JP2013167297A - Method for manufacturing pressure vessel - Google Patents

Method for manufacturing pressure vessel Download PDF

Info

Publication number
JP2013167297A
JP2013167297A JP2012030710A JP2012030710A JP2013167297A JP 2013167297 A JP2013167297 A JP 2013167297A JP 2012030710 A JP2012030710 A JP 2012030710A JP 2012030710 A JP2012030710 A JP 2012030710A JP 2013167297 A JP2013167297 A JP 2013167297A
Authority
JP
Japan
Prior art keywords
pressure
intermediate product
pressure vessel
preliminary
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012030710A
Other languages
Japanese (ja)
Inventor
Takanobu Hoshikawa
貴信 星川
Tatsu Kawahata
竜 川畠
Koyu Goto
亘祐 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Compressor Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Compressor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Heavy Industries Compressor Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012030710A priority Critical patent/JP2013167297A/en
Publication of JP2013167297A publication Critical patent/JP2013167297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to suppress the cost of manufacturing facilities low as well as sufficiently reducing and removing a residual stress even when a pressure vessel having a large-sized pressure chamber is manufactured, and further, to set the dimensions within the pressure vessel with high precision.SOLUTION: A method for manufacturing a pressure vessel includes: an intermediate product forming step P2 of forming an intermediate product in a shape corresponding to a final shape of the pressure vessel; a preliminary pressure applying step P3 of plastically deforming the intermediate product by applying a preliminary pressure larger than a withstanding pressure required as a pressure chamber in the pressure vessel in the final shape into the pressure chamber in the intermediate product; a finish machining step P4 of finishing the intermediate product after the preliminary pressure is applied thereto in the preliminary pressure applying step into the final shape by machining it; and a withstanding pressure test step P5 of performing a withstanding pressure test to apply a withstanding pressure into the pressure chamber of the pressure vessel in the final shape subjected to finish machining.

Description

本発明は、圧縮機やタービン等に使用される圧力容器の製造方法に関するものである。   The present invention relates to a method for manufacturing a pressure vessel used for a compressor, a turbine, or the like.

一般に、圧縮機やタービン等の回転機械に使用される圧力容器の製造に際して、塑性加工や溶接等を実施すると、圧力容器に残留応力が発生することが知られている。このような残留応力が残っている状態で、製品として圧力容器に要求される耐圧性を確認する耐圧試験を実施すると、圧力容器が塑性変形して圧力容器に永久ひずみが残ってしまうことがあり、圧力容器が製品としての要求を満たせない。   In general, it is known that residual stress is generated in a pressure vessel when plastic working, welding, or the like is performed in the manufacture of a pressure vessel used in a rotary machine such as a compressor or a turbine. If a pressure test is performed to confirm the pressure resistance required for a pressure vessel as a product with such residual stress remaining, the pressure vessel may be plastically deformed and permanent pressure may remain in the pressure vessel. The pressure vessel cannot meet the product requirements.

そこで、従来では、前述の塑性加工や溶接等の工程後に、圧力容器を所定温度以上に加熱して残留応力を低減あるいは除去する焼鈍処理(SR処理)を実施することが考えられている。通常、焼鈍処理は、圧力容器を熱処理炉に収容した状態で実施する。
また、焼鈍処理の一例として、特許文献1には、管継手の溶接部近傍における残留応力を低減・除去するように、高周波加熱コイル(加熱・冷却コイル)により溶接部近傍を高周波加熱で均一に加熱した後、残留応力を低減・除去しようとする面を冷却するために、加熱・冷却コイルを用いることが記載されている。
Therefore, conventionally, it has been considered to carry out an annealing process (SR process) in which the pressure vessel is heated to a predetermined temperature or higher to reduce or remove the residual stress after the above-described processes such as plastic working and welding. Usually, the annealing treatment is performed in a state where the pressure vessel is accommodated in a heat treatment furnace.
As an example of the annealing treatment, Patent Document 1 discloses that a high-frequency heating coil (heating / cooling coil) is used to uniformly remove the vicinity of the welded portion by high-frequency heating so as to reduce or remove residual stress in the vicinity of the welded portion of the pipe joint. It describes that a heating / cooling coil is used to cool a surface on which residual stress is to be reduced / removed after heating.

さらに、従来では、金属管の残留応力を除去する手法として、管内部に流体を充填して加圧したり(特許文献2)、管内部に充填した液体(水)を冷却・凝固させて固体(氷)とする際の体積膨張を利用する(特許文献3)ことで、金属管を塑性変形させることも考えられている。なお、特許文献2,3に記載されている手法では、金属管を金型や拘束治具に収容した状態で金属管を膨らませることにより、製品状態における金属管の外形寸法を設定している。   Furthermore, conventionally, as a technique for removing the residual stress of the metal tube, the tube is filled with fluid and pressurized (Patent Document 2), or the liquid (water) filled in the tube is cooled and solidified to form a solid ( It is also considered that the metal tube is plastically deformed by utilizing the volume expansion at the time of (ice) (Patent Document 3). In the methods described in Patent Documents 2 and 3, the outer dimensions of the metal tube in the product state are set by inflating the metal tube while the metal tube is housed in a mold or a restraining jig. .

特開平9−308985号公報Japanese Patent Laid-Open No. 9-308985 特開昭61−227126号公報Japanese Patent Laid-Open No. 61-227126 特開2005−95948号公報JP-A-2005-95948

しかしながら、上記従来のように、焼鈍処理を実施するためには、圧力容器を収容できる熱処理炉を用意する必要があるが、圧縮機やタービン等の回転機械に使用する圧力容器は大型のものが多く、このような大型の圧力容器を収容できる熱処理炉を用意することは困難である。なお、仮に大型の熱処理炉を用意できたとしても、圧力容器の製造に要する設備費用が高くなってしまう、という問題がある。
なお、大型の圧力容器の残留応力を低減・除去するために、特許文献1に記載の加熱・冷却コイルを用意することも、熱処理炉の場合と同様に困難であり、また、仮に大型の加熱・冷却コイルを用意できたとしても、圧力容器の製造に要する設備費用が高くなってしまう、という問題がある。
However, as in the conventional case, in order to perform the annealing treatment, it is necessary to prepare a heat treatment furnace that can accommodate the pressure vessel. However, a pressure vessel used for a rotary machine such as a compressor or a turbine has a large size. In many cases, it is difficult to prepare a heat treatment furnace that can accommodate such a large pressure vessel. Even if a large heat treatment furnace can be prepared, there is a problem that the equipment cost required for manufacturing the pressure vessel is increased.
In addition, in order to reduce / remove residual stress of a large pressure vessel, it is difficult to prepare the heating / cooling coil described in Patent Document 1, as in the case of a heat treatment furnace. -Even if a cooling coil is prepared, there is a problem that the equipment cost required for manufacturing the pressure vessel is increased.

さらに、熱処理炉を用いて焼鈍処理を行う場合には熱処理炉内の温度を均一に保つ必要があるが、大型の熱処理炉では炉内温度を均一に保つことが難しいため、圧力容器の残留応力を十分に低減・除去できない虞があり、また、焼鈍処理の際に圧力容器に生じる内部熱応力によって意図しない塑性変形が発生する虞もある。
また、圧力容器の材質によっては、焼鈍処理を実施すると耐食性の低下を引き起こす虞もある。例えば圧力容器がステンレス鋼からなる場合、焼鈍処理の実施によって材料中のクロムと炭素が結合する鋭敏化という現象が発生し、その結果として圧力容器の耐食性が低下し、さらに、応力腐食割れ(SCC)が発生する虞もある。
Furthermore, when annealing is performed using a heat treatment furnace, it is necessary to keep the temperature inside the heat treatment furnace uniform, but in a large heat treatment furnace, it is difficult to keep the temperature inside the furnace uniform. May not be sufficiently reduced / removed, and unintended plastic deformation may occur due to internal thermal stress generated in the pressure vessel during the annealing process.
Further, depending on the material of the pressure vessel, there is a possibility that the annealing resistance may cause a decrease in corrosion resistance. For example, when the pressure vessel is made of stainless steel, a phenomenon of sensitization in which chromium and carbon in the material are bonded is caused by the annealing treatment. As a result, the corrosion resistance of the pressure vessel is lowered, and further, stress corrosion cracking (SCC) ) May occur.

また、大型の圧力容器の残留応力を低減・除去するために、特許文献2,3に記載の手法を適用する場合でも、前述した熱処理炉の場合と同様に、大型の圧力容器を収容するための大型の金型や拘束治具を用意することは困難であり、仮に大型の金型や拘束治具を用意できたとしても、圧力容器の製造に要する設備費用が高くなってしまう、という問題がある。
さらに、特許文献2,3に記載の手法を圧力容器の製造に適用した場合、金型や拘束治具を用いることで圧力容器の外形寸法を設定することはできるものの、圧力容器内(圧力室)の寸法は設定できない。特に、製造すべき圧力容器の用途が圧縮機やタービン等の回転機械である場合、圧力容器内にインペラやブレード等を高い位置精度で配置しなければならないことから、圧力容器内の寸法には高い精度が要求されるが、特許文献2,3に記載の手法では、この要求に応えることはできない。
Further, even when the methods described in Patent Documents 2 and 3 are applied to reduce / remove the residual stress of the large pressure vessel, the large pressure vessel is accommodated as in the case of the heat treatment furnace described above. It is difficult to prepare large molds and restraining jigs, and even if large molds and restraining jigs can be prepared, the equipment cost required to manufacture pressure vessels will increase. There is.
Furthermore, when the methods described in Patent Documents 2 and 3 are applied to the production of a pressure vessel, the outer dimensions of the pressure vessel can be set by using a mold or a restraining jig, but the pressure vessel (pressure chamber) ) Cannot be set. In particular, when the application of the pressure vessel to be manufactured is a rotary machine such as a compressor or a turbine, an impeller, a blade, etc. must be arranged with high positional accuracy in the pressure vessel. Although high accuracy is required, the methods described in Patent Documents 2 and 3 cannot meet this requirement.

本発明は、上述した事情に鑑みたものであって、大型の圧力容器を製造する場合であっても、残留応力を十分に低減・除去できると共に、製造用の設備費用を低く抑えることができ、さらに、圧力容器内の寸法を高い精度で設定することも可能な圧力容器の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and even when manufacturing a large pressure vessel, the residual stress can be sufficiently reduced and removed, and the manufacturing equipment cost can be kept low. Furthermore, it aims at providing the manufacturing method of the pressure vessel which can also set the dimension in a pressure vessel with high precision.

この課題を解決するために、本発明の圧力容器の製造方法は、被圧される圧力室を有する圧力容器の製造方法であって、圧力容器の最終形状に対応する形状の中間品を形成する中間品形成工程と、前記中間品における圧力室内に、前記最終形状の圧力容器における圧力室として必要とされる耐圧力よりも大きな予備圧力を作用させて前記中間品を塑性変形させる予備圧力作用工程と、予備圧力作用工程で予備圧力が作用された後の中間品を加工して、前記最終形状に仕上げる仕上げ加工工程と、仕上げ加工された最終形状の圧力容器の圧力室内に、前記耐圧力を作用させる耐圧試験を実施する耐圧試験工程とを備えることを特徴とする。   In order to solve this problem, the pressure vessel manufacturing method of the present invention is a pressure vessel manufacturing method having a pressure chamber to be pressurized, and forms an intermediate product having a shape corresponding to the final shape of the pressure vessel. An intermediate product forming step, and a pre-pressure operation step for plastically deforming the intermediate product by applying a pre-pressure greater than a pressure resistance required as a pressure chamber in the final-shaped pressure vessel in the pressure chamber of the intermediate product. Then, the intermediate product after the preliminary pressure is applied in the preliminary pressure application step is processed to finish the final shape, and the pressure resistance is set in the pressure chamber of the final shape pressure vessel. And a pressure resistance test process for performing a pressure resistance test to be applied.

そして、上記製造方法において、中間品形成工程の際に溶接等を実施すると、従来の場合と同様に、中間品形成工程後の中間品には残留応力が発生する。
次いで、予備圧力作用工程において中間品に予備圧力を作用させて中間品を塑性変形させると、一時的に中間品に生じる残留応力は大きくなるが、この予備圧力を除く(除荷する)ことで、中間品の形状が弾性的に復帰(弾性復帰)する。
And in the said manufacturing method, when welding etc. are implemented in the intermediate product formation process, residual stress will generate | occur | produce in the intermediate product after an intermediate product formation process like the conventional case.
Next, if the intermediate product is plastically deformed by applying preliminary pressure to the intermediate product in the preliminary pressure application process, the residual stress generated in the intermediate product temporarily increases, but by removing (unloading) this preliminary pressure. The shape of the intermediate product is elastically restored (elastic return).

