JP2013162736A - Rotor stop position determination apparatus for brushless motor - Google Patents

Rotor stop position determination apparatus for brushless motor Download PDF

Info

Publication number
JP2013162736A
JP2013162736A JP2012025793A JP2012025793A JP2013162736A JP 2013162736 A JP2013162736 A JP 2013162736A JP 2012025793 A JP2012025793 A JP 2012025793A JP 2012025793 A JP2012025793 A JP 2012025793A JP 2013162736 A JP2013162736 A JP 2013162736A
Authority
JP
Japan
Prior art keywords
stop position
current value
rotor
saturation point
coil energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012025793A
Other languages
Japanese (ja)
Other versions
JP5855967B2 (en
Inventor
Manpei Tamamura
万平 玉村
Kazuo Kumagai
和夫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parker Corp
Original Assignee
Parker Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Corp filed Critical Parker Corp
Priority to JP2012025793A priority Critical patent/JP5855967B2/en
Publication of JP2013162736A publication Critical patent/JP2013162736A/en
Application granted granted Critical
Publication of JP5855967B2 publication Critical patent/JP5855967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine a rotor stop position with high accuracy.SOLUTION: A brushless motor 2 rotatably supports a rotor with a permanent magnet in an opposite position to a stator around which a plurality of coils U, V, and W are wound. A rotor stop position determination apparatus 1 included in the brushless motor 2 comprises: a coil conduction part 3 for conducting electricity to a plurality of coil conduction paths (a UV phase, a VU phase, a VW phase, a WU phase, and a UW phase) individually; a saturation point detector 4 for detecting a saturation point of a current value at each coil conduction path; and a controller 5 for measuring time from beginning of electricity conduction to detection of the saturation point of the current value, and determining a stop position for the rotor according to the measured time of each coil conduction path. The saturation point detector 4 detects transitive decrease of the current value obtained when the current value at each coil conduction path reaches the saturation point.

Description

本発明は、ブラシレスモータのロータ停止位置を判定するロータ停止位置判定装置に係り、特に、センサレス方式のブラシレスモータにおいて有用なロータ停止位置判定装置に関する。   The present invention relates to a rotor stop position determination device that determines a rotor stop position of a brushless motor, and more particularly to a rotor stop position determination device useful in a sensorless brushless motor.

コイルが巻回されるステータの対向位置に、永久磁石を有するロータを回転自在に支持して構成されるブラシレスモータが知られている。この種のブラシレスモータは、複数のコイル通電経路を有し、これらのコイル通電経路を順次切り換えることによりロータを回転させる。そして、モータ起動時にロータを所定の方向に円滑に回転させるには、ロータの停止位置(停止範囲)を認識し、該停止位置に応じたコイル通電経路の選択が必要となるが、ホールセンサなどのセンサを組み込んでロータの停止位置を検出する方式では、ブラシレスモータの小型化を阻害するだけでなく、部品点数や配線数の増加に伴い製造コストを押し上げるという問題がある。   There is known a brushless motor configured by rotatably supporting a rotor having a permanent magnet at a position facing a stator around which a coil is wound. This type of brushless motor has a plurality of coil energization paths, and rotates the rotor by sequentially switching these coil energization paths. In order to smoothly rotate the rotor in a predetermined direction when the motor is started, it is necessary to recognize the stop position (stop range) of the rotor and select a coil energization path according to the stop position. In the method of detecting the rotor stop position by incorporating this sensor, there is a problem that not only miniaturization of the brushless motor is hindered but also the manufacturing cost is increased with the increase in the number of parts and the number of wirings.

