JP2013168281A - Fuel battery system - Google Patents

Fuel battery system Download PDF

Info

Publication number
JP2013168281A
JP2013168281A JP2012030753A JP2012030753A JP2013168281A JP 2013168281 A JP2013168281 A JP 2013168281A JP 2012030753 A JP2012030753 A JP 2012030753A JP 2012030753 A JP2012030753 A JP 2012030753A JP 2013168281 A JP2013168281 A JP 2013168281A
Authority
JP
Japan
Prior art keywords
heater
circuit
fuel cell
temperature
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012030753A
Other languages
Japanese (ja)
Other versions
JP5673580B2 (en
Inventor
Kei Okamoto
圭 岡本
Tomoyuki Kako
知之 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012030753A priority Critical patent/JP5673580B2/en
Publication of JP2013168281A publication Critical patent/JP2013168281A/en
Application granted granted Critical
Publication of JP5673580B2 publication Critical patent/JP5673580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To reduce the power consumption of a heater of an air-conditioning circuit and improve the fuel consumption of a fuel battery system.SOLUTION: A fuel battery system 1 includes: a cooling circuit 11 circulating a coolant between a radiator 20 and a fuel battery 10; an air-conditioning circuit 12 which heats the coolant with a heater 41 and supplies the coolant to a heater core 40 to heat air for air-conditioning; a bypass circuit 13 connecting the cooling circuit 11 with the air-conditioning circuit 12; a three-way valve 62 switching coolant supply between the coolant supply from the outlet side of the fuel battery 10 to the heater 41 and the coolant supply from the heater core 40 to the heater 41; a first temperature sensor 32 measuring a temperature of the coolant at the outlet side of the fuel battery 10; a second temperature sensor 52 measuring a temperature of the coolant at the outlet side of the heater core 40; and a controller 14. The controller 14 measures the temperature at the outlet side of the fuel battery 10 and the temperature at the outlet side of the heater core 40 and supplies the coolant having the higher temperature to the heater 41.

Description

本発明は、燃料電池システムに関する。   The present invention relates to a fuel cell system.

いわゆる燃料電池車両には、酸化ガスと燃料ガスとの電気化学反応により発電する燃料電池を備えた燃料電池システムが搭載されている。   A so-called fuel cell vehicle is equipped with a fuel cell system including a fuel cell that generates electric power by an electrochemical reaction between an oxidizing gas and a fuel gas.

上記燃料電池システムには、燃料電池を冷却するための冷却水が流れる冷却回路と、車両内の空調に送られる空気を加熱するため冷却水が流れる空調用回路と、冷却回路と空調用回路を接続するバイパス回路を備えているものがある(特許文献1参照)。   The fuel cell system includes a cooling circuit through which cooling water for cooling the fuel cell flows, an air conditioning circuit through which cooling water flows to heat the air sent to the air conditioner in the vehicle, and a cooling circuit and an air conditioning circuit. Some have a bypass circuit to be connected (see Patent Document 1).

冷却回路は、ラジエータと燃料電池の間で冷却水を循環させる。空調用回路は、冷却水をヒータで加熱し当該冷却水をヒータコアに供給して空調用の空気を加熱する。バイパス回路は、燃料電池で加熱された所定の温度以上の冷却水を冷却回路から空調用回路に供給する。これにより、燃料電池の廃熱を、空調用の空気を加熱する熱に利用してシステムの燃費を向上している。   The cooling circuit circulates cooling water between the radiator and the fuel cell. The air conditioning circuit heats cooling air with a heater and supplies the cooling water to the heater core to heat air for air conditioning. The bypass circuit supplies cooling water having a predetermined temperature or higher heated by the fuel cell from the cooling circuit to the air conditioning circuit. Thereby, the fuel consumption of the system is improved by utilizing the waste heat of the fuel cell as heat for heating air for air conditioning.

特開2010−282808号公報JP 2010-282808 A

しかしながら、上記燃料電池システムの場合、空調用回路側の温度も考慮した最適な燃費制御になっていない。つまり、冷却回路にある冷却水の温度が空調用回路にある冷却水の温度より低い場合に、冷却回路の冷却水を空調用回路に供給すると、相対的に低温の冷却水を空調用回路のヒータに供給することになり、冷却水を加熱するためのヒータの消費電力が大きくなってしまう。これにより、燃料電池システムの燃費も低下する。   However, in the case of the fuel cell system described above, the optimum fuel consumption control is not performed in consideration of the temperature on the air conditioning circuit side. That is, when the cooling water in the cooling circuit is lower than the cooling water in the air conditioning circuit, if the cooling water in the cooling circuit is supplied to the air conditioning circuit, the relatively low temperature cooling water is supplied to the air conditioning circuit. Since it will be supplied to a heater, the power consumption of the heater for heating cooling water will become large. Thereby, the fuel consumption of the fuel cell system is also reduced.

