JP2013163629A - Activated carbon and application thereof - Google Patents

Activated carbon and application thereof Download PDF

Info

Publication number
JP2013163629A
JP2013163629A JP2012028924A JP2012028924A JP2013163629A JP 2013163629 A JP2013163629 A JP 2013163629A JP 2012028924 A JP2012028924 A JP 2012028924A JP 2012028924 A JP2012028924 A JP 2012028924A JP 2013163629 A JP2013163629 A JP 2013163629A
Authority
JP
Japan
Prior art keywords
activated carbon
mass
peroxide
hydrogen peroxide
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012028924A
Other languages
Japanese (ja)
Other versions
JP5827907B2 (en
Inventor
Mitsunori Hitomi
充則 人見
Takayuki Yoshikawa
貴行 吉川
Takayuki Yamada
隆之 山田
Masahiko Hayashi
昌彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2012028924A priority Critical patent/JP5827907B2/en
Publication of JP2013163629A publication Critical patent/JP2013163629A/en
Application granted granted Critical
Publication of JP5827907B2 publication Critical patent/JP5827907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Quinoline Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide activated carbon useful as an oxidation catalyst (or a decomposition catalyst).SOLUTION: The hydrogen content, the nitrogen content and the basic surface functional group of activated carbon are regulated to be within ranges of 0.63-0.75 mass%, 2.55-6.50 mass% and 0.88-1.15 meq/g, respectively. A carbonyl compound may be produced by oxidizing a compound having a secondary carbon atom with an oxidant, in the presence of the activated carbon. The compound having a secondary carbon atom may be a secondary alcohol or a compound having a methylene group. The ratio of the activated carbon is about 0.3-1.5 pts.mass to 100 pts.mass of the compound having a secondary carbon atom. The ratio of the peroxide is about 50-1,000 pts.mass to 100 pts.mass of the compound having a secondary carbon atom. The peroxide may be hydrogen peroxide or a peroxyhydrate (for example, urea peroxyhydrate).

Description

本発明は、有機合成などにおける触媒(酸化反応触媒、分解触媒など)として有効な活性炭、この活性炭の触媒活性を利用した用途に関する。より詳細には、本発明は、例えば、過酸化物の分解触媒(又は酸化触媒)として有用な活性炭(例えば、第2級炭素原子を有する化合物からカルボニル化合物を製造する方法において、溶媒中の過酸化水素分解機能を保持しかつ持続的に性能を維持できる活性炭触媒など)と、その用途(例えば、カルボニル化合物の製造法など)に関する。   The present invention relates to activated carbon effective as a catalyst (oxidation reaction catalyst, decomposition catalyst, etc.) in organic synthesis and the like, and to an application utilizing the catalytic activity of this activated carbon. More specifically, the present invention relates to activated carbon (eg, a method for producing a carbonyl compound from a compound having a secondary carbon atom) useful as a peroxide decomposition catalyst (or oxidation catalyst). The present invention relates to an activated carbon catalyst that can maintain a hydrogen oxide decomposition function and can maintain the performance continuously, and its use (for example, a method for producing a carbonyl compound).

活性炭自体が触媒として作用することがよく知られており、例えば、活性炭は硫化水素及びSOの酸化を含む様々な酸化反応に有用であることが知られている。活性炭はそのような反応に影響することが観察されており、触媒としての活性炭は反応速度のみに影響し、活性炭自体は反応により殆ど変化しない。 It is well known that activated carbon itself acts as a catalyst. For example, activated carbon is known to be useful for various oxidation reactions including oxidation of hydrogen sulfide and SO 2 . Activated carbon has been observed to affect such reactions, activated carbon as a catalyst affects only the reaction rate, and activated carbon itself is hardly altered by the reaction.

窒素分の多い原料から製造された活性炭は、窒素分の少ない原料から製造された活性炭に比べて、過酸化水素の分解などの特定の反応において効果的に触媒作用する。同様に、窒素分の少ない原料から製造された活性炭を、高温で、アンモニアなどの窒素含有化合物に曝すと、活性炭の触媒機能が高まることも知られている。最近では、ポリアクリロニトリルやポリアミドなどの窒素分の多い物質を低温又は高温で乾留し、この乾留物を活性化(賦活)することにより、触媒活性の高い活性炭が製造されている。いずれの場合も、活性炭は700℃を超える温度で熱処理することによって製造される。窒素分の少ない原料から製造された活性炭を、窒素含有化合物に曝す前、又は曝す最中に酸化するのが有利であることも知られている。   Activated carbon produced from a raw material rich in nitrogen is more effectively catalyzed in specific reactions such as decomposition of hydrogen peroxide than activated carbon produced from raw material low in nitrogen. Similarly, it is also known that when activated carbon produced from a raw material with low nitrogen content is exposed to a nitrogen-containing compound such as ammonia at a high temperature, the catalytic function of the activated carbon is enhanced. Recently, activated carbon having a high catalytic activity has been produced by carbonizing a nitrogen-rich substance such as polyacrylonitrile and polyamide at a low temperature or a high temperature and activating (activating) the carbonized material. In either case, the activated carbon is produced by heat treatment at a temperature exceeding 700 ° C. It is also known that it is advantageous to oxidize activated carbon produced from raw materials with low nitrogen content before or during exposure to nitrogen-containing compounds.

しかし、触媒活性を有する活性炭を製造する先行技術の方法は、すべてある種の欠点があり、そのために全体的な有用性や実用性が限られている。例えば、ポリアクリロニトリルやポリアミドなどの窒素分の多い原料は高価であり、炭素化に際し、大量のシアン化物および他の毒性ガスを発生する。窒素分の少ない原料から得られる活性炭では、触媒能力を大きく変化させるために激しい化学的な後処理が必要である。その際、所望の触媒活性を得るために炭素収率を犠牲にして達成され、必然的に高価となる。さらに、化学的に処理する方法では、硝酸、硫酸またはアンモニアなどの毒性があり危険な薬品を大量に使用するため、SOx、NOx、シアン化物のような毒性があり危険な副生物が著しく大量に生じる。   However, all prior art methods for producing catalytic activated carbon have certain drawbacks, which limit their overall usefulness and practicality. For example, raw materials with high nitrogen content such as polyacrylonitrile and polyamide are expensive and generate large amounts of cyanide and other toxic gases upon carbonization. Activated carbon obtained from a raw material with a low nitrogen content requires a vigorous chemical post-treatment in order to greatly change the catalytic ability. In so doing, it is achieved at the expense of carbon yield in order to obtain the desired catalytic activity, which is necessarily expensive. Furthermore, the chemical treatment method uses a large amount of toxic and dangerous chemicals such as nitric acid, sulfuric acid or ammonia, so that there are a significant amount of toxic and dangerous by-products such as SOx, NOx and cyanide. Arise.

また、活性炭自体の触媒性能を扱った先行技術は数多く見受けられるが、下記の特許文献を除き、活性炭の物性と触媒性能との関係を詳細に取り扱ったものは少ない。この理由として、活性炭が有する種々の物性が複合的に触媒性能に寄与しているため、複雑であり且つ解明が困難な状況にあることが挙げられる。   There are many prior arts that deal with the catalytic performance of the activated carbon itself, but there are few that deal in detail with the physical properties of the activated carbon and the catalytic performance, except for the following patent documents. The reason for this is that various physical properties of the activated carbon contribute to the catalyst performance in a complex manner, and are therefore complicated and difficult to elucidate.

一方、前述のように、活性炭は酸化反応の触媒としても利用できるが、例えば、アルコールや炭化水素類の酸化反応は工業的に重要な反応である。しかし、アルコールや炭化水素類の酸化反応においては解決すべき課題が多い。アルコールや炭化水素類の酸化反応の酸化剤はクロロクロム酸ピリジニウムに代表されるクロム酸であるが、6価クロムは最終的に3価クロムになるため、クロム酸は化学量論必要となる。その他、活性二酸化マンガンなども有効な酸化剤であるが、クロム酸と同様に化学量論必要となる。また、アルコールや炭化水素類の酸化反応に酸化剤としてクロムやマンガンなどの重金属を用いるため、反応後の廃棄物として有害な重金属類化合物が大量廃棄されることになる。これに対して、アルコールや炭化水素類の酸化反応に関し、活性炭と酸素を用いた種々の化合物を製造する方法が提案されている。この方法では、重金属類の大量廃棄物を生じない利点があるものの、高純度の酸素を使用する必要があり、工業的に爆発などの危険性を考慮しなければならない。   On the other hand, as described above, activated carbon can be used as a catalyst for an oxidation reaction. For example, an oxidation reaction of alcohol or hydrocarbons is an industrially important reaction. However, there are many problems to be solved in the oxidation reaction of alcohols and hydrocarbons. The oxidant for the oxidation reaction of alcohols and hydrocarbons is chromic acid represented by pyridinium chlorochromate, but hexavalent chromium eventually becomes trivalent chromium, so chromic acid requires a stoichiometry. In addition, active manganese dioxide and the like are effective oxidizing agents, but the stoichiometry is required as with chromic acid. In addition, since heavy metals such as chromium and manganese are used as oxidizing agents in the oxidation reaction of alcohols and hydrocarbons, harmful heavy metal compounds are discarded in large quantities as waste after the reaction. On the other hand, methods for producing various compounds using activated carbon and oxygen have been proposed for the oxidation reaction of alcohols and hydrocarbons. Although this method has the advantage of not producing a large amount of heavy metal waste, it requires the use of high-purity oxygen, and industrial risks such as explosions must be considered.

特開平5−811号公報(特許文献1)には、過酸化水素分解用触媒として、蛋白質やポリアクリロニトリル繊維状活性炭素材を原料とし、窒素1〜5重量%、酸素3〜30重量%、炭素40〜95重量%を含有し、平均細孔半径が15〜30Åであり、有孔メソポアが全容積当たり少なくとも50容積%を占める活性炭が開示されている。この文献の実施例には、窒素2.1〜4.1重量%、酸素7.6〜22.8重量%の活性炭が記載され、比較例には窒素0.5重量%、酸素5.6重量%の活性炭が記載されている。   In JP-A-5-811 (Patent Document 1), as a catalyst for decomposing hydrogen peroxide, protein or polyacrylonitrile fibrous activated carbon material is used as a raw material, 1 to 5% by weight of nitrogen, 3 to 30% by weight of oxygen, carbon An activated carbon containing 40-95% by weight, having an average pore radius of 15-30cm and a porous mesopore occupying at least 50% by volume per total volume is disclosed. Examples in this document describe activated carbon with 2.1 to 4.1 wt% nitrogen and 7.6 to 22.8 wt% oxygen, and comparative examples with 0.5 wt% nitrogen and 5.6 oxygen. A weight percent of activated carbon is described.

しかし、この活性炭は、過酸化水素を分解する触媒活性が未だ十分でなく、しかも繰り返し使用により活性が低下する場合がある。   However, this activated carbon does not yet have sufficient catalytic activity for decomposing hydrogen peroxide, and the activity may decrease due to repeated use.

国際公開WO2011/125504号公報(特許文献2)には、過酸化物又はモノクロロアミンを効率よく分解又は除去できる活性炭触媒が開示され、酸素、窒素、硫黄及び水素原子を所定の濃度で含有する活性炭を用いると過酸化水素の分解能が大きく向上することが記載されている。   International Publication WO2011 / 125504 (Patent Document 2) discloses an activated carbon catalyst capable of efficiently decomposing or removing peroxides or monochloroamines and containing activated carbon containing oxygen, nitrogen, sulfur and hydrogen atoms at a predetermined concentration. It is described that the resolution of hydrogen peroxide is greatly improved by using.