このように弾性復帰した予備圧力作用工程後の中間品における残留応力は、予備圧力の大きさを適切に設定することで、予備圧力作用工程前の中間品における残留応力よりも低く設定することが可能である。
言い換えれば、前記圧力容器の製造方法において、前記予備圧力の大きさは、前記予備圧力を除荷した後の前記中間品における残留圧力が、前記予備圧力作用工程前の中間品における残留応力よりも小さくなるように、設定されることになる。
以上のように予備圧力作用工程を実施することで、溶接等によって生じた中間品の残留応力を低減・除去することができる。
The residual stress in the intermediate product after the preliminary pressure application process that has been elastically restored in this way can be set lower than the residual stress in the intermediate product before the preliminary pressure application process by appropriately setting the size of the preliminary pressure. Is possible.
In other words, in the pressure vessel manufacturing method, the magnitude of the preliminary pressure is determined so that the residual pressure in the intermediate product after unloading the preliminary pressure is higher than the residual stress in the intermediate product before the preliminary pressure application step. It will be set to be smaller.
By performing the preliminary pressure application process as described above, the residual stress of the intermediate product generated by welding or the like can be reduced / removed.

そして、予備圧力作用工程よりも後に実施する耐圧試験工程において、圧力容器に作用させる耐圧力は予備圧力よりも低いため、また、溶接等によって生じた残留応力は予備圧力作用工程において低減・除去されているため、圧力容器の圧力室内に耐圧力が作用しても、圧力容器は弾性変形するだけであり、塑性変形しない。すなわち、耐圧試験工程における耐圧力を除く(除荷する)ことで、圧力容器の形状や寸法は、仕上げ加工工程後の状態に戻ることになる。   In the pressure test process performed after the preliminary pressure application process, the pressure resistance applied to the pressure vessel is lower than the preliminary pressure, and the residual stress generated by welding or the like is reduced / removed in the preliminary pressure application process. Therefore, even if pressure resistance acts in the pressure chamber of the pressure vessel, the pressure vessel only elastically deforms and does not plastically deform. That is, by removing (unloading) the pressure resistance in the pressure test process, the shape and dimensions of the pressure vessel are returned to the state after the finishing process.

以上のように、上記製造方法によれば、予備圧力作用工程では、中間品の圧力室内に予備圧力を作用させるため、例え製造すべき圧力容器が大型であっても、中間品の残留応力を十分に低減・除去することが可能である。
また、予備圧力作用工程は、従来でも実施している耐圧試験工程と同様に圧力室内に圧力を作用させる工程であることから、耐圧試験工程と同様の設備を用いて実施することが可能である。さらに、これら予備圧力作用工程や耐圧試験工程では、中間品や圧力容器の内側から圧力をかけるため、中間品や圧力容器を収容する設備が不要である。したがって、上記製造方法によれば、大型の圧力容器を製造する場合であっても、圧力容器の製造に要する設備費用を低く抑えることができる。
As described above, according to the above manufacturing method, in the preliminary pressure application step, since the preliminary pressure is applied in the intermediate pressure chamber, even if the pressure vessel to be manufactured is large, the residual stress of the intermediate product is reduced. It can be sufficiently reduced and eliminated.
Further, since the preliminary pressure operation step is a step in which pressure is applied to the pressure chamber in the same manner as the pressure test step that has been conventionally performed, it can be performed using the same equipment as the pressure test step. . Further, in these preliminary pressure application process and pressure test process, pressure is applied from the inside of the intermediate product or pressure vessel, so that no facility for accommodating the intermediate product or pressure vessel is required. Therefore, according to the said manufacturing method, even if it is a case where a large sized pressure vessel is manufactured, the installation expense required for manufacture of a pressure vessel can be restrained low.

さらに、上記製造方法によれば、予備圧力作用工程後から耐圧試験工程前までの間に、仕上げ加工工程を実施して中間品を最終形状の圧力容器に仕上げているが、耐圧試験工程では圧力容器が塑性変形しないため、大型の圧力容器を製造する場合であっても、高い精度の寸法を有する圧力容器を製品として提供することが可能となる。特に、圧力室の寸法を高精度に設定できることで、圧力容器を圧縮機やタービン等の回転機械に使用する製品として提供することが可能となる。   Further, according to the above manufacturing method, the finishing process is performed to finish the intermediate product into the final shape pressure vessel after the preliminary pressure application process and before the pressure test process. Since the container is not plastically deformed, it is possible to provide a pressure container having a highly accurate dimension as a product even when a large pressure container is manufactured. In particular, since the size of the pressure chamber can be set with high accuracy, the pressure vessel can be provided as a product used for a rotary machine such as a compressor or a turbine.

また、上記製造方法によれば、従来のような焼鈍処理を実施しないため、内部熱応力による意図しない塑性変形の発生も防止でき、さらに、圧力容器の材質に関わらず、圧力容器の耐食性の低下や応力腐食割れも防ぐことが可能である。   Further, according to the above manufacturing method, since the conventional annealing treatment is not performed, it is possible to prevent unintended plastic deformation due to internal thermal stress, and further, the corrosion resistance of the pressure vessel is reduced regardless of the material of the pressure vessel. And stress corrosion cracking can be prevented.

そして、前記圧力容器の製造方法における前記中間品形成工程では、前記予備圧力作用工程により前記中間品が塑性変形して該中間品における圧力室の被圧面が変位するように、かつ、前記仕上げ加工工程で、前記予備圧力作用工程後の中間品における圧力室の被圧面を、前記最終形状の圧力容器における圧力室の被圧面に仕上げることが可能となるように、前記最終形状の圧力容器における圧力室の被圧面に余肉を与えて、前記中間品における圧力室の被圧面を形成することが好ましい。   Then, in the intermediate product forming step in the pressure vessel manufacturing method, the intermediate product is plastically deformed by the preliminary pressure application step, and the pressure-receiving surface of the pressure chamber in the intermediate product is displaced, and the finishing process is performed. The pressure in the final shape pressure vessel so that the pressure surface of the pressure chamber in the intermediate product after the preliminary pressure application step can be finished to the pressure surface of the pressure chamber in the final shape pressure vessel in the process. It is preferable that a surplus wall is provided on the pressure-receiving surface of the chamber to form a pressure-receiving surface of the pressure chamber in the intermediate product.

すなわち、上記製造方法における中間品形成工程では、予備圧力作用工程において圧力室内に耐圧力よりも高い予備圧力が作用しても中間品が破損することなく塑性変形できる範囲内で、中間品における被圧面をなす壁部の肉厚が、最終形状の圧力容器における壁部の肉厚よりも余肉の分だけ厚くなるように設定される。
そして、上記製造方法によれば、上述した範囲内で、中間品形成工程で中間品における被圧面をなす壁部の肉厚を最終形状の圧力容器における壁部の肉厚よりも厚く設定しておくことで、予備圧力作用工程において中間品を確実に塑性変形させることができ、かつ、予備圧力作用工程後の中間品に対して仕上げ加工工程を実施することができる。
That is, in the intermediate product forming step in the above manufacturing method, even if a preliminary pressure higher than the withstand pressure acts in the pressure chamber in the preliminary pressure application step, the intermediate product is covered within a range in which the intermediate product can be plastically deformed without being damaged. The thickness of the wall portion forming the pressure surface is set so as to be thicker than the thickness of the wall portion in the final-shaped pressure vessel.
According to the manufacturing method, within the above-described range, the thickness of the wall portion forming the pressure-sensitive surface in the intermediate product in the intermediate product forming step is set to be thicker than the thickness of the wall portion in the final-shaped pressure vessel. Thus, the intermediate product can be reliably plastically deformed in the preliminary pressure application step, and the finishing process can be performed on the intermediate product after the preliminary pressure application step.

また、前記圧力容器の製造方法においては、前記中間品形成工程の前に、前記中間品を設計する設計工程を備え、該設計工程では、前記最終形状の圧力容器の圧力室内に前記耐圧力を作用させた場合に圧力容器が塑性変形して生じる前記被圧面の変位量を解析し、前記余肉の厚さを前記変位量以上の値に設定するとよい。   The pressure vessel manufacturing method further includes a design step of designing the intermediate product before the intermediate product forming step, and in the design step, the pressure resistance is set in a pressure chamber of the final shape pressure vessel. It is preferable to analyze the amount of displacement of the pressure surface generated by plastic deformation of the pressure vessel when it is applied, and set the thickness of the surplus wall to a value equal to or greater than the amount of displacement.

このように余肉の厚さを設定することにより、予備圧力作用工程後の中間品における壁部の肉厚は、最終形状の圧力容器における壁部の肉厚以上となる。したがって、仕上げ加工工程においては、切削加工等によって確実に要求された圧力容器の寸法通りに、最終形状の圧力容器を仕上げることが可能となる。言い換えれば、予備圧力作用工程後の中間品に対して、仕上げ加工工程を実施できなくなってしまうことを確実に防止することができる。   By setting the thickness of the surplus wall in this way, the wall thickness of the intermediate product after the preliminary pressure application step becomes equal to or greater than the wall thickness of the final shape pressure vessel. Therefore, in the finishing process, it is possible to finish the final-shaped pressure vessel according to the dimensions of the pressure vessel that are reliably requested by cutting or the like. In other words, it is possible to reliably prevent the finishing process from being performed on the intermediate product after the preliminary pressure application process.

さらに、前記圧力容器の製造方法における前記設計工程では、前記被圧面の形状が異なる前記圧力容器の複数の部位について前記被圧面の変位量を解析する第一ステップと、これら複数の前記被圧面の変位量のうち最も大きい値を最大変位量に設定する第二ステップと、前記最大変位量よりも大きい値を前記圧力容器における被圧面に与える余肉の厚さとして設定する第三ステップと、前記余肉の厚さを加味した前記中間品の圧力室内に前記予備圧力を作用させた場合に前記中間品の複数の部位が塑性変形して生じる複数の部位の前記被圧面の変位量を解析する第四ステップとを順次実施した後、前記第四ステップで解析された複数の部位の前記変位量が複数の部位に各々対応する前記余肉の厚さ以下となるまで、複数の部位のうち第四ステップで解析された変位量が前記余肉の厚さよりも大きい前記中間品の部位の被圧面に、追加余肉を追加して新たな余肉の厚さに設定した上で、前記第四ステップを再度実施し、前記第四ステップで複数の部位の変形量が複数の部位に各々対応する前記余肉の厚さ以下となった際の余肉の厚さを、前記中間品形成工程で前記圧力容器における圧力室の被圧面に与える余肉の厚さとして設定すると、さらによい。   Furthermore, in the design step in the method for manufacturing the pressure vessel, a first step of analyzing a displacement amount of the pressure surface for a plurality of portions of the pressure vessel having different shapes of the pressure surface, and a plurality of the pressure surfaces A second step of setting the largest value of the displacement amounts as the maximum displacement amount, a third step of setting a value larger than the maximum displacement amount as the thickness of the surplus to be given to the pressure surface in the pressure vessel, and When the preliminary pressure is applied to the pressure chamber of the intermediate product taking into account the thickness of the surplus, the amount of displacement of the pressure-receiving surface at the plurality of locations resulting from plastic deformation of the plurality of locations of the intermediate product is analyzed. After sequentially performing the fourth step, the first of the plurality of portions until the displacement amount of the plurality of portions analyzed in the fourth step is equal to or less than the thickness of the surplus corresponding to each of the plurality of portions. Four steps In the fourth step, an additional surplus is added and set to a new surplus thickness on the pressure-receiving surface of the intermediate product where the displacement analyzed in the step is larger than the surplus thickness. The thickness of the surplus when the amount of deformation of the plurality of parts is equal to or less than the thickness of the surplus corresponding to each of the plurality of parts in the fourth step is determined in the intermediate product forming step. It is even better if it is set as the thickness of the surplus that is imparted to the pressure chamber surface of the pressure chamber.

上記製造方法によれば、製造すべき圧力容器の圧力室が複雑な形状であっても、前記設計工程では余肉の厚さが圧力容器の部位毎に設定されるため、中間品形成工程において付与する余肉の厚さを最小限に抑えることが可能となる。言い換えれば、中間品における壁部の肉厚が不要に厚くなることを防止できる。
また、余肉の厚さを最小限に抑えることで、仕上げ加工工程において中間品の被圧面を圧力容器の被圧面に加工する量を減らして、当該工程における工数削減を図ることが可能となる。
According to the above manufacturing method, even if the pressure chamber of the pressure vessel to be manufactured has a complicated shape, the thickness of the surplus is set for each part of the pressure vessel in the design process. It is possible to minimize the thickness of the surplus to be applied. In other words, the wall thickness of the intermediate product can be prevented from becoming unnecessarily thick.
In addition, by minimizing the thickness of the surplus, it is possible to reduce the amount of processing of the intermediate product pressure surface into the pressure vessel pressure surface in the finishing process, thereby reducing the number of steps in the process. .

また、前記圧力容器の製造方法における、前記設計工程では、前記最終形状の圧力容器の圧力室内に前記耐圧力を作用させた場合に前記圧力容器に生じる試験時応力を解析した上で、前記余肉の厚さを加味した前記中間品の圧力室内に圧力を作用させた際に生じる応力が前記試験時応力以上となるように、前記予備圧力を設定するとよい。   Further, in the design step in the method for manufacturing a pressure vessel, after analyzing the stress at the time of the test that occurs in the pressure vessel when the pressure resistance is applied in the pressure chamber of the pressure vessel of the final shape, The preliminary pressure may be set so that the stress generated when pressure is applied to the pressure chamber of the intermediate product taking into account the thickness of the meat is equal to or greater than the stress at the time of the test.

