JP2013164395A - Semiconductor optical element and semiconductor optical device - Google Patents

Semiconductor optical element and semiconductor optical device Download PDF

Info

Publication number
JP2013164395A
JP2013164395A JP2012028679A JP2012028679A JP2013164395A JP 2013164395 A JP2013164395 A JP 2013164395A JP 2012028679 A JP2012028679 A JP 2012028679A JP 2012028679 A JP2012028679 A JP 2012028679A JP 2013164395 A JP2013164395 A JP 2013164395A
Authority
JP
Japan
Prior art keywords
absorber
wavelength
light
semiconductor optical
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012028679A
Other languages
Japanese (ja)
Other versions
JP5757254B2 (en
Inventor
Shinpei Ogawa
新平 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012028679A priority Critical patent/JP5757254B2/en
Publication of JP2013164395A publication Critical patent/JP2013164395A/en
Application granted granted Critical
Publication of JP5757254B2 publication Critical patent/JP5757254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor optical element having a wavelength selecting structure on a surface of an absorber for selectively absorbing light of a specific wavelength, which prevents light of wavelengths other than the wavelength selectively absorbed on the surface of the absorber from being absorbed on a rear face of the absorber to improve the selectivity of detection wavelength, and to provide a semiconductor optical device using the element.SOLUTION: The semiconductor optical element comprises: an absorber 10 that has a wavelength selecting structure part 11 on a surface thereof and selectively absorbs light of a predetermined wavelength; an absorption prevention film 13 provided on the rear face of the absorber and preventing absorption of light; and a temperature detection part 4 thermally connected to the absorber and detecting temperature.

Description

本発明は、半導体光素子および半導体光装置に関し、特に、熱型の赤外線センサおよび赤外線センサアレイに関する。   The present invention relates to a semiconductor optical device and a semiconductor optical device, and more particularly to a thermal infrared sensor and an infrared sensor array.

熱型の赤外線センサ素子では、センサに入射した赤外線を熱に変換し、温度変化による物性値の変化を電気信号として読み出している。このような赤外線センサ素子において、ある特定の波長の赤外線を選択的に検知する場合には、赤外線センサ素子の前に光学フィルタを装着していた。また、赤外線を吸収する吸収体の表面に凹凸を設けて特定の波長の入射光を選択的に増強させることにより、特定の波長のみを選択的に吸収する構造も知られている(例えば、特許文献1)。   In the thermal infrared sensor element, infrared light incident on the sensor is converted into heat, and changes in physical property values due to temperature changes are read out as electrical signals. In such an infrared sensor element, when an infrared ray having a specific wavelength is selectively detected, an optical filter is mounted in front of the infrared sensor element. In addition, a structure that selectively absorbs only a specific wavelength by providing unevenness on the surface of an absorber that absorbs infrared rays and selectively enhancing incident light of a specific wavelength is also known (for example, a patent) Reference 1).

特開平1−142418号公報Japanese Patent Laid-Open No. 1-142418

しかしながら、検知波長を制御する構造を吸収体の表面のみに設けると、迷光や、吸収体の下の基板で反射した光が、吸収体の裏面から入射し、意図した検知波長以外の波長で光の吸収量が増加するという問題があった。   However, if a structure for controlling the detection wavelength is provided only on the surface of the absorber, stray light or light reflected by the substrate under the absorber enters from the back surface of the absorber and is emitted at a wavelength other than the intended detection wavelength. There was a problem that the amount of absorption increased.

そこで、本発明は、検知波長の選択性を向上させた半導体光素子および半導体光装置の提供を目的とする。   Accordingly, an object of the present invention is to provide a semiconductor optical device and a semiconductor optical device with improved detection wavelength selectivity.

本発明は、表面に波長選択構造部を備え所定の波長の光を選択的に吸収する吸収体と、吸収体の裏面に設けられ光の吸収を防止する吸収防止膜と、吸収体と熱的に接続され温度を検知する温度検知部とを備えた半導体光素子である。   The present invention includes an absorber having a wavelength selection structure portion on the surface, selectively absorbing light of a predetermined wavelength, an absorption preventing film provided on the back surface of the absorber to prevent light absorption, an absorber and a thermal And a temperature detection unit that detects the temperature.

また、本発明は、本発明にかかる半導体光素子をアレイ状に配置した半導体光装置でもある。   The present invention is also a semiconductor optical device in which the semiconductor optical elements according to the present invention are arranged in an array.

本発明にかかる赤外線センサによれば、
表面に波長選択構造部を備え所定の波長の光を選択的に吸収する吸収体と、吸収体の裏面に設けられ光の吸収を防止する吸収防止膜と、吸収体と熱的に接続され温度を検知する温度検知部とを備えるので、吸収体裏面で所定の波長以外の波長の光が吸収されることを防止し、検知波長の選択性を向上させることが可能になる。
According to the infrared sensor of the present invention,
An absorber that has a wavelength selection structure on the surface and selectively absorbs light of a predetermined wavelength, an absorption prevention film that is provided on the back surface of the absorber to prevent light absorption, and is thermally connected to the absorber and temperature Therefore, it is possible to prevent light having a wavelength other than the predetermined wavelength from being absorbed on the back surface of the absorber and improve the selectivity of the detection wavelength.