本発明はかかる点に鑑みてなされたものであり、空調用回路のヒータの消費電力を低減し、燃料電池システム全体の燃費を向上することをその目的とする。   The present invention has been made in view of this point, and an object thereof is to reduce the power consumption of the heater of the air conditioning circuit and to improve the fuel consumption of the entire fuel cell system.

上記目的を達成するための本発明は、熱交換器で冷却された熱媒体を燃料電池に供給し、当該燃料電池を冷却した熱媒体を前記熱交換器に戻す冷却回路と、ヒータで加熱された熱媒体をヒータコアに供給し、当該ヒータコアで空調用の空気を加熱した熱媒体を前記ヒータに戻す空調用回路と、前記冷却回路の前記燃料電池の出口側の熱媒体を前記空調用回路のヒータに供給し、前記ヒータコアの出口側の前記熱媒体を前記冷却回路に戻すためのバイパス回路と、前記冷却回路の燃料電池の出口側から前記空調用回路のヒータへの熱媒体の供給と、前記空調用回路のヒータコアからヒータへの熱媒体の供給を切り替え可能な切り替え装置と、前記燃料電池の出口側の熱媒体の温度を測定する第1の温度センサと、前記ヒータコアの出口側の熱媒体の温度を測定する第2の温度センサと、前記第1の温度センサと前記第2の温度センサにより、前記燃料電池の出口側の熱媒体の温度と前記ヒータコアの出口側の熱媒体の温度を測定し、温度の高い方の熱媒体を前記ヒータに供給するように前記切り替え装置を制御する制御装置と、を有する燃料電池システムである。   In order to achieve the above object, the present invention supplies a heat medium cooled by a heat exchanger to a fuel cell, returns the heat medium cooled by the fuel cell to the heat exchanger, and is heated by a heater. The heating medium is supplied to the heater core, and the heating medium that has heated the air-conditioning air in the heater core is returned to the heater; and the heating medium on the outlet side of the fuel cell of the cooling circuit is A bypass circuit for supplying to the heater and returning the heat medium on the outlet side of the heater core to the cooling circuit; and supplying the heat medium from the fuel cell outlet side of the cooling circuit to the heater of the air conditioning circuit; A switching device capable of switching supply of the heat medium from the heater core of the air conditioning circuit to the heater, a first temperature sensor for measuring the temperature of the heat medium on the outlet side of the fuel cell, and heat on the outlet side of the heater core Medium The temperature of the heat medium on the outlet side of the fuel cell and the temperature of the heat medium on the outlet side of the heater core are measured by the second temperature sensor for measuring the temperature of the fuel cell, the first temperature sensor, and the second temperature sensor. And a control device that controls the switching device to measure and supply the heating medium having a higher temperature to the heater.

本発明によれば、ヒータコアの出口側の熱媒体と燃料電池の出口側の熱媒体のうち、より温度が高い方の熱媒体をヒータに供給できるので、熱媒体を加熱するためのヒータの消費電力を低減でき、燃料電池システム全体の燃費を向上できる。   According to the present invention, since the heat medium having a higher temperature among the heat medium on the outlet side of the heater core and the heat medium on the outlet side of the fuel cell can be supplied to the heater, consumption of the heater for heating the heat medium Electric power can be reduced, and fuel consumption of the entire fuel cell system can be improved.

本発明によれば、空調用回路のヒータの消費電力を低減できるので、燃料電池システム全体の燃費を向上できる。   According to the present invention, since the power consumption of the heater of the air conditioning circuit can be reduced, the fuel consumption of the entire fuel cell system can be improved.

燃料電池システムの冷却水の回路構成を模式的に示す説明図である。It is explanatory drawing which shows typically the circuit structure of the cooling water of a fuel cell system. ヒータに冷却水を供給するための制御のフローチャートである。It is a flowchart of control for supplying cooling water to a heater. 三方弁のバイパス側が開の場合の冷却水の流れを示す説明図である。It is explanatory drawing which shows the flow of the cooling water when the bypass side of a three-way valve is open. 三方弁のバイパス側が閉の場合の冷却水の流れを示す説明図である。It is explanatory drawing which shows the flow of the cooling water when the bypass side of a three-way valve is closed.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。図1は、本実施の形態にかかる燃料電池システム1の熱媒体としての冷却水の回路構成を示す説明図である。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram showing a circuit configuration of cooling water as a heat medium of the fuel cell system 1 according to the present embodiment.

燃料電池システム1は、例えば燃料電池車両に搭載され、燃料電池車両は、燃料電池システム1による発電により駆動する。   The fuel cell system 1 is mounted on, for example, a fuel cell vehicle, and the fuel cell vehicle is driven by power generation by the fuel cell system 1.

燃料電池システム1は、例えば燃料電池10と、燃料電池10を冷却する冷却水を循環させる冷却回路11と、車室の空調用の空気を加熱するための冷却水を循環させる空調用回路12と、冷却回路11と空調用回路12を接続するバイパス回路13と、制御装置14を有している。   The fuel cell system 1 includes, for example, a fuel cell 10, a cooling circuit 11 that circulates cooling water that cools the fuel cell 10, and an air conditioning circuit 12 that circulates cooling water for heating air for air conditioning in a passenger compartment. The control circuit 14 includes a bypass circuit 13 that connects the cooling circuit 11 and the air conditioning circuit 12.

燃料電池10は、例えば高分子電解質型燃料電池であり、多数の単セルを積層してなるスタック構造を有している。単セルは、イオン交換膜からなる電解質膜の一方の面に形成された空気極と、電解質膜の他方の面に形成された燃料極と、空気極及び燃料極を両側から挟み込む一対のセパレータとを有している。燃料電池10は、酸化ガスを空気極に、燃料ガスを燃料極に供給することによって発電し、この電力が燃料電池車両の駆動源として使用される。   The fuel cell 10 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked. The single cell includes an air electrode formed on one surface of an electrolyte membrane made of an ion exchange membrane, a fuel electrode formed on the other surface of the electrolyte membrane, and a pair of separators that sandwich the air electrode and the fuel electrode from both sides. have. The fuel cell 10 generates electric power by supplying an oxidizing gas to the air electrode and a fuel gas to the fuel electrode, and this electric power is used as a drive source for the fuel cell vehicle.

冷却回路11は、燃料電池10と熱交換器としてのラジエータ20を接続し、燃料電池10とラジエータ20との間で冷却水を循環させる。冷却回路11は、例えばラジエータ20の出口側と燃料電池10の入口側を接続する第1の回路21と、燃料電池10の出口側とラジエータ20の入口側を接続する第2の回路22と、第1の回路21と第2の回路22を接続するバイパス回路23を有している。   The cooling circuit 11 connects the fuel cell 10 and a radiator 20 as a heat exchanger, and circulates cooling water between the fuel cell 10 and the radiator 20. The cooling circuit 11 includes, for example, a first circuit 21 that connects the outlet side of the radiator 20 and the inlet side of the fuel cell 10, a second circuit 22 that connects the outlet side of the fuel cell 10 and the inlet side of the radiator 20, A bypass circuit 23 that connects the first circuit 21 and the second circuit 22 is provided.

第1の回路21には、冷却水を循環させるポンプ30が設けられている。また、第1の回路21とバイパス回路23の接続部には、ラジエータ20及び燃料電池10を通る循環と、燃料電池10のみを通りラジエータ20を迂回する循環を切り替える三方弁31が設けられている。   The first circuit 21 is provided with a pump 30 for circulating cooling water. Further, a connection portion between the first circuit 21 and the bypass circuit 23 is provided with a three-way valve 31 that switches between circulation through the radiator 20 and the fuel cell 10 and circulation through only the fuel cell 10 and bypassing the radiator 20. .

第2の回路22には、例えば燃料電池10の出口側の冷却水の温度を検出する第1の温度センサ32が設けられている。   The second circuit 22 is provided with a first temperature sensor 32 that detects the temperature of cooling water on the outlet side of the fuel cell 10, for example.

空調用回路12は、ヒータコア40とヒータ41との間で冷却水を循環させる。ヒータコア40は、例えば車室の空調器の空気を加熱するための熱交換器である。ヒータ41には、例えば水加熱電気ヒータが用いられている。   The air conditioning circuit 12 circulates cooling water between the heater core 40 and the heater 41. The heater core 40 is a heat exchanger for heating air of an air conditioner in a passenger compartment, for example. As the heater 41, for example, a water heating electric heater is used.

空調用回路12は、例えばヒータ41の出口側とヒータコア40の入口側を接続する第3の回路42と、ヒータコア40の出口側とヒータ41の入口側を接続する第4の回路43を有している。   The air conditioning circuit 12 includes, for example, a third circuit 42 that connects the outlet side of the heater 41 and the inlet side of the heater core 40, and a fourth circuit 43 that connects the outlet side of the heater core 40 and the inlet side of the heater 41. ing.

第3の回路42には、例えばヒータコア40の入口(ヒータ41の出口)側の冷却水の温度を検出する温度センサ50が設けられている。   The third circuit 42 is provided with a temperature sensor 50 that detects the temperature of the cooling water on the inlet side of the heater core 40 (outlet of the heater 41), for example.

第4の回路43には、冷却水を循環させるポンプ51が設けられている。また、第4の回路43には、ヒータコア40の出口側の温度を検出する第2の温度センサ52が設けられている。また、ポンプ51とヒータ41との間には、ヒータ41の入口側の冷却水の温度を検出する温度センサ53が設けられている。ヒータ41は、例えば温度センサ50、53により得られた温度に基づいて、ヒータコア40の入口側の冷却水の温度が目標温度になるように発熱量を調整する。   The fourth circuit 43 is provided with a pump 51 for circulating cooling water. The fourth circuit 43 is provided with a second temperature sensor 52 that detects the temperature on the outlet side of the heater core 40. A temperature sensor 53 that detects the temperature of the cooling water on the inlet side of the heater 41 is provided between the pump 51 and the heater 41. The heater 41 adjusts the amount of heat generation so that the temperature of the cooling water on the inlet side of the heater core 40 becomes the target temperature based on the temperature obtained by the temperature sensors 50 and 53, for example.

バイパス回路13は、第2の回路22の第1の温度センサ32の下流側と第4の回路43のポンプ51の入口側を接続する第5の回路60と、第4の回路43の第2の温度センサ52の下流側と第2の回路22を接続する第6の回路61を有している。   The bypass circuit 13 includes a fifth circuit 60 that connects a downstream side of the first temperature sensor 32 of the second circuit 22 and an inlet side of the pump 51 of the fourth circuit 43, and a second circuit 43 of the fourth circuit 43. The sixth circuit 61 for connecting the second circuit 22 to the downstream side of the temperature sensor 52 is provided.

第5の回路60と第4の回路43の接続部には、切り替え装置としての三方弁62が設けられている。この三方弁62により、第5の回路60を通じた、冷却回路11の燃料電池10の出口側から空調用回路12のヒータ41への冷却水の供給と、空調用回路12を通じたヒータコア40からヒータ41への冷却水の供給を切り替えることができる。   A connection portion between the fifth circuit 60 and the fourth circuit 43 is provided with a three-way valve 62 as a switching device. By this three-way valve 62, the cooling water is supplied from the outlet side of the fuel cell 10 of the cooling circuit 11 to the heater 41 of the air conditioning circuit 12 through the fifth circuit 60, and the heater core 40 through the air conditioning circuit 12 is heated from the heater core 40. The supply of cooling water to 41 can be switched.

制御装置14は、例えばCPU、ROM、RAM及び入出力インタフェース等を備えるものであり、各種センサからの検出値に基づいて、燃料電池システム1やそれ以外の燃料電池車両の各種装置を制御する。例えば制御装置14は、冷却回路11、空調用回路12の各種温度センサ32、50、52、53により温度を測定し、当該温度に基づいてポンプ30、51、ヒータ41及び三方弁62、31等を制御して、冷却水の循環を行う。なお、かかる制御は、例えば制御装置14の記憶部に記憶されたプログラムを実行することによって実施される。   The control device 14 includes, for example, a CPU, a ROM, a RAM, an input / output interface, and the like, and controls various devices of the fuel cell system 1 and other fuel cell vehicles based on detection values from various sensors. For example, the control device 14 measures the temperature with various temperature sensors 32, 50, 52, 53 of the cooling circuit 11 and the air conditioning circuit 12, and based on the temperatures, the pumps 30, 51, the heater 41, the three-way valves 62, 31, etc. To control the circulation of cooling water. Note that such control is implemented by executing a program stored in the storage unit of the control device 14, for example.

次に、以上のように構成された燃料電池システム1の冷却水に関する動作を説明する。燃料電池10の発電時には、冷却回路11において、ポンプ30が駆動し、ラジエータ20で冷却された冷却水が燃料電池10に供給され、燃料電池10を冷却し、燃料電池10で加熱された冷却水がラジエータ20に戻される。なお、ラジエータ20での冷却が不要の場合には、三方弁31が切り替えられ、冷却水はラジエータ20を迂回して循環する。また、車室内の空調器が作動し、暖房が行われる際には、空調用回路12において、ヒータ41で加熱された冷却水がヒータコア40に供給され、空調用の空気を加熱する。   Next, the operation relating to the cooling water of the fuel cell system 1 configured as described above will be described. During power generation of the fuel cell 10, the pump 30 is driven in the cooling circuit 11, the cooling water cooled by the radiator 20 is supplied to the fuel cell 10, the fuel cell 10 is cooled, and the cooling water heated by the fuel cell 10 is heated. Is returned to the radiator 20. In addition, when the cooling with the radiator 20 is unnecessary, the three-way valve 31 is switched, and the cooling water circulates around the radiator 20. Further, when the air conditioner in the passenger compartment is operated and heating is performed, the cooling water heated by the heater 41 is supplied to the heater core 40 in the air conditioning circuit 12 to heat the air for air conditioning.

図2には、ヒータ41に冷却水を供給するための制御のフローチャートを示す。先ず、第1の温度センサ32により燃料電池10の出口側の冷却水の温度TFCが測定され、第2の温度センサ52によりヒータコア40の出口側の冷却水の温度THC
が測定される。燃料電池10の出口側の温度TFCがヒータコア40の出口側の温度THCよりも高い(TFC>THC)場合には、図3に示すように三方弁62のバイパス側が開かれ(第4の回路43側が閉じる。)、冷却回路11の燃料電池10の出口側の冷却水がバイパス回路13の第5の回路60を通じて空調用回路12に供給される。空調用回路12に供給された冷却水は、ヒータ41で目標温度に加熱され、ヒータコア40に送られ、空調用の空気を加熱する。ヒータコア40を通過した冷却水は、バイパス回路13の第6の回路61を通って冷却回路11に戻される。
FIG. 2 shows a flowchart of control for supplying cooling water to the heater 41. First, the temperature T FC of the cooling water on the outlet side of the fuel cell 10 is measured by the first temperature sensor 32, and the temperature T HC of the cooling water on the outlet side of the heater core 40 is measured by the second temperature sensor 52.
Is measured. When the temperature T FC on the outlet side of the fuel cell 10 is higher than the temperature T HC on the outlet side of the heater core 40 (T FC > T HC ), the bypass side of the three-way valve 62 is opened as shown in FIG. 4 is closed.) Cooling water on the outlet side of the fuel cell 10 of the cooling circuit 11 is supplied to the air conditioning circuit 12 through the fifth circuit 60 of the bypass circuit 13. The cooling water supplied to the air conditioning circuit 12 is heated to the target temperature by the heater 41 and sent to the heater core 40 to heat the air for air conditioning. The cooling water that has passed through the heater core 40 is returned to the cooling circuit 11 through the sixth circuit 61 of the bypass circuit 13.

一方、燃料電池10の出口側の温度TFCがヒータコア40の出口側の温度THC以下(TFC≦THC)場合には、図4に示すように三方弁62のバイパス側が閉じられ(第4の回路43側が開く。)、冷却回路11から空調用回路12への冷却水の供給が停止され、空調用回路12内で冷却水が循環される。すなわち、ヒータ41で目標温度に加熱された冷却水がヒータコア40に供給され、空調用の空気を加熱し、ヒータコア40を通過した冷却水は、第4の回路43を通ってヒータ41に戻される。 On the other hand, when the temperature T FC on the outlet side of the fuel cell 10 is equal to or lower than the temperature T HC on the outlet side of the heater core 40 (T FC ≦ T HC ), the bypass side of the three-way valve 62 is closed as shown in FIG. 4), the supply of cooling water from the cooling circuit 11 to the air conditioning circuit 12 is stopped, and the cooling water is circulated in the air conditioning circuit 12. That is, the cooling water heated to the target temperature by the heater 41 is supplied to the heater core 40 to heat the air for air conditioning, and the cooling water that has passed through the heater core 40 is returned to the heater 41 through the fourth circuit 43. .

第1の温度センサ32及び第2の温度センサ52による温度測定は、断続的或いは継続的に行われ、その都度燃料電池10の出口側の温度TFCとヒータコア40の出口側の温度THCを比較し、温度の高い方の冷却水がヒータ41に供給される。 The temperature measurement by the first temperature sensor 32 and the second temperature sensor 52 is performed intermittently or continuously, and the temperature T FC on the outlet side of the fuel cell 10 and the temperature T HC on the outlet side of the heater core 40 are calculated each time. In comparison, the coolant having the higher temperature is supplied to the heater 41.

ところで、上記ヒータコア40の冷却水の入口目標温度TWOは、車室内温度、外気温度、日射量などの環境条件とドライバの設定温度により決定されている。冷却水のヒータ41の入口温度TPが目標温度TWOより低い値であれば、ヒータ41により冷却水をTWOに昇温する。この時に、必要なヒータ電力量Qは、
Q=A×(TWO−TP)・・・(1)
となる。なお、Aは、ヒータコア40を通過する冷却水流量から定まる値である。式(1)によれば、ヒータ41の入口温度TPが上がれば、ヒータ電力量Qが小さくなる。
Incidentally, the inlet target temperature T WO cooling water of the heater core 40 is determined cabin temperature, outside air temperature, the set temperature of the environmental conditions and the driver, such as solar radiation. If a value lower than the inlet temperature T P is the target temperature T WO of the cooling water heater 41, to raise the temperature of the cooling water to the T WO by the heater 41. At this time, the required heater power Q is
Q = A × (T WO −T P ) (1)
It becomes. A is a value determined from the flow rate of cooling water passing through the heater core 40. According to equation (1), if rises inlet temperature T P of the heater 41, the heater power amount Q is decreased.

よって、本実施の形態によれば、燃料電池10の出口側の温度TFCとヒータコア40の出口側の温度THCと比較し、高い方の温度の冷却水をヒータ41に供給するので、ヒータ41の消費電力を低減でき、燃料電池システム1の燃費を向上できる。 Therefore, according to the present embodiment, compared with the temperature T FC on the outlet side of the fuel cell 10 and the temperature T HC on the outlet side of the heater core 40, the coolant having the higher temperature is supplied to the heater 41. Therefore, the power consumption of the fuel cell system 1 can be improved.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば以上の実施の形態では、切り替え装置として三方弁62を用いていたが、これに限られない。また、冷却回路11及び空調用回路12の構成もこれに限られない。さらに、上記実施の形態では、熱媒体が冷却水であったが、気体などの他の媒体であってもよい。また、上記実施の形態で記載した燃料電池システム1は、燃料電池車両などの車両の他、船舶、飛行機、ロボットなどの他の移動体にも搭載できる。また、本発明にかかる燃料電池システムは、定置型電源等にも適用できる。   For example, in the above embodiment, the three-way valve 62 is used as the switching device, but the present invention is not limited to this. Further, the configuration of the cooling circuit 11 and the air conditioning circuit 12 is not limited to this. Furthermore, in the said embodiment, although the heat medium was cooling water, other media, such as gas, may be sufficient. Further, the fuel cell system 1 described in the above embodiment can be mounted not only on a vehicle such as a fuel cell vehicle but also on other moving bodies such as a ship, an airplane, and a robot. The fuel cell system according to the present invention can also be applied to a stationary power source and the like.

本発明は、空調用回路のヒータの消費電力を低減し、燃料電池システムの燃費を向上する際に有用である。   The present invention is useful for reducing the power consumption of the heater of the air conditioning circuit and improving the fuel consumption of the fuel cell system.

1 燃料電池システム
10 燃料電池
11 冷却回路
12 空調用回路
13 バイパス回路
14 制御装置
20 ラジエータ
32 第1の温度センサ
40 ヒータコア
41 ヒータ
52 第2の温度センサ
62 三方弁
DESCRIPTION OF SYMBOLS 1 Fuel cell system 10 Fuel cell 11 Cooling circuit 12 Air conditioning circuit 13 Bypass circuit 14 Control device 20 Radiator 32 First temperature sensor 40 Heater core 41 Heater 52 Second temperature sensor 62 Three-way valve

Claims (1)

熱交換器で冷却された熱媒体を燃料電池に供給し、当該燃料電池を冷却した熱媒体を前記熱交換器に戻す冷却回路と、
ヒータで加熱された熱媒体をヒータコアに供給し、当該ヒータコアで空調用の空気を加熱した熱媒体を前記ヒータに戻す空調用回路と、
前記冷却回路の前記燃料電池の出口側の熱媒体を前記空調用回路のヒータに供給し、前記ヒータコアの出口側の前記熱媒体を前記冷却回路に戻すためのバイパス回路と、
前記冷却回路の燃料電池の出口側から前記空調用回路のヒータへの熱媒体の供給と、前記空調用回路のヒータコアからヒータへの熱媒体の供給を切り替え可能な切り替え装置と、
前記燃料電池の出口側の熱媒体の温度を測定する第1の温度センサと、
前記ヒータコアの出口側の熱媒体の温度を測定する第2の温度センサと、
前記第1の温度センサと前記第2の温度センサにより、前記燃料電池の出口側の熱媒体の温度と前記ヒータコアの出口側の熱媒体の温度を測定し、温度の高い方の熱媒体を前記ヒータに供給するように前記切り替え装置を制御する制御装置と、を有する燃料電池システム。
A cooling circuit that supplies the heat medium cooled by the heat exchanger to the fuel cell and returns the heat medium that has cooled the fuel cell to the heat exchanger;
An air conditioning circuit for supplying a heating medium heated by a heater to the heater core and returning the heating medium heated by the heater core to the air conditioning air;
A bypass circuit for supplying a heat medium on the outlet side of the fuel cell of the cooling circuit to a heater of the air conditioning circuit, and returning the heat medium on the outlet side of the heater core to the cooling circuit;
A switching device capable of switching supply of the heat medium from the outlet side of the fuel cell of the cooling circuit to the heater of the air conditioning circuit and supply of the heat medium from the heater core of the air conditioning circuit to the heater;
A first temperature sensor for measuring the temperature of the heat medium on the outlet side of the fuel cell;
A second temperature sensor for measuring the temperature of the heat medium on the outlet side of the heater core;
Using the first temperature sensor and the second temperature sensor, the temperature of the heat medium on the outlet side of the fuel cell and the temperature of the heat medium on the outlet side of the heater core are measured. And a control device that controls the switching device to supply the heater.
JP2012030753A 2012-02-15 2012-02-15 Fuel cell system Active JP5673580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030753A JP5673580B2 (en) 2012-02-15 2012-02-15 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030753A JP5673580B2 (en) 2012-02-15 2012-02-15 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2013168281A true JP2013168281A (en) 2013-08-29
JP5673580B2 JP5673580B2 (en) 2015-02-18

Family

ID=49178543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030753A Active JP5673580B2 (en) 2012-02-15 2012-02-15 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5673580B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064939A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Temperature controller, and temperature control method
CN104752742A (en) * 2013-12-30 2015-07-01 现代自动车株式会社 Temperature management system of fuel cell vehicle and method thereof
JP2015209030A (en) * 2014-04-24 2015-11-24 株式会社デンソー Vehicular air conditioner
EP3021401A1 (en) 2014-11-14 2016-05-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US20170122182A1 (en) * 2015-11-04 2017-05-04 GM Global Technology Operations LLC Coolant temperature correction systems and methods
CN109367352A (en) * 2018-10-15 2019-02-22 武汉格罗夫氢能汽车有限公司 Fuel cell motive force passenger car cooling system
WO2019087642A1 (en) * 2017-11-01 2019-05-09 株式会社デンソー Fluid heating device
WO2019087643A1 (en) * 2017-11-01 2019-05-09 株式会社デンソー Fluid heating device
JP2019085096A (en) * 2017-11-01 2019-06-06 株式会社デンソー Fluid heating device
JP2019085095A (en) * 2017-11-01 2019-06-06 株式会社デンソー Fluid heating device
JP2020093592A (en) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 Air conditioner for fuel cell vehicle
JP2020102349A (en) * 2018-12-21 2020-07-02 トヨタ自動車株式会社 Fuel cell system
JP2020527219A (en) * 2017-07-17 2020-09-03 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Heat exchange device and its heat exchange method and vapor deposition device
WO2020179758A1 (en) * 2019-03-04 2020-09-10 いすゞ自動車株式会社 Thermal management system
CN113246807A (en) * 2021-06-18 2021-08-13 中国第一汽车股份有限公司 Thermal management system, method, vehicle and medium for fuel cell hybrid electric vehicle
CN114454778A (en) * 2022-03-02 2022-05-10 河南海威新能源科技有限公司 Electric engineering vehicle and thermal management system thereof
WO2023083127A1 (en) * 2021-11-15 2023-05-19 中国第一汽车股份有限公司 Thermal management system for plug-in fuel cell hybrid electric vehicle and method for controlling same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027797A (en) * 2006-07-24 2008-02-07 Denso Corp Fuel cell system
JP2010267471A (en) * 2009-05-14 2010-11-25 Nissan Motor Co Ltd Device for control of cooling water temperature in fuel cell system
JP2011189864A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Device for adjusting refrigerant circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027797A (en) * 2006-07-24 2008-02-07 Denso Corp Fuel cell system
JP2010267471A (en) * 2009-05-14 2010-11-25 Nissan Motor Co Ltd Device for control of cooling water temperature in fuel cell system
JP2011189864A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Device for adjusting refrigerant circuit