そこで、センサを用いることなくロータの停止位置を判定するロータ停止位置判定装置が提案されている。たとえば、特許文献1に示されるロータ停止位置判定装置では、コイルに対する通電の開始から、コイルを流れる電流値が所定の閾値に達するまでの時間を計測し、この計測時間にもとづいてロータの停止位置を判定するようになっている。つまり、コイルと対向している永久磁石の極性や磁界の強さに応じて、コイルの通電特性(電流の流れやすさ)が変化することに着目し、この通電特性の変化を、通電の開始から電流値が所定の閾値に達するまでの時間の変化として計測している。   Therefore, a rotor stop position determination device that determines the stop position of the rotor without using a sensor has been proposed. For example, in the rotor stop position determination device disclosed in Patent Document 1, the time from the start of energization to the coil until the current value flowing through the coil reaches a predetermined threshold is measured, and the rotor stop position is determined based on this measurement time. It comes to judge. In other words, paying attention to the change in the current-carrying characteristics (ease of current flow) of the coil according to the polarity of the permanent magnet facing the coil and the strength of the magnetic field, From the time until the current value reaches a predetermined threshold value.

特開2009−284653号公報JP 2009-284653 A

しかしながら、特許文献1に示されるように、通電の開始から電流値が所定の閾値に達するまでの時間を計測するという方法では、良好な計測精度が得られず、ロータ停止位置を高精度に判定することは困難であった。つまり、上記の方法では、様々な条件下(コイルの温度変化など)でも飽和点に達しない電流値範囲を特定し、この電流値の範囲内で所定の閾値を設定する必要があるので、どうしても計測期間が短くなり、計測精度に限界があった。   However, as shown in Patent Document 1, in the method of measuring the time from the start of energization until the current value reaches a predetermined threshold, good measurement accuracy cannot be obtained, and the rotor stop position is determined with high accuracy. It was difficult to do. In other words, in the above method, it is necessary to specify a current value range that does not reach the saturation point even under various conditions (coil temperature change, etc.), and to set a predetermined threshold value within this current value range. The measurement period was shortened and the measurement accuracy was limited.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、複数のコイルが巻回されるステータの対向位置に、永久磁石を有するロータを回転自在に支持して構成されるブラシレスモータのロータ停止位置判定装置であって、複数のコイル通電経路に対して個別に通電するコイル通電手段と、各コイル通電経路を流れる電流値の飽和点を検出する飽和点検出手段と、通電の開始から電流値の飽和点が検出されるまでの時間を計測する時間計測手段と、各コイル通電経路の計測時間にもとづいてロータの停止位置を判定するロータ停止位置判定手段と、を備え、前記飽和点検出手段は、各コイル通電経路を流れる電流値が飽和点に達した際に生じる過渡的な電流値の低下を検出することを特徴とする。
また、前記飽和点検出手段は、前記過渡的な電流値の低下を、当該電流値の低下に伴ってコイル通電経路に生じる逆起電力にもとづいて検出することを特徴とする。
また、前記過渡的な電流値の低下は、コイル通電経路の通電状態を切換えるスイッチング素子が発生させることを特徴とする。
また、すべてのコイル通電経路が共有する共有通電経路に前記過渡的な電流値の低下を発生させる一つのスイッチング素子を設けたことを特徴とする。
また、前記コイル通電手段、前記飽和点検出手段、前記時間計測手段及び前記ロータ停止位置判定手段は、前記ブラシレスモータを制御する主制御回路とは独立して構成され、前記主制御回路からの要求に応じてロータの停止位置を判定し、当該判定結果を前記主制御回路に送信することを特徴とする。
また、前記ロータ停止位置判定手段は、複数のコイル通電経路について、それぞれ、正方向に電流を流した場合の計測時間と、逆方向に電流を流した場合の計測時間とを取得すると共に、正方向の計測時間と逆方向の計測時間の差分を演算し、各コイル通電経路の差分同士を比較することにより、ロータの停止位置を判定することを特徴とする。
The present invention has been created in view of the above circumstances and has been created for the purpose of solving these problems, and a rotor having a permanent magnet can be freely rotated at a position facing a stator around which a plurality of coils are wound. A rotor stop position determination device for a brushless motor configured to be supported by a coil, and a coil energization unit that individually energizes a plurality of coil energization paths, and a saturation point of a current value flowing through each coil energization path Saturation point detection means, time measurement means for measuring time from the start of energization until the saturation point of the current value is detected, and rotor stop position for determining the rotor stop position based on the measurement time of each coil energization path Determining means, and the saturation point detecting means detects a transient decrease in the current value that occurs when the current value flowing through each coil energization path reaches the saturation point.
Further, the saturation point detecting means detects the transient decrease in the current value based on a counter electromotive force generated in the coil energization path as the current value decreases.
In addition, the transient decrease in the current value is generated by a switching element that switches an energization state of the coil energization path.
Further, the present invention is characterized in that one switching element that causes the transient decrease in the current value is provided in a common energization path shared by all the coil energization paths.
The coil energization means, the saturation point detection means, the time measurement means, and the rotor stop position determination means are configured independently of a main control circuit that controls the brushless motor, and are requested from the main control circuit. The rotor stop position is determined in response to the determination, and the determination result is transmitted to the main control circuit.
Further, the rotor stop position determination means acquires a measurement time when a current is passed in the forward direction and a measurement time when a current is passed in the reverse direction for each of the plurality of coil energization paths. The difference between the measurement time in the direction and the measurement time in the reverse direction is calculated, and the stop position of the rotor is determined by comparing the differences between the respective coil energization paths.