本発明の実施の形態1にかかる半導体光装置の斜視図である。1 is a perspective view of a semiconductor optical device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体光素子の上面図である。1 is a top view of a semiconductor optical device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体光素子の上面図である。1 is a top view of a semiconductor optical device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体光素子の断面図である。It is sectional drawing of the semiconductor optical element concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体光素子の部分断面図である。It is a fragmentary sectional view of the semiconductor optical element concerning Embodiment 1 of this invention. (a)は吸収防止膜を備えていない半導体光素子の断面図、(b)はその部分拡大図である。(A) is sectional drawing of the semiconductor optical element which is not provided with the absorption prevention film, (b) is the elements on larger scale. 本発明の実施の形態2にかかる半導体光素子の部分断面図である。It is a fragmentary sectional view of the semiconductor optical element concerning Embodiment 2 of this invention.

実施の形態1.
最初に本発明の実施の形態1における半導体光装置の構成について説明する。図1は、全体が1000で表される、本発明の実施の形態1にかかる半導体光装置の斜視図である。半導体光装置1000では、基板1の上に複数の半導体光素子100がX軸およびY軸方向にマトリックス状(アレイ状)に配置されており、Z軸に平行な方向から光が入射する。半導体光素子100の周囲には、半導体光素子100により検出した信号を処理して画像を検出する検出回路1010が設けられている。以下、本発明の実施の形態では、半導体光素子100の一例として、熱型の赤外線センサを用いて説明する。
Embodiment 1 FIG.
First, the configuration of the semiconductor optical device according to the first embodiment of the present invention will be described. FIG. 1 is a perspective view of a semiconductor optical device according to a first embodiment of the present invention, the whole being represented by 1000. In the semiconductor optical device 1000, a plurality of semiconductor optical elements 100 are arranged on the substrate 1 in a matrix (array) in the X-axis and Y-axis directions, and light enters from a direction parallel to the Z-axis. Around the semiconductor optical device 100, a detection circuit 1010 is provided that detects an image by processing a signal detected by the semiconductor optical device 100. Hereinafter, in the embodiment of the present invention, a thermal type infrared sensor will be described as an example of the semiconductor optical device 100.

図2は、全体が100で表される、本発明の実施の形態1にかかる熱型の赤外線センサの上面図である。また、図3は、吸収体10を除去した赤外線センサ100の上面図であり、明確化のために配線上の保護膜や反射膜は省略してある。また、図4は、図3の赤外線センサ100をA−A方向に見た場合の断面図(吸収体10等を含む)である。図5は赤外線センサ100の吸収体10の断面図である。   FIG. 2 is a top view of the thermal infrared sensor according to the first embodiment of the present invention, the whole being represented by 100. FIG. FIG. 3 is a top view of the infrared sensor 100 from which the absorber 10 is removed, and a protective film and a reflective film on the wiring are omitted for clarity. 4 is a cross-sectional view (including the absorber 10) when the infrared sensor 100 of FIG. 3 is viewed in the AA direction. FIG. 5 is a cross-sectional view of the absorber 10 of the infrared sensor 100.

図2から図4に示すように、赤外線センサ100は、例えば、シリコンからなる基板1を含む。基板1には中空部2が設けられ、中空部2の上には、温度を検知する温度検知部4が支持脚3により支持されている。支持脚3は、ここでは2本であり、図3に示すように、上方から見るとL字型に折れ曲がったブリッジ形状となっている。支持脚3は薄膜金属配線6とこれを支える誘電体膜16を含んでいる。   As shown in FIGS. 2 to 4, the infrared sensor 100 includes a substrate 1 made of, for example, silicon. A hollow portion 2 is provided on the substrate 1, and a temperature detection unit 4 that detects temperature is supported on the hollow portion 2 by a support leg 3. Here, there are two support legs 3, and as shown in FIG. 3, when viewed from above, the support legs 3 have a bridge shape bent into an L shape. The support leg 3 includes a thin film metal wiring 6 and a dielectric film 16 for supporting the same.

温度検知部4は、検知膜5と薄膜金属配線6を含む。検知膜5は、例えば、結晶シリコンを用いたダイオードからなる。薄膜金属配線6は支持脚3にも設けられ、絶縁膜12で覆われたアルミニウム配線7と検知膜5とを電気的に接続している。薄膜金属配線6は、例えば、厚さ100nmのチタン合金からなる。検知膜5が出力した電気信号は、支持脚3に形成された薄膜金属配線6を経由してアルミニウム配線7に伝わり、検出回路(図1の1010)により取り出される。薄膜金属配線6と検知膜5の間、および薄膜金属配線6とアルミニウム配線7との間の電気的接続は、必要に応じて上下方向に延在する導電体(図示せず)を介して行っても良い。   The temperature detection unit 4 includes a detection film 5 and a thin film metal wiring 6. The detection film 5 is made of a diode using crystalline silicon, for example. The thin-film metal wiring 6 is also provided on the support leg 3 to electrically connect the aluminum wiring 7 covered with the insulating film 12 and the detection film 5. The thin film metal wiring 6 is made of, for example, a titanium alloy having a thickness of 100 nm. The electric signal output from the detection film 5 is transmitted to the aluminum wiring 7 through the thin film metal wiring 6 formed on the support leg 3, and is taken out by the detection circuit (1010 in FIG. 1). Electrical connection between the thin-film metal wiring 6 and the detection film 5 and between the thin-film metal wiring 6 and the aluminum wiring 7 is performed via a conductor (not shown) extending in the vertical direction as necessary. May be.

