JP2013165015A - Planar warmer - Google Patents

Planar warmer Download PDF

Info

Publication number
JP2013165015A
JP2013165015A JP2012028155A JP2012028155A JP2013165015A JP 2013165015 A JP2013165015 A JP 2013165015A JP 2012028155 A JP2012028155 A JP 2012028155A JP 2012028155 A JP2012028155 A JP 2012028155A JP 2013165015 A JP2013165015 A JP 2013165015A
Authority
JP
Japan
Prior art keywords
temperature detection
temperature
unit
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012028155A
Other languages
Japanese (ja)
Inventor
Hisayasu Katayama
尚保 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012028155A priority Critical patent/JP2013165015A/en
Publication of JP2013165015A publication Critical patent/JP2013165015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar warmer equipped with a controller of small size and low cost by reducing a current capacity of a power source circuit part.SOLUTION: A planer warmer includes an AC power source 20, a heating element 21 in which a heater wire 24, a soluble body 23, and a temperature detecting wire 22 are provided as one body, a temperature detection part 25 for outputting a temperature signal voltage Va, a control part 27 for driving a power control element 28, a power source circuit part 31 which supplies control power source, a temperature signal wire drive part 37 for driving the temperature detection wire 22, and a temperature detecting current drive part 45 which allows current to flow the temperature detection part 25. The temperature detecting current drive part 45 causes current to flow the temperature detection part 25 only a part of the period in which the temperature detection wire 22 is in a conductive state, thereby an average current flowing the temperature detection part is reduced and a current capacity of the power source circuit part is reduced. Thus, a planer warmer equipped with a controller of small size and low cost is provided.

Description

本発明は、電気カーペットや電気毛布などの広範囲を暖房するようにした面状採暖具に関するものである。   The present invention relates to a surface warmer that heats a wide area such as an electric carpet or an electric blanket.

従来、この種の面状採暖具は、交流電源の半サイクル側を使って温度検出を行い、もう一方の半サイクル側ではヒータ線が制御回路の故障によってフル通電となった時にヒータ線と温度検知線の間に設けた可溶体が溶断してヒータ線と温度検知線が接触することにより温度ヒューズを断線させてヒータ線の通電を停止させる安全手段を確実なものとしている(例えば、特許文献1参照)。   Conventionally, this type of surface heating device performs temperature detection using the half cycle side of the AC power supply, and on the other half cycle side, when the heater wire is fully energized due to a failure of the control circuit, the heater wire and temperature are detected. A fusible body provided between the detection wires is blown and the heater wire and the temperature detection wire are in contact with each other, so that the thermal fuse is disconnected and the safety means for stopping energization of the heater wire is ensured (for example, Patent Documents) 1).

図6〜図7は、特許文献1に記載された従来の面状採暖具を示すものである。図7に示すように、発熱体1は、ヒータ線2の上に、ある温度で溶融する可溶体3を被覆し、その上に温度検知線4を設け、さらにその上を電気絶縁物5で被っている。この紐状の発熱体1を、面状の敷物などに配線設置して暖房する。そして図6に示すように、交流電源6のP点側が高い電圧となる正サイクル側においては温度信号線駆動部7のトランジスタ8がオフとなって温度検知線4をGNDから切り離す。このように温度検知線4の一端をGNDから切り離すのは安全手段を確実に動作させるためで、安全手段はヒータ線2が何らかの故障で異常加熱を発生して可溶体3が溶けヒータ線2と温度検知線4が接触した時に流れるショート電流の全てを発熱抵抗9に流し熱的に結合状態にある温度ヒューズ10を発熱抵抗9で加熱し溶断させているが、温度検知線4がGNDに接続されたままだとショート電流がGND側へと分流してしまって発熱抵抗9の過熱が十分ではなくなってしまうのでトランジスタ8でもって切り離している。そして、交流電源6のN点側が高い電圧となる負サイクル側においてはトランジスタ8がオンになって温度検知線4をGNDに接続している。温度検知線4がGNDに接続されると、電源回路部11から温度検出部12、温度検知線4、GNDへと電流が流れ、温度検出部12の抵抗13と温度検知線4の抵抗値による分圧で温度信号電圧Vaが発生する。温度信号電圧Vaは温度検知線4の抵抗値変化によって変化し、温度検知線4の抵抗値はヒータ線2の温度によって変化している。この温度信号電圧Vaを制御部14に入力し、制御部14はヒータ線2が所定の温度になるように電力制御素子15をコントロールしている。それから、温度信号線駆動部7のトランジスタ8がオンする故障が発生すると、ヒータ線2が異常過熱し可溶体3が溶けヒータ線2と温度検知線4が接触した時に流れるショート電流がGND側へと分流してしまって発熱抵抗9の過熱が十分ではなくなってしまうのでトランジスタ8の状態を監視部16で確認して、オフであるべきトランジスタ8がオンとなっている信号が制御部14に入力されると制御部14は異常と判断して電力制御素子15をオフしヒータ線2への通電を停止するなどの措置をとっている。   6 to 7 show a conventional planar warming tool described in Patent Document 1. FIG. As shown in FIG. 7, the heating element 1 covers the heater wire 2 with a fusible body 3 that melts at a certain temperature, and is provided with a temperature detection wire 4 on the heater wire 2. Covered. This string-like heating element 1 is heated by wiring the sheet-like rug. As shown in FIG. 6, the transistor 8 of the temperature signal line drive unit 7 is turned off and the temperature detection line 4 is disconnected from GND on the positive cycle side where the P point side of the AC power supply 6 is at a high voltage. The reason why one end of the temperature detection line 4 is disconnected from the GND in this way is to ensure that the safety means operates, and the safety means is that the heater wire 2 is abnormally heated due to some failure and the fusible body 3 is melted. All of the short-circuit current that flows when the temperature detection line 4 comes into contact is sent to the heating resistor 9, and the thermal fuse 10 that is thermally coupled is heated by the heating resistor 9, and the temperature detection line 4 is connected to GND. If it is left as it is, the short-circuit current is diverted to the GND side and the heating resistor 9 is not sufficiently overheated. On the negative cycle side where the N point side of the AC power supply 6 is at a high voltage, the transistor 8 is turned on to connect the temperature detection line 4 to GND. When the temperature detection line 4 is connected to GND, a current flows from the power supply circuit unit 11 to the temperature detection unit 12, the temperature detection line 4, and GND, depending on the resistance 13 of the temperature detection unit 12 and the resistance value of the temperature detection line 4. A temperature signal voltage Va is generated by voltage division. The temperature signal voltage Va changes with a change in the resistance value of the temperature detection line 4, and the resistance value of the temperature detection line 4 changes with the temperature of the heater line 2. The temperature signal voltage Va is input to the control unit 14, and the control unit 14 controls the power control element 15 so that the heater wire 2 has a predetermined temperature. Then, when a failure occurs in which the transistor 8 of the temperature signal line driving unit 7 is turned on, the short-circuit current that flows when the heater wire 2 is abnormally overheated and the fusible body 3 melts and the heater wire 2 and the temperature detection wire 4 come into contact with the GND side. Since the overheating of the heating resistor 9 is not sufficient, the state of the transistor 8 is confirmed by the monitoring unit 16 and a signal indicating that the transistor 8 that should be turned off is input to the control unit 14. Then, the control unit 14 determines that it is abnormal and takes measures such as turning off the power control element 15 and stopping energization of the heater wire 2.