しかし、この活性炭を用いても、用途によっては過酸化水素を分解する触媒活性が未だ十分でなく、例えば、アルコールや炭化水素類の酸化反応における触媒として十分ではなかった。   However, even when this activated carbon is used, the catalytic activity for decomposing hydrogen peroxide is still insufficient depending on the application, and for example, it is not sufficient as a catalyst in the oxidation reaction of alcohols and hydrocarbons.

特開平5−811号公報(特許請求の範囲、実施例及び比較例)Japanese Patent Laid-Open No. 5-811 (Claims, Examples and Comparative Examples) 国際公開WO2011/125504号公報(請求の範囲、実施例)International Publication WO2011 / 125504 (Claims, Examples)

従って、本発明の目的は、酸化触媒(又は分解触媒)として有用な活性炭とその用途を提供することにある。   Accordingly, an object of the present invention is to provide activated carbon useful as an oxidation catalyst (or decomposition catalyst) and its use.

本発明の他の目的は、繰り返し使用しても高い触媒活性を保持する活性炭触媒とその用途を提供することにある。   Another object of the present invention is to provide an activated carbon catalyst that retains high catalytic activity even after repeated use, and uses thereof.

本発明のさらに他の目的は、溶媒中で過酸化物(過酸化水素など)を有効に分解又は除去できる活性炭触媒とその用途を提供することにある。   Still another object of the present invention is to provide an activated carbon catalyst capable of effectively decomposing or removing peroxides (hydrogen peroxide, etc.) in a solvent and use thereof.

本発明の他の目的は、前記活性炭の触媒活性を利用して、カルボニル化合物を効率よく製造できる方法、過酸化物(過酸化水素など)を効率よく分解できる方法を提供することにある。   Another object of the present invention is to provide a method capable of efficiently producing a carbonyl compound and a method capable of efficiently decomposing a peroxide (such as hydrogen peroxide) using the catalytic activity of the activated carbon.

本発明者らは、前記課題を解決するため鋭意検討の結果、水素原子、窒素原子及び塩基性表面官能基を所定の濃度で含有する活性炭を用いると、過酸化水素の分解能が大きく向上すること、前記活性炭が第2級炭素原子を有する化合物の酸化を効率よく触媒し、カルボニル化合物を効率よく生成することを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have greatly improved the resolution of hydrogen peroxide when using activated carbon containing hydrogen atoms, nitrogen atoms and basic surface functional groups at a predetermined concentration. The present invention was completed by finding that the activated carbon efficiently catalyzes the oxidation of a compound having a secondary carbon atom and efficiently produces a carbonyl compound.

すなわち、本発明の活性炭は、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gの範囲にある。   That is, the activated carbon of the present invention has a hydrogen content of 0.63 to 0.75 mass%, a nitrogen content of 2.55 to 6.50 mass%, and a basic surface functional group of 0.88 to 1.15 meq /. It is in the range of g.

本発明には、過酸化物を分解するための触媒であって、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gである活性炭で構成されている分解触媒も含まれる。   In the present invention, a catalyst for decomposing a peroxide having a hydrogen content of 0.63 to 0.75 mass%, a nitrogen content of 2.55 to 6.50 mass%, a basic surface functionality A cracking catalyst composed of activated carbon having a group of 0.88 to 1.15 meq / g is also included.

本発明には、炭素質材料を400〜700℃で乾留する乾留工程、水蒸気、窒素及び二酸化炭素を含む混合ガス雰囲気下、750℃〜850℃の温度で1〜10時間処理し、部分的にガス化する賦活工程を含む前記活性炭の製造方法も含まれる。   In the present invention, a carbonaceous material is carbonized at 400 to 700 ° C., treated in a mixed gas atmosphere containing water vapor, nitrogen and carbon dioxide at a temperature of 750 ° C. to 850 ° C. for 1 to 10 hours. The manufacturing method of the said activated carbon including the activation process to gasify is also included.

本発明には、活性炭の存在下、第2級炭素原子を有する化合物を酸化剤で酸化してカルボニル化合物を製造する方法であって、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gである活性炭を用い、酸化剤として過酸化物を用いるカルボニル化合物の製造方法も含まれる。この製造方法において、第2級炭素原子を有する化合物は第2級アルコール又はメチレン基を有する化合物であってもよい。前記活性炭の割合は第2級炭素原子を有する化合物100質量部に対して30〜150質量部程度である。前記過酸化物の割合は第2級炭素原子を有する化合物100質量部に対して50〜1000質量部程度である。前記過酸化物は過酸化水素又は過酸化水素化物(例えば、尿素過酸化水素化物)であってもよい。   The present invention relates to a method for producing a carbonyl compound by oxidizing a compound having a secondary carbon atom with an oxidizing agent in the presence of activated carbon, wherein the hydrogen content is 0.63 to 0.75% by mass, nitrogen Also included is a method for producing a carbonyl compound using activated carbon having a content of 2.55 to 6.50% by mass, a basic surface functional group of 0.88 to 1.15 meq / g, and a peroxide as an oxidizing agent. . In this production method, the compound having a secondary carbon atom may be a compound having a secondary alcohol or a methylene group. The ratio of the activated carbon is about 30 to 150 parts by mass with respect to 100 parts by mass of the compound having a secondary carbon atom. The ratio of the peroxide is about 50 to 1000 parts by mass with respect to 100 parts by mass of the compound having a secondary carbon atom. The peroxide may be hydrogen peroxide or a hydrogen peroxide (eg, urea hydrogen peroxide).

本発明には、活性炭と接触させて過酸化物を分解する方法であって、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gである活性炭を用いる方法も含まれる。   The present invention is a method for decomposing a peroxide by contacting with activated carbon, wherein the hydrogen content is 0.63 to 0.75 mass%, the nitrogen content is 2.55 to 6.50 mass%, a base A method using activated carbon having a functional surface functional group of 0.88 to 1.15 meq / g is also included.

本発明の活性炭は酸化触媒又は分解触媒として高い触媒活性を示す。また、活性炭触媒は繰り返し使用しても高い触媒活性を保持する。そのため、活性炭触媒は、溶媒中で過酸化物(過酸化水素など)を有効に分解できる。さらに、本発明の活性炭は酸化反応を触媒し、活性炭の触媒活性を利用して、過酸化物(過酸化水素など)の存在下、第2級炭素原子を有する化合物からカルボニル化合物を効率よく製造できる。さらに、本発明の活性炭は、例えば、過酸化物を分解して除去するのに適している。さらには、従来の手段により製造された活性炭と比較して、本発明の活性炭は、過酸化物の分解除去、第2級炭素原子を有する化合物の酸化反応の触媒として非常に有用である。   The activated carbon of the present invention exhibits high catalytic activity as an oxidation catalyst or a decomposition catalyst. Moreover, the activated carbon catalyst retains high catalytic activity even after repeated use. Therefore, the activated carbon catalyst can effectively decompose peroxides (such as hydrogen peroxide) in a solvent. Furthermore, the activated carbon of the present invention catalyzes an oxidation reaction and efficiently produces a carbonyl compound from a compound having a secondary carbon atom in the presence of a peroxide (such as hydrogen peroxide) by utilizing the catalytic activity of the activated carbon. it can. Furthermore, the activated carbon of the present invention is suitable for, for example, decomposing and removing peroxides. Furthermore, compared with activated carbon produced by conventional means, the activated carbon of the present invention is very useful as a catalyst for decomposition and removal of peroxides and oxidation reactions of compounds having secondary carbon atoms.

[活性炭]
本発明の活性炭は以下の特徴を有する。
(a)水素含有量が0.63〜0.75質量%であり、
(b)窒素含有量が2.55〜6.50質量%であり、
(c)塩基性表面官能基量が0.88〜1.18meq/gの範囲である。
[Activated carbon]
The activated carbon of the present invention has the following characteristics.
(A) Hydrogen content is 0.63-0.75 mass%,
(B) the nitrogen content is 2.55 to 6.50 mass%,
(C) The amount of basic surface functional groups is in the range of 0.88 to 1.18 meq / g.

(a)活性炭の水素含有量は0.63〜0.75質量%であり、好ましくは0.64〜0.74質量%、さらに好ましくは0.65〜0.70質量%(特に0.65〜0.68質量%)である。水素含有量が少なすぎると触媒活性が低下し、多すぎても触媒活性が低下する。   (A) The hydrogen content of the activated carbon is 0.63 to 0.75% by mass, preferably 0.64 to 0.74% by mass, more preferably 0.65 to 0.70% by mass (particularly 0.65). ˜0.68 mass%). If the hydrogen content is too small, the catalytic activity is reduced, and if it is too high, the catalytic activity is reduced.

(b)活性炭の窒素含有量が窒素含有量は2.55〜6.50質量%であり、好ましくは2.90〜5.00質量%、さらに好ましくは3.50〜4.50質量%(特に3.80〜4.20質量%)である。窒素含有量が少なすぎると触媒活性が低下し、多すぎても触媒活性が低下する。   (B) The nitrogen content of the activated carbon is 2.55 to 6.50% by mass, preferably 2.90 to 5.00% by mass, more preferably 3.50 to 4.50% by mass ( In particular, it is 3.80 to 4.20% by mass). If the nitrogen content is too low, the catalytic activity is reduced, and if it is too high, the catalytic activity is reduced.

(c)塩基性表面官能基量が0.88〜1.18meq/g、好ましくは0.89〜1.15meq/g、さらに好ましくは0.90〜1.10meq/g(特に0.95〜1.10meq/g)程度である。塩基性表面官能基量が少なすぎると触媒活性が低下し、多すぎても触媒活性が低下する。   (C) The amount of basic surface functional groups is 0.88 to 1.18 meq / g, preferably 0.89 to 1.15 meq / g, more preferably 0.90 to 1.10 meq / g (particularly 0.95). 1.10 meq / g). If the amount of the basic surface functional group is too small, the catalytic activity is lowered, and if it is too much, the catalytic activity is lowered.

なお、これらの活性炭の(a)水素原子、(b)窒素原子、(c)塩基性表面官能基に関し、触媒活性には単一の元素又は表面官能基量が単独で関与するのではなく、これらの要因が複合的に関与しているようである。そのため、単一の元素又は官能基含有量が前記範囲にあっても、他の元素又は官能基含有量が前記範囲を外れると、活性炭の触媒活性が低下する。   In addition, regarding (a) hydrogen atom, (b) nitrogen atom, (c) basic surface functional group of these activated carbons, a single element or surface functional group amount is not independently involved in catalytic activity, It seems that these factors are combined. Therefore, even if the content of a single element or functional group is within the above range, the catalytic activity of activated carbon is reduced if the content of other elements or functional groups is outside the above range.

[活性炭の製造方法]
通常、活性炭触媒の製造は、活性炭を硝酸や硫酸、次亜塩素酸ナトリウムなどで酸化したのち、高温でアンモニアと接触させるか、ポリアクリルニトリルなどの窒素を多く含む原料から活性炭化するといった方法で行われる。
[Production method of activated carbon]
Normally, activated carbon catalyst is produced by oxidizing activated carbon with nitric acid, sulfuric acid, sodium hypochlorite, etc., and then contacting it with ammonia at high temperature or by active carbonization from a nitrogen-rich raw material such as polyacrylonitrile. Done.

本発明では、複数のパラメーターを管理することにより、様々な高触媒活性を有する活性炭を製造できる。   In the present invention, activated carbon having various high catalytic activities can be produced by managing a plurality of parameters.

すなわち、本発明の活性炭触媒は、炭素質材料を400〜700℃で乾留する乾留工程、水蒸気、窒素及び二酸化炭素を含む混合ガス雰囲気下、750℃〜850℃の温度で1〜10時間処理し、部分的にガス化する賦活工程を含む製造方法により得ることができる。   That is, the activated carbon catalyst of the present invention is treated by carbonization at a temperature of 750 ° C. to 850 ° C. for 1 to 10 hours in a dry distillation step of carbonizing a carbonaceous material at 400 to 700 ° C., in a mixed gas atmosphere containing water vapor, nitrogen and carbon dioxide. It can be obtained by a production method including an activation step of partial gasification.

炭素質材料としては、活性炭の製造に適した公知の材料全てから選択できるが、窒素を含む泥炭、亜炭、亜瀝青炭、瀝青炭、半無煙炭、無煙炭が好ましい。これらの炭素質材料は、単独で又は二種以上組み合わせて使用できる。   The carbonaceous material can be selected from all known materials suitable for the production of activated carbon, but peat, lignite, subbituminous coal, bituminous coal, semi-anthracite and anthracite containing nitrogen are preferable. These carbonaceous materials can be used alone or in combination of two or more.

本発明の活性炭は、一般的な活性炭製造設備である流動層、多段炉、回転炉などを用いて作製される。   The activated carbon of the present invention is produced using a fluidized bed, a multistage furnace, a rotary furnace, or the like, which is a general activated carbon production facility.

乾留工程において、乾留は、慣用の方法、例えば、炭素質材料を、酸素又は空気を遮断して、400〜800℃、好ましくは500〜700℃程度で加熱することにより行うことができる。乾留温度が低すぎると、窒素含有量が高くなりすぎる一方で、塩基性表面官能基量が低下しすぎる傾向があり、逆に高すぎると、窒素含有量が低下しすぎる一方で、塩基性表面官能基量が高くなりすぎる傾向がある。   In the dry distillation step, the dry distillation can be performed by a conventional method, for example, by heating the carbonaceous material at 400 to 800 ° C., preferably about 500 to 700 ° C. while blocking oxygen or air. If the carbonization temperature is too low, the nitrogen content becomes too high, while the basic surface functional group amount tends to decrease too much. Conversely, if it is too high, the nitrogen content decreases too much, while the basic surface becomes too low. There is a tendency for the amount of functional groups to be too high.

賦活工程(熱処理工程又は活性化工程)において、流動層、多段炉、回転炉内で700℃を超える温度、好ましくは700〜850℃、さらに好ましくは750〜850℃(特に750〜800℃)程度にて、水蒸気、窒素及び二酸化炭素の混合物で部分的に乾留した炭素質材料をガス化して活性炭を得る。賦活温度が高すぎると、窒素含有量が低下しすぎる傾向があり、逆に、低すぎると、塩基性表面官能基が高くなりすぎる傾向がある。蒸気、窒素及び二酸化炭素からなる炭素質材料の乾留物の一部をガス化させるためのガスは、天然ガス、石油、又は炭化水素を含む他の可燃物を燃焼することによっても得られる。なお、賦活温度は、通常、±25℃程度の範囲で変動する場合が多い。   In the activation step (heat treatment step or activation step), the temperature exceeds 700 ° C., preferably 700 to 850 ° C., more preferably 750 to 850 ° C. (especially 750 to 800 ° C.) in a fluidized bed, a multistage furnace or a rotary furnace. The carbonaceous material partially carbonized with a mixture of water vapor, nitrogen and carbon dioxide is gasified to obtain activated carbon. If the activation temperature is too high, the nitrogen content tends to decrease too much. Conversely, if the activation temperature is too low, the basic surface functional group tends to become too high. The gas for gasifying a part of the carbonaceous material dry matter composed of steam, nitrogen and carbon dioxide can also be obtained by burning natural gas, petroleum, or other combustible materials including hydrocarbons. Note that the activation temperature usually varies in a range of about ± 25 ° C. in many cases.

賦活時間としては、1〜10時間、好ましくは2〜8時間程度であってもよい。賦活時間が短すぎると水素含有量が増加し、長すぎると窒素含有量が低下し触媒活性が低下する。   The activation time may be 1 to 10 hours, preferably about 2 to 8 hours. When activation time is too short, hydrogen content will increase, and when too long, nitrogen content will fall and catalyst activity will fall.

ガス分圧は水蒸気分圧7.5〜40%、好ましくは10〜30%、炭酸ガス分圧10〜50%、好ましくは15〜45%、窒素分圧30〜80%、好ましくは40〜70%、さらに好ましくは40〜65%であってもよい。なお、ガスの全圧は、通常、1気圧(約0.1MPa)である。水蒸気分圧が低すぎると賦活(活性化)が十分進行しないため活性炭の触媒活性を高められず、高すぎると活性炭の触媒活性が低下するだけでなく、急激な賦活反応となり、反応をコントロールするのが困難となる。また、炭酸ガス分圧が低すぎると賦活(活性化)が十分でなく、高すぎると活性炭の活性が低下する。   The gas partial pressure is 7.5 to 40%, preferably 10 to 30%, the partial pressure of carbon dioxide is 10 to 50%, preferably 15 to 45%, and the partial pressure of nitrogen is 30 to 80%, preferably 40 to 70. %, More preferably 40 to 65%. The total pressure of the gas is usually 1 atmosphere (about 0.1 MPa). If the water vapor partial pressure is too low, activation (activation) does not proceed sufficiently, so that the catalytic activity of the activated carbon cannot be increased. If it is too high, not only the catalytic activity of the activated carbon will be reduced, but also a rapid activation reaction will control the reaction. It becomes difficult. Further, if the carbon dioxide partial pressure is too low, activation (activation) is not sufficient, and if it is too high, the activity of the activated carbon decreases.

また、総ガス供給量(流量)は乾留品原料100gに対して、0.1〜50L/分、好ましくは0.5〜40L/分、さらに好ましくは1〜30L/分(特に1〜10L/分)である。流量が少なすぎると賦活が十分でなく、多すぎると活性炭の活性が低下する。   The total gas supply amount (flow rate) is 0.1 to 50 L / min, preferably 0.5 to 40 L / min, more preferably 1 to 30 L / min (particularly 1 to 10 L / min) with respect to 100 g of the dry distillation raw material. Min). If the flow rate is too low, activation is not sufficient, and if it is too high, the activity of the activated carbon decreases.

このような条件を組み合わせることにより、目的とする水素含有量、窒素含有量、塩基性表面官能基を有する活性炭が得られる。なお、本発明の活性炭の製造方法の詳細は、実施例を参照できる。   By combining such conditions, an activated carbon having a target hydrogen content, nitrogen content, and basic surface functional groups can be obtained. In addition, the Example can be referred for the detail of the manufacturing method of the activated carbon of this invention.

なお、活性炭は、粉末状、粒状、造粒状であってもよく、必要であれば、ハニカム状などの形態に成形してもよい。   The activated carbon may be powdery, granular, or granulated, and if necessary, may be formed into a honeycomb shape.

[活性炭触媒]
このような特性を有する活性炭は、酸化触媒又は分解触媒などの触媒として有用である。例えば、本発明の活性炭触媒は、過酸化物の分解(又は酸化)などに有用である。過酸化物としては、例えば、過酸化水素、過酸(過ギ酸、過酢酸、過安息香酸など)、パーオキサイド(過酸化ベンゾイル、過酸化ジアセチル、過酸化ラウロイル、エチルメチルケトンパーオキサイドなど)などが例示できる。代表的な過酸化物は、過酸化水素である。
[Activated carbon catalyst]
Activated carbon having such characteristics is useful as a catalyst such as an oxidation catalyst or a decomposition catalyst. For example, the activated carbon catalyst of the present invention is useful for peroxide decomposition (or oxidation) and the like. Examples of peroxides include hydrogen peroxide, peracids (performic acid, peracetic acid, perbenzoic acid, etc.), peroxides (benzoyl peroxide, diacetyl peroxide, lauroyl peroxide, ethyl methyl ketone peroxide, etc.), etc. Can be illustrated. A typical peroxide is hydrogen peroxide.

過酸化物の分解(又は酸化)は、有機溶媒(トルエン、キシレンなどの炭化水素、エタノールなどのアルコール類、エステル類、ケトン類、エーテル類、カルボン酸類など)又は水性溶媒(水、水と水溶性有機溶媒との混合溶媒)中で行うことができる。また、過剰量の溶媒の存在下で、分解反応を行う場合が多い。なお、過酸化物が溶液や分散液の状態で存在する場合、過酸化物(過酸化水素など)の濃度は特に制限されず、例えば、反応系での過酸化物(過酸化水素など)の濃度は0.1〜50質量%、好ましくは0.5〜30質量%程度であってもよい。   Peroxide decomposition (or oxidation) can be accomplished with organic solvents (hydrocarbons such as toluene and xylene, alcohols such as ethanol, esters, ketones, ethers, carboxylic acids, etc.) or aqueous solvents (water, water and water-soluble). In a mixed solvent with an organic solvent). In many cases, the decomposition reaction is carried out in the presence of an excessive amount of solvent. When peroxide is present in the form of a solution or dispersion, the concentration of the peroxide (hydrogen peroxide, etc.) is not particularly limited. For example, the peroxide (hydrogen peroxide, etc.) in the reaction system The concentration may be about 0.1 to 50% by mass, preferably about 0.5 to 30% by mass.

活性炭触媒の使用量は、過酸化物100質量部に対して、0.1〜500質量部、好ましくは1〜250質量部、さらに好ましくは5〜100質量部(例えば、10〜80質量部)程度であってもよい。   The amount of the activated carbon catalyst used is 0.1 to 500 parts by weight, preferably 1 to 250 parts by weight, more preferably 5 to 100 parts by weight (for example, 10 to 80 parts by weight) with respect to 100 parts by weight of the peroxide. It may be a degree.

分解反応は、例えば、10〜70℃、好ましくは20〜50℃程度で行うことができる。分解反応は、例えば、空気中又は酸素含有雰囲気下で行うこともでき、不活性ガス雰囲気下で行うこともできる。   The decomposition reaction can be performed at, for example, about 10 to 70 ° C, preferably about 20 to 50 ° C. The decomposition reaction can be performed, for example, in air or in an oxygen-containing atmosphere, or in an inert gas atmosphere.

本発明の活性炭触媒は、前記過酸化物以外に、多くの反応のための触媒、例えば、硫化物(硫化水素など)、二酸化硫黄SOおよび酸化窒素NOxの酸化又は転化などにも有用である。硫化物(硫化水素など)、二酸化硫黄SOおよび酸化窒素NOxなどのガス状基質は、必要により空気又は酸素含有気体とともに、気流の形態で活性炭と接触させてもよい。 In addition to the peroxide, the activated carbon catalyst of the present invention is also useful for catalysts for many reactions, for example, oxidation or conversion of sulfides (such as hydrogen sulfide), sulfur dioxide SO 2 and nitric oxide NOx. . Gaseous substrates such as sulfides (such as hydrogen sulfide), sulfur dioxide SO 2 and nitric oxide NOx may be brought into contact with the activated carbon in the form of an air stream with air or an oxygen-containing gas if necessary.

[カルボニル化合物の製造方法]
本発明の活性炭触媒は、第2級炭素原子を有する化合物(基質又は酸化前駆体)を過酸化物で構成された酸化剤で酸化してカルボニル化合物を製造するための触媒としても有用である。第2級炭素原子を有する化合物には、第2級アルコール、メチレン基を有する化合物が含まれる。
[Method for producing carbonyl compound]
The activated carbon catalyst of the present invention is also useful as a catalyst for producing a carbonyl compound by oxidizing a compound having a secondary carbon atom (substrate or oxidation precursor) with an oxidizing agent composed of a peroxide. The compound having a secondary carbon atom includes a secondary alcohol and a compound having a methylene group.