赤外線を反射する反射膜8は、中空部2を覆うように配置されている。但し、反射膜8と温度検知部4は熱的に接続されない状態で、支持脚3の少なくとも一部の上方を覆うように配置されている。   The reflective film 8 that reflects infrared rays is disposed so as to cover the hollow portion 2. However, the reflective film 8 and the temperature detection unit 4 are arranged so as to cover at least a part of the support leg 3 in a state where they are not thermally connected.

温度検知部4の上には、図4に示すように、支持柱9が設けられ、支持柱9の上に吸収体10が支持されている。つまり、吸収体10は、温度検知部4の上に支持柱9で接続されている。また、吸収体10は、温度検知部4とは熱的に接続されており、吸収体10で生じた温度変化が温度検知部4に伝わるような構成となっている。
一方、吸収体10は、反射膜8とは熱的に接続されない状態で、反射膜8より上方に保持され、反射膜8の少なくとも一部を覆い隠すように側方に板状に広がっている。そのため、赤外線センサ100は、図2に示すように、上方から見ると吸収体10のみが見える。
As shown in FIG. 4, a support column 9 is provided on the temperature detection unit 4, and the absorber 10 is supported on the support column 9. That is, the absorber 10 is connected to the temperature detection unit 4 by the support pillar 9. Further, the absorber 10 is thermally connected to the temperature detection unit 4 and is configured such that a temperature change generated in the absorber 10 is transmitted to the temperature detection unit 4.
On the other hand, the absorber 10 is held above the reflective film 8 in a state where it is not thermally connected to the reflective film 8, and spreads in a plate shape to the side so as to cover at least part of the reflective film 8. . Therefore, as shown in FIG. 2, the infrared sensor 100 can see only the absorber 10 when viewed from above.

吸収体10は、赤外線センサ100の場合、一般的に、赤外線波長域に吸収が存在する材料を用いて形成される。例えば、吸収体10は、金属薄膜と、これを挟むように形成された酸化シリコン(SiO)、窒化シリコン(SiN)などの絶縁膜との積層構造により形成され、赤外線を吸収する。 In the case of the infrared sensor 100, the absorber 10 is generally formed using a material having absorption in the infrared wavelength region. For example, the absorber 10 is formed by a laminated structure of a metal thin film and an insulating film such as silicon oxide (SiO 2 ) or silicon nitride (SiN) formed so as to sandwich the metal thin film, and absorbs infrared rays.

吸収体10の表面には、図5に示すように、特定の波長の光の吸収を選択的に増加するような波長選択構造部11が設けられている。また、吸収体10の裏面、つまり支持柱9側には、裏面からの光の吸収を防止する吸収防止膜13が設けられている。このように構成することにより、吸収体10では、所定の波長の光を選択的に吸収することができる。なお、波長選択構造部11においても光の吸収が生じる場合があるので、本実施の形態では、波長選択構造部11を含めて吸収体10とした。   As shown in FIG. 5, a wavelength selection structure portion 11 that selectively increases the absorption of light of a specific wavelength is provided on the surface of the absorber 10. Further, an absorption preventing film 13 for preventing light absorption from the back surface is provided on the back surface of the absorber 10, that is, on the support pillar 9 side. With this configuration, the absorber 10 can selectively absorb light having a predetermined wavelength. In addition, since the light absorption may occur also in the wavelength selection structure unit 11, the absorber 10 including the wavelength selection structure unit 11 is used in the present embodiment.

波長選択構造部11とは、例えば、周期的な凹凸によって屈折率分布を制御する構造や、表面プラズモンを利用して表面に結合する光を選択することで検知波長を選択する構造、誘電体を多層に積層することにより吸収波長を選択する構造、などがあるが、これらに限らず、波長選択性のある構造であればよい。   The wavelength selection structure unit 11 includes, for example, a structure for controlling the refractive index distribution by periodic unevenness, a structure for selecting a detection wavelength by selecting light that is coupled to the surface using surface plasmons, and a dielectric. There is a structure in which absorption wavelengths are selected by stacking in multiple layers. However, the structure is not limited thereto, and any structure having wavelength selectivity may be used.

以下、例として挙げた波長選択構造部11について詳しく説明する。まず、波長選択構造部11が周期的な凹凸構造の場合について説明する。吸収体10の表面、つまり光の入射面に周期的な凹凸を設け、凹の孔深さや孔径、周期を調整することによって、屈折率分布をコントロールすることができる。屈折率分布を調整することで、光の干渉効果あるいはフォトニックバンド効果により、所望の波長の光の透過量が増加する。その結果、吸収体10における該当波長の光の吸収量を増加させることができる。   Hereinafter, the wavelength selection structure unit 11 given as an example will be described in detail. First, the case where the wavelength selection structure 11 has a periodic uneven structure will be described. The refractive index distribution can be controlled by providing periodic irregularities on the surface of the absorber 10, that is, the light incident surface, and adjusting the concave hole depth, hole diameter, and period. By adjusting the refractive index distribution, the amount of transmission of light having a desired wavelength increases due to the light interference effect or the photonic band effect. As a result, it is possible to increase the amount of absorption of light of the corresponding wavelength in the absorber 10.

次に、波長選択構造部11が表面プラズモンを利用する構造の場合について説明する。光の入射面がAu,Agなどの金属の場合、入射光が特定の波長や入射角度のときに金属表面で光が吸収される。さらに、金属表面に周期構造を設けると、表面周期構造に応じた波長で表面プラズモンが生じ、光の吸収が生じる。そのため、吸収体10の表面を金属で形成することにより、入射光の波長や入射角度、金属表面の周期構造によって吸収体10の波長選択性を制御することができる。   Next, the case where the wavelength selection structure unit 11 has a structure using surface plasmons will be described. When the light incident surface is a metal such as Au or Ag, the light is absorbed by the metal surface when the incident light has a specific wavelength or incident angle. Furthermore, when a periodic structure is provided on the metal surface, surface plasmons are generated at a wavelength corresponding to the surface periodic structure, and light is absorbed. Therefore, by forming the surface of the absorber 10 with metal, the wavelength selectivity of the absorber 10 can be controlled by the wavelength and incident angle of incident light and the periodic structure of the metal surface.

最後に、波長選択構造部11が誘電体を多層に積層する構造の場合について説明する。誘電体を多層に積層した多層膜では、膜材料の屈折率と厚さによって光の多重干渉が生じる。そのため、吸収体10の表面に誘電体の多層膜を設け、多層膜の膜材料や厚さを調整して所望の波長における光の透過を増加させることにより、吸収体10における該当波長の光の吸収量を増加させることができる。   Finally, the case where the wavelength selection structure unit 11 has a structure in which dielectrics are stacked in multiple layers will be described. In a multilayer film in which dielectrics are stacked in multiple layers, multiple interference of light occurs depending on the refractive index and thickness of the film material. Therefore, by providing a dielectric multilayer film on the surface of the absorber 10 and adjusting the film material and thickness of the multilayer film to increase the transmission of light at a desired wavelength, Absorption can be increased.

吸収体10の表面に設けられた吸収防止膜13は、対象とする波長域において光の反射率の大きい材料を用いて形成された単層構造の層である。例えば、本実施の形態1ように、赤外線波長域を対象とする赤外線センサ100の場合、吸収体10の裏面には、Al,Au,Agなど、赤外線波長域において反射率の大きい材料を用いた平板状の金属膜をスパッタ法や蒸着等で形成する。吸収防止膜13の厚さは、対象とする波長域の光を透過しない厚さ(表皮厚さ)以上の厚さであれば特に問わない。このように、吸収体10の裏面に金属膜を形成することにより、裏面からの光の吸収を防止することができる。   The absorption preventing film 13 provided on the surface of the absorber 10 is a single-layered layer formed using a material having a high light reflectance in a target wavelength range. For example, in the case of the infrared sensor 100 targeting the infrared wavelength region as in the first embodiment, a material having a high reflectance in the infrared wavelength region, such as Al, Au, Ag, is used for the back surface of the absorber 10. A flat metal film is formed by sputtering or vapor deposition. The thickness of the absorption preventing film 13 is not particularly limited as long as it is equal to or greater than the thickness (skin thickness) that does not transmit light in the target wavelength range. Thus, by forming a metal film on the back surface of the absorber 10, light absorption from the back surface can be prevented.

通常、支持柱9と吸収体10とは一体構造からなる。この場合、吸収防止膜13は、吸収体10の裏面のうち支持柱9との接合部を除いた部分に設けられる。しかし、吸収防止膜13にも熱伝導性があり、熱的な接続が可能であれば、図4に示すように、支持柱9と吸収体10とが吸収防止膜13を介して接合されていても良い。   Usually, the support column 9 and the absorbent body 10 have an integral structure. In this case, the absorption preventing film 13 is provided on a portion of the back surface of the absorbent body 10 excluding the joint portion with the support column 9. However, if the absorption preventing film 13 is also thermally conductive and can be thermally connected, the support column 9 and the absorber 10 are bonded via the absorption preventing film 13 as shown in FIG. May be.

ここで、吸収体の裏側に吸収防止膜を備えていない赤外線センサの動作について図を用いて説明する。図6(a)は吸収体の裏側に吸収防止膜を備えていない赤外線センサ200の断面図である。図6(b)は図6(a)の破線の四角で囲んだ部分の拡大図である。赤外線センサ200は、吸収体10の裏面に吸収防止膜13を備えていない点が本実施の形態の赤外線センサ100と異なる。   Here, the operation of the infrared sensor not provided with the absorption preventing film on the back side of the absorber will be described with reference to the drawings. FIG. 6A is a cross-sectional view of an infrared sensor 200 that does not include an absorption prevention film on the back side of the absorber. FIG. 6B is an enlarged view of a portion surrounded by a broken-line square in FIG. The infrared sensor 200 is different from the infrared sensor 100 of the present embodiment in that the absorption preventing film 13 is not provided on the back surface of the absorber 10.

赤外線センサ200に入射した光は、主に吸収体10で吸収される。図6(b)にI1で示す矢印が、吸収体10の表面に入射する光である。吸収体10に吸収された光は熱に変換され、支持柱9を通って温度検知部4に伝わる。検知膜5の電気抵抗は温度により変化するため、温度検知部4に伝わった熱により検知膜5の電気抵抗が変化する。検知膜5の電気抵抗の変化は、外部に設けた検出回路で検出される。これにより、吸収体10に入射した光の量が電気信号として検出される。ここでは反射膜8を設けた構造を示したが、反射膜8はなくても良い。   The light incident on the infrared sensor 200 is mainly absorbed by the absorber 10. The arrow indicated by I1 in FIG. 6B is light incident on the surface of the absorber 10. The light absorbed by the absorber 10 is converted into heat and is transmitted to the temperature detector 4 through the support column 9. Since the electric resistance of the detection film 5 changes depending on the temperature, the electric resistance of the detection film 5 changes due to the heat transmitted to the temperature detection unit 4. The change in the electrical resistance of the detection film 5 is detected by a detection circuit provided outside. Thereby, the amount of light incident on the absorber 10 is detected as an electrical signal. Although the structure provided with the reflective film 8 is shown here, the reflective film 8 may not be provided.

この場合、赤外線センサ200では、吸収体10の表面に波長選択構造部11が設けられているので、波長選択構造部11により選択される特定波長の光の吸収量が増加する。   In this case, in the infrared sensor 200, since the wavelength selection structure unit 11 is provided on the surface of the absorber 10, the amount of absorption of light having a specific wavelength selected by the wavelength selection structure unit 11 increases.

一方、一般的に、赤外線センサ200に入射した光の一部は、迷光となり、吸収体10の裏面側にも回りこむ。回りこんだ光は、反射膜8で反射され、吸収体10の裏面から入射して吸収される。図6(b)にI2で示す矢印が、吸収体10の裏面に回りこんで反射膜8で反射された光である。また、吸収体10の表面に入射した光I1の一部は、吸収体10を透過し、反射膜8で反射され、吸収体10の裏面から入射して吸収される。図6(b)にI3で示す矢印が、吸収体10を透過して反射膜8で反射された光である。特許文献1のような構造においても、同様に、裏面側に回りこんだ光が、センサシステムあるいはパッケージ内で乱反射され、吸収体(受光膜)の裏面から入射して吸収される。仮に、反射膜8のない構造であっても、裏面側に回りこんだ光は、吸収体10の裏面方向にある基板1などの構造物によって反射され、吸収体10に到達する。また、赤外線センサ200がアレイ化された場合には、赤外線センサ200と赤外線センサ200との間から入射した光が、乱反射し、吸収体10の裏面に到達して吸収される。   On the other hand, in general, a part of the light incident on the infrared sensor 200 becomes stray light and goes around the back side of the absorber 10. The scattered light is reflected by the reflective film 8 and is incident and absorbed from the back surface of the absorber 10. The arrow indicated by I2 in FIG. 6B is the light that has traveled around the back surface of the absorber 10 and has been reflected by the reflective film 8. Further, part of the light I1 incident on the surface of the absorber 10 is transmitted through the absorber 10, reflected by the reflective film 8, and incident from the back surface of the absorber 10 and absorbed. The arrow indicated by I3 in FIG. 6B is the light that has passed through the absorber 10 and is reflected by the reflective film 8. Similarly, in the structure as disclosed in Patent Document 1, the light that has sneak to the back surface side is irregularly reflected in the sensor system or the package, and is incident and absorbed from the back surface of the absorber (light receiving film). Even if the structure does not have the reflective film 8, the light that has traveled to the back surface side is reflected by the structure such as the substrate 1 in the back surface direction of the absorber 10 and reaches the absorber 10. When the infrared sensor 200 is arrayed, the light incident between the infrared sensor 200 and the infrared sensor 200 is diffusely reflected and reaches the back surface of the absorber 10 and is absorbed.

吸収体10の裏側に回りこんで反射膜8で反射された光I2には、波長選択構造部11により選択される特定波長以外の波長の光が含まれる。吸収体10を透過して反射面8で反射された光I3についても、同様に、波長選択構造部11が特定波長の光のみ完全に選択する場合を除いて、特定波長以外の波長の光が含まれる。しかし、赤外線センサ200においては、吸収体10の裏面に波長選択構造部11がないので、波長選択構造部11により選択される所定の波長とは異なる波長の光が、吸収体10の裏面から入射して吸収される。そのため、吸収体10の裏側に吸収防止膜13を設けていない赤外線センサ200では、意図しない波長の光の吸収が発生する。   The light I2 that wraps around the back side of the absorber 10 and is reflected by the reflective film 8 includes light having a wavelength other than the specific wavelength selected by the wavelength selection structure unit 11. Similarly, with respect to the light I3 that has passed through the absorber 10 and is reflected by the reflecting surface 8, light having a wavelength other than the specific wavelength is also received unless the wavelength selection structure unit 11 completely selects only the light having the specific wavelength. included. However, in the infrared sensor 200, since the wavelength selection structure 11 is not provided on the back surface of the absorber 10, light having a wavelength different from the predetermined wavelength selected by the wavelength selection structure 11 is incident from the back surface of the absorber 10. Then absorbed. Therefore, in the infrared sensor 200 in which the absorption prevention film 13 is not provided on the back side of the absorber 10, absorption of light with an unintended wavelength occurs.

例えば、吸収体10の材料がSiN、SiOの場合には、材料自体が波長8〜14μm付近の赤外線を吸収する。このとき、検知波長が10μmになるように波長選択構造部11を設定すると、吸収体10の表面から入射した光のうち、波長10μmの赤外線が選択的に吸収される。しかし、赤外線センサ200に入射した光が吸収体10の裏面側に回りこみ、波長選択構造部11のない裏面側から吸収体10に入射すると、波長選択構造部11で設定した10μmだけではなく、8〜14μm付近の波長の光が吸収体10で検知され、検知波長の選択性が低下する。また、吸収体10の材料自体の吸収があることから、選択波長以外の波長の吸収も完全には0%にならない。このため、選択波長以外の光も吸収体10を透過し、同様に吸収体10の裏面から再入射し、吸収体10で吸収されるため、波長選択性が劣化する。
他の材料においても、同様に、波長選択構造部11で決定される特定の波長以外の吸収波長が吸収体10に存在する場合、意図した検知波長以外の波長の光が吸収体10で吸収される。
For example, when the material of the absorber 10 is SiN or SiO 2 , the material itself absorbs infrared rays having a wavelength of about 8 to 14 μm. At this time, when the wavelength selection structure portion 11 is set so that the detection wavelength is 10 μm, infrared light having a wavelength of 10 μm is selectively absorbed from the light incident from the surface of the absorber 10. However, when the light incident on the infrared sensor 200 wraps around the back surface side of the absorber 10 and enters the absorber 10 from the back surface side without the wavelength selection structure portion 11, not only 10 μm set in the wavelength selection structure portion 11, Light having a wavelength in the vicinity of 8 to 14 μm is detected by the absorber 10, and the selectivity of the detected wavelength is lowered. In addition, since there is absorption of the material of the absorber 10 itself, absorption at wavelengths other than the selected wavelength is not completely 0%. For this reason, light other than the selected wavelength also passes through the absorber 10, and similarly re-enters from the back surface of the absorber 10 and is absorbed by the absorber 10. Therefore, the wavelength selectivity is deteriorated.
Similarly, in other materials, when an absorption wavelength other than the specific wavelength determined by the wavelength selection structure 11 is present in the absorber 10, light having a wavelength other than the intended detection wavelength is absorbed by the absorber 10. The

これに対し、本実施の形態の赤外線センサ100では、吸収体10の裏面に吸収防止膜13を備えているので、吸収体10の裏面に到達した光が吸収防止膜13、つまり金属のミラーによって反射される。その結果、表面に設けた波長選択構造部11によって設定した所定の検知波長の入射光のみが吸収体10で吸収され、裏面からの吸収に起因する、検知波長以外の波長の光の吸収を防止することが可能になり、検知波長の選択性が向上する。   On the other hand, in the infrared sensor 100 of the present embodiment, since the absorption preventing film 13 is provided on the back surface of the absorber 10, the light reaching the back surface of the absorber 10 is absorbed by the absorption preventing film 13, that is, a metal mirror. Reflected. As a result, only the incident light having a predetermined detection wavelength set by the wavelength selection structure 11 provided on the front surface is absorbed by the absorber 10, and absorption of light having a wavelength other than the detection wavelength due to absorption from the back surface is prevented. And the selectivity of the detection wavelength is improved.

また、波長選択構造部11により選択された特定波長であっても、吸収されずに吸収体10を透過した光が、吸収体10の裏面に設けられた吸収防止膜13で反射して折り返され、再び吸収体10に入射する。これにより、従来、吸収体10を透過していた光が、吸収体10で吸収されるようになる。このため、吸収体10の裏面における光の透過率が1.0未満になることを考慮すると、一旦、吸収体10を透過して反射膜8などで反射された光が、再び裏面から吸収体10に入射し、さらに吸収体10を透過しつつ吸収される場合と比較して、特定波長の光の吸収量がさらに増加する。   In addition, even if the specific wavelength is selected by the wavelength selection structure unit 11, the light that has passed through the absorber 10 without being absorbed is reflected and folded back by the absorption preventing film 13 provided on the back surface of the absorber 10. Then, it enters the absorber 10 again. Thereby, conventionally, light that has been transmitted through the absorber 10 is absorbed by the absorber 10. For this reason, considering that the light transmittance on the back surface of the absorber 10 is less than 1.0, the light that has been transmitted through the absorber 10 and reflected by the reflective film 8 or the like once again is absorbed from the back surface. The amount of absorption of light having a specific wavelength is further increased as compared with the case where the light is incident on 10 and absorbed while passing through the absorber 10.