特許第4710512号公報Japanese Patent No. 4710512

しかしながら、前記従来の構成では、温度検知線4はヒータ線2の異常加熱で可溶体3が溶けヒータ線2と温度検知線4が接触した場合、発熱抵抗9を加熱するショート電流の通り道となる。例えば、発熱体1の中間点a点でヒータ線2と温度検知線4が接触した場合の電流経路をみると、交流電源6のP点側が高い電圧となる正サイクル時は、P点から
温度ヒューズ10、ヒータ線2、接触個所a点、温度検知線4および温度検知線4からダイオード17、発熱抵抗9、ダイオード18、交流電源6のN点へと流れる経路(経路(1))となる。
However, in the above-described conventional configuration, the temperature detection wire 4 becomes a path for a short current that heats the heating resistor 9 when the fusible body 3 melts due to abnormal heating of the heater wire 2 and the heater wire 2 contacts the temperature detection wire 4. . For example, when the current path when the heater wire 2 and the temperature detection line 4 are in contact with each other at the intermediate point a of the heating element 1 is seen, during the positive cycle in which the P point side of the AC power supply 6 becomes a high voltage, the temperature from the P point This is a path (path (1)) that flows from the fuse 10, the heater line 2, the contact point a, the temperature detection line 4 and the temperature detection line 4 to the diode 17, the heating resistor 9, the diode 18, and the N point of the AC power supply 6. .

温度検知線4の抵抗値はショート電流値の決定に大きく影響し、発熱抵抗9の発熱量を確保するために温度検知線4の抵抗値は300Ω程度に設定されるので、温度検知線4の温度が制御温度範囲の20℃〜80℃においては200Ω前後の低い抵抗値となる。   The resistance value of the temperature detection line 4 greatly affects the determination of the short-circuit current value, and the resistance value of the temperature detection line 4 is set to about 300Ω in order to secure the amount of heat generated by the heating resistor 9. When the temperature is in the control temperature range of 20 ° C. to 80 ° C., the resistance value is as low as about 200Ω.

また、温度検知線4は金属線であるので温度係数が小さく制御温度範囲の20℃〜80℃における抵抗値変化は数十Ωである。そのため温度信号電圧Vaの変化を大きくとるように電源回路部11の電圧を高くする必要がある。   Further, since the temperature detection line 4 is a metal wire, the temperature coefficient is small, and the resistance value change in the control temperature range of 20 ° C. to 80 ° C. is several tens of Ω. Therefore, it is necessary to increase the voltage of the power supply circuit unit 11 so that the change of the temperature signal voltage Va is large.

ここで仮に電源回路部11の電圧を12V、温度検出部12の抵抗13を500Ω、温度検知線4の抵抗を200Ωと仮定して電流値を計算してみると17mA(12÷(500+200)=0.017A)の電流が流れることになる。   Here, assuming that the voltage of the power supply circuit unit 11 is 12V, the resistance 13 of the temperature detection unit 12 is 500Ω, and the resistance of the temperature detection line 4 is 200Ω, the current value is calculated to be 17 mA (12 ÷ (500 + 200) = Current of 0.017 A) flows.

面状採暖具は一般に長尺の発熱体1が設置された広範囲の敷物の一角に出来る限り小型で薄型で水などが入らないように密閉構造のコントローラのケースを設け、その中に電源回路部11などの制御部品を収納するのが一般的であり、制御部品の小型化や発熱の低減が重要であり、17mAの僅かな電流の削減も重点課題である。   In general, a surface heating device is provided with a controller case with a hermetically sealed structure in a corner of a wide range of rugs where a long heating element 1 is installed so that water and the like do not enter as much as possible. In general, control components such as 11 are housed, and it is important to reduce the size of the control components and reduce heat generation, and the reduction of a slight current of 17 mA is also a priority issue.

この17mAは温度信号線駆動部7のトランジスタ8がオンしている状態の交流電源6のN点側が高い電圧となる負サイクル側の半サイクル期間流れることになる。この半サイクル期間の電流を電源回路部11に設けている平滑や瞬時電流を補うコンデンサでまかなうのは不可能であるため、電流容量の大きい電源回路部11が必要であり、部品の大型化およびコストアップにつながる。   This 17 mA flows for a half cycle period on the negative cycle side in which the N point side of the AC power supply 6 in the state where the transistor 8 of the temperature signal line driving unit 7 is turned on becomes a high voltage. Since it is impossible to cover the current of the half cycle period with the smoothing capacitor provided in the power supply circuit unit 11 or a capacitor that supplements the instantaneous current, the power supply circuit unit 11 having a large current capacity is necessary, and the size of the components can be increased. It leads to cost increase.

また、面状採暖具に面積切換機能をつける場合は温度検知線4や温度検出部12が複数必要となり、そこに流れる電流も複数倍となり、さらに大きな電流容量の電源回路部11が必要となってくる。また、温度信号線駆動部7のトランジスタ8の異常を検知する監視部16も複数必要で部品増加や制御部へ入力する信号ラインの数も増えるため、ポート数の多いマイコン使用することが必要となり、コントローラの小型化とコストダウンの観点から未だ改良の余地があった。   In addition, when an area switching function is added to the surface heating device, a plurality of temperature detection lines 4 and temperature detection units 12 are required, and a current flowing therethrough is multiplied by several times, and a power supply circuit unit 11 having a larger current capacity is required. Come. In addition, since a plurality of monitoring units 16 for detecting an abnormality of the transistor 8 of the temperature signal line driving unit 7 are necessary, and the number of parts and the number of signal lines to be input to the control unit are increased, it is necessary to use a microcomputer having a large number of ports. There was still room for improvement from the viewpoint of miniaturization of the controller and cost reduction.

本発明は、前記従来の課題を解決するもので、電源回路部の電流容量の低減および制御部へ入力する信号ラインの数を削減し、小型かつ低コストのコントローラを備えた面状採暖具を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a planar warmer having a small and low-cost controller that reduces the current capacity of the power supply circuit unit and the number of signal lines input to the control unit. The purpose is to provide.

前記従来の課題を解決するために、本発明の面状採暖具は、交流電源と、面状採暖具本体に配設し、ヒータ線と可溶体と温度検知線とを一体に設けた発熱体と、温度検知線の抵抗値変化を検出して温度信号電圧に変換する温度検出部と、温度検出部の温度信号電圧を処理してヒータ線の通電をオン、オフする電力制御素子を駆動する制御部と、少なくとも温度検出部と制御部へ制御電源を供給する電源回路部と、ヒータ線の異常加熱時に前記可溶体の溶融によりヒータ線と温度検知線がショートすることで流れる電流で発熱する発熱抵抗と、発熱抵抗の加熱によって溶断してヒータ線の通電を停止する温度ヒューズと、交流電源の一方の半サイクルの期間は温度信号電圧が得られるように温度検知線を導通状態とし、他方の半サイクルの期間は温度検知線を非導通状態とする温度信号線駆動部と、温度検出部に温度検出用の電流を流す温度検出用電流駆動部とを含み、温度検出用電流駆動部は、温度検知線の導通状態である期間の一部の期間だけ温度検出部に電流を流すことを
特徴とするものである。
In order to solve the above-mentioned conventional problems, the sheet heating device of the present invention is provided with an AC power source, a sheet heating device main body, and a heating element in which a heater wire, a fusible body, and a temperature detection line are integrally provided. A temperature detection unit that detects a change in the resistance value of the temperature detection line and converts it to a temperature signal voltage; and drives a power control element that processes the temperature signal voltage of the temperature detection unit to turn on and off the heater line. The control unit, the power supply circuit unit that supplies control power to at least the temperature detection unit and the control unit, and the heater wire and the temperature detection wire are short-circuited due to melting of the fusible body when the heater wire is abnormally heated, and heat is generated by the flowing current. A heating resistor, a thermal fuse that is melted by heating of the heating resistor and stops energization of the heater wire, and the temperature detection line is made conductive to obtain a temperature signal voltage during one half cycle of the AC power supply, and the other Half-cycle period A temperature signal line drive unit that brings the temperature detection line into a non-conductive state; and a temperature detection current drive unit that supplies a temperature detection current to the temperature detection unit. The temperature detection current drive unit is connected to the temperature detection line. It is characterized in that a current is passed through the temperature detector only during a part of the period that is in the state.

これにより、交流電源の半サイクルのさらに短い期間で温度信号電圧が得られることとなり、温度検出部に流す平均電流を少なくすることが可能となり、温度検出部に流す電流が電源回路部内のコンデンサにチャージした電荷で補えるため電源回路部の電流容量を小さくすることができ、小型かつ低コストのコントローラを備えた面状採暖具を提供することができる。   As a result, the temperature signal voltage can be obtained in a shorter period of a half cycle of the AC power supply, the average current flowing through the temperature detection unit can be reduced, and the current flowing through the temperature detection unit is applied to the capacitor in the power supply circuit unit. Since the charged electric charge can be supplemented, the current capacity of the power supply circuit unit can be reduced, and a planar warming tool including a small and low-cost controller can be provided.

本発明の面状採暖具は、電源回路部の電流容量を小さくすることができ、小型かつ低コストのコントローラを備えた面状採暖具を提供することができる。   The planar warmer of the present invention can reduce the current capacity of the power supply circuit unit, and can provide a planar warmer equipped with a small and low-cost controller.

本発明の実施の形態1における面状採暖具の制御系の構成を示す回路図The circuit diagram which shows the structure of the control system of the planar warming tool in Embodiment 1 of this invention 本発明の実施の形態1における発熱体の構成を示す模式図Schematic diagram showing the configuration of the heating element according to Embodiment 1 of the present invention. 本発明の実施の形態1における面状採暖具のタイミングチャートTiming chart of planar warming tool in Embodiment 1 of the present invention 本発明の実施の形態2における面状採暖具の構成図The block diagram of the planar warming tool in Embodiment 2 of this invention 本発明の実施の形態2における面状採暖具のタイミングチャートTiming chart of planar warmer in embodiment 2 of the present invention 従来の面状採暖具の構成図Configuration diagram of a conventional surface heating device 従来の発熱体の構成を示す模式図Schematic diagram showing the configuration of a conventional heating element

第1の発明は、交流電源と、面状採暖具本体に配設し、ヒータ線と可溶体と温度検知線とを一体に設けた発熱体と、前記温度検知線の抵抗値変化を検出して温度信号電圧に変換する温度検出部と、前記温度検出部の前記温度信号電圧を処理して前記ヒータ線の通電をオン、オフする電力制御素子を駆動する制御部と、少なくとも前記温度検出部と前記制御部へ制御電源を供給する電源回路部と、前記ヒータ線の異常加熱時に前記可溶体の溶融により前記ヒータ線と前記温度検知線がショートすることで流れる電流で発熱する発熱抵抗と、前記発熱抵抗の加熱によって溶断して前記ヒータ線の通電を停止する温度ヒューズと、前記交流電源の一方の半サイクルの期間は前記温度信号電圧が得られるように前記温度検知線を導通状態とし、他方の半サイクルの期間は前記温度検知線を非導通状態とする温度信号線駆動部と、前記温度検出部に温度検出用の電流を流す温度検出用電流駆動部とを含み、前記温度検出用電流駆動部は、前記温度検知線の導通状態である期間の一部の期間だけ前記温度検出部に電流を流すことを特徴とする面状採暖具である。   1st invention is arrange | positioned in AC power supply and a planar warming tool main body, The heating element which integrally provided the heater wire, the soluble body, and the temperature detection line, and the resistance value change of the said temperature detection wire are detected. A temperature detection unit that converts the temperature signal voltage into a temperature signal voltage, a control unit that drives the power control element that processes the temperature signal voltage of the temperature detection unit to turn on and off energization of the heater wire, and at least the temperature detection unit A power supply circuit unit that supplies control power to the control unit, and a heating resistor that generates heat due to a current that flows when the heater wire and the temperature detection line are short-circuited due to melting of the fusible body during abnormal heating of the heater wire, A temperature fuse that is blown by heating of the heating resistor to stop energization of the heater wire, and the temperature detection line is made conductive so that the temperature signal voltage is obtained during one half cycle of the AC power supply; The other The cycle period includes a temperature signal line driving unit that brings the temperature detection line into a non-conductive state, and a temperature detection current driving unit that supplies a temperature detection current to the temperature detection unit, and the temperature detection current driving unit Is a planar warming tool characterized in that a current is passed through the temperature detection part only during a part of the period in which the temperature detection line is in a conductive state.

これにより、交流電源の半サイクルのさらに短い期間で温度信号電圧が得られることとなり、温度検出部に流す平均電流を少なくすることが可能となり、温度検出部に流す電流が電源回路部内のコンデンサにチャージした電荷で補えるため電源回路部の電流容量を小さくすることができ、小型かつ低コストのコントローラを備えた面状採暖具を提供することができる。   As a result, the temperature signal voltage can be obtained in a shorter period of a half cycle of the AC power supply, the average current flowing through the temperature detection unit can be reduced, and the current flowing through the temperature detection unit is applied to the capacitor in the power supply circuit unit. Since the charged electric charge can be supplemented, the current capacity of the power supply circuit unit can be reduced, and a planar warming tool including a small and low-cost controller can be provided.

第2の発明は、特に、第1の発明において、前記温度検出部の温度信号電圧を前記制御部の制御電源にプルアップし、前記温度信号線駆動部が前記温度検知線を非導通状態としている期間において、前記制御部は前記温度信号電圧を監視し、前記温度信号線駆動部の異常を検知することを特徴とするものである。   In a second aspect of the invention, in particular, in the first aspect of the invention, the temperature signal voltage of the temperature detection unit is pulled up to the control power source of the control unit, and the temperature signal line driving unit sets the temperature detection line in a non-conductive state. In a certain period, the control unit monitors the temperature signal voltage and detects an abnormality of the temperature signal line driving unit.

これにより、温度信号線駆動部のショート故障の検出が可能となり、専用の検出回路を必要としないため部品の削減や前記制御部へ入力する信号ラインの数を削減することができ、より小型かつ低コストのコントローラを備えた面状採暖具を提供することができる。   As a result, it is possible to detect a short circuit fault in the temperature signal line drive unit, and a dedicated detection circuit is not required. Therefore, it is possible to reduce the number of components and the number of signal lines input to the control unit. A planar warming tool having a low-cost controller can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は実施の形態1における面状採暖具の制御系の構成を示す回路図であり、図2は発熱体の構成を示す模式図であり、図3は面状採暖具の交流電源に対するタイミングチャートである。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a configuration of a control system for a planar warmer in Embodiment 1, FIG. 2 is a schematic diagram showing a configuration of a heating element, and FIG. 3 is a timing of the planar warmer with respect to an AC power supply. It is a chart.

本実施の形態における図示しない面状採暖具は、複数のシートを積層して形成し発熱体を内蔵した平板状の面状採暖具本体と、面状採暖具本体の一端に設置したコントローラと、コントローラに交流電源を供給する電源コードで構成されている。   A planar warming tool (not shown) in the present embodiment is formed by laminating a plurality of sheets, a planar planar warming tool main body containing a heating element, a controller installed at one end of the planar warming tool main body, It consists of a power cord that supplies AC power to the controller.

図1に示す交流電源20は電源コードにより得ている。面状採暖具本体内には線状の発熱体21が略全面に亘って蛇行して配設されている。   The AC power source 20 shown in FIG. 1 is obtained by a power cord. A linear heating element 21 is provided in a meandering manner over substantially the entire surface of the surface warmer body.