第2級アルコールは、式:R−CH(−OH)−Rで表されるアルコール(式中、R及びRは、同一又は異なって、置換基を有していてもよい有機基を示し、RとRとは、互いに結合して、置換基を有していてもよい環を形成してもよい)で表される化合物であってもよい。 The secondary alcohol is an alcohol represented by the formula: R 1 —CH (—OH) —R 2 (in the formula, R 1 and R 2 are the same or different and may have a substituent). R 1 and R 2 may be bonded to each other to form a ring which may have a substituent, and may be a compound represented by:

前記式において、有機基としては、例えば、炭化水素基(アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基など)、酸素含有複素環基(フリル基、ピラニル基、クロマニル基、キサンテニル基など)、窒素含有複素環基(ピリジル基、キノリル基など)、硫黄含有複素環基(チオフェニル基、チオピラニル基、チオキサンテニル基など)などが挙げられる。これらの有機基のうち、メチル基などのアルキル基、フェニル基などのアリール基、ピリジル基やキノリル基などの窒素含有複素環基などが好ましい。   In the above formula, examples of the organic group include a hydrocarbon group (alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, aryl group, etc.), oxygen-containing heterocyclic group (furyl group, pyranyl group, chromanyl group, xanthenyl group). Group), nitrogen-containing heterocyclic groups (pyridyl group, quinolyl group, etc.), sulfur-containing heterocyclic groups (thiophenyl group, thiopyranyl group, thioxanthenyl group, etc.) and the like. Of these organic groups, alkyl groups such as methyl groups, aryl groups such as phenyl groups, nitrogen-containing heterocyclic groups such as pyridyl groups and quinolyl groups, and the like are preferable.

置換基としては、前記炭化水素基、アルコキシ基、アルコキシカルボニル基、アシル基、アミド基、アシルアミノ基、オキソ基などが挙げられる。これらの置換基は、単独で又は二種以上組み合わせて使用できる。これらの置換基のうち、メチル基などのアルキル基、フェニル基などのアリール基、アセチルアミノ基などのアシルアミノ基、オキソ基などが好ましい。   Examples of the substituent include the hydrocarbon group, alkoxy group, alkoxycarbonyl group, acyl group, amide group, acylamino group, oxo group and the like. These substituents can be used alone or in combination of two or more. Of these substituents, an alkyl group such as a methyl group, an aryl group such as a phenyl group, an acylamino group such as an acetylamino group, and an oxo group are preferable.

とRとの組み合わせとしては、フェニル基などのアリール基、ピリジル基やキノリル基などの窒素含有複素環基を含む組み合わせが好ましく、例えば、置換基を有していてもよいアリール基(例えば、フェニル基)同士の組み合わせ、置換基を有していてもよいアリール基(例えば、フェニル基)と置換基を有していてもよいアルキル基(例えば、オキソ基及びフェニル基を有するメチル基)との組み合わせ、置換基を有していてもよいアリール基(例えば、フェニル基)と置換基を有していてもよい窒素含有複素環基(例えば、ピリジル基、キノリル基)との組み合わせ、置換基を有していてもよいアルキル基(例えば、メチル基)と置換基を有していてもよい窒素含有複素環基(例えば、キノリル基)との組み合わせなどが挙げられる。 The combination of R 1 and R 2 is preferably a combination containing an aryl group such as a phenyl group, or a nitrogen-containing heterocyclic group such as a pyridyl group or a quinolyl group. For example, an aryl group (which may have a substituent) ( For example, a combination of phenyl groups), an aryl group which may have a substituent (for example, a phenyl group) and an alkyl group which may have a substituent (for example, an oxo group and a methyl group having a phenyl group) ), A combination of an aryl group which may have a substituent (for example, a phenyl group) and a nitrogen-containing heterocyclic group which may have a substituent (for example, a pyridyl group, a quinolyl group), A combination of an alkyl group (for example, a methyl group) that may have a substituent and a nitrogen-containing heterocyclic group (for example, a quinolyl group) that may have a substituent may be mentioned. It is.

とRとが互いに結合した環としては、シクロアルカン(例えば、シクロペンタン、シクロヘキサンなど)、縮合多環式炭化水素環(例えば、インデン、フェナレン、フルオレンなど)などが挙げられる。これらのうち、フルオレンなどの縮合多環式炭化水素環などが好ましい。 Examples of the ring in which R 1 and R 2 are bonded to each other include a cycloalkane (eg, cyclopentane, cyclohexane, etc.), a condensed polycyclic hydrocarbon ring (eg, indene, phenalene, fluorene, etc.), and the like. Of these, condensed polycyclic hydrocarbon rings such as fluorene are preferred.

とRとが互いに結合した環の置換基としても、前記置換基が例示できる。 Examples of the substituent of the ring in which R 1 and R 2 are bonded to each other include the above substituent.

メチレン基を有する化合物としては、前記第2級アルコールに対応する炭化水素類などが挙げられる。これらのうち、置換基を有していてもよい縮合多環式炭化水素(例えば、フルオレン、アセチルアミノフルオレン、アントロンなど)、置換基を有していてもよい酸素含有複素環式化合物(例えば、キサンテンなど)、置換基を有していてもよい硫黄含有複素環式化合物(例えば、チオキサンテンなど)などが好ましい。   Examples of the compound having a methylene group include hydrocarbons corresponding to the secondary alcohol. Among these, a condensed polycyclic hydrocarbon which may have a substituent (for example, fluorene, acetylaminofluorene, anthrone and the like), an oxygen-containing heterocyclic compound which may have a substituent (for example, Xanthene), a sulfur-containing heterocyclic compound optionally having a substituent (for example, thioxanthene) and the like are preferable.

過酸化物としては、前記と同様の過酸化物が例示できる。これらの過酸化物は単独で又は二種以上組み合わせて使用できる。前記過酸化物の中で、通常、過酸化水素(H)又は過酸化水素化物(過酸化水素を含む化合物又は過酸化水素を発生可能な化合物)が使用される。なお、過酸化水素としては、市販の30〜60質量%水溶液を使用でき、必要により希釈して使用してもよい。 Examples of the peroxide include the same peroxides as described above. These peroxides can be used alone or in combination of two or more. Among the peroxides, hydrogen peroxide (H 2 O 2 ) or hydrogen peroxide (a compound containing hydrogen peroxide or a compound capable of generating hydrogen peroxide) is usually used. In addition, as hydrogen peroxide, commercially available 30-60 mass% aqueous solution can be used, You may dilute and use as needed.

過酸化水素化物は、酸化能を有する過酸化水素を含んでいれば特に限定されないが、固体状であり、かつ溶媒中で過酸化水素を発生できる過酸化水素化物が好ましい。このような過酸化水素化物は、過酸化水素の取り扱い性や安定性を向上させるための安定剤との複合体、例えば、安定剤と過酸化水素とが水素結合や配位結合を介して結合した複合体、安定剤の結晶構造の隙間に過酸化水素が包接された複合体であってもよい。   The hydrogen peroxide is not particularly limited as long as it contains hydrogen peroxide having oxidizing ability, but a hydrogen peroxide that is solid and can generate hydrogen peroxide in a solvent is preferable. Such a hydrogen peroxide is a complex with a stabilizer for improving the handleability and stability of hydrogen peroxide, for example, the stabilizer and hydrogen peroxide are bonded through a hydrogen bond or a coordinate bond. Alternatively, it may be a composite in which hydrogen peroxide is included in the gap between the crystal structures of the stabilizer.

具体的に、過酸化水素化物としては、例えば、アンモニア又は第4級アンモニウムの過酸化水素化物、炭酸塩の過酸化水素化物(炭酸アンモニウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ルビジウムなどの炭酸塩過酸化水素化物など)、ホウ酸塩の過酸化水素化物(ホウ酸アンモニウム、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸マグネシウム、ホウ酸カルシウムなどのホウ酸塩過酸化水素化物など)、硫酸塩の過酸化水素化物(硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウムなどの硫酸塩過酸化水素化物など)、尿素類の過酸化水素化物(尿素、尿酸、メラミンなどの尿素類の過酸化水素物など)などが好ましい。これらの過酸化水素化物は、単独で又は二種以上組み合わせて使用でき、さらに過酸化水素とも組み合わせて使用できる。   Specifically, examples of the hydrogen peroxide include hydrogen peroxide of ammonia or quaternary ammonium, hydrogen peroxide of carbonate (ammonium carbonate, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate). , Carbonate hydrogen peroxides such as rubidium carbonate), borate hydrogen peroxide (ammonium borate, lithium borate, sodium borate, potassium borate, magnesium borate, calcium borate, etc.) Salt hydrogen peroxide), sulfate hydrogen peroxide (lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, etc. sulfate hydrogen peroxide), urea hydrogen peroxide (urea) , Hydrogen peroxide of ureas such as uric acid and melamine). These hydrogen peroxides can be used alone or in combination of two or more, and can also be used in combination with hydrogen peroxide.

これらの過酸化水素化物のうち、取り扱い性だけでなく、酸化反応効率も向上できる点から、尿素類の過酸化水素化物(特に、尿素過酸化水素化物)が好ましい。尿素類の過酸化水素化物が酸化反応効率を向上できるメカニズムは不明であるが、前記活性炭と組み合わせることにより、尿素類が過酸化水素の分解速度を酸化反応に適した速度に調整でき、酸化反応の反応効率も向上すると推定できる。   Among these hydrogen peroxides, urea hydrogen peroxides (especially urea hydrogen peroxide) are preferable from the viewpoint that not only the handleability but also the oxidation reaction efficiency can be improved. The mechanism by which the hydrogen peroxide of ureas can improve the oxidation reaction efficiency is unknown, but when combined with the activated carbon, ureas can adjust the decomposition rate of hydrogen peroxide to a rate suitable for the oxidation reaction. It can be presumed that the reaction efficiency of is improved.

活性炭の使用量は、第2級炭素原子を有する化合物(基質)100質量部に対して10〜500質量部程度の範囲から選択でき、例えば、30〜150質量部、好ましくは50〜120質量部、さらに好ましくは50〜100質量部程度であってもよい。   The used amount of the activated carbon can be selected from a range of about 10 to 500 parts by mass with respect to 100 parts by mass of the compound (substrate) having a secondary carbon atom, for example, 30 to 150 parts by mass, preferably 50 to 120 parts by mass. More preferably, it may be about 50 to 100 parts by mass.

過酸化物の使用量(過酸化水素化物の場合、過酸化水素の使用量)は、基質100質量部に対して30〜2000質量部程度の範囲から選択でき、例えば、50〜1000質量部、好ましくは60〜550質量部であってもよい。また、過酸化物(過酸化水素など)の使用量は、基質1モルに対して、1.5〜20モル、好ましくは2〜15モル、さらに好ましくは3〜12モル(例えば、3.5〜10モル)程度である。   The amount of peroxide used (in the case of hydrogen peroxide, the amount of hydrogen peroxide used) can be selected from the range of about 30 to 2000 parts by mass with respect to 100 parts by mass of the substrate, for example, 50 to 1000 parts by mass, 60-550 mass parts may be preferable. The amount of peroxide (hydrogen peroxide, etc.) used is 1.5 to 20 mol, preferably 2 to 15 mol, more preferably 3 to 12 mol (for example, 3.5 mol) per mol of the substrate. About 10 mol).