請求項1の本発明によれば、通電の開始から電流値の飽和点が検出されるまでの時間にもとづいてロータの停止位置を判定するので、通電の開始から電流値が所定の閾値に達するまでの時間を計測する場合に比べ、計測期間を可及的に長くし、ロータ停止位置を高精度に判定することができる。しかも、電流値が飽和点に達した際に生じる過渡的な電流値の低下にもとづいて飽和点を検出するので、飽和点を精度良く検出し、ロータ停止位置の判定精度をさらに向上させることができる。
また、請求項2の発明によれば、過渡的な電流値の低下を、当該電流値の低下に伴ってコイル通電経路に生じる逆起電力にもとづいて検出するので、飽和点の検出精度をさらに向上させることができる。すなわち、過渡的な電流値の低下に伴ってコイル通電経路に生じる逆起電力は、過渡的な電流値の低下に比べて変化量が大きいので、飽和点を明確に識別できるだけでなく、簡単な回路構成(例えば、コンパレータ)で精度良く検出することが可能になる。
また、請求項3の発明によれば、過渡的な電流値の低下は、コイル通電経路の通電状態を切換えるスイッチング素子(例えば、MOSFET)が発生させるので、スイッチング素子の選定により、過渡的な電流値の低下を明確に発生させることができる。
また、請求項4の発明によれば、すべてのコイル通電経路が共有する共有通電経路に過渡的な電流値の低下を発生させる一つのスイッチング素子を設けたので、コイル通電経路毎に異なるスイッチング素子で過渡的な電流値の低下を発生させる場合に比べ、スイッチング素子の特性のバラツキに起因する測定誤差を排除し、ロータ停止位置の判定精度をさらに向上させることができる。
また、請求項5の発明によれば、ロータ停止位置判定装置は、ブラシレスモータを制御する主制御回路とは独立して構成され、主制御回路からの要求に応じてロータの停止位置を判定し、当該判定結果を主制御回路に送信するので、主制御回路に設けられる保護回路(例えば、電流制限回路)などの影響を受けることなく、ロータ停止位置判定に係る測定処理を実行することができ、しかも、各種のブラシレスモータ制御回路に組込み可能な汎用性の高いものとできる。
また、請求項6の発明によれば、複数のコイル通電経路について、それぞれ、正方向に電流を流した場合の計測時間と、逆方向に電流を流した場合の計測時間とを取得すると共に、正方向の計測時間と逆方向の計測時間の差分を演算し、各コイル通電経路の差分同士を比較することにより、ロータの停止位置を判定するので、各コイル通電経路が持つ通電特性のバラツキを相殺し、ロータの停止位置を高精度に判定することが可能になる。
According to the first aspect of the present invention, since the stop position of the rotor is determined based on the time from the start of energization until the saturation point of the current value is detected, the current value reaches a predetermined threshold value from the start of energization. As compared with the case of measuring the time until the rotor, the measurement period can be made as long as possible, and the rotor stop position can be determined with high accuracy. In addition, since the saturation point is detected based on a transient decrease in the current value that occurs when the current value reaches the saturation point, the saturation point can be detected with high accuracy, and the determination accuracy of the rotor stop position can be further improved. it can.
According to the invention of claim 2, since the transient decrease in the current value is detected based on the counter electromotive force generated in the coil energization path as the current value decreases, the detection accuracy of the saturation point is further increased. Can be improved. In other words, the back electromotive force generated in the coil energization path with a transient current value drop has a large amount of change compared to the transient current value drop. It becomes possible to detect accurately with a circuit configuration (for example, a comparator).
According to the invention of claim 3, the transient current value drop is generated by a switching element (for example, MOSFET) that switches the energization state of the coil energization path. A drop in value can be clearly generated.
According to the invention of claim 4, since one switching element that causes a transient decrease in the current value is provided in the common energization path shared by all the coil energization paths, a switching element that differs for each coil energization path As compared with the case where a transient decrease in current value is caused, the measurement error due to the variation in the characteristics of the switching elements can be eliminated, and the determination accuracy of the rotor stop position can be further improved.
According to the invention of claim 5, the rotor stop position determination device is configured independently of the main control circuit for controlling the brushless motor, and determines the stop position of the rotor in response to a request from the main control circuit. Since the determination result is transmitted to the main control circuit, the measurement process related to the rotor stop position determination can be executed without being affected by a protection circuit (for example, a current limiting circuit) provided in the main control circuit. Moreover, it can be highly versatile and can be incorporated into various brushless motor control circuits.
According to the invention of claim 6, for each of the plurality of coil energization paths, a measurement time when a current is passed in the forward direction and a measurement time when a current is passed in the reverse direction are obtained, The difference between the measurement time in the forward direction and the measurement time in the reverse direction is calculated, and the stop position of the rotor is determined by comparing the differences between the respective coil current paths. It cancels out, and it becomes possible to determine the stop position of a rotor with high precision.

本発明の実施形態に係るブラシレスモータのロータ停止位置判定装置を示す回路図である。It is a circuit diagram which shows the rotor stop position determination apparatus of the brushless motor which concerns on embodiment of this invention. 本発明の実施形態に係る飽和点検出原理を示す波形図である。It is a wave form diagram which shows the saturation point detection principle which concerns on embodiment of this invention. 本発明の実施形態に係る各コイル通電経路の計測時間とロータ停止位置との関係を示すグラフ図である。It is a graph which shows the relationship between the measurement time of each coil electricity supply path | route which concerns on embodiment of this invention, and a rotor stop position. 本発明の実施形態に係る各コイル通電経路における正逆計測時間の差分とロータ停止位置との関係を示すグラフ図である。It is a graph which shows the relationship between the difference of the normal / reverse measurement time in each coil electricity supply path which concerns on embodiment of this invention, and a rotor stop position. 本発明の実施形態に係る制御部の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control part which concerns on embodiment of this invention.

以下、本発明の実施の形態について、図面に基づいて説明する。尚、ブラシレスモータ自体の構成や、ブラシレスモータを制御する主制御回路の構成は周知であるため(例えば、前述した特許文献1参照)、詳細な説明や図示を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Since the configuration of the brushless motor itself and the configuration of the main control circuit for controlling the brushless motor are well known (for example, see Patent Document 1 described above), detailed description and illustration are omitted.

図1は、本発明の実施形態に係るブラシレスモータのロータ停止位置判定装置を示す回路図である。
この図に示すように、本発明の実施形態に係るロータ停止位置判定装置1は、複数のコイルU、V、Wが巻回されるステータ(図示せず)の対向位置に、永久磁石を有するロータ(図示せず)を回転自在に支持して構成されるブラシレスモータ2のロータ停止位置を判定する装置であって、複数のコイル通電経路(UV相、VU相、VW相、WV相、WU相、UW相)に対して個別に通電するコイル通電部(コイル通電手段)3と、各コイル通電経路を流れる電流値の飽和点を検出する飽和点検出部(飽和点検出手段)4と、通電の開始から電流値の飽和点が検出されるまでの時間Tを計測すると共に、各コイル通電経路の計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)にもとづいてロータの停止位置を判定する制御部(時間計測手段、ロータ停止位置判定手段)5と、を備えている。
FIG. 1 is a circuit diagram showing a rotor stop position determination device for a brushless motor according to an embodiment of the present invention.
As shown in this figure, the rotor stop position determination device 1 according to the embodiment of the present invention has a permanent magnet at a position facing a stator (not shown) around which a plurality of coils U, V, W are wound. A device for determining a rotor stop position of a brushless motor 2 configured by rotatably supporting a rotor (not shown), wherein a plurality of coil energization paths (UV phase, VU phase, VW phase, WV phase, WU, A coil energization section (coil energization means) 3 that individually energizes each phase, UW phase), a saturation point detection section (saturation point detection means) 4 that detects a saturation point of a current value flowing through each coil energization path, The time T from the start of energization until the saturation point of the current value is detected is measured, and the stop position of the rotor is determined based on the measurement time (Tuv, Tvu, Tvw, Twv, Twu, Tuw) of each coil energization path. Judgment control unit (hours Measuring means, and a rotor stop position determining means) 5, a.

ここで、本実施形態のロータ停止位置判定装置1は、ブラシレスモータ2を制御する主制御回路6とは独立して構成され、主制御回路6からの要求に応じてロータの停止位置を判定し、当該判定結果を主制御回路6に送信するように構成されている。したがって、主制御回路6に設けられる保護回路(例えば、電流制限回路)などの影響を受けることなく、ロータ停止位置判定に係る測定処理を実行することができ、しかも、各種のブラシレスモータ制御回路に組込み可能な汎用性の高いものとできる。   Here, the rotor stop position determination device 1 of the present embodiment is configured independently of the main control circuit 6 that controls the brushless motor 2, and determines the rotor stop position in response to a request from the main control circuit 6. The determination result is transmitted to the main control circuit 6. Therefore, it is possible to execute the measurement processing related to the rotor stop position determination without being affected by a protection circuit (for example, a current limiting circuit) provided in the main control circuit 6, and to various brushless motor control circuits. It can be built and highly versatile.

コイル通電部3は、制御部5の出力信号に応じて、各コイル通電経路の通電状態を切換える複数のスイッチング素子Q1〜Q6を備えて構成されている。例えば、本実施形態では、MOSFETからなる6個のスイッチング素子Q1〜Q6を備え、各コイル通電経路よりも上流側に配置される3個のスイッチング素子Q1〜Q3と、各コイル通電経路よりも下流側に配置される3個のスイッチング素子Q4〜Q6を、所定の組み合せでスイッチング動作させることにより、前述した6つのコイル通電経路に対して個別に電流を流すことができるようになっている。   The coil energization unit 3 includes a plurality of switching elements Q <b> 1 to Q <b> 6 that switch the energization state of each coil energization path according to the output signal of the control unit 5. For example, in the present embodiment, six switching elements Q1 to Q6 made of MOSFETs are provided, and three switching elements Q1 to Q3 arranged on the upstream side of each coil energization path, and downstream from each coil energization path. By switching the three switching elements Q4 to Q6 arranged on the side in a predetermined combination, a current can be individually supplied to the six coil energization paths described above.

例えば、コイル通電経路のUV相は、スイッチング素子Q3、Q5の組み合せで通電され、VU相は、スイッチング素子Q2、Q6の組み合せで通電され、VW相は、スイッチング素子Q2、Q4の組み合せで通電され、WV相は、スイッチング素子Q1、Q5の組み合せで通電され、WU相は、スイッチング素子Q1、Q6の組み合せで通電され、UW相は、スイッチング素子Q3、Q4の組み合せで通電されるようになっている。   For example, the UV phase of the coil energization path is energized by a combination of switching elements Q3 and Q5, the VU phase is energized by a combination of switching elements Q2 and Q6, and the VW phase is energized by a combination of switching elements Q2 and Q4. The WV phase is energized by a combination of switching elements Q1 and Q5, the WU phase is energized by a combination of switching elements Q1 and Q6, and the UW phase is energized by a combination of switching elements Q3 and Q4. Yes.

