2 (en) Method for producing fluorine-containing copolymer solution and coating composition
JP6036170B2 (en) Method for producing water-based fluororesin composition, method for producing water-based fluorine paint, and method for producing an article coated with the paint
WO2007072826A1 (en) Fluorine-containing copolymer solution and coating composition
JP2011225657A (en) Emulsion resin-based coating
JP2004307666A (en) Fluorine-containing copolymer for coating, coating composition and coating
JP2009144173A (en) Fluorine-containing copolymer
JP5957940B2 (en) Fluororesin aqueous dispersion, aqueous fluorine paint, and articles coated with the paint
KR20140115397A (en) Water dispersible 2 component acrylic polyol resin composition
JP3521054B2 (en) Composition for powder coating
JP2876813B2 (en) Polymer and composition for fluorine-containing paint
WO2006073058A1 (en) Curable fluorine-containing coating composition
JP5158414B2 (en) Two-component curable fluorine-containing vinyl copolymer composition
JP5935556B2 (en) Water-based fluorine paint and articles coated with the paint
JPH09241534A (en) Gradually modulated coating composition
JP2004277716A (en) Fluorine containing copolymer for paint, composition for paint, and paint
JPH03182539A (en) Fluororesin composition
JPH06122730A (en) Fluorocopolymer and coating composition based on the same
JP6779646B2 (en) Fluororesin-containing electrodeposition paint
JP2795600B2 (en) Composition for fluororesin paint
JP2005162994A (en) Fluorine-containing aqueous dispersed composition
JPH08319325A (en) Aqueous emulsion and water-based fluororesin coating material
JP2017061632A (en) Nonaqueous dispersion type resin composition, method for producing the same, and coating material
JPH09239316A (en) Gradient coating film structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5957940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees