JP2013167570A - Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination - Google Patents

Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination Download PDF

Info

Publication number
JP2013167570A
JP2013167570A JP2012031786A JP2012031786A JP2013167570A JP 2013167570 A JP2013167570 A JP 2013167570A JP 2012031786 A JP2012031786 A JP 2012031786A JP 2012031786 A JP2012031786 A JP 2012031786A JP 2013167570 A JP2013167570 A JP 2013167570A
Authority
JP
Japan
Prior art keywords
weight
parts
radioactive
radioactivity
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012031786A
Other languages
Japanese (ja)
Inventor
Kensuke Tanaka
研介 田中
Atsushi Tanaka
淳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012031786A priority Critical patent/JP2013167570A/en
Publication of JP2013167570A publication Critical patent/JP2013167570A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radioactivity reduction treatment agent which can easily reduce radioactivity of radioactive contamination and is easily handled and has a new composition.SOLUTION: The method includes a first step for adding and mixing inorganic boron compound of 50.0-200.0 pts.wt. to/with hot water of 100 pts.wt. to acquire a first mixed liquid, a second step for adding and mixing aluminum hydroxide of 2.5-25.0 pts.wt., potassium hydroxide of 1.5-15.0 pts.wt. and oxalic acid of 2.5-25.0 pts.wt. to/with the first mixed liquid acquired in the first step to acquire a second mixed liquid, and a third step for adding aqueous sulfurous acid (82% concentration) of 2.0-30.0 pts.wt. to a cooled second mixed liquid obtained by cooling the second mixed liquid to acquire a third mixed liquid (radioactivity reduction treatment agent) for manifesting radioactivity reduction action. Aluminum sulfate may be used in place of aluminum hydroxide and aqueous sulfurous acid.

Description

本願発明は放射能汚染物の放射能を低減するためのに使用する放射能低減処理剤の製造方法及びその放射能低減処理剤を用いる放射能汚染物の放射能低減処理方法に関する。   The present invention relates to a method for producing a radioactive reduction treatment agent used for reducing the radioactivity of radioactive contaminants, and a radioactivity reduction treatment method for radioactive contaminants using the radioactive reduction treatment agent.

昨今、原子力利用技術の発展・利用に伴って、放出される放射能により汚染された放射能汚染物の処理、特にその放射能低減化や遮蔽の技術提供が求められている。
例えば、放射性セシウムの処理においては、ゼオライト、石灰、硝酸、硫酸等の有機溶剤等で吸着、捕捉させ減容化する技術が大半を占めている。
なお、放射能汚染水の処理は微生物・R.O膜フィルター等により行われるものもある。
In recent years, with the development and utilization of nuclear energy utilization technology, there is a demand for the treatment of radioactive contaminants contaminated by the emitted radioactivity, particularly the provision of technology for reducing the radioactivity and shielding.
For example, in the treatment of radioactive cesium, most of the technologies occupy, capture, and reduce the volume with organic solvents such as zeolite, lime, nitric acid, and sulfuric acid.
In some cases, radioactively contaminated water is treated with a microorganism / RO membrane filter or the like.

特開平9−189799号公報JP-A-9-189799 特開2004−16950号公報JP 2004-16950 A

しかし、原子力発電所の崩壊事故による放射能汚染については、その除染区域が広範囲なため、多大な労力・時間・費用を要し、また放射汚染土壌の回収仮置き場、廃棄処分の施設並びに再処理装置、人的被害の対策等の諸問題が山積されているところ、未だそれらの問題を解決するための有効な技術が提供されていない。   However, radioactive contamination due to nuclear power plant collapse accidents requires a large amount of labor, time, and cost because the decontamination area is extensive. There are a lot of problems such as treatment equipment and countermeasures against human damage, but no effective technology has yet been provided to solve these problems.

本願発明は、上記課題を解決するものであって、下記構成の放射能低減処理剤、放射能低減処理剤の製造方法及び放射能汚染物の放射能低減方法である。
[1] 熱水100重量部に対して、無機質ホウ素化合物50.0〜200.0重量部を添加・混合して第1混合液を得る第1工程と、第1工程で得られた第1混合液に水酸化アルミニウム2.5〜25.0重量部と水酸化カリウム1.5〜15.0重量部とシュウ酸2.5〜25.0重量部を添加・混合して第2混合液を得る第2工程と、第2混合液を放冷して得られた放冷第2混合液に亜硫酸水(82%濃度)2.0〜30.0重量部を添加して放射能低減作用を発揮する第3混合液を取得することを特徴とする放射能低減処理剤の製造方法。
[2] 熱水100重量部に対して、無機質ホウ素化合物50.0〜200.0重量部を添加・混合してホウ素含有混合液を得た後、同ホウ素含有混合液に硫酸アルミニウム5.0〜50.0重量部と水酸化カリウム1.5〜15.0重量部とシュウ酸2.5〜25.0重量部を添加・混合して放射能低減作用を発揮する混合液を取得することを特徴とする放射能低減処理剤の製造方法。
[3] 無機質ホウ素化合物が、ホウ酸と硼砂(Na2BO47・10H2O)の混合物であり、かつそれらの混合割合(重量比)はホウ酸:硼砂=1:1.3〜2.0であることを特徴とする前記[1]又は[2]に記載の放射能低減処理剤の製造方法。
[4] 固形の放射能汚染物 100重量部に対して、前記[1]〜[3]のいずれか1項で得られた放射能低減処理剤10〜100重量部を添加・混合することを特徴とする放射能汚染物の放射能低減方法。
[5] 固形の放射能汚染物 100重量部に対して、前記[1]〜[3]のいずれか1項で得られた放射能低減処理剤10〜100重量部を添加・混合し、加熱して混合乾燥物となした後、
熱水100重量部に対して、無機質ホウ素化合物40.0〜120.0重量部と、石灰30.0〜90.0重量部と、パーライト10.0〜50.0重量部を添加・混合した後、乾燥して得られた乾燥混合物を、
上記混合乾燥物100重量部に対して、乾燥混合物10〜100重量部の割合で添加・混合して、より充分に放射能汚染物の放射能を安定的に低減することを特徴とする放射能汚染物の放射能低減方法。
This invention solves the said subject, Comprising: It is the radioactivity reduction processing agent of the following structure, the manufacturing method of a radioactivity reduction processing agent, and the radioactivity reduction method of a radioactive contaminant.
[1] A first step obtained by adding and mixing 50.0 to 200.0 parts by weight of an inorganic boron compound to 100 parts by weight of hot water to obtain a first mixed solution, and a first step obtained in the first step The mixture is mixed with 2.5 to 25.0 parts by weight of aluminum hydroxide, 1.5 to 15.0 parts by weight of potassium hydroxide, and 2.5 to 25.0 parts by weight of oxalic acid. The second step of obtaining a solution, and adding 2.0 to 30.0 parts by weight of sulfite water (82% concentration) to the cooled second mixed solution obtained by cooling the second mixed solution A method for producing a radioactivity-reducing treatment agent, comprising obtaining a third mixed solution that exhibits
[2] 50.0 to 200.0 parts by weight of an inorganic boron compound is added to and mixed with 100 parts by weight of hot water to obtain a boron-containing mixed solution, and then aluminum sulfate 5.0 is added to the boron-containing mixed solution. To obtain a mixed solution exhibiting the activity of reducing radioactivity by adding and mixing -50.0 parts by weight, potassium hydroxide 1.5-15.0 parts by weight and oxalic acid 2.5-25.0 parts by weight. The manufacturing method of the radioactive reduction processing agent characterized by these.
[3] The inorganic boron compound is a mixture of boric acid and borax (Na 2 BO 4 O 7 .10H 2 O), and the mixing ratio (weight ratio) of boric acid: borax = 1: 1.3 to 2.0. The method for producing a radioactivity-reducing treatment agent according to [1] or [2], which is 2.0.
[4] Adding / mixing 10 to 100 parts by weight of the radioactive reducing agent obtained in any one of [1] to [3] above to 100 parts by weight of solid radioactive contaminants A method for reducing radioactivity of radioactive contaminants.
[5] To 100 parts by weight of solid radioactive contaminants, add and mix 10 to 100 parts by weight of the radioactive reducing agent obtained in any one of [1] to [3] above, and heat. To make a dry mixture,
40.0 to 120.0 parts by weight of an inorganic boron compound, 30.0 to 90.0 parts by weight of lime, and 10.0 to 50.0 parts by weight of pearlite were added to and mixed with 100 parts by weight of hot water. After that, the dried mixture obtained by drying
Radioactivity characterized by adding and mixing 10 to 100 parts by weight of the dry mixture with respect to 100 parts by weight of the dry mixture to stably reduce the radioactivity of the radioactive contaminant more sufficiently. A method for reducing the radioactivity of pollutants.

本願発明によれば、硼素を主成分とした無機物主体溶液により、放射能汚染物の放射能を容易に低減することができる。
また、本願発明で得られた放射能低減処理剤は水分含有量が少ないため、被処理物の放射能汚染物と混ぜた場合に、それらが固形化・粒状化され、その取り扱いや保存が容易となる。
さらに、本願発明の放射能低減処理剤は少しの加熱又は温風乾燥により、粉粒化できるので、そうした粉粒体を例えば土壌・焼却灰等の泥状の放射能汚染物に添加・混合すれば水分調整材として作用し、得られた混合物は粉粒化できて、取り扱いや保存が容易となる。
According to the present invention, the radioactivity of radioactive contaminants can be easily reduced by the inorganic-based solution mainly containing boron.
In addition, since the radioactivity reducing treatment agent obtained in the present invention has a low water content, it is solidified and granulated when mixed with radioactive contaminants in the material to be treated, and is easy to handle and store. It becomes.
Furthermore, since the radioactive reduction treatment agent of the present invention can be granulated by a little heating or hot air drying, such a granular material is added to and mixed with muddy radioactive contaminants such as soil and incinerated ash. If it acts as a moisture regulator, the resulting mixture can be granulated, making it easy to handle and store.

原子力発電所の事故により、広範な周辺地域へ放射性ヨウ素、放射性セシウム等の放射性物質が飛散され土地、建物、農水産物等が放射性物質で汚染されている。
その対策として、各種方法により放射性物質を取り除く除染が行われている。
本願発明では、高濃度の放射能汚染物あるいは各種除染方法の段階で生じる濃縮された放射能含有物等の放射能を更に低減化するための放射能低減処理剤を提供するものである。
更に同放射能低減処理剤を使用して、高濃度の放射能汚染物あるいは各種除染方法の段階で生じる濃縮された放射能含有物等の放射能を更に低減化する放射能汚染物の放射能低減方法を提供するものである。
Due to an accident at a nuclear power plant, radioactive materials such as radioactive iodine and radioactive cesium are scattered in a wide range of surrounding areas, and land, buildings, agricultural and marine products are contaminated with radioactive materials.
As a countermeasure, decontamination is performed to remove radioactive substances by various methods.
The present invention provides a radioactive reduction treatment agent for further reducing the radioactivity of high-concentration radioactive contaminants or concentrated radioactive inclusions produced at the stage of various decontamination methods.
Furthermore, using the same radioactive reduction treatment agent, radiation of radioactive contaminants that further reduce the radioactivity such as high-concentration radioactive contaminants or concentrated radioactive inclusions generated at the stage of various decontamination methods Performance reduction method is provided.

本願発明では、ホウ素の中性子吸収作用を利用し、かつアルミニウム化合物にて放射性セシウム等放射性物質の吸着性を利用して放射能低減処理剤を開発した。
放射能低減処理剤を製造するに当たって、まず、無機質ホウ素化合物、好ましくはホウ酸(H3BO3)と硼砂(Na2BO47・10H2O)を溶解するために、熱水を用いる。熱水は80〜100℃が好ましい。
次に、得られたホウ酸・硼砂水溶液に、水酸化アルミニウムと水酸化カリウムとシュウ酸を添加・混合する。
その液を放冷した後、亜硫酸水(82%濃度)を添加混合することによって、本願発明の放射能低減処理剤が製造される。
なお、上記の水酸化アルミニウムと亜硫酸水の代わりに、硫酸アルミニウムを採用することができる。
上記において、アルミニウム分と硫酸分とカリウム分は、ミョウバン(KAl(SO42)を生成するものと考えられる。
そして、放射能汚染物に含まれる放射能除成分Cs137あるいはCs134とは、(K・(Cs137・Cs134)Al(SO2)を形成してCs137あるいはCs134を取り込むものと考えられる。
In this invention, the radioactive reduction processing agent was developed using the neutron absorption effect | action of boron, and utilizing the adsorptivity of radioactive substances, such as radioactive cesium, with an aluminum compound.
In manufacturing the radioactive reducing agent, first, hot water is used to dissolve the inorganic boron compound, preferably boric acid (H 3 BO 3 ) and borax (Na 2 BO 4 O 7 .10H 2 O). . The hot water is preferably 80 to 100 ° C.
Next, aluminum hydroxide, potassium hydroxide, and oxalic acid are added to and mixed with the obtained boric acid / borax aqueous solution.
The solution is allowed to cool, and then a sulfite aqueous solution (82% concentration) is added and mixed to produce the radioactivity reducing treatment agent of the present invention.
In addition, aluminum sulfate can be employed instead of the above aluminum hydroxide and sulfite water.
In the above, it is considered that the aluminum content, sulfuric acid content, and potassium content generate alum (KAl (SO 4 ) 2 ).
And, it is considered that the radioactivity removing component Cs137 or Cs134 contained in the radioactive contaminant forms (K · (Cs137 · Cs134) Al (SO 4 ) 2 ) and takes in Cs137 or Cs134.

実験の結果、
(第1工程)
熱水100重量部に対して、無機質ホウ素化合物50.0〜200.0重量部を添加・混合して第1混合液を得る工程と、
(第2工程)
第1工程で得られた第1混合液に水酸化アルミニウム2.5〜25.0重量部と水酸化カリウム1.5〜15.0重量部とシュウ酸2.5〜25.0重量部を添加・混合して第2混合液を得る工程と、
(第3工程)
第2混合液を放冷して得られた放冷第2混合液に亜硫酸水(82%濃度)2.0〜30.0重量部を添加して放射能低減作用を発揮する第3混合液(本願発明の放射能低減処理剤)が取得されることが確認された。
なお、ホウ酸(H3BO3)と硼砂(Na2BO47・10H2O)の混合割合(重量比)はホウ酸:硼砂=1:1.3〜2.0が好ましいことが判った。
results of the experiment,
(First step)
Adding and mixing 50.0 to 200.0 parts by weight of an inorganic boron compound with respect to 100 parts by weight of hot water to obtain a first mixed liquid;
(Second step)
In the first mixed liquid obtained in the first step, 2.5 to 25.0 parts by weight of aluminum hydroxide, 1.5 to 15.0 parts by weight of potassium hydroxide and 2.5 to 25.0 parts by weight of oxalic acid are added. Adding and mixing to obtain a second mixture;
(Third step)
A third mixed solution that exhibits radioactivity reducing action by adding 2.0 to 30.0 parts by weight of aqueous sulfite (82% concentration) to the second cooled mixed solution obtained by cooling the second mixed solution It was confirmed that (radioactivity-reducing treatment agent of the present invention) was obtained.
The mixing ratio (weight ratio) of boric acid (H 3 BO 3 ) and borax (Na 2 BO 4 O 7 .10H 2 O) is preferably boric acid: borax = 1: 1.3 to 2.0. understood.

さらに、前記の放射能低減処理剤の作用を安定化して高めるために、性能安定化剤(下記石灰含有乾燥混合物)を開発した。
すなわち、該性能安定化剤の製造は、熱水100重量部に対して、無機質ホウ素化合物40.0〜120.0重量部と、石灰30.0〜90.0重量部と、パーライト10.0〜50.0重量部を添加・混合した後、乾燥して石灰含有乾燥混合物を取得する。
Furthermore, in order to stabilize and enhance the action of the above-mentioned radioactivity reducing treatment agent, a performance stabilizer (the following lime-containing dry mixture) was developed.
That is, the production of the performance stabilizer is 40.0 to 120.0 parts by weight of an inorganic boron compound, 30.0 to 90.0 parts by weight of lime, and 10.0 to pearlite with respect to 100 parts by weight of hot water. After adding and mixing ˜50.0 parts by weight, drying is performed to obtain a lime-containing dry mixture.

本願発明の放射能低減処理剤を使用して放射能汚染物を処理するには、
固形の放射能汚染物 100重量部に対して、放射能低減処理剤10〜100重量部を添加・混合することが好ましい。
In order to treat radioactive contaminants using the radioactive reducing agent of the present invention,
It is preferable to add and mix 10 to 100 parts by weight of the radioactive reducing agent with respect to 100 parts by weight of the solid radioactive contaminant.

さらに、前記放射能汚染物を処理でも放射能低減化が不十分な場合には、上記性能安定化剤を使用する。
すなわち、上記放射能汚染物に放射能低減処理剤を混合して得られた混合乾燥物100重量部に対して、性能安定化剤(石灰含有乾燥混合物)10〜100重量部の割合で添加・混合して、より充分に放射能汚染物の放射能を安定的に低減する。
Further, when the radioactive contamination is not sufficiently reduced even when the radioactive contaminant is treated, the performance stabilizer is used.
That is, with respect to 100 parts by weight of the mixed dry product obtained by mixing the radioactive contamination with the radioactive contamination treatment agent, the performance stabilizer (lime-containing dry mixture) is added at a ratio of 10 to 100 parts by weight. Mix well to more stably reduce the radioactivity of radioactive contaminants.

以上における本願発明の機序について、以下に考察します。
ホウ素化合物の分子構造は安定した結合をもち、電子構造のイオン化が容易に反応する性質がある。特にSi、Al、B、F、K、Caは12(6個のπ電子X二重結合 複素環式化合物的なもの)電子対錯塩化でき、溶液に7量体(イオン・水素結合の相互作用で、分子結合の機能する複合体)の水溶液無機化合物に合成したものである。
本願発明による放射性セシウムの除染には、ホウ素系の特殊溶液と硫化物を酸化還元剤として、マイナス電荷を有する化合物類となる。両極性を共に持つ化合物は、陽性の強い金属と陰性の強い非金属との間にできる無機塩類で、イオン結合性を共有結合の混じった配位結合である。
The mechanism of the present invention will be discussed below.
The molecular structure of the boron compound has a stable bond, and the ionization of the electronic structure reacts easily. In particular, Si, Al, B, F, K, and Ca can be twelve (six π-electron X double bonds and heterocyclic compounds) electron-pair complexation, and can form a heptamer (ion-hydrogen bond mutual) This is a compound synthesized with an aqueous solution inorganic compound having a function of molecular bonding.
In the decontamination of radioactive cesium according to the present invention, compounds having a negative charge are obtained using a boron-based special solution and sulfide as a redox agent. A compound having both polarities is an inorganic salt formed between a strong positive metal and a strong negative nonmetal, and is a coordinate bond in which ionic bonds are mixed with a covalent bond.

この溶液には、酢酸より3,000倍の解離度を持つシュウ酸を化合させたもので、カルボキシル基が多数存在するが、カルボキシル基(COOH基)は土壌の粘土層やセメント・コンクリート中のカルシウム(Ca)と反応して安定なCOO−Ca基になり不溶化し、ゲル化することによってセメントやコンクリートとの接着が強固になるが、その中に取り込まれたアルカリ金属セシウムは、シュウ酸の働きで酸化され解離がはじまる。
また、ホウ素硫化水溶液(シュウ酸カルシウムを含む)はコンクリートのキレート結合を劣化・分断・破壊現象の働きもある。
各地のクリーンセンターから排出される焼却灰の中には、重金属やダイオキシンを捕捉させるために、セメントミルクがキレート剤3〜5%混入されている。その固化された焼却灰の中に、放射性セシウムが国が定める最低の基準値、年間被爆限度量に汚染されている状態で、埋め立て処分が出来なくなっている。
本願発明の処理液で、焼却灰に散布及び加熱後、性能安定化剤(反応安定剤パウダー)を混入させる方法の2種で処分が可能になった。
ホウ素硫化化合物はカルボキシル基の水素を解離して、酸性を示すのでカルボン酸になり、水素イオンを生じるが、一般にカルボン酸が酸性を示すのは、カルボキシル基のO-H結合が切れてO-とH+を生成しやすく、他の水酸基に比べてカルボキシル基のOHだけが解離しやすくなる。主な理由として1つは水酸基が電子を、引き寄せる性質が大きい誘導体の置換基(官能基)カルボニル基に結合しているためであり、カルボニル基がOH基の酸素上の電子が少なくなって、水素原子の電子を引きつける。従って、OH結合を作っている電子は、酸素の方へ引き付けられて水素原子のまわりの電子は少なくなり、H+として離れやすくなる。
This solution is a combination of oxalic acid having a dissociation rate 3,000 times that of acetic acid, and there are many carboxyl groups, but carboxyl groups (COOH groups) are contained in soil clay layers and cement / concrete. It reacts with calcium (Ca) to form a stable COO-Ca group, insolubilizes, and gels, thereby strengthening the adhesion to cement and concrete. The alkali metal cesium incorporated therein is oxalic acid. It is oxidized by the action and dissociation begins.
Boron sulfide aqueous solutions (including calcium oxalate) also have the effect of degrading, breaking, and destroying the chelate bonds of concrete.
Incinerated ash discharged from clean centers in various places contains 3-5% chelating agent in order to capture heavy metals and dioxins. In the solidified incineration ash, radioactive cesium is contaminated to the minimum standard value set by the country, the annual exposure limit, and can not be disposed of in landfills.
With the treatment liquid of the present invention, it was possible to dispose of the incinerated ash by two kinds of methods, in which the performance stabilizer (reaction stabilizer powder) is mixed after spraying and heating.
Boron sulfide compounds dissociate the hydrogen of the carboxyl group and show acidity, so it becomes a carboxylic acid and generates hydrogen ions. In general, the carboxylic acid shows acidity because the OH bond of the carboxyl group is broken and O and H + Is easily generated, and only OH of the carboxyl group is easily dissociated as compared with other hydroxyl groups. One of the main reasons is that the hydroxyl group is bonded to the substituent (functional group) carbonyl group of the derivative having a large attracting property, and the carbonyl group has fewer electrons on the oxygen of the OH group, Attracts hydrogen atoms. Therefore, the electrons forming the OH bond are attracted toward oxygen, and the number of electrons around the hydrogen atom is reduced, so that they are easily separated as H + .

もう1つの理由としては、解離してできたカルボン酸陰イオンが共鳴により安定していることで、解離の反応は、発生するイオンにおいて負の電荷が多くの原子上に分散していて、安定しているほど起こりやすい現象がある。
この上記の原理から水素反応結合はセシウム解離において、下記のように反応を起こす。
学問的には、アルカリ金属セシウムはセシウム137+4個の水素還元により、プラセオジム141となり、セシウム137は55個の陽子と82個の中性子からなる核子ですが、ここに4つの陽子を加えると陽子数は59個、中性子数はそのままの82で、希土類プラセオジム141に転換される。質量は当然、陽子と中性子の数は合っており、核反応としてみた場合の電子や中性子の放出はない。
この反応で放射性セシウムを放射能でないプラセオジムセシウムに壊変できる。
Another reason is that the carboxylate anion formed by dissociation is stable due to resonance, and the dissociation reaction is stable because negative charges are dispersed over many atoms in the generated ions. There is a phenomenon that is more likely to occur.
From the above principle, the hydrogen reaction bond causes the reaction in the cesium dissociation as follows.
Academically, alkali metal cesium becomes praseodymium 141 by hydrogen reduction of cesium 137 + 4, and cesium 137 is a nucleon consisting of 55 protons and 82 neutrons, but if 4 protons are added here, the number of protons is 59, the number of neutrons is 82 as it is, and converted to rare earth praseodymium 141. Naturally, the number of protons and neutrons match, and there is no emission of electrons or neutrons when viewed as a nuclear reaction.
By this reaction, radioactive cesium can be disintegrated into non-radioactive praseodymium cesium.

ホウ酸化合物(H3BO3、Na245)の特徴として、水性BN化合物(B36) は6電子をもっている。このホウ酸化合物で原子力発電におけるウランの核分裂反応の制御、またホウ酸水溶液は中性子の反応を抑制する作用があるといわれており、捕獲能力を利用して、原子炉の核分裂で生成する熱中性子の吸収剤として利用され、また、原子炉の放射線遮蔽材、応急措置対策用の添加剤としても活用されている。 As a feature of the boric acid compound (H 3 BO 3 , Na 2 B 4 O 5 ), the aqueous BN compound (B 3 N 6 ) has 6 electrons. This boric acid compound is said to control uranium fission reaction in nuclear power generation, and boric acid aqueous solution is said to have an action to suppress neutron reaction. Thermal neutrons generated by nuclear fission of nuclear reactor using capture capability It is also used as a radiation shielding material for nuclear reactors and as an additive for emergency measures.

土壌中の粘土はセシウムを効率的に捕獲・吸収能力があり、セシウムは非常に反応しやすい物質でコンクリートや金属等、常に他の元素と結合しやすく、特にケイ素・アルミナに成分が多く含まれる珪藻土、つまり粘土層の粘土粒子にくっつき易い。また、粘土鉱物は2対1型層状ケイ酸塩鉱物で、薄いシート状の構造をもつ負電荷に帯電している。セシウムは、他の陽イオンによって容易にイオン交換し置き換えられるので、一度吸着されると水を加えてもセシウムが溶出することは難しい。
このアルカリ金属のセシウムはナトリウム塩よりはるかに結合性が強く、酸化還元を受けにくいため、化学薬品での除染は難しいといわれているが、シュウ酸性物質カルボン酸による酸化還元を行わせ、これを特殊な方法で処理した強力吸着剤のホウ系アルミナ化合やリチウム等で外郭原子価電子を取り外す。この吸着に必要なエネルギーは、アルカリ金属のなかで、標準電極電位は絶対値が最大であり、吸着力は増し粘土層より置換が可能となる。(今回の方法では他物質への吸着及び置換は不必要)この間にセシウムミョウバン壊変する作業が急速に展開される仕組みである。
Clay in soil has the ability to efficiently capture and absorb cesium, and cesium is a very reactive substance and is always easy to bind to other elements such as concrete and metal, especially silicon and alumina contain many components. It tends to stick to diatomaceous earth, that is, clay particles in the clay layer. The clay mineral is a 2: 1 type layered silicate mineral and is charged with a negative charge having a thin sheet-like structure. Since cesium is easily ion-exchanged and replaced by other cations, once adsorbed, it is difficult for cesium to elute even if water is added.
This alkali metal cesium is far more binding than sodium salt and is less susceptible to redox, so it is said that it is difficult to decontaminate with chemicals. The outer valence electrons are removed with a boron-based alumina compound of strong adsorbent or lithium treated with a special method. The energy required for this adsorption is an alkali metal, the standard electrode potential has the maximum absolute value, the adsorption power is increased, and substitution is possible from the clay layer. (Adsorption and substitution with other substances is not necessary in this method.) During this period, the work to disintegrate cesium alum is rapidly developed.

通説として、そのメカニズムは、中性子と陽子が反応しあってイオンが生じ、二水性水和イオンは電解質溶液となり電離し、塩基生物質はイオン交換を早めさせセシウムを解離する。解離したセシウムイオンは、両性であるホウ酸化合物で電離定数と電離度が非常に大きく、中性子イオンと陽子はイオン結合的要素が大で、塩を作り陽イオンとなる。
分子イオンは陽子の数がそれぞれ違うため、待機陽子はそのまま空席の励起状態で残るが、中性子は電離され、離れた電子は自由電子になり破壊がはじまる。
また、電気をよく通す金属物質は原子でできているが、原子がバラバラにならずにくっついているのは、電子のためであり、原子同士を電子が結びつけている。つまりセシウム原子間を電子が自由に移動しているためである。金属が酸又はアルカリ性物質によって、電子はイオン交換をおこし、化学反応により酸化、つまり錆び、この時に金属電子イオンが逃げ出し、自由電子を失った状態になり電子を放出する。
このことによりセシウム137はベータ崩壊によって、短命なバリウム137mに壊変し、その後、非放射性のバリウムとなると考えられている。
一旦バリウムの準安定状態になり、それからすぐにガンマ線を出して安定状態のバリウムになり、更にバリウムはカルボン酸系錯体と化合し固体となり、そのまま無害化できることになる。
As a general rule, neutrons and protons react to generate ions, dihydrated hydrated ions become an electrolyte solution, and ionize, and base biomaterials accelerate ion exchange and dissociate cesium. The dissociated cesium ion is an amphoteric boric acid compound with a very large ionization constant and degree of ionization, and neutron ions and protons have a large ion-binding factor and form a salt and become a cation.
Since molecular ions have different numbers of protons, standby protons remain in an unoccupied excited state, but neutrons are ionized, distant electrons become free electrons, and destruction begins.
In addition, although metal substances that conduct electricity well are made of atoms, the atoms are bonded to each other without being separated, and the atoms are connected to each other. In other words, electrons move freely between cesium atoms. When the metal is an acid or an alkaline substance, the electron undergoes ion exchange and is oxidized or rusted by a chemical reaction. At this time, the metal electron ion escapes and loses free electrons to emit electrons.
As a result, it is believed that cesium 137 decays into short-lived barium 137m by beta decay, and then becomes non-radioactive barium.
Once barium is metastable, gamma rays are emitted immediately to form barium in a stable state, and barium combines with a carboxylic acid complex to form a solid that can be rendered harmless.

セシウムの放射崩壊は周知の通りであるが、セシウムは原発や原爆のウランが分裂して作られる。
識者等の学説によると、ガンマ線を出して安定な状態して存在するセシウムは、陽子が55個、中性子が82個、合計137個の原子からなり、総称として「55Cs137」と表している。
セシウムの電子はマイナスの電気を帯び、陽子は電子1個分に相当する量のプラスの電気(電子の1,836倍の電気素量)を持っており、中性子は電気的には中性であるが、電気は帯びている。中性子は陽子1個と電子1個から出来ており、中性子から1個が放出されると、その中性子はプラスの電荷を持つ陽子になる。原子核の中の中性子から電子が放出される崩壊の仕方をベータ崩壊と言い、セシウム「55Cs137」はベータ崩壊され、原子核の中性子から電子1個放出して、その中性子は陽子に変わる。すると陽子が1個増えて56個になり、中性子は1個減って81個になる。
陽子の数(原子番号)が原子を決め、陽子が56個という原子はもうセシウムでなくなり、陽子が56個の原子はバリウムと言う。
前述のようにセシウムはベータ線を放出してバリウム−137(137Ba)となり、つまり、ベータ崩壊してバリウムに壊変し、その際、バリウムからガンマ線が放出されセシウム137に起因し、再びガンマ線ベータ線が放出するが、量は繰り返されるうちにだんだんと減少するといわれている。
Although cesium radiation decay is well known, cesium is produced by splitting nuclear power and atomic uranium.
According to theories of experts and others, cesium that exists in a stable state by emitting gamma rays is composed of 55 protons and 82 neutrons, a total of 137 atoms, and is collectively expressed as “55Cs137”.
Cesium's electrons are negatively charged, protons have a positive charge equivalent to one electron (1,836 times the amount of electrons), and neutrons are electrically neutral. There is electricity. Neutrons are made up of one proton and one electron. When one is emitted from the neutron, the neutron becomes a positively charged proton. The decay method in which electrons are emitted from neutrons in the nucleus is called beta decay. Cesium “55Cs137” is beta decayed and emits one electron from the neutrons in the nucleus, and the neutrons are changed to protons. Then, one proton is increased to 56, and one neutron is decreased to 81.
The number of protons (atomic number) determines the atom, the atom with 56 protons is no longer cesium, and the atom with 56 protons is called barium.
As described above, cesium emits beta rays to become barium-137 (137Ba), that is, beta decays and decays to barium. At that time, gamma rays are emitted from barium and are caused by cesium 137, and again gamma ray beta rays. Is released, but the amount is said to decrease gradually as it is repeated.

前述のセシウムミョウバンや硫酸セシウム・プラセオジムにどれだけ壊変するか、またセシウムの半減期は30年とされているが、もし放射性セシウムの反応が低減できれば、半減期・減衰期は同じでも、絶対量が減少すれば人的被害は少なくなることである。   The amount of decay to cesium alum or cesium sulfate / praseodymium, and the half-life of cesium is 30 years. If the reaction of radioactive cesium can be reduced, the half-life and decay period are the same, but the absolute amount If the number decreases, human damage will decrease.

次に、本願発明の実施例について説明する。
実施例1:
(1)被処理剤(微粒子状放射能汚染焼却灰)の調製:
まず、原発事故の影響で放射性物質(セシウム137)に汚染された廃棄物を焼却した灰である、放射能汚染焼却灰をクラッシャーにかけて粗粒子化した。
次いで、前記粗粒子化された放射能汚染焼却灰(少量のセメントミルク(セメントの3〜5%混合水液)を添加混合して軽く固化した焼却灰)に、その後、得られた放射能汚染焼却灰固化物を高速ミキサーにかけて微粉砕して、微粒子状放射能汚染焼却灰を取得した。
(2)放射能低減処理剤の調製:(図1に示すフローチャート参照)
熱水1000gに対して、硼砂(Na2BO47・10H2O)1000gとホウ酸600gを添加・混合して第1混合液を取得した(第1工程)。
次いで、第1工程で得られた第1混合液にシュウ酸100gと水酸化アルミニウム75gと水酸化カリウム50gを添加・混合して第2混合液を取得した(第2工程)。
その後、第2工程で得られた第2混合液を放冷して得られた放冷第2混合液に亜硫酸水(82%濃度)200gを添加・混合して放射能低減作用を発揮する第3混合液(放射能低減処理剤)を取得した(第3工程)。
(3)放射能汚染物の放射能低減処理:
上記(1)で得られた微粒子状放射能汚染焼却灰1kg(20,000ベクレル/kg)に上記(2)で得られた放射能低減処理剤0.4kgを添加・混合し、その汚染焼却灰・処理剤混合物を1時間放置した。
放置後の汚染焼却灰・処理剤混合物の放射能を測定したところ、10,000ベクレル/kgであった。
Next, examples of the present invention will be described.
Example 1:
(1) Preparation of treated agent (particulate radioactively contaminated incineration ash):
First, the radioactively contaminated incineration ash, which is the ash incinerated waste contaminated with radioactive materials (cesium 137) due to the nuclear accident, was coarsened by crushing.
Next, the radioactive particle-contaminated incinerated ash (incinerated ash lightly solidified by adding and mixing a small amount of cement milk (3-5% mixed water solution of cement)) and then the resulting radioactive contamination The incinerated ash solidified material was pulverized by a high-speed mixer to obtain fine-particle radioactively contaminated incinerated ash.
(2) Preparation of radioactivity reducing treatment agent: (Refer to the flowchart shown in FIG. 1)
1000 g of borax (Na 2 BO 4 O 7 .10H 2 O) and 600 g of boric acid were added to and mixed with 1000 g of hot water to obtain a first mixed solution (first step).
Next, 100 g of oxalic acid, 75 g of aluminum hydroxide, and 50 g of potassium hydroxide were added to and mixed with the first mixed liquid obtained in the first step (second step).
Thereafter, 200 g of sulfite water (82% concentration) is added to and mixed with the cooled second mixed solution obtained by allowing the second mixed solution obtained in the second step to cool. 3 liquid mixture (radioactivity reduction processing agent) was acquired (3rd process).
(3) Radioactivity reduction treatment of radioactive contaminants:
Add and mix 0.4 kg of the radioactive reducing agent obtained in (2) above with 1 kg (20,000 Bq / kg) of the particulate radioactively contaminated incineration ash obtained in (1) above, and incinerate the contaminated The ash / treatment agent mixture was left for 1 hour.
The radioactivity of the contaminated incineration ash / treatment agent mixture after standing was measured to be 10,000 becquerel / kg.

実施例2;
放射能汚染物の放射能低減処理:
上記実施例1の(1)と同様にして得られた微粒子状放射能汚染焼却灰1kg(2,000ベクレル/kg)に上記(2)で得られた放射能低減処理剤0.4kgを添加・混合し、その汚染焼却灰・処理剤混合物を1時間放置した。
放置後の汚染焼却灰・処理剤混合物の放射能を測定したところ、500ベクレル/kgであった。
Example 2;
Radioactivity reduction treatment of radioactive contaminants:
0.4 kg of the radioactive reducing agent obtained in (2) above was added to 1 kg (2,000 becquerel / kg) of the particulate radioactively contaminated incinerated ash obtained in the same manner as in (1) of Example 1 above. Mix and leave the contaminated incineration ash / treatment agent mixture for 1 hour.
When the radioactivity of the contaminated incineration ash / treatment agent mixture after standing was measured, it was 500 becquerel / kg.

実施例3:
本例は、実施例1で最終処理されて得られた汚染焼却灰・処理剤混合物の放射能を更に低減して安定化する、放射能汚染物の高度放射能低減処理の例である。
(a)石灰含有乾燥混合物の調製:
熱水1000gに対して、硼砂(Na2BO47・10H2O)1000gとホウ酸600gと石灰600gとパーライト200gを添加・混合した後、加熱・乾燥して1500gの水分を蒸発除去して1100gの石灰含有乾燥混合物を取得した。
Example 3:
This example is an example of a highly radioactive reduction treatment of radioactive contaminants that further reduces and stabilizes the radioactivity of the contaminated incineration ash / treatment agent mixture obtained by the final treatment in Example 1.
(A) Preparation of lime-containing dry mixture:
To 1000 g of hot water, 1000 g of borax (Na 2 BO 4 O 7 · 10H 2 O), 600 g of boric acid, 600 g of lime and 200 g of pearlite are added and mixed, and then heated and dried to evaporate and remove 1500 g of water. 1100 g of lime-containing dry mixture was obtained.

(A)放射能汚染物の高度放射能低減処理:
上記実施例1(1)で得られた微粒子状放射能汚染焼却灰1kg(20,000ベクレル/kg)に上記実施例1(2)で得られた放射能低減処理剤0.4kgを添加・混合し、その汚染焼却灰・処理剤混合物を1時間放置した。
(放置後の汚染焼却灰・処理剤混合物の放射能を測定したところ、10,000ベクレル/kgであった。)
更に上記10,000ベクレル/kgの汚染焼却灰・処理剤混合物1.4kgに、上記(a)で得られた石灰含有乾燥混合物0.4kgを添加・混合した。
その結果、得られた混合物の放射能は8,000ベクレル/kgとなった。
すなわち、その放射能低減率は約60%であった。
(A) Advanced radioactive reduction treatment of radioactive contaminants:
0.4 kg of the radioactive reducing agent obtained in Example 1 (2) was added to 1 kg (20,000 Bq / kg) of the particulate radioactively contaminated incineration ash obtained in Example 1 (1). The contaminated incinerated ash / treatment agent mixture was allowed to stand for 1 hour.
(The radioactivity of the contaminated incinerated ash / treatment agent mixture after standing was measured to be 10,000 becquerel / kg.)
Further, 0.4 kg of the lime-containing dry mixture obtained in (a) above was added to and mixed with 1.4 kg of the contaminated incineration ash / treatment agent mixture of 10,000 becquerel / kg.
As a result, the radioactivity of the obtained mixture was 8,000 becquerel / kg.
That is, the radioactivity reduction rate was about 60%.

なお、上記放射能低減処理剤の製造において、水酸化アルミニウムと亜硫酸水の代わりに、当量のアルミニウムを含む硫酸アルミニウムを用いて製造し、放射能汚染物の処理をしたところ、同様の効果が発揮された。
さらに、図2のフローチャートについて説明すると、まず「放射能汚染物(焼却灰・土壌・吸着材等)」を「乾燥」し、「粉末化」した後、それに「放射能低減処理剤」を添加混合する。次いで、加熱して、あるいは炭化してから、最後に冷却して「処理完了物」となす。
また、必要に応じて、破線で示す工程を付加してより安定的な放射能低減処理を行って、完全な「処理完了物」となすことも好ましい。
In addition, in the production of the above-mentioned radioactivity reducing treatment agent, when using aluminum sulfate containing an equivalent amount of aluminum instead of aluminum hydroxide and sulfite water and treating radioactive contaminants, the same effect is exhibited. It was done.
Furthermore, the flow chart of FIG. 2 will be explained. First, “radioactive contaminants (incineration ash, soil, adsorbents, etc.)” is “dried”, “pulverized”, and then “radioactivity reducing treatment agent” is added Mix. Next, heating or carbonization is performed, and finally cooling is performed to obtain a “processed product”.
Moreover, it is also preferable to perform a more stable radiation reduction process by adding a process indicated by a broken line as necessary to obtain a complete “processed product”.

本願発明の実施例1における放射能低減処理剤を製造するフローチャートである。It is a flowchart which manufactures the radioactivity reduction processing agent in Example 1 of this invention. 本願発明で得られた放射能低減処理剤を用いて放射能汚染物を処理するフローチャートである。It is a flowchart which processes a radioactive contaminant using the radioactive reduction processing agent obtained by this invention.

Claims (5)

熱水100重量部に対して、無機質ホウ素化合物50.0〜200.0重量部を添加・混合して第1混合液を得る第1工程と、第1工程で得られた第1混合液に水酸化アルミニウム2.5〜25.0重量部と水酸化カリウム1.5〜15.0重量部とシュウ酸2.5〜25.0重量部を添加・混合して第2混合液を得る第2工程と、第2混合液を放冷して得られた放冷第2混合液に亜硫酸水(82%濃度)2.0〜30.0重量部を添加して放射能低減作用を発揮する第3混合液を取得することを特徴とする放射能低減処理剤の製造方法。   A first step of adding and mixing 50.0 to 200.0 parts by weight of an inorganic boron compound to 100 parts by weight of hot water to obtain a first mixed solution, and a first mixed solution obtained in the first step A second mixture is obtained by adding and mixing 2.5 to 25.0 parts by weight of aluminum hydroxide, 1.5 to 15.0 parts by weight of potassium hydroxide, and 2.5 to 25.0 parts by weight of oxalic acid. Two steps and 2.0-30.0 parts by weight of sulfite water (82% concentration) are added to the cooled second mixed solution obtained by allowing the second mixed solution to cool, thereby exhibiting a radiation reducing effect. A method for producing a radioactivity-reducing treatment agent, wherein the third liquid mixture is obtained. 熱水100重量部に対して、無機質ホウ素化合物50.0〜200.0重量部を添加・混合してホウ素含有混合液を得た後、同ホウ素含有混合液に硫酸アルミニウム5.0〜50.0重量部と水酸化カリウム1.5〜15.0重量部とシュウ酸2.5〜25.0重量部を添加・混合して放射能低減作用を発揮する混合液を取得することを特徴とする放射能低減処理剤の製造方法。   After adding and mixing 50.0 to 200.0 parts by weight of an inorganic boron compound with respect to 100 parts by weight of hot water to obtain a boron-containing mixed solution, 5.0 to 50. 5 aluminum sulfate in the boron-containing mixed solution. 0 part by weight, 1.5 to 15.0 parts by weight of potassium hydroxide, and 2.5 to 25.0 parts by weight of oxalic acid are added and mixed to obtain a mixed solution exhibiting the activity of reducing radioactivity. A method for producing a radioactive reducing agent. 無機質ホウ素化合物が、ホウ酸と硼砂(Na2BO47・10H2O)の混合物であり、かつそれらの混合割合(重量比)はホウ酸:硼砂=1:1.3〜2.0であることを特徴とする請求項1又は2に記載の放射能低減処理剤の製造方法。 The inorganic boron compound is a mixture of boric acid and borax (Na 2 BO 4 O 7 .10H 2 O), and the mixing ratio (weight ratio) thereof is boric acid: borax = 1: 1.3 to 2.0. The method for producing a radioactive reducing agent according to claim 1 or 2, wherein: 固形の放射能汚染物100重量部に対して、請求項1〜3のいずれか1項で得られた放射能低減処理剤10〜100重量部を添加・混合することを特徴とする放射能汚染物の放射能低減方法。   A radioactive contamination characterized by adding and mixing 10 to 100 parts by weight of the radioactive reducing agent obtained in any one of claims 1 to 3 with respect to 100 parts by weight of a solid radioactive contaminant. A method for reducing the radioactivity of objects. 固形の放射能汚染物 100重量部に対して、請求項1〜3のいずれか1項で得られた放射能低減処理剤10〜100重量部を添加・混合し、加熱して混合乾燥物となした後、
熱水100重量部に対して、無機質ホウ素化合物40.0〜120.0重量部と、石灰30.0〜90.0重量部と、パーライト10.0〜50.0重量部を添加・混合した後、乾燥して得られた乾燥混合物を、
上記混合乾燥物100重量部に対して、乾燥混合物10〜100重量部の割合で添加・混合して、より充分に放射能汚染物の放射能を安定的に低減することを特徴とする放射能汚染物の放射能低減方法。
10 to 100 parts by weight of the radioactive reducing agent obtained in any one of claims 1 to 3 is added to and mixed with 100 parts by weight of solid radioactive contaminants, and the mixture is dried and mixed After doing
40.0 to 120.0 parts by weight of an inorganic boron compound, 30.0 to 90.0 parts by weight of lime, and 10.0 to 50.0 parts by weight of pearlite were added to and mixed with 100 parts by weight of hot water. After that, the dried mixture obtained by drying
Radioactivity characterized by adding and mixing 10 to 100 parts by weight of the dry mixture with respect to 100 parts by weight of the dry mixture to stably reduce the radioactivity of the radioactive contaminant more sufficiently. A method for reducing the radioactivity of pollutants.
JP2012031786A 2012-02-16 2012-02-16 Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination Pending JP2013167570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012031786A JP2013167570A (en) 2012-02-16 2012-02-16 Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012031786A JP2013167570A (en) 2012-02-16 2012-02-16 Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination

Publications (1)

Publication Number Publication Date
JP2013167570A true JP2013167570A (en) 2013-08-29

Family

ID=49178075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012031786A Pending JP2013167570A (en) 2012-02-16 2012-02-16 Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination

Country Status (1)

Country Link
JP (1) JP2013167570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268481A (en) * 2017-02-09 2019-09-20 水野実 The method for reducing the amount of the radiant of liquid body
KR20190111925A (en) * 2017-01-16 2019-10-02 스테이트 에토믹 에너지 코퍼레이션 “로사톰”온 비핼프 오브 더 러시안 페더레이션 Handling method of radioactive solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111925A (en) * 2017-01-16 2019-10-02 스테이트 에토믹 에너지 코퍼레이션 “로사톰”온 비핼프 오브 더 러시안 페더레이션 Handling method of radioactive solution
CN110447077A (en) * 2017-01-16 2019-11-12 俄罗斯联邦诺萨顿国家原子能公司 The method for handling radioactive solution
KR102067563B1 (en) 2017-01-16 2020-01-17 스테이트 에토믹 에너지 코퍼레이션 “로사톰”온 비핼프 오브 더 러시안 페더레이션 Handling method of radioactive solution
CN110447077B (en) * 2017-01-16 2023-05-05 俄罗斯联邦诺萨顿国家原子能公司 Method for treating radioactive solution
CN110268481A (en) * 2017-02-09 2019-09-20 水野実 The method for reducing the amount of the radiant of liquid body

Similar Documents

Publication Publication Date Title
Wagh Recent progress in chemically bonded phosphate ceramics
US20060211908A1 (en) Low-temperature solidification of radioactive and hazardous wastes
Dyer et al. The use of natural zeolites for radioactive waste treatment: studies on leaching from zeolite/cement composites
Soonthornwiphat et al. Encapsulation of Sr-loaded titanate spent adsorbents in potassium aluminosilicate geopolymer
Li et al. Review on selection and experiment method of commonly studied simulated radionuclides in researches of nuclear waste solidification
Jiang et al. Cesium removal from wastewater: High-efficient and reusable adsorbent K1. 93Ti0. 22Sn3S6. 43
DE102011016272A1 (en) Method for decontaminating radionuclides from neutron-irradiated carbon and / or graphite materials
JP2013167570A (en) Method for manufacturing radioactivity reduction treatment agent and method for treating radioactivity reduction of radioactive contamination
WO2016002938A1 (en) Method for substituting tritium in tritium-containing water, and tritium elimination method
JP2023510461A (en) Method for treating liquid tritium-containing radioactive waste
JP6716247B2 (en) Radioactive antimony, radioiodine and radioruthenium adsorbents, and radioactive waste liquid treatment methods using the adsorbents
JP6238214B2 (en) Decontamination method for radioactive material-contaminated particulate matter
JP6066160B2 (en) Radioactive contaminant cleaning agent and method for cleaning radioactive contaminant
Gupta et al. Removal of cesium ions from aqueous solution by polyaniline: A radiotracer study
Ma et al. Exploiting bifunctional 3D-Printed geopolymers for efficient cesium removal and immobilization: An approach for hazardous waste management
Xu et al. Removal of plutonium from contaminated soil by chemical leaching
Sun et al. Efficient Co‐Adsorption and Highly Selective Separation of Cs+ and Sr2+ with a K+‐Activated Niobium Germanate by the pH Control
Nugroho et al. Potentiality of graphene oxide and polyoxometalate as radionuclides adsorbent to restore the environment after fukushima disaster: A mini review
KR101636976B1 (en) A iodine absorbent material containing salts and a radioactive iodine removal system using the same
KR101183002B1 (en) Method for conditioning radioactive ion exchange resins
RU2457560C1 (en) Method of chemical decontamination of radioactive materials
JP2016020884A (en) Decontamination method for soil contaminated with radioactive substance
Hirabayashi et al. Low‐temperature conversion of spent adsorbent to iodine sodalite by a mechanochemical route
JP2014066614A (en) Radioactivity reduced material, method for manufacturing the same, and method for treating radioactive contaminants with the radioactivity reduced material
Helal et al. Sorption of radiocobalt on pottery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306