以上のように、赤外線センサ100においては、吸収体10の裏面に吸収防止膜13を備えたことにより、波長選択構造部11で選択した波長とは異なる波長の光が吸収体10の裏面から入射したとしても、吸収防止膜13で反射され、吸収体10で吸収されることはない。そのため、赤外線センサ100の波長選択性を向上させることができる。   As described above, in the infrared sensor 100, light having a wavelength different from the wavelength selected by the wavelength selection structure unit 11 is incident from the back surface of the absorber 10 by providing the back surface of the absorber 10 with the absorption prevention film 13. Even if it does, it is reflected by the absorption preventing film 13 and is not absorbed by the absorber 10. Therefore, the wavelength selectivity of the infrared sensor 100 can be improved.

実施の形態2.
本発明の実施の形態2における赤外線センサの構成について説明する。図7は、本発明の実施の形態2にかかる熱型の赤外線センサの吸収体20を図3のA−A方向に相当する方向から見た場合の断面図である。
この実施の形態においては、吸収体20の表面だけでなく、吸収体20の裏面にも波長選択構造部21bを設けた点が実施の形態1と異なる。本実施の形態のこれ以外の構成は、上述した実施の形態1と同様であるので、同一の要素についてはその説明を繰り返さない。
Embodiment 2. FIG.
The configuration of the infrared sensor according to Embodiment 2 of the present invention will be described. FIG. 7 is a cross-sectional view of the thermal-type infrared sensor absorber 20 according to the second embodiment of the present invention when viewed from a direction corresponding to the AA direction in FIG. 3.
This embodiment is different from the first embodiment in that the wavelength selection structure 21b is provided not only on the surface of the absorber 20, but also on the back surface of the absorber 20. Since the other configuration of the present embodiment is the same as that of the first embodiment described above, description of the same elements will not be repeated.

本発明の実施の形態2における赤外線センサの吸収体20の裏面には、表面に設けられた波長選択構造部21aと同じ構造の波長選択構造部21bが設けられている。これにより、吸収体20では、波長選択構造部21a,21bで設定した所定の波長の光が選択的に吸収される。また、吸収体20の裏面側に回りこんだ光が、吸収体20の裏面から入射した場合には、吸収体20では、表面に設けられた波長選択構造部21aで選択的に吸収された波長と同じ波長の光のみが吸収される。   On the back surface of the absorber 20 of the infrared sensor according to Embodiment 2 of the present invention, a wavelength selection structure portion 21b having the same structure as the wavelength selection structure portion 21a provided on the front surface is provided. Thereby, in the absorber 20, the light of the predetermined wavelength set by the wavelength selection structure parts 21a and 21b is selectively absorbed. In addition, when light that has entered the back surface side of the absorber 20 is incident from the back surface of the absorber 20, the wavelength that is selectively absorbed by the wavelength selection structure portion 21 a provided on the surface of the absorber 20. Only light of the same wavelength is absorbed.

また、本実施の形態2の赤外線センサでは、表面と裏面に波長選択構造部21a,21bを設けたことにより、吸収体20の裏面からも光を吸収することができるので、実施の形態1の赤外線センサ100と比較して、波長選択構造部21a,21bで設定した検知波長における光の吸収量が大きくなる。その結果、該当する検知波長における赤外線センサの感度を増加させることができる。   Moreover, in the infrared sensor of this Embodiment 2, since the wavelength selection structure parts 21a and 21b are provided on the front surface and the back surface, light can be absorbed also from the back surface of the absorber 20, so Compared to the infrared sensor 100, the amount of light absorption at the detection wavelength set by the wavelength selection structures 21a and 21b is increased. As a result, the sensitivity of the infrared sensor at the corresponding detection wavelength can be increased.

以上のように、本実施の形態1および2で述べたような、吸収体10の裏面に吸収防止膜13を備えた裏面吸収防止構造、および吸収体20の表と裏の両面に波長選択構造部21a,21bを設けた構造は、サーモパイル、ボロメータ等の他の熱型赤外線検知方式のセンサにおける吸収構造としても有効である。特に熱型赤外線センサは、断熱構造を実現するため、吸収部の下部を中空化する。このため、中空部分を通り抜けた光が乱反射し、吸収体裏面に到達する光は無視できない。   As described above, as described in the first and second embodiments, the back surface absorption preventing structure including the absorption preventing film 13 on the back surface of the absorber 10, and the wavelength selection structure on both the front and back surfaces of the absorber 20. The structure provided with the portions 21a and 21b is also effective as an absorption structure in other thermal infrared detection type sensors such as a thermopile and a bolometer. In particular, the thermal infrared sensor hollows the lower part of the absorption part in order to realize a heat insulating structure. For this reason, the light passing through the hollow portion is irregularly reflected, and the light reaching the absorber back surface cannot be ignored.

また、本実施の形態1および2の構成は、赤外線以外の波長域、例えば可視、近赤外、THz領域の波長の光においても有効である。   The configurations of the first and second embodiments are also effective in light having a wavelength range other than infrared rays, for example, wavelengths in the visible, near infrared, and THz regions.