発熱体21は図2に示すように、中心のガラス繊維21aの周囲に温度を検知する温度検知線22を螺旋状に巻回し、その外周にナイロン樹脂で絶縁体でもある可溶体23を形成し、可溶体23の外周にヒータ線24を螺旋状に巻回し、その外周にPVCの絶縁層21bが形成されている。   As shown in FIG. 2, the heating element 21 has a temperature detection line 22 that spirals around the center glass fiber 21a and spirally forms a fusible body 23 that is also an insulator made of nylon resin. The heater wire 24 is spirally wound around the outer periphery of the fusible body 23, and a PVC insulating layer 21b is formed on the outer periphery thereof.

温度検知線22はヒータ線24の温度が上がるにつれて温度が上がり温度検知線22自身の抵抗値が上がる。逆にヒータ線24の温度が下がると温度検知線22自身の抵抗値は下がる。この温度検知線22の抵抗値変化を温度検出部25で電圧の変化に変換し検出することで発熱体21の温度を所定の温度に制御する。   The temperature of the temperature detection line 22 increases as the temperature of the heater line 24 increases, and the resistance value of the temperature detection line 22 itself increases. Conversely, when the temperature of the heater wire 24 decreases, the resistance value of the temperature detection line 22 itself decreases. The temperature detection line 22 controls the temperature of the heating element 21 to a predetermined temperature by converting the change in the resistance value of the temperature detection line 22 into a change in voltage and detecting it.

温度検出部25は抵抗26と温度検知線22とで制御電源の電圧を分圧して得られる電圧を温度信号電圧Vaとして出力する。温度信号電圧Vaは温度検知線22の抵抗値が大きくなるのに従って高くなるように変化を示す。この温度信号電圧Vaを制御部27に入力する。   The temperature detection unit 25 outputs a voltage obtained by dividing the voltage of the control power supply by the resistor 26 and the temperature detection line 22 as the temperature signal voltage Va. The temperature signal voltage Va changes so as to increase as the resistance value of the temperature detection line 22 increases. This temperature signal voltage Va is input to the control unit 27.

制御部27は温度信号電圧Va値を認識して、発熱体21の温度が設定した所定の温度に達していないと判断している時は電力制御素子28のリレーコイル部29を駆動してリレー接点部30をオンにする。リレー接点部30のオンによりヒータ線24に交流電源20が供給される。   When the control unit 27 recognizes the temperature signal voltage Va value and determines that the temperature of the heating element 21 has not reached the set temperature, the relay coil unit 29 of the power control element 28 is driven to perform relaying. The contact part 30 is turned on. The AC power supply 20 is supplied to the heater wire 24 when the relay contact portion 30 is turned on.

発熱体21の温度が設定した所定の温度、すなわち温度信号電圧Vaが設定した所定の電圧に達したと判断した時は、制御部27は電力制御素子28のリレーコイル部29の駆動を止めリレー接点部30をオフにする。   When it is determined that the temperature of the heating element 21 has reached the predetermined temperature, that is, the temperature signal voltage Va has reached the predetermined voltage, the control unit 27 stops driving the relay coil unit 29 of the power control element 28 and relays it. The contact part 30 is turned off.

温度信号電圧Vaを得るための制御電源は電源回路部31で発生する。電源回路部31は温度検出部25と制御部27へそれぞれ異なる制御電源の電圧を供給する。異なる制御電源の電圧としているのは、温度検出部25へは温度検知線22の小さな抵抗値変化を大きな変化の温度信号電圧Vaとして取り出すために高い制御電源の電圧(例えば12V)を供給し、マイコン等を含む制御部27へは許容動作電圧である制御電源の電圧(例えば5V)を供給するためである。そして電源回路部31には制御電源の電圧の平滑や瞬時電流を供給するためにコンデンサ32、33を内蔵する。   A control power supply for obtaining the temperature signal voltage Va is generated in the power supply circuit unit 31. The power supply circuit unit 31 supplies voltages of different control power sources to the temperature detection unit 25 and the control unit 27, respectively. The voltage of the different control power supply is supplied to the temperature detection unit 25 by supplying a high control power supply voltage (for example, 12V) in order to take out a small resistance value change of the temperature detection line 22 as a temperature signal voltage Va of a large change. This is because a control power supply voltage (for example, 5 V), which is an allowable operating voltage, is supplied to the control unit 27 including a microcomputer or the like. The power supply circuit unit 31 includes capacitors 32 and 33 for smoothing the voltage of the control power supply and supplying an instantaneous current.

次に、温度検知線22の両端にはダイオード34を並列接続し、ダイオード34のカソードと接続している一端を温度検出部25へ接続し、さらに同じ一端には発熱抵抗35を接続する。発熱抵抗35は温度ヒューズ36と熱的に結合状態にありヒータ線24の異常
加熱時に発熱して温度ヒューズ36を溶断する。
Next, a diode 34 is connected in parallel to both ends of the temperature detection line 22, one end connected to the cathode of the diode 34 is connected to the temperature detection unit 25, and a heating resistor 35 is connected to the same one end. The heat generating resistor 35 is thermally coupled to the temperature fuse 36 and generates heat when the heater wire 24 is abnormally heated, so that the temperature fuse 36 is melted.

そして温度検知線22の他端には温度信号線駆動部37を接続する。温度信号線駆動部37は、交流電源20のP点側が高い電圧となる正サイクル期間にダイオード38および抵抗39から流れる電流でトランジスタ40がオンとなる。トランジスタ40がオンすると電源回路部31から抵抗41を通して流れる電流が全てトランジスタ40のコレクタに流れるのでトランジスタ42はオフとなって温度検知線22の一端はオープン状態となる。   A temperature signal line drive unit 37 is connected to the other end of the temperature detection line 22. In the temperature signal line drive unit 37, the transistor 40 is turned on by a current flowing from the diode 38 and the resistor 39 during a positive cycle period in which the P point side of the AC power supply 20 is at a high voltage. When the transistor 40 is turned on, all the current flowing from the power supply circuit unit 31 through the resistor 41 flows to the collector of the transistor 40, so that the transistor 42 is turned off and one end of the temperature detection line 22 is opened.

トランジスタ42で交流電源20のP点側が高い電圧となる正サイクル期間において温度検知線22の一端をオープン状態とするのは、ヒータ線24の異常加熱時にヒータ線24から温度検知線22に流れるショート電流を全て発熱抵抗35に流すためである。   One end of the temperature detection line 22 is opened during the positive cycle period in which the P-point side of the AC power supply 20 is at a high voltage in the transistor 42 because of a short circuit that flows from the heater line 24 to the temperature detection line 22 when the heater line 24 is abnormally heated. This is because all current flows through the heating resistor 35.

例えば、電力制御素子28のリレー接点部30が溶着故障を起こしヒータ線24が連続通電状態になると、発熱体21の温度が異常に高くなる。特に座布団などで保温された部分があるといち早く温度が上昇する。そうして発熱体21の温度が約170℃前後に達すると可溶体23は溶融して、ヒータ線24と温度検知線22がショートしてショート電流が流れる。   For example, when the relay contact 30 of the power control element 28 causes a welding failure and the heater wire 24 is continuously energized, the temperature of the heating element 21 becomes abnormally high. In particular, the temperature rises quickly when there is a part kept warm by a cushion. When the temperature of the heating element 21 reaches about 170 ° C., the fusible body 23 melts, the heater wire 24 and the temperature detection wire 22 are short-circuited, and a short current flows.