酸化反応は、溶媒の存在下で行ってもよく、基質の種類に応じて選択でき、例えば、有機溶媒(トルエン、キシレンなどの炭化水素、エタノールなどのアルコール類、エステル類、ケトン類、エーテル類、カルボン酸類など)又は水性溶媒(水、水と水溶性有機溶媒との混合溶媒)中で行うことができ、通常、有機溶媒(キシレンなどの芳香族炭化水素など)中で行うことができる。溶媒の使用量は、均一な反応系を形成できればよく、通常、基質1質量部に対して、1〜50質量部、好ましくは2〜25質量部程度であってもよい。   The oxidation reaction may be carried out in the presence of a solvent, and can be selected according to the type of substrate. For example, organic solvents (hydrocarbons such as toluene and xylene, alcohols such as ethanol, esters, ketones, ethers) Carboxylic acids and the like) or an aqueous solvent (water, a mixed solvent of water and a water-soluble organic solvent), and usually in an organic solvent (such as an aromatic hydrocarbon such as xylene). The amount of the solvent used may be 1 to 50 parts by mass, preferably about 2 to 25 parts by mass with respect to 1 part by mass of the substrate, as long as a uniform reaction system can be formed.

反応は、温度50〜150℃、好ましくは60〜120℃、さらに好ましくは80〜100℃程度で行うことができる。反応は加圧下又は常圧下で行うことができ、通常、大気圧下で行われる。さらに、反応は、例えば、空気中又は酸素含有雰囲気下で行うことができ、不活性ガス雰囲気下で行うこともできる。   The reaction can be carried out at a temperature of 50 to 150 ° C, preferably 60 to 120 ° C, more preferably about 80 to 100 ° C. The reaction can be carried out under pressure or normal pressure, and is usually carried out under atmospheric pressure. Furthermore, the reaction can be performed, for example, in air or in an oxygen-containing atmosphere, and can also be performed in an inert gas atmosphere.

反応終了後、必要により、反応混合液を、濃縮、析出、溶媒抽出、再結晶などの慣用の分離精製工程に供することにより、高純度のカルボニル化合物を高い収率で得ることができる。   After completion of the reaction, a high-purity carbonyl compound can be obtained in high yield by subjecting the reaction mixture to a conventional separation / purification step such as concentration, precipitation, solvent extraction, recrystallization and the like.

さらに、本発明の活性炭触媒は、繰り返し使用しても触媒活性が低下せずに高い触媒能を維持する。例えば、実施例に記載の試験方法(水溶液中過酸化水素分解性能評価及び過酸化水素分解速度の測定)において、活性炭1g当たり1時間での過酸化水素の分解速度は、バッチ式の水溶液中で1000mg−H/g−活性炭/hr以上(例えば、2000〜100000mg−H/g−活性炭/hr、好ましくは2500〜75000mg−H/g−活性炭/hr、さらに好ましくは3000〜50000mg−H/g−活性炭/hr)である。 Furthermore, the activated carbon catalyst of the present invention maintains a high catalytic ability without reducing the catalytic activity even when used repeatedly. For example, in the test method described in the examples (evaluation of hydrogen peroxide decomposition performance in aqueous solution and measurement of hydrogen peroxide decomposition rate), the hydrogen peroxide decomposition rate per hour per 1 g of activated carbon is 1000mg-H 2 O 2 / g- charcoal / hr or more (e.g., 2000~100000mg-H 2 O 2 / g- activated carbon / hr, preferably 2500~75000mg-H 2 O 2 / g- activated carbon / hr, more preferably is 3000~50000mg-H 2 O 2 / g- charcoal / hr).

さらに、本発明の活性炭触媒は、触媒活性が強いため、繰り返し使用しても高い触媒活性を維持できる。具体的には、実施例に記載の試験方法(バッチ式の水溶液中該過酸化水素分解試験)に繰り返し20回以上(例えば、22〜50回、好ましくは23〜45回、さらに好ましくは24〜40回、特に25〜35回程度)使用しても、高い触媒活性を維持する。すなわち、本発明の活性炭触媒は、前記試験方法において、1000mg−H/g−活性炭/hr以上の水溶液中の過酸化水素分解性能を維持しつつ繰り返し20回以上(好ましくは22回以上)使用できる。 Furthermore, since the activated carbon catalyst of the present invention has a strong catalytic activity, it can maintain a high catalytic activity even after repeated use. Specifically, it is repeated 20 times or more (for example, 22 to 50 times, preferably 23 to 45 times, more preferably 24 to 20 times) repeatedly in the test method described in the examples (the hydrogen peroxide decomposition test in a batch type aqueous solution). High catalytic activity is maintained even when used 40 times, especially about 25 to 35 times). That is, the activated carbon catalyst of the present invention is repeatedly 20 times or more (preferably 22 times or more) while maintaining the hydrogen peroxide decomposition performance in an aqueous solution of 1000 mg-H 2 O 2 / g-activated carbon / hr or more in the test method. ) Can be used.

以下の実施例に基づき、本発明をより詳細に述べるが、以下の実施例は、本発明を限定するものではない。なお、以下の実施例及び比較例では、「部」は「質量部」を表し、活性炭の性能を以下のようにして評価した。   The present invention will be described in more detail based on the following examples. However, the following examples do not limit the present invention. In the following examples and comparative examples, “part” represents “part by mass”, and the performance of the activated carbon was evaluated as follows.

[水溶液中過酸化水素分解性能評価]
25℃における3,000mg/L過酸化水素濃度の水溶液400mLに乾燥した活性炭0.1gを添加し、水溶液中に残留している過酸化水素濃度を測定し、経時変化を残留量がゼロになるまで評価した。
[Evaluation of hydrogen peroxide decomposition performance in aqueous solution]
0.1 g of dried activated carbon is added to 400 mL of an aqueous solution of 3,000 mg / L hydrogen peroxide concentration at 25 ° C., and the concentration of hydrogen peroxide remaining in the aqueous solution is measured. Until evaluated.

過酸化水素分解速度=(C−C)×0.4/A/T
[式中、C=過酸化水素初濃度(mg/L),C=任意時間経過後の過酸化水素濃度(mg/L),A=活性炭量(g),T=任意時間(hr)である]
繰り返し時における過酸化水素分解性能評価は、残留量がゼロになった溶液に、30質量%濃度の過酸化水素水溶液を3000mg/Lになるように添加し、再び水溶液中に残留している過酸化水素濃度を測定し、経時変化を残留量がゼロになるまで評価する。この操作を1,000mg−H/g−活性炭/hr以上の過酸化水素分解速度が得られなくなるまで繰り返した。
Hydrogen peroxide decomposition rate = (C 0 -C) × 0.4 / A / T
[In the formula, C 0 = hydrogen peroxide initial concentration (mg / L), C = hydrogen peroxide concentration after arbitrary time (mg / L), A = active carbon amount (g), T = arbitrary time (hr) Is]
The hydrogen peroxide decomposition performance evaluation at the time of repetition was performed by adding a 30% by mass hydrogen peroxide aqueous solution to the solution in which the residual amount became zero to 3000 mg / L and again remaining in the aqueous solution. The hydrogen oxide concentration is measured, and the change over time is evaluated until the residual amount becomes zero. This operation was repeated until a hydrogen peroxide decomposition rate of 1,000 mg-H 2 O 2 / g-activated carbon / hr or higher could not be obtained.

[活性炭の水素、窒素含有量]
元素分析装置(エレメタール社製「Vario EL III」)を使用し、基準物資にスルファニル酸を用いて測定を行った。また、各測定値のバラツキを考慮し、標準サンプルとして活性炭(クラレケミカル(株)製「P−GLCR」)を同時に測定して補正し、活性炭中の水素、窒素の含有量を決定した。
[Hydrogen and nitrogen content of activated carbon]
Using an elemental analyzer ("Vario EL III" manufactured by ELEMETAL), measurement was performed using sulfanilic acid as a reference material. Moreover, considering the variation of each measured value, activated carbon ("P-GLCR" manufactured by Kuraray Chemical Co., Ltd.) as a standard sample was simultaneously measured and corrected, and the contents of hydrogen and nitrogen in the activated carbon were determined.

[活性炭の塩基性表面官能基]
25℃において、0.1モル/L−HCl水溶液25mlに活性炭0.5gを添加し、24時間振とう後、遠心分離機により活性炭を沈降させ、上澄み液10mlを採取し、0.1mol/l−NaOHで滴定を行い、塩基性表面官能基量を決定した。
[Basic surface functional groups of activated carbon]
At 25 ° C., 0.5 g of activated carbon was added to 25 ml of a 0.1 mol / L-HCl aqueous solution, shaken for 24 hours, and the activated carbon was precipitated by a centrifuge, and 10 ml of supernatant was collected to obtain 0.1 mol / l. Titration with NaOH was performed to determine the amount of basic surface functional groups.

[炭素質原料の乾留及び賦活方法]
種々の原料による影響を確認するために、異なる原料により活性炭を作製した。具体的には、炭素質原料を500〜800℃で乾留し、続いて得られた乾留品500gを炉に投入し、700〜980℃において水蒸気、二酸化炭素ガス、窒素ガスを任意の分圧に変化させて、かつ任意の量で炉内に供給し賦活時間を任意に変えて、活性炭を作製した。
[Method of carbonization and activation of carbonaceous raw materials]
In order to confirm the influence of various raw materials, activated carbon was produced from different raw materials. Specifically, carbonaceous raw material is subjected to carbonization at 500 to 800 ° C., and then 500 g of the obtained carbonization product is put into a furnace, and steam, carbon dioxide gas, and nitrogen gas are set to arbitrary partial pressures at 700 to 980 ° C. Activated carbon was prepared by changing the activation time arbitrarily by supplying it into the furnace in an arbitrary amount.

[基質の酸化反応]
溶媒中に、基質と活性炭とを表に示す割合で加え、攪拌下80〜95℃にて過酸化水素水(和光純薬工業(株)製「30%過酸化水素水」)又は尿素過酸化水素化物(和光純薬工業(株)製「尿素過酸化水素」)を表に示す割合で添加する。添加終了後、12〜50時間保持した後、カルボニル化合物を結晶単離し、高速液体クロマトグラフィーにより定量し、質量収率を測定した。
[Substrate oxidation reaction]
In the solvent, substrate and activated carbon are added in the ratio shown in the table, and hydrogen peroxide solution (“30% hydrogen peroxide solution” manufactured by Wako Pure Chemical Industries, Ltd.) or urea peroxidation at 80 to 95 ° C. with stirring. A hydride (“urea hydrogen peroxide” manufactured by Wako Pure Chemical Industries, Ltd.) is added at a ratio shown in the table. After the addition was completed, the mixture was held for 12 to 50 hours, and then the carbonyl compound was crystal-isolated, quantified by high performance liquid chromatography, and the mass yield was measured.