1 基板、2 中空部、3 支持脚、4 温度検知部、5 検知膜、6 薄膜金属配線、7 アルミニウム配線、8 反射膜、9 支持柱、10 吸収体、11 波長選択構造部、12 絶縁膜、13 吸収防止膜、20 吸収体、21a 波長選択構造部、21b 波長選択構造部、100 赤外線センサ、1000 赤外線センサアレイ。   DESCRIPTION OF SYMBOLS 1 Board | substrate, 2 Hollow part, 3 Support leg, 4 Temperature detection part, 5 Detection film | membrane, 6 Thin film metal wiring, 7 Aluminum wiring, 8 Reflective film, 9 Support pillar, 10 Absorber, 11 Wavelength selection structure part, 12 Insulating film , 13 Absorption prevention film, 20 Absorber, 21a Wavelength selection structure, 21b Wavelength selection structure, 100 infrared sensor, 1000 infrared sensor array.

Claims (4)

表面に波長選択構造部を備え所定の波長の光を選択的に吸収する吸収体と、
前記吸収体の裏面に設けられ前記光の吸収を防止する吸収防止膜と、
前記吸収体と熱的に接続され温度を検知する温度検知部と
を備えた半導体光素子。
An absorber having a wavelength selection structure on the surface and selectively absorbing light of a predetermined wavelength;
An absorption preventing film provided on the back surface of the absorber to prevent absorption of the light;
The semiconductor optical element provided with the temperature detection part which is thermally connected with the said absorber and detects temperature.
吸収防止膜は、平板状の金属からなることを特徴とする請求項1に記載の半導体光素子。 The semiconductor optical device according to claim 1, wherein the absorption preventing film is made of a flat metal. 表面および裏面に波長選択構造部を備えて所定の波長の光を選択的に吸収する吸収体と、
前記吸収体と熱的に接続され温度を検知する温度検知部と
を備えた半導体光素子。
An absorber that selectively absorbs light of a predetermined wavelength by providing wavelength selection structures on the front surface and the back surface;
The semiconductor optical element provided with the temperature detection part which is thermally connected with the said absorber and detects temperature.
請求項1から請求項3に記載された半導体光素子のいずれかをアレイ状に配置したことを特徴とする半導体光装置。 4. A semiconductor optical device, wherein any one of the semiconductor optical elements according to claim 1 is arranged in an array.
JP2012028679A 2012-02-13 2012-02-13 Semiconductor optical device and semiconductor optical device Active JP5757254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028679A JP5757254B2 (en) 2012-02-13 2012-02-13 Semiconductor optical device and semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028679A JP5757254B2 (en) 2012-02-13 2012-02-13 Semiconductor optical device and semiconductor optical device

Publications (2)

Publication Number Publication Date
JP2013164395A true JP2013164395A (en) 2013-08-22
JP5757254B2 JP5757254B2 (en) 2015-07-29

Family

ID=49175809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028679A Active JP5757254B2 (en) 2012-02-13 2012-02-13 Semiconductor optical device and semiconductor optical device

Country Status (1)

Country Link
JP (1) JP5757254B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142418A (en) * 1987-11-30 1989-06-05 Toshiba Corp Infrared-ray detecting element
JPH07120307A (en) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd Infrared detector
JP2001153722A (en) * 1999-09-16 2001-06-08 Sharp Corp Heat type infrared detecting element and image pickup device using same
JP2012026861A (en) * 2010-07-23 2012-02-09 Seiko Epson Corp Thermal type detector, thermal type detection device and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142418A (en) * 1987-11-30 1989-06-05 Toshiba Corp Infrared-ray detecting element
JPH07120307A (en) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd Infrared detector
JP2001153722A (en) * 1999-09-16 2001-06-08 Sharp Corp Heat type infrared detecting element and image pickup device using same
JP2012026861A (en) * 2010-07-23 2012-02-09 Seiko Epson Corp Thermal type detector, thermal type detection device and electronic equipment

Also Published As

Publication number Publication date
JP5757254B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP3597069B2 (en) Thermal infrared array sensor for detecting multiple infrared wavelength bands
JP6093921B1 (en) Electromagnetic wave detector, electromagnetic wave detector array, and gas analyzer
US8642963B2 (en) Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
JP3514681B2 (en) Infrared detector
WO2009039683A1 (en) Infrared sensor, focal plane array and infrared imaging system thereof
JP6095856B2 (en) Electromagnetic wave detector and gas analyzer
KR101427431B1 (en) Infrared absorber and thermal infrared detector
US8039798B2 (en) Dual-wavelength thermal infrared sensor
KR20190134635A (en) Photodetector
JP6401647B2 (en) Infrared sensor and infrared sensor array
JP5706174B2 (en) Infrared sensor and infrared sensor array
JP5907011B2 (en) Optical sensor
JP5757254B2 (en) Semiconductor optical device and semiconductor optical device
CN114739519B (en) Packaging cover plate of detector, preparation method of packaging cover plate and detector
JP6726087B2 (en) Photo detector
JP6860755B1 (en) Photodetector
JP2002071451A (en) Thermal infrared detecting element and infrared image pickup device using it
JP6206810B2 (en) Infrared gas sensor
JP2011123023A (en) Photosensor
JP6202440B2 (en) Infrared gas sensor
JP5861264B2 (en) Infrared detector
JP5456810B2 (en) Thermal infrared detector
JP2013253896A (en) Photo detector, camera, and electronic apparatus
JP6230652B2 (en) Infrared sensor
JP5877661B2 (en) Infrared shutter mechanism and infrared measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R151 Written notification of patent or utility model registration

Ref document number: 5757254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250