仮に発熱抵抗35の発熱量が小さくなる発熱体21の全長の中央部であるs1点でショートが発生すると、s1点に流れるショート電流は、温度信号線駆動部37のトランジスタ42がオフ状態となっているので、P点から温度ヒューズ36、ヒータ線24、ショート個所s1点、温度検知線22および温度検知線22からダイオード34、発熱抵抗35、ダイオード43、交流電源20のN点へと流れる経路(経路sa)だけで流れ、s1点に流れるショート電流の全てが発熱抵抗35を流れることになり、発熱抵抗35の発熱量を十分に確保することができる。   If a short circuit occurs at point s1, which is the central part of the entire length of the heating element 21 where the heat generation amount of the heat generating resistor 35 is small, the short current flowing at the point s1 turns off the transistor 42 of the temperature signal line driving unit 37. Therefore, a path flows from the point P to the temperature fuse 36, the heater wire 24, the short-circuit point s1, the temperature detection line 22 and the temperature detection line 22 to the diode 34, the heating resistor 35, the diode 43, and the N point of the AC power supply 20. All of the short-circuit current that flows only through (path sa) and flows to the point s1 flows through the heat generating resistor 35, so that the heat generation amount of the heat generating resistor 35 can be sufficiently secured.

また、s1点に流れるショート電流は、交流電源20のN点側の電圧が高くなる負サイクル期間においても流れ、その経路は、N点からリレー接点部30、ヒータ線24、ショート個所s1点、温度検知線22および温度検知線22からダイオード34、発熱抵抗35、ダイオード44、温度ヒューズ36、交流電源20のP点へと流れる経路となる。この正サイクルまたは負サイクルでs1点に流れる全てのショート電流によって発熱抵抗35は発熱して温度ヒューズ36を十分に加熱でき、温度ヒューズ36を溶断させヒータ線24の通電を停止する。   Further, the short-circuit current flowing to the point s1 also flows in the negative cycle period in which the voltage on the N-point side of the AC power supply 20 increases, and the path is from the N-point to the relay contact portion 30, the heater wire 24, the short-point s1 point, This is a path that flows from the temperature detection line 22 and the temperature detection line 22 to the diode 34, the heating resistor 35, the diode 44, the temperature fuse 36, and the point P of the AC power supply 20. The heating resistor 35 generates heat due to all short currents flowing to the point s1 in the positive cycle or the negative cycle, and the temperature fuse 36 can be sufficiently heated, so that the temperature fuse 36 is blown and the energization of the heater wire 24 is stopped.

また、温度信号線駆動部37は、交流電源20のN点側が高い電圧となる負サイクル期間においては、ダイオード38が逆方向となってトランジスタ40へのベース電流は流れずトランジスタ40はオフなので抵抗41を流れる電流はトランジスタ42のベースに流れてトランジスタ42がオンする。トランジスタ42がオンすると温度検知線22の一端が制御部27のGNDに接続される。   Further, the temperature signal line drive unit 37 has a resistance in the negative cycle period in which the N point side of the AC power supply 20 is at a high voltage, since the diode 38 is in the reverse direction and the base current does not flow to the transistor 40 and the transistor 40 is off. The current flowing through the transistor 41 flows to the base of the transistor 42 and the transistor 42 is turned on. When the transistor 42 is turned on, one end of the temperature detection line 22 is connected to the GND of the control unit 27.

この交流電源20のN点側が高い電圧となる負サイクル期間内において、温度信号電圧Vaを検出するが、温度信号電圧Vaを検出する期間をさらに温度検出用電流駆動部45によって制限している。温度検出用電流駆動部45は、交流電源20のN点側が高い電圧となる負サイクル期間のさらに短い期間だけ制御部27からの信号で動作する。制御部27からのLo信号によって抵抗46を通して流れる電流でトランジスタ47がオンとなり、温度検出部25に電源回路部31の制御電源の電圧(12V)による電流を流すように構成している。   The temperature signal voltage Va is detected within a negative cycle period in which the N point side of the AC power supply 20 is at a high voltage, but the period for detecting the temperature signal voltage Va is further limited by the temperature detection current driver 45. The temperature detection current drive unit 45 operates with a signal from the control unit 27 only for a shorter period of the negative cycle period in which the N point side of the AC power supply 20 becomes a high voltage. The transistor 47 is turned on by the current flowing through the resistor 46 by the Lo signal from the control unit 27, and the current based on the voltage (12 V) of the control power supply of the power supply circuit unit 31 is supplied to the temperature detection unit 25.

さらには、交流電源20のN点側が高い電圧となる負サイクル期間の回路電流を阻止す
るために、ダイオード48とダイオード49を電源回路部31のGND側、HOT側にそれぞれ接続している。
Furthermore, the diode 48 and the diode 49 are respectively connected to the GND side and the HOT side of the power supply circuit unit 31 in order to prevent a circuit current during a negative cycle period in which the N point side of the AC power supply 20 becomes a high voltage.

以上のように構成された面状採暖具について、以下その動作、作用を説明する。   About the planar warming tool comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、温度検知線22の抵抗値は、ヒータ線24が異常加熱した時に可溶体23が溶融してヒータ線24と温度検知線22とがショートして流れるショート電流で、熱的結合状態の温度ヒューズ36を溶断させるに至る発熱抵抗35の発熱量を得ることが必要であることから温度検知線22の抵抗値が決まってくる。   First, the resistance value of the temperature detection wire 22 is a short current that flows when the heater wire 24 is abnormally heated and the fusible body 23 melts and the heater wire 24 and the temperature detection wire 22 are short-circuited. Since it is necessary to obtain the amount of heat generated by the heat generating resistor 35 until the fuse 36 is blown, the resistance value of the temperature detection line 22 is determined.

発熱抵抗35は温度ヒューズ36に対して絶縁性と熱的結合が必要なので絶縁物を充填した一体構成としており、発熱抵抗35の抵抗値は150Ω前後であり5W程の消費電力がかかれば温度ヒューズ36を溶断することが可能な発熱量を発生するようになっている。   Since the heat generating resistor 35 needs to be insulated and thermally coupled to the temperature fuse 36, the heat generating resistor 35 has an integral structure filled with an insulating material. The resistance value of the heat generating resistor 35 is about 150Ω, and if a power consumption of about 5 W is applied, the temperature fuse A heat generation amount capable of fusing 36 is generated.

そして温度検知線22の抵抗値は可溶体23が溶融する時の温度である170℃前後、及び、発熱抵抗35の消費電力が5W程は確保できる抵抗値に設定する必要があり、その抵抗値は170℃前後において300Ω前後となる。   And it is necessary to set the resistance value of the temperature detection line 22 to a resistance value that can secure about 170 ° C. that is the temperature when the fusible body 23 melts and the power consumption of the heating resistor 35 is about 5 W. Becomes around 300Ω at around 170 ° C.

また、温度検知線22は金属線を使用することから温度によって変化する抵抗の変化量が少ない。一般的には温度係数は正の係数で0.45[%/℃]程度であり、例えば170℃における抵抗値を300Ωに設定すると、温度制御として使用する20℃〜80℃でみると179Ω〜213Ωで、その変化量は34Ωである。この僅かな変化量を検出する必要があるので温度検知線22と直列接続する温度検出部25の制御電源は温度信号電圧Vaを入力する制御部27の制御電源より高い電圧としている。   Moreover, since the temperature detection line 22 uses a metal wire, there is little change amount of the resistance which changes with temperature. Generally, the temperature coefficient is a positive coefficient of about 0.45 [% / ° C.]. For example, when the resistance value at 170 ° C. is set to 300Ω, when it is used at 20 ° C. to 80 ° C. used as temperature control, At 213Ω, the amount of change is 34Ω. Since it is necessary to detect this slight change amount, the control power supply of the temperature detection unit 25 connected in series with the temperature detection line 22 is set to a higher voltage than the control power supply of the control unit 27 that inputs the temperature signal voltage Va.