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064939A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Temperature controller, and temperature control method
CN104752742A (en) * 2013-12-30 2015-07-01 现代自动车株式会社 Temperature management system of fuel cell vehicle and method thereof
KR20150077814A (en) * 2013-12-30 2015-07-08 현대자동차주식회사 Temperature management system of fuel cell vehicle and method thereof
KR101592652B1 (en) 2013-12-30 2016-02-12 현대자동차주식회사 Temperature management system of fuel cell vehicle and method thereof
JP2015209030A (en) * 2014-04-24 2015-11-24 株式会社デンソー Vehicular air conditioner
EP3021401A1 (en) 2014-11-14 2016-05-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN105633430A (en) * 2014-11-14 2016-06-01 丰田自动车株式会社 Fuel cell system
US10283791B2 (en) 2014-11-14 2019-05-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US20170122182A1 (en) * 2015-11-04 2017-05-04 GM Global Technology Operations LLC Coolant temperature correction systems and methods
US10006335B2 (en) * 2015-11-04 2018-06-26 GM Global Technology Operations LLC Coolant temperature correction systems and methods
JP2020527219A (en) * 2017-07-17 2020-09-03 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Heat exchange device and its heat exchange method and vapor deposition device
WO2019087643A1 (en) * 2017-11-01 2019-05-09 株式会社デンソー Fluid heating device
JP2019085096A (en) * 2017-11-01 2019-06-06 株式会社デンソー Fluid heating device
JP2019085095A (en) * 2017-11-01 2019-06-06 株式会社デンソー Fluid heating device
WO2019087642A1 (en) * 2017-11-01 2019-05-09 株式会社デンソー Fluid heating device
CN109367352A (en) * 2018-10-15 2019-02-22 武汉格罗夫氢能汽车有限公司 Fuel cell motive force passenger car cooling system
CN109367352B (en) * 2018-10-15 2024-02-06 武汉格罗夫氢能汽车有限公司 Cooling system of fuel cell power passenger car
JP7047740B2 (en) 2018-12-10 2022-04-05 トヨタ自動車株式会社 Air conditioner for fuel cell vehicles
JP2020093592A (en) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 Air conditioner for fuel cell vehicle
JP2020102349A (en) * 2018-12-21 2020-07-02 トヨタ自動車株式会社 Fuel cell system
WO2020179758A1 (en) * 2019-03-04 2020-09-10 いすゞ自動車株式会社 Thermal management system
CN113543993A (en) * 2019-03-04 2021-10-22 五十铃自动车株式会社 Thermal management system
US20220144042A1 (en) * 2019-03-04 2022-05-12 Isuzu Motors Limited Thermal management system
CN113246807A (en) * 2021-06-18 2021-08-13 中国第一汽车股份有限公司 Thermal management system, method, vehicle and medium for fuel cell hybrid electric vehicle
CN113246807B (en) * 2021-06-18 2023-02-21 中国第一汽车股份有限公司 Thermal management system, method, vehicle and medium for fuel cell hybrid electric vehicle
WO2023083127A1 (en) * 2021-11-15 2023-05-19 中国第一汽车股份有限公司 Thermal management system for plug-in fuel cell hybrid electric vehicle and method for controlling same
CN114454778A (en) * 2022-03-02 2022-05-10 河南海威新能源科技有限公司 Electric engineering vehicle and thermal management system thereof

Also Published As

Publication number Publication date
JP5673580B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5673580B2 (en) Fuel cell system
JP6687895B2 (en) Vehicle fuel cell warm-up device
CA2857129C (en) Fuel cell vehicle air-conditioning apparatus and control method thereof
US10680257B2 (en) Fuel cell system and control method for fuel cell system
JP5040596B2 (en) Fuel cell vehicle air conditioning system
JP5338975B2 (en) Fuel cell system and method for suppressing reduction in power generation efficiency of fuel cell
KR101859258B1 (en) Fuel cell system
JP2008300068A (en) Fuel cell system
US11581554B2 (en) Cooling control system and method of fuel cell
JP5463982B2 (en) Refrigerant circuit adjustment device
US11450873B2 (en) Fuel cell system for thermal management and method thereof
JP5478669B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP5742481B2 (en) Fuel cell vehicle air conditioner
JP2011178365A (en) Air conditioner and air conditioning control method
JP2013177101A (en) Air conditioning control method and air conditioning control system
JP2022179295A (en) Method for controlling temperature of coolant in fuel cell system
JP2008108538A (en) Fuel cell system
JP4984546B2 (en) Fuel cell system
US20240063412A1 (en) Fuel cell system and thermal management method thereof
US20240105978A1 (en) Fuel cell system and method of controlling same
JP2011178366A (en) Control device and method of vehicle
JP2020102349A (en) Fuel cell system
KR101417463B1 (en) Device and method for cooling fuel cell
JP2009016318A (en) Fuel cell system
JP2015065120A (en) Fuel temperature regulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151