このように予備圧力を設定することにより、前記余肉の厚さを加味した中間品に対して予備圧力作用工程を実施する際に、中間品をより確実に塑性変形させ、中間品における圧力室の被圧面をより確実に変位させることができる。また、耐圧試験工程における耐圧力によって最終形状の圧力容器に塑性変形が生じることを確実に防ぐことができる。   By setting the preliminary pressure in this way, when performing the preliminary pressure operation step on the intermediate product taking into account the thickness of the surplus, the intermediate product is more reliably plastically deformed, and the pressure chamber in the intermediate product is The pressed surface can be displaced more reliably. In addition, it is possible to reliably prevent plastic deformation from occurring in the final-shaped pressure vessel due to the pressure resistance in the pressure resistance test process.

さらに、前記圧力容器の製造方法における前記設計工程では、前記被圧面の形状が異なる前記圧力容器の複数の部位について前記試験時応力を解析した上で、前記余肉の厚さを加味した前記中間品の圧力室内に圧力を作用させた際に前記中間品の各部位に生じる各応力が前記各部位に対応する前記試験時応力以上となるように、複数の部位に各々対応する複数の部位別予備圧力を設定し、複数の部位別予備圧力のうち最も高い値を前記予備圧力として設定すると、さらによい。   Further, in the design step in the method for manufacturing the pressure vessel, the intermediate in which the thickness of the surplus is taken into account after analyzing the stress at the time of testing for a plurality of portions of the pressure vessel having different shapes of the pressure surface When the pressure is applied to the product pressure chamber, the stress generated in each part of the intermediate product is equal to or greater than the stress at the time of the test corresponding to each part. It is further preferable to set a preliminary pressure and set the highest value among the plurality of site-specific preliminary pressures as the preliminary pressure.

製造すべき圧力容器の圧力室の被圧面が複雑な形状である場合、被圧面の形状が異なる圧力容器あるいは中間品の複数の部位に生じる負荷応力の種類(例えば引張応力や曲げ応力など)や大きさは、部位によって異なる。例えば、被圧面が曲面である圧力容器あるいは中間品の部位と、被圧面が平面である圧力容器あるいは中間品の部位とでは、各部位に生じる応力の種類や大きさが互いに異なる。
そこで、上記製造方法のように予備圧力を設定すれば、製造すべき圧力容器の圧力室が複雑な形状であっても、予備圧力作用工程の実施に際して、被圧面の形状が異なる中間品の複数の部位全て(中間品全体)を確実に塑性変形させることができ、また、中間品の複数の部位全ての被圧面を確実に変位させることができる。したがって、製造すべき圧力容器の圧力室が複雑な形状であっても、耐圧試験工程における耐圧力によって最終形状の圧力容器に塑性変形が生じることを確実に防ぐことができる。
When the pressure surface of the pressure chamber of the pressure vessel to be manufactured has a complicated shape, the type of load stress (for example, tensile stress or bending stress) generated in a plurality of parts of the pressure vessel or intermediate product with different shape of the pressure surface, The size varies depending on the site. For example, the types and magnitudes of the stresses generated in the respective portions are different between a pressure vessel or intermediate product portion having a curved pressure surface and a pressure vessel or intermediate product portion having a flat pressure surface.
Therefore, if the preliminary pressure is set as in the above manufacturing method, even if the pressure chamber of the pressure vessel to be manufactured has a complicated shape, a plurality of intermediate products with different shapes of the pressure-receiving surfaces are used in the preliminary pressure operation step. Thus, it is possible to reliably plastically deform all the parts (the entire intermediate product), and it is possible to reliably displace the pressed surfaces of all the plurality of parts of the intermediate product. Therefore, even if the pressure chamber of the pressure vessel to be manufactured has a complicated shape, it is possible to reliably prevent plastic deformation from occurring in the final shape pressure vessel due to the pressure resistance in the pressure resistance test process.

本発明によれば、大型の圧力容器を製造する場合であっても、溶接等による残留応力を十分に低減・除去できると共に、製造用の設備費用を低く抑えることが可能となる。
また、圧力室の寸法を高精度に設定できることで、圧力容器を圧縮機やタービン等の回転機械に使用する製品として提供することが可能となる。
According to the present invention, even when a large pressure vessel is manufactured, residual stress due to welding or the like can be sufficiently reduced and removed, and manufacturing equipment costs can be kept low.
In addition, since the size of the pressure chamber can be set with high accuracy, the pressure vessel can be provided as a product used for a rotary machine such as a compressor or a turbine.

本発明の第一実施形態に係る製造方法で製造される圧力容器を備える遠心圧縮機を示す一部切欠斜視図である。It is a partially cutaway perspective view showing a centrifugal compressor provided with a pressure vessel manufactured with a manufacturing method concerning a first embodiment of the present invention. 本発明の第一実施形態に係る製造方法で製造される圧力容器を示す概略断面図である。It is a schematic sectional drawing which shows the pressure vessel manufactured with the manufacturing method which concerns on 1st embodiment of this invention. 図2における要部Iを示す拡大断面図である。It is an expanded sectional view which shows the principal part I in FIG. 本発明の第一実施形態に係る製造方法のフローチャートである。It is a flowchart of the manufacturing method which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る製造方法に対応する中間品及び圧力容器の応力ひずみ線図である。It is a stress strain diagram of an intermediate article and a pressure vessel corresponding to a manufacturing method concerning a first embodiment of the present invention. 本発明の第一実施形態に係る製造方法において、中間品あるいは圧力容器の圧力室内に作用させる圧力と、中間品あるいは圧力容器に生じる応力との関係を示すグラフである。In the manufacturing method concerning a first embodiment of the present invention, it is a graph which shows the relation between the pressure which acts in the pressure room of an intermediate article or a pressure vessel, and the stress which arises in an intermediate article or a pressure vessel. 本発明の第二実施形態に係る製造方法のうち、設計工程において実施するフローチャートである。It is a flowchart implemented in a design process among the manufacturing methods which concern on 2nd embodiment of this invention.

〔第一実施形態〕
以下、図1〜6を参照して本発明の第一実施形態について説明する。なお、本実施形態に係る製造方法は、例えば図1に示すように、遠心圧縮機50に備える圧力容器1を製造する方法である。
この遠心圧縮機50は、軸線O周りに回転させられる円柱状の回転軸Sと、回転軸Sに固定されて遠心力を利用して流体を圧縮するインペラ52と、回転軸Sを軸線O方向に挿通させると共にインペラ52を収容するケーシング53と、を備えている。
インペラ52は、軸線Oを中心とした円盤状に形成されており、このインペラ52内部には、流体を径方向内周側から外周側に流すための流路が画成されている。このインペラ52は、軸線O方向に適宜間隔をあけて複数配列されている。
[First embodiment]
The first embodiment of the present invention will be described below with reference to FIGS. In addition, the manufacturing method which concerns on this embodiment is a method of manufacturing the pressure vessel 1 with which the centrifugal compressor 50 is provided, for example, as shown in FIG.
The centrifugal compressor 50 includes a cylindrical rotary shaft S that is rotated around an axis O, an impeller 52 that is fixed to the rotary shaft S and compresses a fluid using centrifugal force, and the rotary shaft S in the direction of the axis O. And a casing 53 that accommodates the impeller 52.
The impeller 52 is formed in a disk shape centered on the axis O, and a flow path for flowing a fluid from the radially inner peripheral side to the outer peripheral side is defined in the impeller 52. A plurality of impellers 52 are arranged at appropriate intervals in the direction of the axis O.

ケーシング53は、略円柱状に形成されて遠心圧縮機50の外郭をなす圧力容器1と、圧力容器1内に配されて、インペラ52と共に流体を上流側から下流側に流すための流路を画成する流路画成部材54と、を備えている。
そして、圧力容器1は、図1,2に示すように、軸線Oを中心とする概ね円筒状に形成される周壁部2と、周壁部の軸線O方向の両端部の開口を覆うように該両端部に形成された円環板状の端板部(鏡板部)3と、を有している。
The casing 53 is formed in a substantially cylindrical shape and forms an outline of the centrifugal compressor 50, and is disposed in the pressure container 1, and has a flow path for flowing fluid from the upstream side to the downstream side together with the impeller 52. And a flow path defining member 54 for defining.
As shown in FIGS. 1 and 2, the pressure vessel 1 covers the peripheral wall portion 2 formed in a substantially cylindrical shape centering on the axis O and the openings at both ends of the peripheral wall portion in the axis O direction. And an annular plate-shaped end plate portion (end plate portion) 3 formed at both ends.

各端板部3には、回転軸Sを回転可能に支持する軸受部55が端板部3の内周面に対して隙間なく取り付けられている。すなわち、圧力容器1の中心を貫くように配される回転軸Sは、一対の軸受部55を介して圧力容器1に支持されている。
また、この圧力容器1においては、流体を外部から流入させるための吸込管4、及び、流体を外部に流出させるための排出管5が、溶接によって周壁部2に接続されている。さらに、周壁部2には、軸線O周りに延在して、流体を後述する流路画成部材54の下流側流路から排出管5に導く排出用流路6が形成されている。
A bearing portion 55 that rotatably supports the rotation shaft S is attached to each end plate portion 3 with no gap with respect to the inner peripheral surface of the end plate portion 3. That is, the rotation shaft S disposed so as to penetrate the center of the pressure vessel 1 is supported by the pressure vessel 1 via the pair of bearing portions 55.
Moreover, in this pressure vessel 1, the suction pipe 4 for letting a fluid flow in from the outside, and the discharge pipe 5 for letting a fluid flow outside are connected to the surrounding wall part 2 by welding. Further, a discharge flow path 6 is formed in the peripheral wall portion 2 so as to extend around the axis O and guide the fluid from the downstream flow path of the flow path defining member 54 described later to the discharge pipe 5.

流路画成部材54は、回転軸Sを軸線O方向に挿通させるように、また、回転軸Sに固定されたインペラ52を収容するように、略円筒状に形成されている。
この流路画成部材54には、上流側のインペラ52Aから径方向外周側に流された流体を径方向内周側に導いた上で下流側のインペラ52Bに導く中間流路56や、下流側のインペラ52Bから径方向外周側に流された流体を圧力容器1の排出用流路6に導く下流側流路57が形成されている。また、この流路画成部材54が圧力容器1内に配されていることで、圧力容器1の内面と流路画成部材54とによって、流体を吸込管4から上流側のインペラ52Aに導く吸込用流路58が画成される。
The flow path defining member 54 is formed in a substantially cylindrical shape so as to allow the rotation shaft S to be inserted in the direction of the axis O and to accommodate the impeller 52 fixed to the rotation shaft S.
The flow path defining member 54 includes an intermediate flow path 56 that guides the fluid that has flowed from the upstream impeller 52A to the radially outer peripheral side to the radially inner peripheral side and then guides the fluid to the downstream impeller 52B. A downstream flow path 57 that guides the fluid that has flowed from the side impeller 52 </ b> B to the radially outer peripheral side to the discharge flow path 6 of the pressure vessel 1 is formed. Further, since the flow path defining member 54 is arranged in the pressure vessel 1, the fluid is guided from the suction pipe 4 to the upstream impeller 52 </ b> A by the inner surface of the pressure vessel 1 and the flow path defining member 54. A suction channel 58 is defined.

このような遠心圧縮機50では、圧力容器1内(主に周壁部2及び端板部3によって画成される圧力室7)が被圧されるため、流体が流路外や圧力容器1外に漏れ出さないように、圧力容器1に対して高い耐圧性や寸法精度が要求される。なお、高い寸法精度が要求される圧力容器1の部位の寸法としては、例えば流路画成部材54に対する周壁部2の内径寸法や、軸受部55に対する端板部3の寸法などが挙げられる。   In such a centrifugal compressor 50, since the inside of the pressure vessel 1 (mainly the pressure chamber 7 defined by the peripheral wall portion 2 and the end plate portion 3) is pressurized, the fluid is out of the flow path or outside the pressure vessel 1. Therefore, the pressure vessel 1 is required to have high pressure resistance and dimensional accuracy. Examples of the size of the portion of the pressure vessel 1 that requires high dimensional accuracy include the inner diameter size of the peripheral wall portion 2 with respect to the flow path defining member 54 and the size of the end plate portion 3 with respect to the bearing portion 55.

次に、本実施形態に係る圧力容器1の製造方法について説明する。
本実施形態の製造方法は、図4のフローチャートに示すように、設計工程P1と、中間品形成工程P2と、予備圧力作用工程P3と、仕上げ加工工程P4と、耐圧試験工程P5と、を順番に実施するものである。
中間品形成工程P2は、圧力容器1の最終形状に対応する形状の中間品1A(図2,3参照)を形成する工程であり、設計工程P1は、圧力容器1の最終形状に基づいて中間品1Aの形状や寸法を設計する工程である。設計工程P1の詳細については、後述する。
Next, the manufacturing method of the pressure vessel 1 which concerns on this embodiment is demonstrated.
In the manufacturing method of the present embodiment, as shown in the flowchart of FIG. 4, the design process P1, the intermediate product forming process P2, the preliminary pressure application process P3, the finishing process P4, and the pressure resistance test process P5 are sequentially performed. It is to be implemented.
The intermediate product forming step P2 is a step of forming an intermediate product 1A (see FIGS. 2 and 3) having a shape corresponding to the final shape of the pressure vessel 1, and the design step P1 is based on the final shape of the pressure vessel 1. This is a process of designing the shape and dimensions of the product 1A. Details of the design process P1 will be described later.

中間品形成工程P2では、鋳造工程P21と、粗機械加工工程P22と、溶接加工工程P23と、を備えており、例えば、これら鋳造工程P21、粗機械加工工程P22及び溶接加工工程P23を順番通りに実施する。
鋳造工程P21は、中間品1Aにおける周壁部2A及び端板部3A(図2,3参照)を一体に成形し、また、中間品1Aにおける吸込管及び排出管それぞれ別個に成形する工程である。また、粗機械加工工程P22は、設計工程P1で設定される中間品1Aの寸法となるように、鋳造工程P21で成形された周壁部2A、端板部3A、吸込管及び排出管に対してそれぞれ切削加工等を施す工程である。さらに、溶接加工工程P23は、鋳造工程P21後の吸込管及び排出管を溶接によって周壁部2Aに接続する工程である。
The intermediate product forming process P2 includes a casting process P21, a rough machining process P22, and a welding process P23. For example, the casting process P21, the rough machining process P22, and the welding process P23 are performed in order. To implement.
The casting process P21 is a process in which the peripheral wall portion 2A and the end plate portion 3A (see FIGS. 2 and 3) in the intermediate product 1A are integrally formed, and the suction pipe and the discharge pipe in the intermediate product 1A are separately formed. Further, the rough machining step P22 is performed on the peripheral wall portion 2A, the end plate portion 3A, the suction pipe, and the discharge pipe formed in the casting step P21 so as to have the dimensions of the intermediate product 1A set in the design step P1. Each of these is a process of performing cutting or the like. Furthermore, the welding process P23 is a process of connecting the suction pipe and the discharge pipe after the casting process P21 to the peripheral wall portion 2A by welding.

なお、この中間品形成工程P2では、例えば溶接加工工程P23後に、周壁部2A及び端板部3Aに対して切削加工等を施す粗機械加工工程P22を実施してもよい。
また、最終形状の圧力容器1のうち特に周壁部2が大型である場合には、例えば、鋳造工程P21において、中間品1Aにおける周壁部2A及び端板部3Aを適宜分割した複数の分割体をそれぞれ別個に成形し、溶接加工工程P23において、複数の分割体を溶接によって接続することで、中間品1Aにおける周壁部2A及び端板部3Aを形成してもよい。
In the intermediate product forming process P2, for example, after the welding process P23, a rough machining process P22 for cutting the peripheral wall portion 2A and the end plate portion 3A may be performed.
Moreover, when especially the surrounding wall part 2 is large sized among the pressure vessels 1 of the last shape, for example, in the casting process P21, a plurality of divided bodies obtained by appropriately dividing the surrounding wall part 2A and the end plate part 3A in the intermediate product 1A are provided. The peripheral wall portion 2A and the end plate portion 3A in the intermediate product 1A may be formed by forming each separately and connecting the plurality of divided bodies by welding in the welding process P23.

中間品形成工程P2によって得られる中間品1Aでは、主に上述した溶接等によって、中間品1Aの一部あるいは全体に残留応力が発生する。なお、この状態における中間品1Aでは、図5の応力ひずみ線図においてプロット点aに位置し、残留応力σaが発生している。   In the intermediate product 1A obtained by the intermediate product forming step P2, residual stress is generated in a part or the whole of the intermediate product 1A mainly by the above-described welding or the like. In the intermediate product 1A in this state, the residual stress σa is generated at the plot point a in the stress strain diagram of FIG.

予備圧力作用工程P3は、中間品形成工程P2後の中間品1Aにおける圧力室7A(図2参照)内に予備圧力Peを作用させて中間品1Aを塑性変形させる工程である。なお、予備圧力Peは、後述する耐圧試験工程P5で圧力容器1における圧力室7内に作用させる耐圧力Ptよりも大きい圧力である。
この予備圧力作用工程P3では、例えば水圧を予備圧力Peとして作用させる。すなわち、中間品1Aのうち外部に開口する部分(例えば、端板部3A、吸込管、排出管の開口部分)を塞ぐように、中間品1Aに水圧治具(不図示)等を取り付けた上で、中間品1Aの圧力室7A内を水で満たす。そして、この水により圧力室7A内に予備圧力Pe(水圧)を作用させ、この予備圧力Peを所定時間保持する。このように予備圧力Peを作用させることで、圧力室7A内の被圧面には予備圧力Peが均一に作用する。その後、圧力室7A内の圧力を予備圧力Peから下げ、水を圧力室7A内から排出する。
なお、前述の被圧面は、例えば図2,3に示すように、中間品1Aの周壁部2Aや端板部3Aの内面8Aであり、以下の説明では「被圧面8A」と記載する。
The preliminary pressure application process P3 is a process in which the preliminary product Pe is applied to the pressure chamber 7A (see FIG. 2) in the intermediate product 1A after the intermediate product formation process P2 to plastically deform the intermediate product 1A. The preliminary pressure Pe is a pressure larger than the pressure resistance Pt applied to the pressure chamber 7 in the pressure vessel 1 in the pressure test step P5 described later.
In the preliminary pressure application process P3, for example, water pressure is applied as the preliminary pressure Pe. In other words, a hydraulic jig (not shown) or the like is attached to the intermediate product 1A so as to block a portion of the intermediate product 1A that opens to the outside (for example, the opening portion of the end plate portion 3A, the suction pipe, and the discharge pipe). Then, the pressure chamber 7A of the intermediate product 1A is filled with water. Then, this water causes a preliminary pressure Pe (water pressure) to act in the pressure chamber 7A, and this preliminary pressure Pe is held for a predetermined time. By applying the preliminary pressure Pe in this way, the preliminary pressure Pe acts uniformly on the surface to be pressurized in the pressure chamber 7A. Thereafter, the pressure in the pressure chamber 7A is lowered from the preliminary pressure Pe, and water is discharged from the pressure chamber 7A.
2 and 3, for example, as shown in FIGS. 2 and 3, the above-mentioned pressure-sensitive surface is the peripheral wall portion 2A of the intermediate product 1A and the inner surface 8A of the end plate portion 3A, and will be referred to as “pressure-sensitive surface 8A” in the following description.

このように実施される予備圧力作用工程P3では、中間品1Aの圧力室7A内に予備圧力Peが作用している状態において中間品1Aが塑性変形するため、この状態において中間品1Aに生じる残留応力は一時的に大きくなる。すなわち、ここまでの状態における中間品1Aでは、図5の応力ひずみ線図においてプロット点aからプロット点bに移動して位置し、残留応力σbが発生している。
なお、図5の応力ひずみ線図に示すように、予備圧力Peを作用させることで中間品1Aに生じる応力、すなわち、予備圧力作用工程P3前の残留応力σaと、予備圧力作用工程P3時の残留応力σbとの差分(σb−σa)を、予備圧力作用時応力σPeと定義する。
In the preliminary pressure operation step P3 performed in this way, the intermediate product 1A is plastically deformed in a state where the preliminary pressure Pe is acting in the pressure chamber 7A of the intermediate product 1A. The stress increases temporarily. That is, in the intermediate product 1A in the state so far, the residual stress σb is generated by moving from the plot point a to the plot point b in the stress strain diagram of FIG.
As shown in the stress-strain diagram of FIG. 5, the stress generated in the intermediate product 1A by applying the preliminary pressure Pe, that is, the residual stress σa before the preliminary pressure application process P3, and the preliminary pressure application process P3 the difference between the residual stresses .sigma.b the (σb-σa), defined as the pre-pressure acting upon stress sigma Pe.

そして、上記予備圧力Peを除いて(除荷して)予備圧力作用工程P3を終了させると、中間品1Aの形状が弾性的に復帰(弾性復帰)する。この予備圧力Peの除荷により、中間品1Aの残留応力が緩和され、図5の応力ひずみ線図においてプロット点bからプロット点cに移動して位置する。
ここで、プロット点cによって示される予備圧力作用工程3後の残留応力δcの大きさは、予備圧力Peの大きさによって決められ、応力ひずみ線図の塑性変形域において応力ひずみ線が右肩上がりの領域では、一般に、予備圧力Peが大きいほど残留応力σcが低くなる。
Then, when the preliminary pressure operation step P3 is terminated by removing (unloading) the preliminary pressure Pe, the shape of the intermediate product 1A is elastically restored (elastically restored). By the unloading of the preliminary pressure Pe, the residual stress of the intermediate product 1A is relieved and moved from the plot point b to the plot point c in the stress strain diagram of FIG.
Here, the magnitude of the residual stress δc after the preliminary pressure application step 3 indicated by the plot point c is determined by the magnitude of the preliminary pressure Pe, and the stress strain line rises to the right in the plastic deformation region of the stress strain diagram. In general, the residual stress σc decreases as the preliminary pressure Pe increases.

したがって、上記予備圧力作用工程P3における予備圧力Peの大きさを適切に設定することにより、図5に示すように、残留応力σcを残留応力σaよりも低く設定することができる。
言い換えれば、予備圧力Peの大きさは、予備圧力Peを除荷した後の中間品1Aにおける残留応力σcが、予備圧力作用工程P3前の中間品1Aにおける残留応力σaよりも小さくなるように設定される。
これにより、溶接等によって生じた残留応力σaを低減・除去することができる。
Therefore, the residual stress σc can be set lower than the residual stress σa as shown in FIG. 5 by appropriately setting the magnitude of the preliminary pressure Pe in the preliminary pressure application step P3.
In other words, the magnitude of the preliminary pressure Pe is set so that the residual stress σc in the intermediate product 1A after unloading the preliminary pressure Pe is smaller than the residual stress σa in the intermediate product 1A before the preliminary pressure application step P3. Is done.
Thereby, the residual stress σa generated by welding or the like can be reduced / removed.

仕上げ加工工程P4は、予備圧力作用工程P3後の中間品1Aを加工して、圧力容器1を最終形状に仕上げる工程である。すなわち、この工程では、中間品1Aに切削加工や研削加工等を施すことで、最終形状の圧力容器1が得られる。   The finishing process P4 is a process in which the intermediate product 1A after the preliminary pressure application process P3 is processed to finish the pressure vessel 1 into a final shape. That is, in this step, the final shape of the pressure vessel 1 is obtained by performing cutting or grinding on the intermediate product 1A.

最後に実施する耐圧試験工程P5は、仕上げ加工された最終形状の圧力容器1の圧力室7内に、圧力容器1における圧力室7として必要とされる耐圧力Ptを作用させる工程である。すなわち、耐圧力Ptは、実際に圧力容器1を製品として使用する状態(具体的には圧力容器1を遠心圧縮機50に組み込んだ状態)において、圧力容器1の圧力室7内に作用しうる最大圧力よりも大きな圧力であり、安全性を考慮して予め設定されるものである。   The pressure test step P5 that is finally performed is a step in which the pressure resistance Pt required as the pressure chamber 7 in the pressure vessel 1 is applied to the pressure chamber 7 of the final-shaped pressure vessel 1 that has been finished. That is, the pressure resistance Pt can act in the pressure chamber 7 of the pressure vessel 1 in a state where the pressure vessel 1 is actually used as a product (specifically, a state where the pressure vessel 1 is incorporated in the centrifugal compressor 50). The pressure is higher than the maximum pressure, and is set in advance in consideration of safety.

この耐圧試験工程P5では、予備圧力作用工程P3の場合と同様に、水圧を耐圧力Ptとして作用させる。すなわち、圧力容器1のうち外部に開口する部分を塞ぐように、圧力容器1に水圧治具等を取り付けた上で、圧力容器1の圧力室7内を水で満たす。そして、この水により圧力室7内に耐圧力Pt(水圧)を作用させ、この耐圧力Ptを所定時間保持する。このように耐圧力Ptを作用させることで、圧力室7の被圧面には耐圧力Ptが均一に作用する。その後、圧力室7内に作用する圧力を耐圧力Ptから下げて、水を圧力室7内から排出する。なお、前述の被圧面は、例えば図2,3に示すように、圧力容器1の周壁部2や端板部3の内面8であり、以下の説明では「被圧面8」と記載する。   In this pressure resistance test process P5, the water pressure is made to act as the pressure resistance Pt, as in the case of the preliminary pressure application process P3. That is, the pressure chamber 7 of the pressure vessel 1 is filled with water after a hydraulic jig or the like is attached to the pressure vessel 1 so as to block the portion of the pressure vessel 1 that opens to the outside. Then, with this water, a pressure resistance Pt (water pressure) is applied to the pressure chamber 7, and the pressure resistance Pt is maintained for a predetermined time. By applying the pressure resistance Pt in this way, the pressure resistance Pt acts uniformly on the surface to be pressurized of the pressure chamber 7. Thereafter, the pressure acting on the pressure chamber 7 is lowered from the pressure resistance Pt, and water is discharged from the pressure chamber 7. The above-mentioned pressure-receiving surface is, for example, as shown in FIGS. 2 and 3, the peripheral wall portion 2 of the pressure vessel 1 and the inner surface 8 of the end plate portion 3, and will be referred to as “pressure-receiving surface 8” in the following description.