温度検出部25側の制御電源の電圧を高くすることで温度信号電圧Vaの電圧変化を大きくすることが出来るが、温度信号電圧Vaの上限はマイコン等を含む制御部27の許容動作電圧である制御電源の電圧(5V)以下に設定するのが一般的である。そのため温度検出部25の抵抗26は温度信号電圧Vaが制御部27の制御電源の電圧(5V)以下になるように、例えば約500Ω以上に設定する。   Although the voltage change of the temperature signal voltage Va can be increased by increasing the voltage of the control power supply on the temperature detection unit 25 side, the upper limit of the temperature signal voltage Va is an allowable operating voltage of the control unit 27 including a microcomputer or the like. Generally, it is set to a voltage of the control power supply (5V) or less. Therefore, the resistor 26 of the temperature detection unit 25 is set to, for example, about 500Ω or more so that the temperature signal voltage Va is equal to or lower than the voltage (5V) of the control power source of the control unit 27.

仮に抵抗26を500Ω、温度検知線22の抵抗が170℃で300Ω、温度検出部25へ供給する制御電源の電圧が12Vとして温度信号電圧Vaを単純に抵抗の分圧から算出すると4.5Vで、制御部27の制御電源である電圧(5V)以下にすることができる。   If the resistance 26 is 500Ω, the resistance of the temperature detection line 22 is 300Ω at 170 ° C., the voltage of the control power supply supplied to the temperature detection unit 25 is 12V, and the temperature signal voltage Va is simply calculated from the divided voltage of the resistor, it is 4.5V. The voltage (5 V), which is the control power source of the control unit 27, can be reduced.

そして温度検知線22の他端は温度信号線駆動部37で交流電源20のN点側が高い電圧となる負サイクル期間は制御部27のGNDに接続する。また温度検出部25は温度検出用電流駆動部45で同じく交流電源20のN点側が高い電圧となる負サイクル期間のさらに短い期間だけ電源回路部31の制御電源(12V)に接続している。   The other end of the temperature detection line 22 is connected to the GND of the control unit 27 during the negative cycle period in which the temperature signal line driving unit 37 is at a high voltage on the N point side of the AC power supply 20. The temperature detection unit 25 is also connected to the control power supply (12 V) of the power supply circuit unit 31 for a shorter period of the negative cycle period in which the N point side of the AC power supply 20 is a high voltage in the temperature detection current drive unit 45.

図3は交流電源20に対する各機能および信号のタイミングを示すタイミングチャートである。図3に示すように温度信号線駆動部37のトランジスタ42は、交流電源20の正サイクル期間にはオフとなり、交流電源20の負サイクル期間はオンとなる。   FIG. 3 is a timing chart showing the functions and signal timings for the AC power supply 20. As shown in FIG. 3, the transistor 42 of the temperature signal line driver 37 is turned off during the positive cycle period of the AC power supply 20 and turned on during the negative cycle period of the AC power supply 20.

そして温度検出用電流駆動部45のトランジスタ47は交流電源20の負サイクル期間のさらに短いt1期間だけ制御部27からの信号でオンとなって、温度検出用電流駆動部45は温度検出部25へ電源回路部31の制御電源の電圧(12V)からの電流を供給する。このt1期間において温度検知線22の抵抗値と温度検出部25の抵抗26とで分圧
したパルス状になった電圧を温度信号電圧Vaとして制御部27へ入力して、制御部27がt1期間の温度信号電圧Vaを処理しヒータ線24の温度を制御する。
The transistor 47 of the temperature detection current drive unit 45 is turned on by a signal from the control unit 27 only during a shorter t1 period of the negative cycle period of the AC power supply 20, and the temperature detection current drive unit 45 is sent to the temperature detection unit 25. A current from the control power supply voltage (12 V) of the power supply circuit unit 31 is supplied. In this t1 period, the pulse voltage divided by the resistance value of the temperature detection line 22 and the resistor 26 of the temperature detection unit 25 is input to the control unit 27 as the temperature signal voltage Va, and the control unit 27 performs the t1 period. The temperature signal voltage Va is processed to control the temperature of the heater wire 24.

このようにt1期間において電源回路部31の制御電源の電圧(12V)からの電流が温度検出部25へと流れることになるが、その電流値のピーク値は例えば温度検知線22の20℃における抵抗値を179Ω、温度検出部25の抵抗26を500Ω、温度検出部25へ供給する制御電源の電圧を12Vとして求めて見ると17.7mAである。   As described above, the current from the control power supply voltage (12 V) of the power supply circuit unit 31 flows to the temperature detection unit 25 during the t1 period. The peak value of the current value is, for example, at 20 ° C. of the temperature detection line 22. Assuming that the resistance value is 179Ω, the resistance 26 of the temperature detection unit 25 is 500Ω, and the voltage of the control power source supplied to the temperature detection unit 25 is 12V, it is 17.7 mA.

仮にt1期間を交流電源20の1サイクル期間の5%に設定するとその平均電流は0.885mAと少なくなって、電源回路部31に設けた制御電源の電圧の平滑や瞬時電流を供給するためのコンデンサ32で温度検出部25へ流す電流を補うことができる。   If the t1 period is set to 5% of one cycle period of the AC power supply 20, the average current is reduced to 0.885 mA, for smoothing the voltage of the control power supply provided in the power supply circuit unit 31 and supplying an instantaneous current. The current flowing to the temperature detection unit 25 can be supplemented by the capacitor 32.

以上のように、本実施の形態における面状採暖具は、交流電源20のN点側が高い電圧となる負サイクル期間において温度信号電圧Vaが得られるように温度検知線22の一端を導通し、交流電源20のP点側が高い電圧となる正サイクル期間は温度検知線22の一端を非導通となる温度信号線駆動部37を備え、温度信号線駆動部37が温度信号電圧Vaを得られるように温度検知線22の一端を接続するために導通している交流電源20のN点側が高い電圧となる負サイクル期間内の一部の期間だけ温度検出部25に電流を流す温度検出用電流駆動部45を駆動する構成としたものである。このような構成を採用することにより、交流電源20のP点側が高い電圧となる正サイクル期間は、ヒータ線24の異常加熱で可溶体23の溶融によりヒータ線24と温度検知線22がショートすることで流れる全てのショート電流を発熱抵抗35に流すことができるため、低温時や低交流電圧下においても発熱抵抗35の発熱量を十分に確保でき安定した動作の安全手段とすることが出来る。   As described above, the planar warming tool in the present embodiment conducts one end of the temperature detection line 22 so that the temperature signal voltage Va is obtained in the negative cycle period in which the N point side of the AC power supply 20 is a high voltage, During the positive cycle period in which the P point side of the AC power supply 20 is at a high voltage, the temperature detection line 22 is provided with a temperature signal line drive unit 37 that is non-conductive so that the temperature signal line drive unit 37 can obtain the temperature signal voltage Va. Temperature detection current drive for supplying a current to the temperature detection section 25 only during a part of the negative cycle period in which the N point side of the AC power supply 20 that is conducting to connect one end of the temperature detection line 22 to the high voltage is high. The unit 45 is configured to be driven. By adopting such a configuration, during the positive cycle period in which the P point side of the AC power supply 20 is at a high voltage, the heater wire 24 and the temperature detection wire 22 are short-circuited by the melting of the fusible body 23 due to abnormal heating of the heater wire 24. Thus, since all the short-circuit current that flows can be passed through the heating resistor 35, a sufficient amount of heat generated by the heating resistor 35 can be secured even at a low temperature or under a low AC voltage, thus providing a safe means of stable operation.