[比較例1]
炭素質原料を瀝青炭とし、600℃乾留処理後、水蒸気分圧30%、二酸化炭素分圧30%、窒素分圧40%の混合ガスを乾留品500gに対して40L/分で炉内に導入し、賦活温度850℃、賦活時間1時間の条件下で比較例1の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 1]
The carbonaceous raw material is bituminous coal, and after a 600 ° C dry distillation treatment, a mixed gas of water vapor partial pressure 30%, carbon dioxide partial pressure 30%, nitrogen partial pressure 40% is introduced into the furnace at a rate of 40 L / min with respect to 500 g of the dry distillation product. The activated carbon of Comparative Example 1 was produced under conditions of an activation temperature of 850 ° C. and an activation time of 1 hour, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例2]
炭素質原料を瀝青炭とし、600℃乾留処理後、水蒸気分圧30%、二酸化炭素分圧30%、窒素分圧40%の混合ガスを乾留品500gに対して40L/分で炉内に導入し、賦活温度900℃、賦活時間1時間の条件下で比較例2の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 2]
The carbonaceous raw material is bituminous coal, and after a 600 ° C dry distillation treatment, a mixed gas of water vapor partial pressure 30%, carbon dioxide partial pressure 30%, nitrogen partial pressure 40% is introduced into the furnace at a rate of 40 L / min with respect to 500 g of the dry distillation product. The activated carbon of Comparative Example 2 was produced under the conditions of an activation temperature of 900 ° C. and an activation time of 1 hour, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例3]
炭素質原料を瀝青炭とし、600℃乾留処理後、水蒸気分圧10%、二酸化炭素分圧20%、窒素分圧70%の混合ガスを乾留品500gに対して40L/分で炉内に導入し、賦活温度850℃、賦活時間5時間の条件下で比較例3の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 3]
The carbonaceous raw material is bituminous coal, and after a 600 ° C dry distillation treatment, a mixed gas having a steam partial pressure of 10%, a carbon dioxide partial pressure of 20%, and a nitrogen partial pressure of 70% is introduced into the furnace at a rate of 40 L / min. The activated carbon of Comparative Example 3 was produced under conditions of an activation temperature of 850 ° C. and an activation time of 5 hours, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例4]
炭素質原料をヤシ殻原料とし、700℃乾留処理後、水蒸気分圧30%、二酸化炭素分圧30%、窒素分圧40%の混合ガスを乾留品500gに対して40L/分で炉内に導入し、賦活温度900℃、賦活時間1時間の条件下で比較例4の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 4]
Using carbonaceous raw material as coconut shell raw material, after 700 ° C dry distillation treatment, a mixed gas of 30% water vapor partial pressure, 30% carbon dioxide partial pressure and 40% nitrogen partial pressure is fed into the furnace at 40L / min for 500g of dry distillation product. Then, activated carbon of Comparative Example 4 was produced under the conditions of an activation temperature of 900 ° C. and an activation time of 1 hour, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例5]
炭素質原料を木質原料とする以外は比較例4と同様の方法により活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 5]
Activated carbon was produced in the same manner as in Comparative Example 4 except that the carbonaceous material was used as a woody material, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例6]
炭素質原料を無煙炭原料とする以外は比較例4と同様の方法により活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 6]
Activated carbon was prepared in the same manner as in Comparative Example 4 except that the carbonaceous raw material was anthracite raw material, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例7]
炭素質原料を瀝青炭とし、600℃乾留処理後、水蒸気分圧30%、二酸化炭素分圧30%、窒素分圧40%の混合ガスを乾留品500gに対して40L/分で炉内に導入し、賦活温度800℃、賦活時間1時間の条件下で比較例7の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 7]
The carbonaceous raw material is bituminous coal, and after a 600 ° C dry distillation treatment, a mixed gas of water vapor partial pressure 30%, carbon dioxide partial pressure 30%, nitrogen partial pressure 40% is introduced into the furnace at a rate of 40 L / min with respect to 500 g of the dry distillation product. The activated carbon of Comparative Example 7 was produced under conditions of an activation temperature of 800 ° C. and an activation time of 1 hour, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例8]
炭素質原料を瀝青炭とし、600℃乾留処理後、水蒸気分圧30%、二酸化炭素分圧30%、窒素分圧40%の混合ガスを乾留品500gに対して40L/分で炉内に導入し、賦活温度800℃、賦活時間2時間の条件下で比較例7の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Comparative Example 8]
The carbonaceous raw material is bituminous coal, and after a 600 ° C dry distillation treatment, a mixed gas of water vapor partial pressure 30%, carbon dioxide partial pressure 30%, nitrogen partial pressure 40% is introduced into the furnace at a rate of 40 L / min with respect to 500 g of the dry distillation product. The activated carbon of Comparative Example 7 was produced under conditions of an activation temperature of 800 ° C. and an activation time of 2 hours, and various evaluations were performed. The evaluation results are shown in Table 1.

[比較例9]
比較例9には酸化反応用活性炭として市販されている活性炭(日本エンバイロケミカルズ(株)製「白鷺KL」)についても評価し、結果を表1に示す。
[Comparative Example 9]
In Comparative Example 9, activated carbon (“Shirakaba KL” manufactured by Nippon Enviro Chemicals Co., Ltd.) marketed as activated carbon for oxidation reaction was also evaluated, and the results are shown in Table 1.

[比較例10〜12]
比較例10〜12には、特許文献2(国際公開WO2011/125504号公報)に記載の活性炭についても評価し、結果を表1に示す。
[Comparative Examples 10-12]
In Comparative Examples 10 to 12, the activated carbon described in Patent Document 2 (International Publication WO2011 / 125504) was also evaluated, and the results are shown in Table 1.

[実施例1]
炭素質原料を瀝青炭とし、700℃乾留処理後、水蒸気分圧20%、二酸化炭素分圧40%、窒素分圧40%の混合ガスを乾留品500gに対して10L/分で炉内に導入し、賦活温度750℃、賦活時間5時間の条件下で実施例1の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Example 1]
The carbonaceous raw material is bituminous coal, and after 700 ° C dry distillation treatment, a mixed gas with a water vapor partial pressure of 20%, a carbon dioxide partial pressure of 40%, and a nitrogen partial pressure of 40% is introduced into the furnace at a rate of 10 L / min. The activated carbon of Example 1 was produced under conditions of an activation temperature of 750 ° C. and an activation time of 5 hours, and various evaluations were performed. The evaluation results are shown in Table 1.

[実施例2]
炭素質材料を瀝青炭とし、700℃乾留処理後、水蒸気分圧30%、二酸化炭素分圧30%、窒素分圧40%の混合ガスを乾留品500gに対して20L/分で炉内に導入し賦活温度850℃、賦活時間2時間の条件下で実施例2の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Example 2]
The carbonaceous material is bituminous coal, and after a 700 ° C dry distillation treatment, a mixed gas having a water vapor partial pressure of 30%, a carbon dioxide partial pressure of 30%, and a nitrogen partial pressure of 40% is introduced into the furnace at a rate of 20 L / min. The activated carbon of Example 2 was produced under conditions of an activation temperature of 850 ° C. and an activation time of 2 hours, and various evaluations were performed. The evaluation results are shown in Table 1.

[実施例3]
炭素質材料を瀝青炭とし、650℃乾留処理後、水蒸気分圧35%、二酸化炭素分圧15%、窒素分圧50%の混合ガスを乾留品500gに対して20L/分で炉内に導入し、賦活温度800℃、賦活時間3時間の条件下で実施例3の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Example 3]
The carbonaceous material is bituminous coal, and after 650 ° C dry distillation treatment, a mixed gas having a water vapor partial pressure of 35%, carbon dioxide partial pressure of 15%, and nitrogen partial pressure of 50% is introduced into the furnace at a rate of 20 L / min with respect to 500 g of the dry distillation product. The activated carbon of Example 3 was produced under conditions of an activation temperature of 800 ° C. and an activation time of 3 hours, and various evaluations were performed. The evaluation results are shown in Table 1.

[実施例4]
炭素質材料を瀝青炭とし、500℃乾留処理後、水蒸気分圧15%、二酸化炭素分圧20%、窒素分圧65%の混合ガスを乾留品500gに対して10L/分で炉内に導入し賦活温度750℃、賦活時間8時間の条件下で実施例4の活性炭を作製し、各種評価を行った。評価結果を表1に示す。
[Example 4]
The carbonaceous material is bituminous coal, and after 500 ° C dry distillation treatment, a mixed gas with a steam partial pressure of 15%, a carbon dioxide partial pressure of 20%, and a nitrogen partial pressure of 65% is introduced into the furnace at a rate of 10 L / min for 500 g of the dry distillation product. The activated carbon of Example 4 was produced under conditions of an activation temperature of 750 ° C. and an activation time of 8 hours, and various evaluations were performed. The evaluation results are shown in Table 1.

各比較例および実施例について、表1に示す反応条件で活性炭の触媒機能基礎評価を実施した。反応生成物の収率が25%以上のものが触媒として有効な性能を有している。   For each of the comparative examples and examples, the basic evaluation of the catalytic function of activated carbon was performed under the reaction conditions shown in Table 1. A reaction product having a yield of 25% or more has an effective performance as a catalyst.

Figure 2013163629
Figure 2013163629

表1の結果から比較例及び実施例の評価は以下の通りである。   From the results shown in Table 1, evaluations of the comparative examples and the examples are as follows.

(比較例1)
瀝青炭原料を前記方法により試作した比較例1の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 1)
In the activated carbon of Comparative Example 1 in which the bituminous coal raw material was prototyped by the above method, the hydrogen content, the nitrogen content, and the basic surface functional group amount were out of the set values among the physical property values set in the present invention, and the hydrogen peroxide resolution was low. It was confirmed that the yield was low and the yield of the carbonyl compound was also low.

(比較例2)
瀝青炭原料を前記方法により試作した比較例2の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 2)
In the activated carbon of Comparative Example 2 in which the bituminous coal raw material was prototyped by the above method, the hydrogen content, the nitrogen content, and the basic surface functional group amount were out of the set values among the physical property values set in the present invention, and the hydrogen peroxide resolution was low. It was confirmed that the yield was low and the yield of the carbonyl compound was also low.

(比較例3)
瀝青炭原料を前記方法により試作した比較例3の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 3)
In the activated carbon of Comparative Example 3 in which the bituminous coal raw material was prototyped by the above method, the hydrogen content, the nitrogen content, and the basic surface functional group amount were out of the set values among the physical property values set in the present invention, and the hydrogen peroxide resolution was low. It was confirmed that the yield was low and the yield of the carbonyl compound was also low.

(比較例4)
ヤシ殻原料を前記方法により試作した比較例4の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 4)
In the activated carbon of Comparative Example 4 in which the coconut shell raw material was prototyped by the above method, the hydrogen content, the nitrogen content, and the basic surface functional group amount were out of the set values among the physical property values set in the present invention. And the yield of the carbonyl compound was confirmed to be low.

(比較例5)
木質原料を前記方法により試作した比較例5の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 5)
In the activated carbon of Comparative Example 5 in which the wood raw material was prototyped by the above method, the hydrogen content, the nitrogen content, and the basic surface functional group amount were out of the set values among the physical property values set in the present invention, and the hydrogen peroxide resolution was low. It was confirmed that the yield was low and the yield of the carbonyl compound was also low.

(比較例6)
無煙炭原料を前記方法により試作した比較例6の活性炭では、本発明で設定した物性値の中で窒素含有量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 6)
In the activated carbon of Comparative Example 6 in which the anthracite raw material was prototyped by the above method, the nitrogen content is out of the set values in the physical property values set in the present invention, the hydrogen peroxide resolution is low, and the yield of the carbonyl compound is also low. It was confirmed.

(比較例7)
瀝青炭原料を前記方法により試作した比較例7の活性炭では、本発明で設定した物性値の中で塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 7)
In the activated carbon of Comparative Example 7 in which the bituminous coal raw material was prototyped by the above method, the basic surface functional group amount deviated from the set value among the physical property values set in the present invention, the hydrogen peroxide resolution was low, and the yield of the carbonyl compound Also confirmed that it was low.

(比較例8)
瀝青炭原料を前記方法により試作した比較例8の活性炭では、本発明で設定した物性値の中で塩基性表面官能基量が設定値から外れ、カルボニル化合物の収率も低いことを確認した。
(Comparative Example 8)
In the activated carbon of Comparative Example 8 in which the bituminous coal raw material was prototyped by the above method, it was confirmed that the basic surface functional group amount deviated from the set value among the property values set in the present invention, and the yield of the carbonyl compound was low.

(比較例9)
市販されている比較例9の酸化反応用活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 9)
In the activated carbon for oxidation reaction of Comparative Example 9 that is commercially available, the hydrogen content, the nitrogen content, and the basic surface functional group amount are out of the set values among the physical property values set in the present invention, and the hydrogen peroxide resolution is low. It was also confirmed that the yield of the carbonyl compound was low.

(比較例10)
特許文献2の実施例1に準拠し試作した比較例10の活性炭では、本発明で設定した物性値の中で窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 10)
In the activated carbon of Comparative Example 10 prototyped according to Example 1 of Patent Document 2, the nitrogen content and the basic surface functional group amount deviated from the set values among the physical property values set in the present invention, and the hydrogen peroxide resolution was low. It was confirmed that the yield was low and the yield of the carbonyl compound was also low.

(比較例11)
特許文献2の実施例5に準拠し試作した比較例11の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いことを確認した。
(Comparative Example 11)
In the activated carbon of Comparative Example 11 prototyped according to Example 5 of Patent Document 2, the hydrogen content, the nitrogen content, and the basic surface functional group amount are out of the set values among the physical property values set in the present invention. It was confirmed that the hydrogen oxide resolution was low and the yield of the carbonyl compound was also low.

(比較例12)
特許文献2記載の実施例6に準拠し試作した比較例12の活性炭では、本発明で設定した物性値の中で水素含有量、窒素含有量、塩基性表面官能基量が設定値から外れ、過酸化水素分解能が低く、かつカルボニル化合物の収率も低いこと確認した。
(Comparative Example 12)
In the activated carbon of Comparative Example 12 prototyped according to Example 6 described in Patent Document 2, the hydrogen content, the nitrogen content, and the basic surface functional group amount deviated from the set values among the physical property values set in the present invention, It was confirmed that the hydrogen peroxide resolution was low and the yield of the carbonyl compound was also low.

これらの比較例により、乾留温度や賦活温度が高すぎると水素含有量や窒素含有量、塩基性表面官能基量が、本発明で設定した物性値に到達出来ないことを確認した。また、特許文献2に記載された物性値範囲で有効とされた触媒活性炭も、本発明におけるアルコール類のカルボニル化においては活性を示さないことも確認された。   From these comparative examples, it was confirmed that if the dry distillation temperature or activation temperature was too high, the hydrogen content, nitrogen content, and basic surface functional group amount could not reach the physical property values set in the present invention. Moreover, it was also confirmed that the catalytic activated carbon effective in the physical property value range described in Patent Document 2 does not show activity in the carbonylation of alcohols in the present invention.

(実施例1)
瀝青炭原料を前記方法により試作した実施例1の活性炭では、本発明で設定した物性値のすべてにおいて設定値内であり、過酸化水素分解能は23回と高く、かつカルボニル化合物の収率も25%であることを確認した。
Example 1
In the activated carbon of Example 1 in which the bituminous coal raw material was prototyped by the above method, it was within the set values in all the physical property values set in the present invention, the hydrogen peroxide resolution was as high as 23 times, and the yield of the carbonyl compound was also 25%. It was confirmed that.

(実施例2)
瀝青炭原料を前記方法によりで試作した実施例2の活性炭では、本発明で設定した物性値のすべてにおいて設定値内であり、過酸化水素分解能は25回と高く、カルボニル化合物の収率も27%であることを確認した。
(Example 2)
In the activated carbon of Example 2 in which the bituminous coal raw material was prototyped by the above method, all the physical property values set in the present invention were within the set values, the hydrogen peroxide resolution was as high as 25 times, and the yield of the carbonyl compound was also 27%. It was confirmed that.

(実施例3)
瀝青炭原料を前記方法により試作した実施例3の活性炭では、本発明で設定した物性値のすべてにおいて設定値内であり、過酸化水素分解能は26回と高く、カルボニル化合物の収率も29%であることを確認した。
(Example 3)
In the activated carbon of Example 3 in which the bituminous coal raw material was prototyped by the above method, all the physical property values set in the present invention were within the set values, the hydrogen peroxide resolution was high as 26 times, and the yield of the carbonyl compound was 29%. I confirmed that there was.

(実施例4)
瀝青炭原料を前記方法により試作した実施例4の活性炭では、本発明で設定した物性値のすべてにおいて設定値内であり、過酸化水素分解能は31回と高く、カルボニル化合物の収率も34%であることを確認した。
Example 4
In the activated carbon of Example 4 in which the bituminous coal raw material was prototyped by the above method, all the physical property values set in the present invention were within the set values, the hydrogen peroxide resolution was as high as 31 times, and the yield of the carbonyl compound was 34%. I confirmed that there was.

以上の結果から本発明で規定した物性値の範囲内であれば、フルオレノールからフルオレノンへ酸化させる効率が高くなる傾向を示し、触媒性能を維持し繰り返し使用できることが明らかである。   From the above results, it is apparent that the efficiency of oxidation from fluorenol to fluorenone tends to be high within the range of the physical property values defined in the present invention, and the catalyst performance can be maintained and used repeatedly.

[反応条件の検討]
各比較例及び実施例で得られた触媒活性炭を用いて、フルオレノールからフルオレノンへ酸化させるための反応条件を変更し、実施例で得られた触媒活性炭の有効性を確認した。表2に各触媒活性炭における収率の変化を示した。
[Examination of reaction conditions]
Using the catalytic activated carbon obtained in each of the comparative examples and the examples, the reaction conditions for oxidizing from fluorenol to fluorenone were changed, and the effectiveness of the catalytic activated carbon obtained in the examples was confirmed. Table 2 shows the change in yield for each catalytic activated carbon.

詳しくは、実施例4の活性炭を用いて、20mlのキシレンの存在下、フルオレノールからフルオレノンへ酸化反応を行う条件検討を行った結果を表2に示す。表2の結果から明らかなように、実施例4の活性炭を用いた場合、反応温度95℃、キシレン溶媒20ml、フルオレン100部、活性炭量100部、過酸化水素199.8部の条件下で77%の高い収率が得られた。   Specifically, Table 2 shows the results of a study of conditions for performing an oxidation reaction from fluorenol to fluorenone in the presence of 20 ml of xylene using the activated carbon of Example 4. As is apparent from the results in Table 2, when the activated carbon of Example 4 was used, the reaction temperature was 95 ° C., xylene solvent 20 ml, fluorene 100 parts, activated carbon amount 100 parts, hydrogen peroxide 199.8 parts under 77 conditions. % High yield was obtained.

実施例4の触媒活性炭で得られた最適条件を用いて比較例1〜12で反応を行った結果を表2に示す。比較例1〜12の活性炭では、フルオレノンの収率が60%を超えることが出来なかった。   Table 2 shows the results of the reactions performed in Comparative Examples 1 to 12 using the optimum conditions obtained with the catalytic activated carbon of Example 4. In the activated carbons of Comparative Examples 1 to 12, the yield of fluorenone could not exceed 60%.

実施例4の触媒活性炭で得られた最適条件を用いて実施例1〜3で反応を行った結果を表2に示す。実施例1〜3の活性炭では、フルオレノンの収率が60%を超え、効率よく反応が進んでいることが認められ、第2級アルコールからカルボニル化合物への反応に有効な触媒活性炭であることを確認した。   Table 2 shows the results of the reactions performed in Examples 1 to 3 using the optimum conditions obtained with the catalytic activated carbon of Example 4. In the activated carbons of Examples 1 to 3, it was confirmed that the yield of fluorenone exceeded 60%, and the reaction was proceeding efficiently, and the catalyst activated carbon was effective for the reaction from the secondary alcohol to the carbonyl compound. confirmed.

Figure 2013163629
Figure 2013163629

[過酸化物の検討]
実施例4の触媒活性炭を用いて、前記反応を過酸化水素から尿素過酸化水素化物に代えて、表3に示す条件で反応を実施した結果を表3に示す。
[Investigation of peroxides]
Table 3 shows the results of carrying out the reaction under the conditions shown in Table 3 using the catalytic activated carbon of Example 4 and replacing the reaction from hydrogen peroxide to urea hydrogen peroxide.

Figure 2013163629
Figure 2013163629

表3の結果から明らかなように、酸化剤を過酸化水素から尿素過酸化水素化物に代えることにより、収率が向上していることが認められ、尿素過酸化水素化物が有効であることが確認された。   As is apparent from the results in Table 3, it is recognized that the yield is improved by replacing the oxidizing agent from hydrogen peroxide to urea hydrogen peroxide, and that urea hydrogen peroxide is effective. confirmed.

[基質の検討]
実施例4の活性炭を用いて、基質をフルオレノールから、α−キノリルベンジルアルコール、ベンゾイン、フルオレン、キサンテンに代えて、表4に示す条件で反応を実施した結果を表4に示す。
[Examination of substrate]
Table 4 shows the results obtained by carrying out the reaction under the conditions shown in Table 4 by using the activated carbon of Example 4 and replacing the substrate from fluorenol with α-quinolylbenzyl alcohol, benzoin, fluorene, and xanthene.

Figure 2013163629
Figure 2013163629

表3の結果から明らかなように、第2級炭素原子を有する他の基質でも高い収率でカルボニル化合物(キノリルフェニルケトン、ベンジル、フルオレノン、キサントノン)が得られることが確認された。   As is clear from the results in Table 3, it was confirmed that carbonyl compounds (quinolyl phenyl ketone, benzyl, fluorenone, xanthone) were obtained in high yield even with other substrates having secondary carbon atoms.

本発明の活性炭は、過酸化物(過酸化水素など)の分解触媒として有用である。また、本発明の活性炭触媒は酸化反応を触媒し、過酸化水素共存下において第2級炭素原子を有する化合物からカルボニル化合物を効率よく製造できる。しかも、高い触媒活性を維持できるため、リサイクル性が高く、活性炭廃棄物の少量化が図れ、コスト低減を行うことができる。そのため、第2級炭素原子を有する化合物の酸化反応を触媒する活性炭触媒として有用である。   The activated carbon of the present invention is useful as a decomposition catalyst for peroxides (such as hydrogen peroxide). The activated carbon catalyst of the present invention catalyzes an oxidation reaction, and can efficiently produce a carbonyl compound from a compound having a secondary carbon atom in the presence of hydrogen peroxide. In addition, since high catalytic activity can be maintained, the recyclability is high, the amount of activated carbon waste can be reduced, and the cost can be reduced. Therefore, it is useful as an activated carbon catalyst that catalyzes an oxidation reaction of a compound having a secondary carbon atom.