このように実施される耐圧試験工程P5では、耐圧力Ptを以下のように設定する必要がある。
図5の応力ひずみ線図に示すように、耐圧力Ptを作用させることで圧力容器1に生じる応力、すなわち、予備圧力作用工程P3後の残留応力σcから耐圧力Ptの作用による応力の増加分を、試験時応力σPtと定義しておく。
そして、図5の応力ひずみ線図によれば、上記耐圧試験工程P5において圧力容器1に作用させる耐圧力Ptは、予備圧力作用工程P3時の残留応力σbと、予備圧力作用工程P3後の残留応力σcと、試験時応力σPtとの関係が、
σb≧σc+σPt
を満たす範囲内で設定する必要がある。なお、前述のように、予備圧力Peは耐圧力Ptよりも高い値に設定されるため、予備圧力作用工程P3後の残留応力σcが予備圧力作用工程P3前の残留応力σaよりも小さくなるように予備圧力Peを適切に設定すれば、一般にこの関係は満足される。
In the pressure test step P5 performed in this way, it is necessary to set the pressure resistance Pt as follows.
As shown in the stress-strain diagram of FIG. 5, the stress generated in the pressure vessel 1 by applying the pressure resistance Pt, that is, the increase in the stress due to the pressure resistance Pt from the residual stress σc after the preliminary pressure application step P3. Is defined as a stress at test σ Pt .
According to the stress strain diagram of FIG. 5, the pressure resistance Pt applied to the pressure vessel 1 in the pressure test step P5 is the residual stress σb at the preliminary pressure application step P3 and the residual pressure after the preliminary pressure application step P3. The relationship between the stress σc and the test stress σ Pt is
σb ≧ σc + σ Pt ,
It is necessary to set within the range that satisfies As described above, since the preliminary pressure Pe is set to a value higher than the withstand pressure Pt, the residual stress σc after the preliminary pressure application process P3 is made smaller than the residual stress σa before the preliminary pressure application process P3. Generally, this relationship is satisfied if the preliminary pressure Pe is set appropriately.

このように耐圧力Ptが設定されることにより、耐圧試験工程P5においては、圧力容器1の圧力室7内に耐圧力Ptが作用しても、圧力容器1は弾性変形するだけであり、塑性変形しない。すなわち、耐圧力Ptが圧力室7内に作用した状態における圧力容器1では、図5の応力ひずみ線図においてプロット点cからプロット点dに移動するだけであり、この圧力容器1に生じる応力は、予備圧力作用工程P3時の残留応力σb以上になることはない。
そして、上記耐圧力Ptを除いて(除荷して)耐圧試験工程P5を終了させると、圧力容器1が弾性復帰するため、圧力容器1の形状や寸法は仕上げ加工工程P4後の状態に戻る(図5の応力ひずみ線図においてプロット点cに戻る)ことになる。
By setting the pressure resistance Pt in this way, in the pressure resistance test process P5, even if the pressure resistance Pt acts in the pressure chamber 7 of the pressure vessel 1, the pressure vessel 1 is only elastically deformed and is plastic. Does not deform. That is, in the pressure vessel 1 in a state where the pressure resistance Pt is applied in the pressure chamber 7, the pressure vessel 1 only moves from the plot point c to the plot point d in the stress strain diagram of FIG. The residual stress σb during the preliminary pressure application process P3 is not exceeded.
Then, when the pressure resistance test process P5 is terminated (unloading) except for the pressure resistance Pt, the pressure container 1 is elastically restored, so that the shape and dimensions of the pressure container 1 return to the state after the finishing process P4. (Returns to plot point c in the stress-strain diagram of FIG. 5).

ところで、本実施形態の製造方法では、予備圧力作用工程P3において中間品1Aにおける圧力室7A内に予備圧力Peを作用させて中間品1Aを塑性変形させるため、圧力室7Aの被圧面8Aが中間品1Aの外側に変位することになる。そこで、前述した中間品形成工程P2では、図2,3に示すように、最終形状の圧力容器1における圧力室7の被圧面8に余肉9を与えて、中間品1Aにおける圧力室7Aの被圧面8Aを形成する。
ここで、余肉9の厚さΔt(余肉厚さΔt)は、少なくとも予備圧力作用工程P3において中間品1Aが塑性変形してその被圧面8Aが変位するように、かつ、仕上げ加工工程P4で、予備圧力作用工程P3後の中間品1Aにおける圧力室7Aの被圧面8Aを、最終形状の圧力容器1における圧力室7の被圧面8に仕上げることができる程度に設定されればよい。言い換えれば、中間品形成工程P2では、予備圧力作用工程P3において圧力室7Aに耐圧力Ptよりも高い予備圧力Peが作用しても中間品1Aが破損することなく塑性変形できる範囲内で、中間品1Aにおける壁部の肉厚taが、最終形状の圧力容器1における壁部の肉厚tcよりも余肉厚さΔtの分だけ厚くなるように設定されればよい。なお、圧力容器1(中間品1A)における壁部は、主に周壁部2(2A)や端板部3(3A)のことを示しており、以下の説明では、「壁部2,3」あるいは「壁部2A,3A」と記載することがある。
By the way, in the manufacturing method of the present embodiment, the preliminary pressure Pe is applied to the pressure chamber 7A in the intermediate product 1A in the preliminary pressure application step P3 to plastically deform the intermediate product 1A. It will be displaced to the outside of the product 1A. Therefore, in the intermediate product forming process P2 described above, as shown in FIGS. 2 and 3, the surplus surface 9 of the pressure chamber 7 in the final-shaped pressure vessel 1 is provided with a surplus wall 9, so that the pressure chamber 7A in the intermediate product 1A A pressure-receiving surface 8A is formed.
Here, the thickness Δt (remaining thickness Δt) of the surplus material 9 is set so that the intermediate product 1A is plastically deformed and the pressure-receiving surface 8A is displaced at least in the preliminary pressure application process P3, and the finishing process P4. Thus, the pressure-receiving surface 8A of the pressure chamber 7A in the intermediate product 1A after the preliminary pressure application step P3 may be set to such an extent that the pressure-receiving surface 8 of the pressure chamber 7 in the final-shaped pressure vessel 1 can be finished. In other words, in the intermediate product forming step P2, the intermediate product 1A can be plastically deformed without being damaged even if the preliminary pressure Pe higher than the pressure resistance Pt acts on the pressure chamber 7A in the preliminary pressure application step P3. The wall thickness ta of the product 1A may be set so as to be thicker by the surplus thickness Δt than the wall thickness tc of the final-shaped pressure vessel 1. The wall portion in the pressure vessel 1 (intermediate product 1A) mainly indicates the peripheral wall portion 2 (2A) and the end plate portion 3 (3A). In the following description, “wall portions 2 and 3”. Or it may be described as “wall portions 2A, 3A”.

そして、本実施形態における余肉厚さΔtは、中間品形成工程P2の前に実施する設計工程P1において設定される。
すなわち、設計工程P1では、FEM解析により、圧力容器1の圧力室7内に耐圧力Ptを作用させた場合に圧力容器1が塑性変形して生じる被圧面8の変位量を解析し、余肉厚さΔtをこの変位量以上の値に設定する。
ここで、本実施形態の圧力容器1のように被圧面8の形状が圧力容器1の複数の部位(例えば周壁部2や端板部3)の間で異なっている場合、上記FEM解析によって解析される被圧面8の変位量も複数の部位に応じて異なるため、本実施形態の設計工程P1では、複数ある被圧面8の変位量のうち最も大きい値を最大変位量に設定した上で、余肉厚さΔtを最大変位量以上の値に設定する。なお、具体的な余肉厚さΔtは、安全性を考慮して例えば最大変位量の2倍以上3倍以下に設定されるとよい。
The surplus thickness Δt in the present embodiment is set in the design process P1 that is performed before the intermediate product forming process P2.
That is, in the design process P1, the amount of displacement of the pressure-receiving surface 8 generated by plastic deformation of the pressure vessel 1 when the pressure resistance Pt is applied to the pressure chamber 7 of the pressure vessel 1 is analyzed by FEM analysis. The thickness Δt is set to a value equal to or greater than this displacement amount.
Here, when the shape of the pressurized surface 8 is different among a plurality of parts (for example, the peripheral wall portion 2 and the end plate portion 3) of the pressure vessel 1 as in the pressure vessel 1 of the present embodiment, the analysis is performed by the FEM analysis. Since the displacement amount of the pressure-receiving surface 8 is different depending on a plurality of parts, in the design process P1 of the present embodiment, after setting the largest value among the displacement amounts of the plurality of pressure-receiving surfaces 8 as the maximum displacement amount, The surplus thickness Δt is set to a value greater than the maximum displacement. The specific surplus thickness Δt is preferably set to be not less than 2 times and not more than 3 times the maximum displacement amount in consideration of safety.

さらに、設計工程P1では、上記余肉厚さΔtを設定した後に、予備圧力作用工程P3において中間品1Aの圧力室7A内に作用させる予備圧力Peを設定する。
具体的に説明すれば、設計工程P1では、FEM解析により、圧力容器1の圧力室7内に耐圧力Ptを作用させた場合に圧力容器1に生じる試験時応力σPtを解析した上で、余肉厚さΔtを加味した中間品1Aの圧力室7A内に圧力を作用させた際に生じる予備圧力作用時応力σPeが試験時応力σPt以上となるように、予備圧力Peを設定する。
Further, in the design process P1, after setting the surplus thickness Δt, the preliminary pressure Pe to be applied in the pressure chamber 7A of the intermediate product 1A is set in the preliminary pressure application process P3.
Specifically, in the design process P1, after analyzing the stress σ Pt at the time of the test that occurs in the pressure vessel 1 when the pressure resistance Pt is applied to the pressure chamber 7 of the pressure vessel 1 by FEM analysis, as preliminary pressure acting upon stress sigma Pe generated when the pressure is applied to the pressure chamber 7A of the intermediate article 1A obtained by adding the excess material thickness Δt is tested at stress sigma Pt or sets the preliminary pressure Pe .

この予備圧力Peを設定する具体的な方法について図6を参照して説明する。なお、図6のグラフにおいて、横軸は、圧力容器1あるいは余肉厚さΔtを加味した中間品1Aにおける圧力室7,7A内に作用させる圧力Pであり、縦軸は、圧力Pを圧力室7,7A内に作用させることで圧力容器1あるいは中間品1Aに生じる応力σである。
この図6のグラフから明らかなように、圧力Pと応力σとの関係は、圧力Pの増加量に対する応力σの増加量(応力σの増加率)が一定である単純な比例関係にある。また、応力σの増加率は、圧力容器1(あるいは中間品1A)における壁部2,3(2A,3A)の肉厚tc(ta)が大きくなる程小さくなる。すなわち、中間品1Aにおける応力σの増加率は、圧力容器1における応力σの増加率よりも小さくなる。そして、圧力容器1あるいは中間品1Aの被圧面8,8Aに作用する応力σは、被圧面8,8Aに作用させる圧力Pと壁部の肉厚tc,taとによって一義的に求めることができる。
A specific method for setting the preliminary pressure Pe will be described with reference to FIG. In the graph of FIG. 6, the horizontal axis is the pressure P applied to the pressure chambers 7 and 7A in the pressure vessel 1 or the intermediate product 1A taking into account the surplus thickness Δt, and the vertical axis is the pressure P. This is a stress σ generated in the pressure vessel 1 or the intermediate product 1A by acting in the chambers 7 and 7A.
As apparent from the graph of FIG. 6, the relationship between the pressure P and the stress σ is a simple proportional relationship in which the increase amount of the stress σ (the increase rate of the stress σ) is constant with respect to the increase amount of the pressure P. Further, the rate of increase of the stress σ decreases as the wall thickness tc (ta) of the walls 2 and 3 (2A and 3A) in the pressure vessel 1 (or the intermediate product 1A) increases. That is, the increase rate of the stress σ in the intermediate product 1A is smaller than the increase rate of the stress σ in the pressure vessel 1. The stress σ acting on the pressure-receiving surfaces 8 and 8A of the pressure vessel 1 or the intermediate product 1A can be uniquely determined by the pressure P acting on the pressure-receiving surfaces 8 and 8A and the wall thicknesses tc and ta. .

したがって、耐圧力Ptの作用時に圧力容器1に生じる試験時応力σPtは、予め設定される圧力容器1の壁部2,3の肉厚ta、及び、耐圧試験工程P5で圧力容器1に作用させる耐圧力Ptを考慮して算出することとなる。
具体的には、予備圧力作用時応力σPeが試験時応力σPt以上となる予備圧力Peは、図6に示すように、壁部の肉厚tcである中間品1Aに作用させる圧力Pと中間品1Aに生じる応力σとの比例関係(図6における直線l)において、試験時応力σPt以上となる圧力Pe0以上の範囲(図6において符号σPeで示すハッチング領域内)で設定することになる。
Therefore, the test stress σ Pt generated in the pressure vessel 1 when the pressure resistance Pt is applied acts on the pressure vessel 1 in a preset thickness ta of the walls 2 and 3 of the pressure vessel 1 and the pressure test step P5. The calculation is performed in consideration of the withstand pressure Pt.
Specifically, the preliminary pressure Pe at which the prestressing stress σ Pe is equal to or greater than the test stress σ Pt is the pressure P applied to the intermediate product 1A, which is the wall thickness tc, as shown in FIG. In the proportional relationship with the stress σ generated in the intermediate product 1A (straight line 1 in FIG. 6), a pressure Pe0 or more that is equal to or greater than the test stress σ Pt (within the hatching region indicated by σ Pe in FIG. 6) become.

なお、本実施形態の圧力容器1では、前述したように、被圧面8の形状や壁部2,3の肉厚tcが圧力容器1の複数の部位(周壁部2や端板部3)に応じて異なるため、圧力容器1あるいは中間品1Aに生じる負荷応力の種類(例えば引張応力や曲げ応力など)や大きさは部位に応じて異なる。例えば、被圧面8が曲面である圧力容器1の周壁部2と、被圧面8が平面である圧力容器1の端板部3とでは、発生する応力の種類や大きさが互いに異なる。   In the pressure vessel 1 of the present embodiment, as described above, the shape of the pressure-receiving surface 8 and the wall thicknesses tc of the wall portions 2 and 3 are formed in a plurality of portions (the peripheral wall portion 2 and the end plate portion 3) of the pressure vessel 1. Therefore, the type (for example, tensile stress and bending stress) and the magnitude of the load stress generated in the pressure vessel 1 or the intermediate product 1A differ depending on the part. For example, the type and magnitude of the generated stress are different between the peripheral wall portion 2 of the pressure vessel 1 having the curved pressure surface 8 and the end plate portion 3 of the pressure vessel 1 having the flat pressure surface 8.

このため、本実施形態の設計工程P1で前述した予備圧力Peを設定する場合には、FEM解析により、圧力容器1の複数の部位について前述した試験時応力σPtを解析した上で、中間品1Aの各部位に生じる前述の予備圧力作用時応力σPeが、中間品1Aの各部位に対応する圧力容器1の各部位の試験時応力σPt以上となるように、複数の部位に各々対応する部位別予備圧力を設定する。そして、これら複数の部位別予備圧力のうち最も高い値を、予備圧力作用工程P3において用いる予備圧力Peとして設定する。
また、上述のように予備圧力Peを設定する場合、圧力容器1や中間品1Aの同一部位における試験時応力σPtや予備圧力作用時応力σPeは、複数種類の負荷応力(例えば、引張応力、曲げ応力など)についてそれぞれ算出した上で、その中で最も大きいものを選択して設定する。
For this reason, when the preliminary pressure Pe described above is set in the design process P1 of the present embodiment, the above-described test stress σ Pt is analyzed for a plurality of parts of the pressure vessel 1 by FEM analysis, and then the intermediate product Corresponding to each of a plurality of parts so that the aforementioned stress σ Pe at the time of the pre-pressing action generated at each part of 1A is equal to or greater than the stress at test σ Pt of each part of the pressure vessel 1 corresponding to each part of the intermediate 1A Set the preliminary pressure for each part. And the highest value among these several site | part preliminary pressures is set as the preliminary pressure Pe used in the preliminary pressure action process P3.
Further, when the preliminary pressure Pe is set as described above, the test stress σ Pt and the preliminary pressure acting stress σ Pe in the same part of the pressure vessel 1 and the intermediate product 1A are a plurality of types of load stress (for example, tensile stress). , Bending stress, etc.), and the largest one is selected and set.

以下、本実施形態の圧力容器1に対する予備圧力Peの具体的な設定例を示す。
例えば、圧力容器1に作用させる耐圧力Pt、圧力容器1の周壁部2の肉厚tc、及び、中間品1Aの周壁部2Aの肉厚taが、それぞれ、
Pt=6(MPa)、tc=90(mm)、ta=95(mm)、
と設定されている場合、中間品1Aの周壁部2Aに作用させる部位別予備圧力Pe1は、
Pe1≧6×(95/90)=6.3(MPa)、
と算出される。
そして、例えば、中間品1Aの端板部3に作用させる部位別予備圧力Pe2が、
Pe2≧6.8(MPa)、
と算出された場合、予備圧力作用工程P3において用いる予備圧力Peは、
Pe≧6.8(MPa)、
と設定される。
なお、6.8(MPa)との数値は予備圧力Peの下限値であるため、製造後における圧力容器1の安全率や、予備圧力作用工程P3において中間品1Aの各部位に作用する圧力のバラツキ等を考慮して、予備圧力Peを例えば7.0(MPa)に設定するとよい。
Hereinafter, a specific setting example of the preliminary pressure Pe for the pressure vessel 1 of the present embodiment will be shown.
For example, the pressure resistance Pt that acts on the pressure vessel 1, the wall thickness tc of the peripheral wall portion 2 of the pressure vessel 1, and the wall thickness ta of the peripheral wall portion 2A of the intermediate product 1A, respectively,
Pt = 6 (MPa), tc = 90 (mm), ta = 95 (mm),
Is set, the site-specific preliminary pressure Pe1 that acts on the peripheral wall portion 2A of the intermediate product 1A is
Pe1 ≧ 6 × (95/90) 2 = 6.3 (MPa),
Is calculated.
And, for example, the site-specific preliminary pressure Pe2 that acts on the end plate portion 3 of the intermediate product 1A is
Pe2 ≧ 6.8 (MPa),
Is calculated, the preliminary pressure Pe used in the preliminary pressure operation step P3 is
Pe ≧ 6.8 (MPa),
Is set.
Since the numerical value of 6.8 (MPa) is the lower limit value of the preliminary pressure Pe, the safety factor of the pressure vessel 1 after manufacture and the pressure acting on each part of the intermediate product 1A in the preliminary pressure operation step P3 Considering variation and the like, the preliminary pressure Pe may be set to 7.0 (MPa), for example.

以上説明したように、本実施形態に係る圧力容器1の製造方法によれば、予備圧力作用工程P3では、中間品1Aにおける圧力室7A全体の被圧面8Aには予備圧力Peが均一に作用するため、例え製造すべき圧力容器1が大型であっても、中間品1Aの残留応力を十分に低減・除去することが可能である。
また、予備圧力作用工程P3は、耐圧試験工程P5と同様に圧力室7A内に圧力を作用させる工程であることから、耐圧試験工程P5と同様の設備を用いて実施することが可能である。さらに、これら予備圧力作用工程P3や耐圧試験工程P5では、中間品1Aや圧力容器1の内側から圧力をかけるため、中間品1Aや圧力容器1を収容する設備も不要である。したがって、大型の圧力容器1を製造する場合であっても、圧力容器1の製造に要する設備費用を低く抑えることができる。
As described above, according to the method for manufacturing the pressure vessel 1 according to the present embodiment, in the preliminary pressure application step P3, the preliminary pressure Pe acts uniformly on the pressure-receiving surface 8A of the entire pressure chamber 7A in the intermediate product 1A. Therefore, even if the pressure vessel 1 to be manufactured is large, the residual stress of the intermediate product 1A can be sufficiently reduced and removed.
Further, since the preliminary pressure application process P3 is a process of applying pressure to the pressure chamber 7A in the same manner as the pressure resistance test process P5, it can be performed using the same equipment as the pressure resistance test process P5. Further, in the preliminary pressure application process P3 and the pressure resistance test process P5, pressure is applied from the inside of the intermediate product 1A and the pressure vessel 1, so that no facility for accommodating the intermediate product 1A and the pressure vessel 1 is required. Therefore, even when the large pressure vessel 1 is manufactured, the equipment cost required for manufacturing the pressure vessel 1 can be kept low.

さらに、上記製造方法では、予備圧力作用工程P3後から耐圧試験工程P5前までの間に、仕上げ加工工程P4を実施して中間品1Aを最終形状の圧力容器1に仕上げているが、耐圧試験工程P5では圧力容器1が塑性変形しないため、大型の圧力容器1を製造する場合であっても、高い精度の寸法を有する圧力容器1を製品として提供することが可能となる。特に、圧力室7の寸法を高精度に設定できることで、遠心圧縮機50に使用する製品として提供することが可能となる。
また、上記製造方法では、従来のような焼鈍処理を実施しないため、内部熱応力による意図しない塑性変形の発生も防止でき、さらに、圧力容器1の材質に関わらず、圧力容器1の耐食性の低下や応力腐食割れも防ぐことが可能である。
Further, in the above manufacturing method, the finishing process P4 is performed between the preliminary pressure application process P3 and before the pressure test process P5 to finish the intermediate product 1A into the final shape pressure vessel 1, but the pressure test is performed. In the process P5, since the pressure vessel 1 is not plastically deformed, even when the large pressure vessel 1 is manufactured, the pressure vessel 1 having a highly accurate dimension can be provided as a product. In particular, since the dimensions of the pressure chamber 7 can be set with high accuracy, it can be provided as a product used for the centrifugal compressor 50.
In addition, since the conventional annealing process is not performed in the above manufacturing method, unintentional plastic deformation due to internal thermal stress can be prevented, and the corrosion resistance of the pressure vessel 1 is reduced regardless of the material of the pressure vessel 1. And stress corrosion cracking can be prevented.

そして、上記製造方法では、中間品形成工程P2において、中間品1Aにおける被圧面8Aに余肉9を与えて、中間品1Aにおける壁部2A,3Aの肉厚taを最終形状の圧力容器1における壁部2,3の肉厚tcよりも厚く設定しておくことで、予備圧力作用工程P3において中間品1Aを確実に塑性変形させることができ、また、予備圧力作用工程P3後の中間品1Aに対して仕上げ加工工程P4を実施することができる。   And in the said manufacturing method, the surplus thickness 9 is given to the to-be-pressured surface 8A in the intermediate product 1A in the intermediate product forming step P2, and the wall thicknesses 2A and 3A of the intermediate product 1A are set in the pressure vessel 1 of the final shape. By setting the wall portions 2 and 3 to be thicker than the wall thickness tc, the intermediate product 1A can be reliably plastically deformed in the preliminary pressure application step P3, and the intermediate product 1A after the preliminary pressure application step P3. The finishing process P4 can be performed on the surface.

さらに、設計工程P1においては、余肉厚さΔtを、圧力容器1の圧力室7内に耐圧力Ptを作用させた場合に圧力容器1が塑性変形して生じる被圧面8の変位量以上の値に設定しているため、予備圧力作用工程P3後の中間品1Aにおける壁部2,3の肉厚taが、最終形状の圧力容器1における壁部の肉厚tc以上となる。したがって、仕上げ加工工程P4においては、切削加工等によって確実に要求された圧力容器1の寸法通りに、最終形状の圧力容器1を仕上げることが可能となる。言い換えれば、予備圧力作用工程P3後の中間品1Aに対して、仕上げ加工工程P4を実施できなくなってしまうことを確実に防止することができる。   Furthermore, in the design process P1, the surplus thickness Δt is equal to or greater than the displacement amount of the pressure-receiving surface 8 generated by plastic deformation of the pressure vessel 1 when the pressure resistance Pt is applied to the pressure chamber 7 of the pressure vessel 1. Since the value is set, the thickness ta of the wall portions 2 and 3 in the intermediate product 1A after the preliminary pressure application step P3 is equal to or greater than the wall thickness tc of the wall portion in the final-shaped pressure vessel 1. Therefore, in the finishing process P4, the final-shaped pressure vessel 1 can be finished according to the dimensions of the pressure vessel 1 that are reliably requested by cutting or the like. In other words, it is possible to reliably prevent the finishing process P4 from being performed on the intermediate product 1A after the preliminary pressure application process P3.

また、本実施形態の製造方法によれば、予備圧力Peを除荷した後の中間品1Aにおける残留応力σcが、予備圧力作用工程P3前の中間品1Aにおける残留応力σaよりも小さくなるように予備圧力Peを設定することで、予備圧力作用工程P3後の耐圧試験工程P5において最終形状の圧力容器1が塑性変形することを確実に防ぐことができる。また、このように予備圧力Peを設定することで、予備圧力作用工程P3を実施する際に、中間品1Aをより確実に塑性変形させ、中間品1Aにおける圧力室7Aの被圧面8Aをより確実に変位させることもできる。   Further, according to the manufacturing method of the present embodiment, the residual stress σc in the intermediate product 1A after unloading the preliminary pressure Pe is made smaller than the residual stress σa in the intermediate product 1A before the preliminary pressure application step P3. By setting the preliminary pressure Pe, it is possible to reliably prevent the pressure vessel 1 having the final shape from being plastically deformed in the pressure resistance test step P5 after the preliminary pressure operation step P3. Further, by setting the preliminary pressure Pe in this way, when the preliminary pressure operation step P3 is performed, the intermediate product 1A is more reliably plastically deformed, and the pressure-receiving surface 8A of the pressure chamber 7A in the intermediate product 1A is more reliably determined. It can also be displaced.