また、交流電源20のN点側が高い電圧となる負サイクル期間のさらにある期間だけ温度検出用電流駆動部45で温度検出部25に電流を流すことで、温度検出部25に流す平均電流が少なくなって電源回路部31の平滑や瞬時電流を供給するためのコンデンサにチャージした電荷で補え、電源回路部31の電流容量を小さくでき使用する部品の小型化や安価な部品を使用することができる。   In addition, the current is supplied to the temperature detection unit 25 by the temperature detection current drive unit 45 only during a certain period of the negative cycle in which the N point side of the AC power supply 20 becomes a high voltage, thereby reducing the average current flowing to the temperature detection unit 25. Thus, the power supply circuit unit 31 is smoothed and compensated with the electric charge charged in the capacitor for supplying the instantaneous current, the current capacity of the power supply circuit unit 31 can be reduced, and the parts used can be reduced in size and inexpensive. .

(実施の形態2)
図4は実施の形態1における面状採暖具の制御系の構成を示す回路図であり、図5は面状採暖具の交流電源に対するタイミングチャートである。
(Embodiment 2)
FIG. 4 is a circuit diagram showing the configuration of the control system for the planar warmer in Embodiment 1, and FIG. 5 is a timing chart for the AC power source of the planar warmer.

本実施の形態が実施の形態1と異なる点は、図4に示すように、温度検出部25の温度信号電圧Vaをプルアップ部50の抵抗51で制御部27の制御電源に接続してプルアップする構成としている点である。   As shown in FIG. 4, the present embodiment is different from the first embodiment in that the temperature signal voltage Va of the temperature detection unit 25 is connected to the control power supply of the control unit 27 by the resistor 51 of the pull-up unit 50. It is the point which is set as the structure which improves.

以上のように構成された面状採暖具について、以下その動作、作用を説明する。   About the planar warming tool comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、プルアップ部50の抵抗51は、温度検知線22の170℃前後において300Ω前後となる抵抗値に対して大きな抵抗値、例えば100kΩ程に設定することで温度信号電圧Vaに問題となる影響を与えないようにすることができる。   First, the resistance 51 of the pull-up unit 50 is set to a large resistance value, for example, about 100 kΩ, with respect to a resistance value of about 300 Ω around 170 ° C. of the temperature detection line 22, thereby affecting the temperature signal voltage Va. Can not be given.

温度信号電圧Vaはプルアップ部50によって温度検出用電流駆動部45のトランジスタ47がオンの時を除いて、交流電源20に同期して制御部27の制御電源の電圧(5V)となったり、GND側の電圧になったりと変化を示す。   The temperature signal voltage Va becomes the voltage (5 V) of the control power supply of the control unit 27 in synchronization with the AC power supply 20 except when the transistor 47 of the temperature detection current drive unit 45 is turned on by the pull-up unit 50. The voltage changes on the GND side.

この交流電源20に対するタイミングを図5に示す。図5に示すように交流電源20の
P点側が高い電圧となる正サイクル期間で温度信号線駆動部37のトランジスタ42がオフしている時は、プルアップ部50の抵抗51により制御部27の制御電源である電圧(5V)側を示し、温度信号線駆動部37のトランジスタ42がオンをしている期間で、交流電源20のN点側が高い電圧となる負サイクル期間の温度検出用電流駆動部45のトランジスタ47がオンとなっているt1期間を除いて、温度信号電圧Vaはプルアップ部50の抵抗51と温度検知線22の抵抗との分圧で決まる電圧となるので温度検知線22の抵抗値がプルアップ部50の抵抗51の抵抗値より非常に小さいためGND側の電圧を示す。
The timing for this AC power supply 20 is shown in FIG. As shown in FIG. 5, when the transistor 42 of the temperature signal line drive unit 37 is off in the positive cycle period in which the P point side of the AC power supply 20 is at a high voltage, the resistor 51 of the pull-up unit 50 causes the control unit 27 to Current detection for temperature detection in a negative cycle period in which the voltage (5V) side which is a control power supply is shown and the N point side of the AC power supply 20 is a high voltage while the transistor 42 of the temperature signal line drive unit 37 is on. Except for the t1 period when the transistor 47 of the section 45 is on, the temperature signal voltage Va becomes a voltage determined by the divided voltage of the resistance 51 of the pull-up section 50 and the resistance of the temperature detection line 22, so that the temperature detection line 22 The voltage value on the GND side is shown because the resistance value is much smaller than the resistance value of the resistor 51 of the pull-up unit 50.

尚、温度検出用電流駆動部45のトランジスタ47がオンとなっているt1期間では、温度検出部25の抵抗26と温度検知線22の抵抗から決まる温度信号電圧Vaが制御部27へ入力されてヒータ線24の温度を制御している。   During the t1 period when the transistor 47 of the temperature detection current drive unit 45 is on, the temperature signal voltage Va determined by the resistance 26 of the temperature detection unit 25 and the resistance of the temperature detection line 22 is input to the control unit 27. The temperature of the heater wire 24 is controlled.

次に、温度信号線駆動部37のトランジスタ42が短絡故障を起こした時の検出について説明する。   Next, detection when the transistor 42 of the temperature signal line driving unit 37 causes a short circuit failure will be described.

トランジスタ42が短絡故障を起こすと、ヒータ線24の異常加熱で可溶体23が溶融した時に、ヒータ線24と温度検知線22がショートすることで流れるショート電流が、温度検知線22から短絡故障したトランジスタ42を通して電源回路部31のGNDへ、そしてダイオード48へと別経路で流れてしまって発熱抵抗35へのショート電流が減ってしまい発熱量不足となって温度ヒューズ36が溶断せずにヒータ線24が通電し続ける不安全事象が発生する。この不安全事象を防止するために交流電源20のP点側が高い電圧となる正サイクル期間の温度信号電圧Vaを制御部27は監視している。   When the transistor 42 causes a short-circuit failure, when the fusible body 23 is melted due to abnormal heating of the heater wire 24, a short-circuit current flowing due to a short circuit between the heater wire 24 and the temperature detection wire 22 causes a short-circuit failure from the temperature detection wire 22. The current flows to the GND of the power supply circuit section 31 through the transistor 42 and to the diode 48 by another path, the short current to the heat generating resistor 35 is reduced, the amount of heat generation becomes insufficient, and the temperature fuse 36 is not blown and the heater wire is not blown. An unsafe event occurs in which 24 continues to be energized. In order to prevent this unsafe event, the control unit 27 monitors the temperature signal voltage Va in the positive cycle period in which the P point side of the AC power supply 20 becomes a high voltage.

温度信号電圧Vaは、トランジスタ42が正常であれば交流電源20のP点側が高い電圧となる正サイクル期間では制御部27の制御電源である電圧(5V)側となるHi信号を示しているが、トランジスタ42が短絡故障を起こすとプルアップ部50の抵抗51と温度検知線22の抵抗との分圧で決まる電圧となるので温度検知線22の抵抗値がプルアップ部50の抵抗51の抵抗値より非常に小さいためGND側となるLo信号を示すことになる。   The temperature signal voltage Va indicates a Hi signal that is on the voltage (5 V) side that is the control power source of the control unit 27 in the positive cycle period in which the P point side of the AC power source 20 is a high voltage if the transistor 42 is normal. When a short circuit failure occurs in the transistor 42, the voltage is determined by the divided voltage of the resistance 51 of the pull-up unit 50 and the resistance of the temperature detection line 22, so that the resistance value of the temperature detection line 22 is the resistance of the resistance 51 of the pull-up unit 50. Since it is much smaller than the value, it indicates the Lo signal on the GND side.