Claims (10)

水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gの範囲にある活性炭。   Activated carbon having a hydrogen content of 0.63 to 0.75 mass%, a nitrogen content of 2.55 to 6.50 mass%, and a basic surface functional group in the range of 0.88 to 1.15 meq / g. 過酸化物を分解するための触媒であって、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gである活性炭で構成されている分解触媒。   A catalyst for decomposing a peroxide having a hydrogen content of 0.63 to 0.75% by mass, a nitrogen content of 2.55 to 6.50% by mass, and a basic surface functional group of 0.88. A cracking catalyst composed of activated carbon that is ˜1.15 meq / g. 炭素質材料を400〜700℃で乾留する乾留工程、水蒸気、窒素及び二酸化炭素を含む混合ガス雰囲気下、750℃〜850℃の温度で1〜10時間処理し、部分的にガス化する賦活工程を含む請求項1記載の活性炭の製造方法。   Carbonization process of carbonizing carbonaceous material at 400 to 700 ° C., activation process of partial gasification by treatment at a temperature of 750 ° C. to 850 ° C. for 1 to 10 hours in a mixed gas atmosphere containing water vapor, nitrogen and carbon dioxide The manufacturing method of the activated carbon of Claim 1 containing this. 活性炭の存在下、第2級炭素原子を有する化合物を酸化剤で酸化してカルボニル化合物を製造する方法であって、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gである活性炭を用い、酸化剤として過酸化物を用いるカルボニル化合物の製造方法。   A method for producing a carbonyl compound by oxidizing a compound having a secondary carbon atom with an oxidizing agent in the presence of activated carbon, wherein the hydrogen content is 0.63 to 0.75 mass% and the nitrogen content is 2. A method for producing a carbonyl compound using activated carbon having 55 to 6.50% by mass and a basic surface functional group of 0.88 to 1.15 meq / g and using a peroxide as an oxidizing agent. 第2級炭素原子を有する化合物が第2級アルコール又はメチレン基を有する化合物である請求項4記載の製造方法。   The method according to claim 4, wherein the compound having a secondary carbon atom is a compound having a secondary alcohol or a methylene group. 活性炭の割合が第2級炭素原子を有する化合物100質量部に対して30〜150質量部である請求項4又は5記載の製造方法。   The method according to claim 4 or 5, wherein the ratio of the activated carbon is 30 to 150 parts by mass with respect to 100 parts by mass of the compound having a secondary carbon atom. 過酸化物の割合が第2級炭素原子を有する化合物100質量部に対して50〜1000質量部である請求項4〜6のいずれかに記載の製造方法。   The production method according to any one of claims 4 to 6, wherein the ratio of the peroxide is 50 to 1000 parts by mass with respect to 100 parts by mass of the compound having a secondary carbon atom. 過酸化物が過酸化水素又は過酸化水素化物である請求項4〜7いずれかに記載の製造方法。   The manufacturing method according to any one of claims 4 to 7, wherein the peroxide is hydrogen peroxide or hydrogen peroxide. 過酸化物が尿素過酸化水素化物である請求項8記載の製造方法。   The method according to claim 8, wherein the peroxide is urea hydrogen peroxide. 活性炭と接触させて過酸化物を分解する方法であって、水素含有量が0.63〜0.75質量%、窒素含有量が2.55〜6.50質量%、塩基性表面官能基が0.88〜1.15meq/gである活性炭を用いる方法。   A method of decomposing peroxide by contacting with activated carbon, wherein the hydrogen content is 0.63 to 0.75 mass%, the nitrogen content is 2.55 to 6.50 mass%, and the basic surface functional group is A method using activated carbon of 0.88 to 1.15 meq / g.
JP2012028924A 2012-02-13 2012-02-13 Activated carbon, method for producing the same, peroxide decomposition method or decomposition catalyst using the activated carbon, and method for producing carbonyl compound Active JP5827907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028924A JP5827907B2 (en) 2012-02-13 2012-02-13 Activated carbon, method for producing the same, peroxide decomposition method or decomposition catalyst using the activated carbon, and method for producing carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028924A JP5827907B2 (en) 2012-02-13 2012-02-13 Activated carbon, method for producing the same, peroxide decomposition method or decomposition catalyst using the activated carbon, and method for producing carbonyl compound

Publications (2)

Publication Number Publication Date
JP2013163629A true JP2013163629A (en) 2013-08-22
JP5827907B2 JP5827907B2 (en) 2015-12-02

Family

ID=49175246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028924A Active JP5827907B2 (en) 2012-02-13 2012-02-13 Activated carbon, method for producing the same, peroxide decomposition method or decomposition catalyst using the activated carbon, and method for producing carbonyl compound

Country Status (1)

Country Link
JP (1) JP5827907B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116842A1 (en) 2016-12-20 2018-06-28 株式会社クラレ Porous carbon material, method for producing same and use of same
WO2019131270A1 (en) * 2017-12-25 2019-07-04 株式会社クラレ Activated carbon, metal-carrying activated carbon using same and hydrogenation reaction catalyst
WO2020137849A1 (en) 2018-12-28 2020-07-02 株式会社クラレ Porous carbon material and production method therefor and use thereof
CN113620287A (en) * 2021-08-17 2021-11-09 上海赛普瑞特生物科技有限公司 Nitrogen-doped capacitance carbon using lignin as precursor of carbon and adopting 'inner leaching-outer wrapping' technology and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118341A (en) * 1974-05-27 1978-10-03 Agency Of Industrial Science & Technology Activated carbon
JPH05811A (en) * 1990-12-13 1993-01-08 Mitsubishi Gas Chem Co Inc Activated carbon material, its production and use thereof
JP2002255531A (en) * 2000-12-26 2002-09-11 Mitsubishi Chemicals Corp Carbonaceous porous material and apparatus for utilizing waste heat
JP2003171333A (en) * 2001-09-25 2003-06-20 Sumitomo Chem Co Ltd Method for producing ketones
WO2004039381A1 (en) * 2002-11-01 2004-05-13 Kureha Chemical Industry Co., Ltd. Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases
JP2005525231A (en) * 2002-05-10 2005-08-25 ミードウエストベコ コーポレーション Improved method for removing chloramine from drinking water
WO2006028035A1 (en) * 2004-09-06 2006-03-16 Japan Envirochemicals, Ltd. Oxidation reaction catalyst and process for producing compound using the same
JP2010505606A (en) * 2006-10-04 2010-02-25 カルボテック アーツェー ゲーエムベーハー Method for producing activated carbon having high catalytic activity
WO2011125504A1 (en) * 2010-03-31 2011-10-13 クラレケミカル株式会社 Activated carbon and uses thereof
JP2012012729A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Active carbon fiber, drainage treatment apparatus using the same, and method of evaluating the active carbon fiber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118341A (en) * 1974-05-27 1978-10-03 Agency Of Industrial Science & Technology Activated carbon
JPH05811A (en) * 1990-12-13 1993-01-08 Mitsubishi Gas Chem Co Inc Activated carbon material, its production and use thereof
JP2002255531A (en) * 2000-12-26 2002-09-11 Mitsubishi Chemicals Corp Carbonaceous porous material and apparatus for utilizing waste heat
JP2003171333A (en) * 2001-09-25 2003-06-20 Sumitomo Chem Co Ltd Method for producing ketones
JP2005525231A (en) * 2002-05-10 2005-08-25 ミードウエストベコ コーポレーション Improved method for removing chloramine from drinking water
WO2004039381A1 (en) * 2002-11-01 2004-05-13 Kureha Chemical Industry Co., Ltd. Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases
WO2006028035A1 (en) * 2004-09-06 2006-03-16 Japan Envirochemicals, Ltd. Oxidation reaction catalyst and process for producing compound using the same
JP2010505606A (en) * 2006-10-04 2010-02-25 カルボテック アーツェー ゲーエムベーハー Method for producing activated carbon having high catalytic activity
WO2011125504A1 (en) * 2010-03-31 2011-10-13 クラレケミカル株式会社 Activated carbon and uses thereof
JP2012012729A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Active carbon fiber, drainage treatment apparatus using the same, and method of evaluating the active carbon fiber

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11090644B2 (en) 2016-12-20 2021-08-17 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
CN110099867A (en) * 2016-12-20 2019-08-06 株式会社可乐丽 Porous carbon material and its manufacturing method and purposes
KR102377095B1 (en) 2016-12-20 2022-03-21 주식회사 쿠라레 Porous carbon material and its manufacturing method and use
JP7012026B2 (en) 2016-12-20 2022-01-27 株式会社クラレ Porous carbon materials and their manufacturing methods and applications
JPWO2018116842A1 (en) * 2016-12-20 2019-10-24 株式会社クラレ Porous carbon material and production method and use thereof
TWI681927B (en) * 2016-12-20 2020-01-11 日商可樂麗股份有限公司 Porous carbon material and its manufacturing method and use
WO2018116842A1 (en) 2016-12-20 2018-06-28 株式会社クラレ Porous carbon material, method for producing same and use of same
EP3546425A4 (en) * 2016-12-20 2020-07-22 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
AU2017383796B2 (en) * 2016-12-20 2023-02-23 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
KR20190098176A (en) 2016-12-20 2019-08-21 주식회사 쿠라레 Porous Carbon Materials and Methods and Their Uses
WO2019131270A1 (en) * 2017-12-25 2019-07-04 株式会社クラレ Activated carbon, metal-carrying activated carbon using same and hydrogenation reaction catalyst
US10974224B2 (en) 2017-12-25 2021-04-13 Kuraray Co., Ltd Activated carbon, metal-carrying activated carbon using same and hydrogenation reaction catalyst
JPWO2019131270A1 (en) * 2017-12-25 2020-12-24 株式会社クラレ Activated carbon, metal-supported activated carbon using it, and hydrogenation reaction catalyst
JP7186182B2 (en) 2017-12-25 2022-12-08 株式会社クラレ Activated carbon, metal-supported activated carbon using same, and hydrogenation reaction catalyst
US11065603B2 (en) 2018-12-28 2021-07-20 Kuraray Co., Ltd. Porous carbon material, method for producing same, and use of same
WO2020137849A1 (en) 2018-12-28 2020-07-02 株式会社クラレ Porous carbon material and production method therefor and use thereof
KR20200127174A (en) 2018-12-28 2020-11-10 주식회사 쿠라레 Porous carbon material and its manufacturing method and use
CN113620287A (en) * 2021-08-17 2021-11-09 上海赛普瑞特生物科技有限公司 Nitrogen-doped capacitance carbon using lignin as precursor of carbon and adopting 'inner leaching-outer wrapping' technology and preparation method thereof

Also Published As

Publication number Publication date
JP5827907B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
Sajjadi et al. Chemical activation of biochar for energy and environmental applications: a comprehensive review
Gu et al. Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization
JP5815506B2 (en) Activated carbon and its use
Friedel Ortega et al. Acid–base properties of N-doped carbon nanotubes: a combined temperature-programmed desorption, X-ray photoelectron spectroscopy, and 2-propanol reaction investigation
Rasouli et al. Biomass-derived activated carbon nanocomposites for cleaner production: a review on aspects of photocatalytic pollutant degradation
US8486856B2 (en) Process producing activated carbon having a high catalytic activity
JP5827907B2 (en) Activated carbon, method for producing the same, peroxide decomposition method or decomposition catalyst using the activated carbon, and method for producing carbonyl compound
Primo et al. Graphenes as metal-free catalysts with engineered active sites
Rangraz et al. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts
EP2714628A2 (en) Hydrocarbon transformations using carbocatalysts
Engel et al. Reaction of single-walled carbon nanotubes with organic peroxides
US20230406701A1 (en) Direct decomposition device and direct decomposition method for hydrocarbon
JP2015536235A (en) Improved catalyst containing iron and carbon nanotubes
JP5530115B2 (en) Activated carbon catalyst
Ozkan et al. Curbing pollutant CO2 by using two-dimensional MXenes and MBenes
Tian et al. Efficient and continuous removal of phenol by activating PMS via nitrogen doped carbon nanotube membrane in the structured fixed bed
CA2762832C (en) Catalyst for reforming tar used in the steam gasification of biomass
Trawczyński et al. Surface acidity of the activated CBC
Zhou et al. Nanocatalysis with sustainability
JP2008063306A (en) Method for producing imidazole compound
Sathu et al. Oxidative dehydrogenation of propane over Fe-BEA catalysts
CN111606798A (en) Process for the catalytic oxidation of cyclic ketones
Sivakumar et al. Studies on carbon nanotube synthesis via methane cvd process using CoOX as catalyst on carbon supports
CN111484433B (en) Process for oxidizing acetic acid
TW201334866A (en) Hydrocarbon transformations using carbocatalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5827907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350