特に、本実施形態の製造方法では、中間品1Aの各部位に生じる予備圧力作用時応力σPeが、中間品1Aの各部位に対応する圧力容器1の各部位の試験時応力σPt以上となるように、各部位における部位別予備圧力を設定し、複数の部位別予備圧力のうち最も高い値を予備圧力Peとして設定しているため、本実施形態の圧力容器1のように圧力室7Aが複雑な形状であっても、予備圧力作用工程P3の実施に際して、中間品1Aの複数の部位全て(中間品1A全体)を確実に塑性変形させることができ、また、中間品1Aの複数の部位全ての被圧面8Aを確実に変位させることができる。したがって、製造すべき圧力容器1の圧力室7が複雑な形状であっても、耐圧試験工程P5における耐圧力Ptによって最終形状の圧力容器1に塑性変形が生じることを確実に防ぐことができる。 In particular, in the manufacturing method of the present embodiment, the prestressing stress σ Pe generated in each part of the intermediate product 1A is equal to or greater than the stress σ Pt during testing of each part of the pressure vessel 1 corresponding to each part of the intermediate product 1A. Thus, since the preliminary pressure for each part in each part is set and the highest value among the preliminary pressures for each part is set as the preliminary pressure Pe, the pressure chamber 7A as in the pressure vessel 1 of the present embodiment. Even when the preliminary pressure application step P3 is performed, all of the plurality of portions of the intermediate product 1A (the entire intermediate product 1A) can be reliably plastically deformed, and the plurality of intermediate products 1A It is possible to reliably displace the pressure-receiving surface 8A of all the parts. Therefore, even if the pressure chamber 7 of the pressure vessel 1 to be manufactured has a complicated shape, it is possible to reliably prevent the final shape of the pressure vessel 1 from being plastically deformed by the pressure resistance Pt in the pressure resistance test process P5.

〔第二実施形態〕
次に、図7を参照して本発明の第二実施形態について説明する。なお、この実施形態に係る製造方法は、図4に示す第一実施形態と同様の工程を備えるものであり、設計工程P1における余肉厚さΔtの設定手法についてのみ異なる。
図7のフローチャートに示すように、本実施形態に係る製造方法の設計工程P1では、はじめに、圧力容器1の複数の部位について、FEM解析により、圧力容器1の圧力室7内に耐圧力Ptを作用させた場合に圧力容器1が塑性変形して生じる被圧面8の変位量を解析し(第一ステップS1)、次いで、複数の被圧面8の変位量のうち最も大きい値を最大変位量に設定する(第二ステップS2)。そして、最大変位量以上の値を圧力容器1の被圧面8に与える余肉厚さΔt1として設定する(第三ステップS3)。これら第一〜第三ステップS1〜S3は、第一実施形態と同様である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. The manufacturing method according to this embodiment includes the same steps as those in the first embodiment shown in FIG. 4 and differs only in the setting method of the surplus thickness Δt in the design step P1.
As shown in the flowchart of FIG. 7, in the design process P <b> 1 of the manufacturing method according to the present embodiment, first, with respect to a plurality of parts of the pressure vessel 1, the pressure resistance Pt is set in the pressure chamber 7 of the pressure vessel 1 by FEM analysis. When the pressure vessel 1 is made to act, the displacement amount of the pressure surface 8 caused by plastic deformation is analyzed (first step S1), and then the largest value among the displacement amounts of the plurality of pressure surfaces 8 is set as the maximum displacement amount. Set (second step S2). Then, a value equal to or greater than the maximum displacement amount is set as the surplus thickness Δt1 to be given to the pressure-receiving surface 8 of the pressure vessel 1 (third step S3). These first to third steps S1 to S3 are the same as in the first embodiment.

その後、本実施形態の設計工程P1では、再度FEM解析により、余肉厚さΔt1を加味した中間品1Aの圧力室7A内に予備圧力Peを作用させた場合に中間品1Aの複数の部位が塑性変形して生じる複数の部位の被圧面8Aの変位量を解析する(第四ステップS4)。
そして、第四ステップにおいて解析された複数の部位の被圧面8Aの変位量と、対応する各部位の余肉厚さΔt1とをそれぞれ比較する(第五ステップS5)。
Thereafter, in the design process P1 of the present embodiment, when the preliminary pressure Pe is applied to the pressure chamber 7A of the intermediate product 1A in consideration of the surplus thickness Δt1, the plurality of parts of the intermediate product 1A are obtained by FEM analysis again. The amount of displacement of the pressure-receiving surface 8A at a plurality of sites caused by plastic deformation is analyzed (fourth step S4).
And the displacement amount of the to-be-pressed surface 8A of the some site | part analyzed in the 4th step is compared with the surplus thickness Δt1 of each corresponding site | part (5th step S5).

この第五ステップS5において、複数の部位の中に、被圧面8Aの変位量が余肉厚さΔt1よりも大きい部位(不足部位)が存在する、と判定された場合には、この不足部位の被圧面8Aに、追加余肉Δt2を追加して、新たな余肉厚さΔt1に設定し(第六ステップS6)、再度第四ステップを実施する。
なお、第六ステップS6において不足部位の被圧面8Aに追加される追加余肉Δt2は、第四ステップで解析された不足部位の被圧面8Aの変位量と、追加前の余肉厚さΔt1との差分以上となるように設定される。すなわち、追加前の余肉厚さΔt1を「oldΔt1」、新たな余肉厚さΔt1を「newΔt1」、不足部位の被圧面の変位量を「変位量」とした場合、「newΔt1」は、
newΔt1=oldΔt1+Δt2≧変位量
となる。
In this fifth step S5, when it is determined that there is a part (insufficient part) in which the displacement amount of the pressure-receiving surface 8A is larger than the surplus thickness Δt1 in the plurality of parts, The additional surplus Δt2 is added to the pressure-receiving surface 8A, the new surplus thickness Δt1 is set (sixth step S6), and the fourth step is performed again.
The additional surplus Δt2 added to the deficient site pressure surface 8A in the sixth step S6 includes the displacement amount of the deficient site pressure surface 8A analyzed in the fourth step, and the surplus thickness Δt1 before addition. It is set to be equal to or greater than the difference. That is, when the surplus thickness Δt1 before addition is “oldΔt1”, the new surplus thickness Δt1 is “newΔt1”, and the displacement amount of the pressed surface of the insufficient portion is “displacement amount”, “newΔt1”
newΔt1 = oldΔt1 + Δt2 ≧ displacement amount.

そして、第五ステップS5において、複数の部位の変形量が複数の部位に各々対応する余肉厚さΔt1以下である、と判定された場合には、この余肉厚さΔt1を中間品形成工程P2で圧力容器1の圧力室7の被圧面8に与える余肉厚さΔtとして設定する(第七ステップS7)。
以上により、本実施形態の設計工程P1における余肉厚さの設計が完了する。
If it is determined in the fifth step S5 that the deformation amount of the plurality of parts is equal to or less than the surplus thickness Δt1 corresponding to each of the plurality of parts, the surplus thickness Δt1 is determined as the intermediate product forming step. It is set as the surplus thickness Δt given to the pressurized surface 8 of the pressure chamber 7 of the pressure vessel 1 at P2 (seventh step S7).
Thus, the design of the surplus thickness in the design process P1 of the present embodiment is completed.

以上説明したように、第二実施形態に係る圧力容器1の製造方法によれば、第一実施形態と同様の効果を奏する。
また、本実施形態の製造方法では、本実施形態の圧力容器1のように圧力室7が複雑な形状であっても、設計工程P1において余肉厚さΔtが圧力容器1の部位毎に設定されるため、中間品形成工程P2において付与する余肉厚さΔtを最小限に抑えることが可能となる。言い換えれば、中間品1Aにおける壁部2A,3Aの肉厚taが不要に厚くなることを防止できる。
さらに、余肉厚さΔtを最小限に抑えることで、仕上げ加工工程P4において中間品1Aの被圧面8Aを圧力容器1の被圧面8に加工する量を減らして、当該工程における工数削減を図ることが可能となる。
As explained above, according to the manufacturing method of the pressure vessel 1 which concerns on 2nd embodiment, there exists an effect similar to 1st embodiment.
Moreover, in the manufacturing method of this embodiment, even if the pressure chamber 7 has a complicated shape like the pressure vessel 1 of this embodiment, the surplus thickness Δt is set for each part of the pressure vessel 1 in the design process P1. Therefore, it is possible to minimize the surplus thickness Δt applied in the intermediate product forming process P2. In other words, the wall thickness 2a, 3A of the intermediate product 1A can be prevented from becoming unnecessarily thick.
Furthermore, by suppressing the surplus thickness Δt to a minimum, the amount of processing the pressure-receiving surface 8A of the intermediate product 1A into the pressure-receiving surface 8 of the pressure vessel 1 in the finishing process P4 is reduced, and man-hours in the process are reduced. It becomes possible.

なお、中間品形成工程P2において付与する余肉厚さΔtを最小限に抑えるためには、例えば、追加余肉Δt2が、第四ステップで解析される不足部位の被圧面8Aの変位量と、追加前の余肉厚さΔt1との差分と同等になるように、すなわち、
newΔt1=oldΔt1+Δt2=変位量、
となるように設定されることがより好ましい。
In order to minimize the surplus thickness Δt applied in the intermediate product formation process P2, for example, the additional surplus thickness Δt2 is determined by the amount of displacement of the pressure-receiving surface 8A of the insufficient portion analyzed in the fourth step, To be equivalent to the difference from the extra thickness Δt1 before addition, ie,
newΔt1 = oldΔt1 + Δt2 = displacement amount,
It is more preferable to set so that.

以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
例えば、第二実施形態における第五ステップS5での判定は、圧力容器1全体(圧力容器1の全ての部位)に適用されることに限らず、少なくとも圧力容器1のうち高い寸法精度が要求される部位(高要求部位)にのみ適用されてもよい。
この場合、圧力容器1のうち高い寸法精度が要求されない部位(低要求部位)については、第五ステップS5における判定を実施しなくてもよいが、例えば、第五ステップS5と比較して緩い基準で判定するステップを実施してもよい。
Although the details of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, the determination in the fifth step S5 in the second embodiment is not limited to being applied to the entire pressure vessel 1 (all portions of the pressure vessel 1), and at least high dimensional accuracy is required among the pressure vessels 1. It may be applied only to a part (high demand part).
In this case, it is not necessary to perform the determination in the fifth step S5 for the portion of the pressure vessel 1 that does not require high dimensional accuracy (low requirement portion). For example, the reference is looser than the fifth step S5. You may implement the step determined by.

具体的には、第四ステップにおいて解析された低要求部位の被圧面8Aの変位量が、低要求部位の余肉厚さΔt1に仮想の所定厚さを加えたもの(仮想余肉厚さ)と比較して、低要求部位の被圧面8Aの変位量が仮想余肉厚さ以下となるまで、上記第二実施形態と同様の第六ステップ及び第四ステップを実施し、低要求部位の被圧面8Aの変位量が仮想余肉厚さ以下となった際に、低要求部位の余肉厚さΔt1を中間品形成工程P2で圧力容器1の圧力室7の被圧面8に与える余肉厚さΔtとして設定すればよい。   Specifically, the amount of displacement of the pressure-requiring surface 8A of the low requirement portion analyzed in the fourth step is obtained by adding a virtual predetermined thickness to the surplus thickness Δt1 of the low requirement portion (virtual surplus thickness) In comparison with the second embodiment, the sixth step and the fourth step similar to those of the second embodiment are performed until the displacement amount of the pressure-receiving surface 8A of the low-requirement region is equal to or less than the virtual surplus thickness, When the displacement amount of the pressure surface 8A becomes equal to or less than the virtual surplus thickness, the surplus thickness Δt1 of the low requirement part is applied to the pressure-receiving surface 8 of the pressure chamber 7 of the pressure vessel 1 in the intermediate product forming process P2. It may be set as Δt.

また、上記実施形態の中間品形成工程P2において実施される工程や順番は、上記実施形態のものに限らず、圧力容器1の用途や形状等によって適宜変更してよい。したがって、中間品形成工程P2は、例えば、鋳造工程P21、粗機械加工工程P22及び溶接加工工程P23の少なくとも一つあるいは二つだけを備えていてもよいし、鋳造工程P21、粗機械加工工程P22及び溶接加工工程P23の順番を適宜変更してもよい。   In addition, the steps and order performed in the intermediate product forming step P2 of the above embodiment are not limited to those of the above embodiment, and may be appropriately changed depending on the application, shape, and the like of the pressure vessel 1. Accordingly, the intermediate product forming process P2 may include, for example, at least one or two of the casting process P21, the rough machining process P22, and the welding process P23, or the casting process P21 and the rough machining process P22. The order of the welding process P23 may be changed as appropriate.

さらに、本発明の製造方法は、上記実施形態のように遠心圧縮機50に用いる圧力容器1に適用されることに限らず、少なくとも被圧される圧力室7を有する圧力容器1に適用することが可能であり、例えば、遠心圧縮機50とは異なる他の回転機械(例えばタービン)に用いる圧力容器に適用することもできる。   Furthermore, the manufacturing method of the present invention is not limited to being applied to the pressure vessel 1 used in the centrifugal compressor 50 as in the above embodiment, but is applied to the pressure vessel 1 having at least the pressure chamber 7 to be pressurized. For example, the present invention can be applied to a pressure vessel used for another rotating machine (for example, a turbine) different from the centrifugal compressor 50.