温度信号電圧VaがLo信号を示すと制御部27はトランジスタ42が短絡故障を起こしたと判断して電力制御素子28のリレーコイル部29の駆動を止めヒータ線24の通電を停止させる。または、制御部27からの信号で温度ヒューズ36を溶断する別回路(図示せず)で温度ヒューズ36を溶断させても良い。   When the temperature signal voltage Va indicates the Lo signal, the control unit 27 determines that the transistor 42 has caused a short circuit failure, stops the driving of the relay coil unit 29 of the power control element 28, and stops energization of the heater wire 24. Alternatively, the temperature fuse 36 may be blown by another circuit (not shown) that blows the temperature fuse 36 with a signal from the control unit 27.

以上のように、本実施の形態においては、温度信号電圧Vaをプルアップ部50で制御部27の制御電源に接続してプルアップし、温度信号電圧Vaを監視することにより、温度検知線22の温度を検出するのと同じ信号ラインでトランジスタ42の短絡故障をも検出できることとなり、トランジスタ42の短絡検出用として専用の回路が不要となって部品点数の削減や制御部27へ入力する信号ラインの数を削減することができる。   As described above, in the present embodiment, the temperature signal voltage Va is connected to the control power supply of the control unit 27 by the pull-up unit 50 and pulled up, and the temperature detection voltage 22 is monitored by monitoring the temperature signal voltage Va. Therefore, it is possible to detect a short-circuit failure of the transistor 42 on the same signal line as that for detecting the temperature of the transistor 42. Therefore, a dedicated circuit is not required for detecting the short-circuit of the transistor 42, and the number of parts is reduced and the signal line to be input to the control unit 27 is used. The number of can be reduced.

以上のように、本発明にかかる面状採暖具は、電源回路部の電流容量の削減により部品の小型化が可能となるので、ヒータを使用した他の加熱機器等の用途にも適用できる。   As described above, the planar warming device according to the present invention can be miniaturized by reducing the current capacity of the power supply circuit unit, and therefore can be applied to other heating devices using a heater.

20 交流電源
21 発熱体
22 温度検知線
23 可溶体
24 ヒータ線
25 温度検出部
27 制御部
28 電力制御素子
31 電源回路部
35 発熱抵抗
36 温度ヒューズ
37 温度信号線駆動部
45 温度検出用電流駆動部
Va 温度信号電圧
DESCRIPTION OF SYMBOLS 20 AC power supply 21 Heating element 22 Temperature detection line 23 Soluble body 24 Heater line 25 Temperature detection part 27 Control part 28 Power control element 31 Power supply circuit part 35 Heat generation resistor 36 Temperature fuse 37 Temperature signal line drive part 45 Temperature detection current drive part 45 Va Temperature signal voltage

Claims (2)

交流電源と、
面状採暖具本体に配設し、ヒータ線と可溶体と温度検知線とを一体に設けた発熱体と、
前記温度検知線の抵抗値変化を検出して温度信号電圧に変換する温度検出部と、
前記温度検出部の前記温度信号電圧を処理して前記ヒータ線の通電をオン、オフする電力制御素子を駆動する制御部と、
少なくとも前記温度検出部と前記制御部へ制御電源を供給する電源回路部と、
前記ヒータ線の異常加熱時に前記可溶体の溶融により前記ヒータ線と前記温度検知線がショートすることで流れる電流で発熱する発熱抵抗と、
前記発熱抵抗の加熱によって溶断して前記ヒータ線の通電を停止する温度ヒューズと、
前記交流電源の一方の半サイクルの期間は前記温度信号電圧が得られるように前記温度検知線を導通状態とし、他方の半サイクルの期間は前記温度検知線を非導通状態とする温度信号線駆動部と、
前記温度検出部に温度検出用の電流を流す温度検出用電流駆動部と、を含み、
前記温度検出用電流駆動部は、前記温度検知線の導通状態である期間の一部の期間だけ前記温度検出部に電流を流すことを特徴とする、
面状採暖具。
AC power supply,
A heating element that is disposed on the surface warming tool main body, and integrally includes a heater wire, a fusible body, and a temperature detection line;
A temperature detection unit that detects a change in resistance value of the temperature detection line and converts it into a temperature signal voltage; and
A controller that drives the power control element that processes the temperature signal voltage of the temperature detector to turn on and off the heater wire;
A power supply circuit unit for supplying control power to at least the temperature detection unit and the control unit;
A heating resistor that generates heat due to a current flowing when the heater wire and the temperature detection wire are short-circuited due to melting of the fusible body during abnormal heating of the heater wire,
A thermal fuse that blows off by heating of the heating resistor and stops energization of the heater wire;
The temperature signal line drive in which the temperature detection line is turned on so that the temperature signal voltage is obtained during one half cycle of the AC power supply, and the temperature detection line is turned off during the other half cycle And
A temperature detection current drive unit for supplying a temperature detection current to the temperature detection unit,
The temperature detection current drive unit is configured to flow a current to the temperature detection unit only during a part of a period in which the temperature detection line is in a conductive state.
Planar warmer.
前記温度検出部の温度信号電圧を前記制御部の制御電源にプルアップし、前記温度信号線駆動部が前記温度検知線を非導通状態としている期間において、前記制御部は前記温度信号電圧を監視し、前記温度信号線駆動部の異常を検知することを特徴とする、
請求項1に記載の面状採暖具。
The temperature signal voltage of the temperature detection unit is pulled up to the control power source of the control unit, and the control unit monitors the temperature signal voltage during a period in which the temperature signal line driving unit makes the temperature detection line non-conductive. And detecting an abnormality of the temperature signal line drive unit,
The planar warming tool according to claim 1.
JP2012028155A 2012-02-13 2012-02-13 Planar warmer Pending JP2013165015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028155A JP2013165015A (en) 2012-02-13 2012-02-13 Planar warmer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028155A JP2013165015A (en) 2012-02-13 2012-02-13 Planar warmer

Publications (1)

Publication Number Publication Date
JP2013165015A true JP2013165015A (en) 2013-08-22

Family

ID=49176251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028155A Pending JP2013165015A (en) 2012-02-13 2012-02-13 Planar warmer

Country Status (1)

Country Link
JP (1) JP2013165015A (en)

Similar Documents

Publication Publication Date Title
US9320084B2 (en) Heater wire safety circuit
JP5233018B2 (en) Control device for floor heating
US20100193503A1 (en) Temperature control device of electric heater using thermo-sensitive resin and safety device thereof
JP2015010796A (en) Planar warmer
US9270106B2 (en) Temperature protection device of electronic device
US9089010B2 (en) Heater wire safety circuit
US20130334193A1 (en) Electric heating device for vehicle
CN113473652A (en) Heating control circuit and electric blanket with same
JP2013165015A (en) Planar warmer
JP2015010795A (en) Planar warmer
JP4577181B2 (en) Surface heating device
JP5475596B2 (en) Toilet seat device
JP4710512B2 (en) Surface heating device
GB2437120A (en) Electric blanket with safety cut out
KR20090048303A (en) Power fuse disconnection device in case of control rectifier failure of warmer
WO2017126450A1 (en) Circuit board and power supply control device
JP2004087375A (en) Heating wire controlling equipment
KR101210565B1 (en) Control system of electric heater device
KR101046204B1 (en) Drive control circuit of electric mat
JP2010205688A (en) Heater device
JP2020517365A (en) Electric cooker, its heating control circuit, and control method
JP4631568B2 (en) Surface heating device
JP7040348B2 (en) Heater device
KR20100122591A (en) Circuit for controlling electric mat
KR20100039677A (en) Power supply unit