そして、例えば、圧力容器が中空の球体状のような単純な形状である場合や、圧力容器のうち高い寸法精度を要求される部位が単純形状である場合には、設計工程P1では、前記最大変位量に基づいて余肉厚さΔtを設定したり、前記部位別予備圧力に基づいて予備圧力Peを設定しなくてもよい。
また、本発明の製造方法は、例えば上記実施形態のような設計工程P1を備えていなくてもよく、少なくとも中間品形成工程P2、予備圧力作用工程P3、仕上げ加工工程P4、及び、耐圧試験工程P5を備えていればよい。
For example, when the pressure vessel has a simple shape such as a hollow sphere, or when a portion of the pressure vessel that requires high dimensional accuracy is a simple shape, the design process P1 includes the maximum It is not necessary to set the surplus thickness Δt based on the amount of displacement or to set the preliminary pressure Pe based on the preliminary pressure for each region.
Further, the manufacturing method of the present invention may not include the design process P1 as in the above-described embodiment, for example, at least the intermediate product forming process P2, the preliminary pressure application process P3, the finishing process P4, and the pressure resistance test process. What is necessary is just to provide P5.

1…圧力容器、2…周壁部(壁部)、3…端板部(壁部)、7…圧力室、8…被圧面(内面)、Pt…耐圧力、1A…中間品、2A…周壁部(壁部)、3A…端板部(壁部)、7A…圧力室、8A…被圧面(内面)、9…余肉、Δt,Δt1…余肉厚さ、Pe…予備圧力 DESCRIPTION OF SYMBOLS 1 ... Pressure vessel, 2 ... Peripheral wall part (wall part), 3 ... End plate part (wall part), 7 ... Pressure chamber, 8 ... Pressurized surface (inner surface), Pt ... Pressure resistance, 1A ... Intermediate product, 2A ... Peripheral wall Part (wall part), 3A ... end plate part (wall part), 7A ... pressure chamber, 8A ... pressure surface (inner surface), 9 ... surplus, Δt, Δt1 ... surplus thickness, Pe ... pre-pressure

Claims (7)

被圧される圧力室を有する圧力容器の製造方法であって、
圧力容器の最終形状に対応する形状の中間品を形成する中間品形成工程と、
前記中間品における圧力室内に、前記最終形状の圧力容器における圧力室として必要とされる耐圧力よりも大きな予備圧力を作用させて前記中間品を塑性変形させる予備圧力作用工程と、
予備圧力作用工程で予備圧力が作用された後の中間品を加工して、前記最終形状に仕上げる仕上げ加工工程と、
仕上げ加工された最終形状の圧力容器の圧力室内に、前記耐圧力を作用させる耐圧試験を実施する耐圧試験工程とを備えることを特徴とする圧力容器の製造方法。
A method of manufacturing a pressure vessel having a pressure chamber to be pressurized,
An intermediate product forming step for forming an intermediate product having a shape corresponding to the final shape of the pressure vessel;
A pre-pressure operation step of plastically deforming the intermediate product by applying a pre-pressure greater than a pressure resistance required as a pressure chamber in the final-shaped pressure vessel in the pressure chamber of the intermediate product;
A finishing process for processing the intermediate product after the preliminary pressure is applied in the preliminary pressure application process and finishing the final product,
A pressure vessel manufacturing method comprising: a pressure test step for performing a pressure test for applying the pressure resistance in a pressure chamber of a final-shaped pressure vessel that has been finished.
前記予備圧力の大きさは、前記予備圧力を除荷した後の前記中間品における残留圧力が前記予備圧力作用工程前の中間品における残留応力よりも小さくなるように、設定されることを特徴とする請求項1に記載の圧力容器の製造方法。   The size of the preliminary pressure is set so that the residual pressure in the intermediate product after unloading the preliminary pressure is smaller than the residual stress in the intermediate product before the preliminary pressure application step. The manufacturing method of the pressure vessel of Claim 1. 前記中間品形成工程では、
前記予備圧力作用工程により前記中間品が塑性変形して該中間品における圧力室の被圧面が変位するように、
かつ、
前記仕上げ加工工程で、前記予備圧力作用工程後の中間品における圧力室の被圧面を、前記最終形状の圧力容器における圧力室の被圧面に仕上げることが可能となるように、
前記最終形状の圧力容器における圧力室の被圧面に余肉を与えて、前記中間品における圧力室の被圧面を形成することを特徴とする請求項1又は請求項2に記載の圧力容器の製造方法。
In the intermediate product forming step,
The intermediate product is plastically deformed by the preliminary pressure operation step, and the pressure-receiving surface of the pressure chamber in the intermediate product is displaced.
And,
In the finishing step, the pressure surface of the pressure chamber in the intermediate product after the preliminary pressure application step can be finished to the pressure surface of the pressure chamber in the final shape pressure vessel.
The pressure vessel manufacturing method according to claim 1 or 2, wherein a surplus wall is provided to a pressure-receiving surface of the pressure chamber in the final-shaped pressure vessel to form a pressure-receiving surface of the pressure chamber in the intermediate product. Method.
前記中間品形成工程の前に、前記中間品を設計する設計工程を備え、
該設計工程では、前記最終形状の圧力容器の圧力室内に前記耐圧力を作用させた場合に圧力容器が塑性変形して生じる前記被圧面の変位量を解析し、前記余肉の厚さを前記変位量以上の値に設定することを特徴とする請求項3に記載の圧力容器の製造方法。
Before the intermediate product forming step, comprising a design process for designing the intermediate product,
In the design process, when the pressure resistance is applied to the pressure chamber of the final-shaped pressure vessel, the amount of displacement of the pressure surface caused by plastic deformation of the pressure vessel is analyzed, and the thickness of the surplus wall is calculated. The method for manufacturing a pressure vessel according to claim 3, wherein the value is set to a value equal to or greater than a displacement amount.
前記設計工程では、
前記被圧面の形状が異なる前記圧力容器の複数の部位について前記被圧面の変位量を解析する第一ステップと、
これら複数の前記被圧面の変位量のうち最も大きい値を最大変位量に設定する第二ステップと、
前記最大変位量よりも大きい値を前記圧力容器における被圧面に与える余肉の厚さとして設定する第三ステップと、
前記余肉の厚さを加味した前記中間品の圧力室内に前記予備圧力を作用させた場合に前記中間品の複数の部位が塑性変形して生じる複数の部位の前記被圧面の変位量を解析する第四ステップとを順次実施した後、
前記第四ステップで解析された複数の部位の前記変位量が複数の部位に各々対応する前記余肉の厚さ以下となるまで、複数の部位のうち第四ステップで解析された変位量が前記余肉の厚さよりも大きい前記中間品の部位の被圧面に、追加余肉を追加して新たな余肉の厚さに設定した上で、前記第四ステップを再度実施し、
前記第四ステップで複数の部位の変形量が複数の部位に各々対応する前記余肉の厚さ以下となった際の余肉の厚さを、前記中間品形成工程で前記圧力容器における圧力室の被圧面に与える余肉の厚さとして設定することを特徴とする請求項4に記載の圧力容器の製造方法。
In the design process,
A first step of analyzing a displacement amount of the pressure surface for a plurality of portions of the pressure vessel having different shapes of the pressure surface;
A second step of setting the largest value among the displacement amounts of the plurality of pressure-receiving surfaces as the maximum displacement amount;
A third step of setting a value larger than the maximum displacement amount as a thickness of the surplus wall to be given to the pressure surface in the pressure vessel;
When the preliminary pressure is applied to the pressure chamber of the intermediate product taking into account the thickness of the surplus, the amount of displacement of the pressure-receiving surface at the plurality of locations caused by plastic deformation of the plurality of locations of the intermediate product is analyzed. After performing the fourth step in order,
The amount of displacement analyzed in the fourth step among the plurality of portions is the amount of displacement analyzed in the fourth step until the displacement amount of the plurality of portions analyzed in the fourth step is equal to or less than the thickness of the surplus corresponding to each of the plurality of portions. After adding an additional surplus to the pressure-receiving surface of the intermediate product that is larger than the surplus thickness and setting a new surplus thickness, the fourth step is performed again,
The thickness of the surplus when the amount of deformation of the plurality of parts in the fourth step is equal to or less than the thickness of the surplus corresponding to each of the plurality of parts, and the pressure chamber in the pressure vessel in the intermediate product forming step The method of manufacturing a pressure vessel according to claim 4, wherein the thickness is set as a thickness of surplus material to be provided to the pressure-receiving surface.
前記設計工程では、
前記最終形状の圧力容器の圧力室内に前記耐圧力を作用させた場合に前記圧力容器に生じる試験時応力を解析した上で、
前記余肉の厚さを加味した前記中間品の圧力室内に圧力を作用させた際に生じる応力が前記試験時応力以上となるように、前記予備圧力を設定することを特徴とする請求項4又は請求項5に記載の圧力容器の製造方法。
In the design process,
After analyzing the stress at the time of testing generated in the pressure vessel when the pressure resistance is applied in the pressure chamber of the pressure vessel of the final shape,
5. The preliminary pressure is set such that a stress generated when pressure is applied to the pressure chamber of the intermediate product in consideration of the thickness of the surplus is equal to or greater than the stress at the time of the test. Or the manufacturing method of the pressure vessel of Claim 5.
前記設計工程では、
前記被圧面の形状が異なる前記圧力容器の複数の部位について前記試験時応力を解析した上で、
前記余肉の厚さを加味した前記中間品の圧力室内に圧力を作用させた際に前記中間品の各部位に生じる各応力が前記各部位に対応する前記試験時応力以上となるように、複数の部位に各々対応する複数の部位別予備圧力を設定し、
複数の部位別予備圧力のうち最も高い値を前記予備圧力として設定することを特徴とする請求項6に記載の圧力容器の製造方法。
In the design process,
After analyzing the test stress for a plurality of parts of the pressure vessel having different shapes of the pressure-receiving surface,
Each stress generated in each part of the intermediate product when the pressure is applied in the pressure chamber of the intermediate product taking into account the thickness of the surplus is equal to or greater than the stress at the time of the test corresponding to each part, Set a plurality of site-specific preliminary pressures respectively corresponding to a plurality of sites,
The method for manufacturing a pressure vessel according to claim 6, wherein the highest value among the plurality of site-specific preliminary pressures is set as the preliminary pressure.
JP2012030710A 2012-02-15 2012-02-15 Method for manufacturing pressure vessel Pending JP2013167297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030710A JP2013167297A (en) 2012-02-15 2012-02-15 Method for manufacturing pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030710A JP2013167297A (en) 2012-02-15 2012-02-15 Method for manufacturing pressure vessel

Publications (1)

Publication Number Publication Date
JP2013167297A true JP2013167297A (en) 2013-08-29

Family

ID=49177848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030710A Pending JP2013167297A (en) 2012-02-15 2012-02-15 Method for manufacturing pressure vessel

Country Status (1)

Country Link
JP (1) JP2013167297A (en)

Similar Documents

Publication Publication Date Title
Park et al. Advanced sealing system to prevent leakage in hydroforming
Hashemi et al. Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure
Lin et al. Staggered spinning of thin-walled Hastelloy C-276 cylindrical parts: numerical simulation and experimental investigation
Cui et al. Hydroforming process of complex T-shaped tubular parts of nickel-based superalloy
Lăzărescu Effect of internal fluid pressure on quality of aluminum alloy tube in rotary draw bending
Podder et al. Flow forming of thin-walled precision shells
Bergonzi et al. Development of a miniaturized specimen to perform uniaxial tensile tests on high performance materials
Sharma et al. A systematic review of factors affecting the process parameters and various measurement techniques in forging processes
EP2578327B1 (en) Double-walled pipe with a gap, and manufacturing method therefor
JP2013167297A (en) Method for manufacturing pressure vessel
EP2375549B1 (en) Method and apparatus for manufacturing a rotor
CN114318192B (en) Method for regulating and controlling residual stress of high-temperature alloy ring-forming element by inner hole bulging and quenching and application thereof
Li et al. DRX rules during extrusion process of large-scale thick-walled Inconel 625 pipe by FE method
Yazdi et al. Investigation of forming cylindrical parts in a modified hydrodynamic deep drawing assisted by radial pressure with inward flowing liquid
Hartl et al. Evaluation of experimental and numerical investigations into micro-hydroforming of platinum tubes for an industrial application
Music et al. Mechanics of tube spinning: a review
CN113118351B (en) Forging method for multi-way pipe fitting
Deng et al. Manufacturing of ultra-large plate forgings by unfolding and flattening of thick cylinders
Ngaile et al. Computer aided engineering in forging
Koç et al. Selective Laser Sintering of Aluminum Extrusion Dies
Splavskiy Forming parts from the shape memory alloy
Serfontein et al. Die sheet hydroforming of a complex-shaped AA2024-W aircraft skin panel—from concept to final component
CN114102160B (en) High-performance high-efficiency preparation method of tantalum alloy hyperboloid space structural member
Vollertsen et al. Process layout and forming results from deep drawing using pressurized membranes
EP2540412B1 (en) Forging die stack with distributed loading and method of forging