飽和点検出部4は、各コイル通電経路を流れる電流値の飽和点を検出するにあたり、各コイル通電経路を流れる電流値が飽和点に達した際に生じる過渡的な電流値の低下を検出するようになっている。つまり、各コイル通電経路を流れる電流値の飽和点を検出方法としては、各コイル通電経路を流れる電流値のピークを検出する方法もあるが、このような検出方法では、飽和点付近における電流値の緩やかな上昇を検出することになるので、電流値の飽和点を精度良く検出することは困難である。そこで、本発明においては、各コイル通電経路を流れる電流値が飽和点に達した際、電流値が過渡的に低下するという明確な現象に着目し、当該現象を検出することにより、電流値の飽和点を精度良く検出することを可能にしている。   When detecting the saturation point of the current value flowing through each coil energization path, the saturation point detector 4 detects a transient decrease in the current value that occurs when the current value flowing through each coil energization path reaches the saturation point. It is like that. In other words, as a method for detecting the saturation point of the current value flowing through each coil energization path, there is a method for detecting the peak of the current value flowing through each coil energization path. In such a detection method, the current value near the saturation point is detected. Therefore, it is difficult to accurately detect the saturation point of the current value. Accordingly, in the present invention, when the current value flowing through each coil energization path reaches the saturation point, attention is paid to a clear phenomenon in which the current value decreases transiently. This makes it possible to detect the saturation point with high accuracy.

図2は、本発明の実施形態に係る飽和点検出原理を示す波形図である。
本実施形態の飽和点検出部4は、過渡的な電流値の低下を、当該電流値の低下に伴ってコイル通電経路に生じる逆起電力にもとづいて検出するようになっている。すなわち、図2に示すように、過渡的な電流値の低下に伴ってコイル通電経路に生じる逆起電力は、過渡的な電流値の低下に比べて変化量が大きいので、飽和点を明確に識別できるだけでなく、簡単な回路構成(例えば、コンパレータ)で精度良く検出することが可能になる。
FIG. 2 is a waveform diagram showing the saturation point detection principle according to the embodiment of the present invention.
The saturation point detection unit 4 of the present embodiment detects a transient decrease in current value based on the back electromotive force generated in the coil energization path as the current value decreases. That is, as shown in FIG. 2, since the back electromotive force generated in the coil energization path with the transient current value decrease is larger than the transient current value decrease, the saturation point is clearly defined. In addition to identification, it is possible to detect with high accuracy with a simple circuit configuration (for example, a comparator).

各コイル通電経路を流れる電流値が飽和点に達した際に生じる過渡的な電流値の低下は、コイル通電経路の通電状態を切換えるスイッチング素子Qの動作特性を利用して発生させることができる。例えば、コイル通電経路のUV相に通電する際のスイッチング素子Q5に着目すると、スイッチング素子Q5のゲート電圧は一定であり、通電当初、スイッチング素子Q5のゲートソース間電圧は飽和領域にあるため、UV相を流れる電流値は増加し、それに伴って電圧も上昇する。電圧の上昇に伴ってスイッチング素子Q5のゲートソース間電圧が減少し、飽和領域から線形領域に移行すると、コイル通電経路を流れる電流が制限(飽和)され、過渡的な電流値の低下が生じる。本実施形態の飽和点検出部4は、この過渡的な電流値の低下にもとづいて電流値の飽和点を検出するようになっている。   The transient decrease in the current value that occurs when the current value flowing through each coil energization path reaches the saturation point can be generated using the operating characteristics of the switching element Q that switches the energization state of the coil energization path. For example, paying attention to the switching element Q5 when energizing the UV phase of the coil energization path, the gate voltage of the switching element Q5 is constant and the voltage between the gate and source of the switching element Q5 is in the saturation region at the beginning of energization. The value of the current flowing through the phase increases, and the voltage increases accordingly. When the voltage between the gate and source of the switching element Q5 decreases as the voltage increases and shifts from the saturation region to the linear region, the current flowing through the coil energization path is limited (saturated), causing a transient decrease in current value. The saturation point detector 4 of the present embodiment detects the saturation point of the current value based on this transient decrease in current value.

ところで、各コイル通電経路に通電して飽和点検出を行うにあたり、コイル通電経路毎に異なるスイッチング素子Qで過渡的な電流値の低下を発生させると、スイッチング素子Qの特性のバラツキに起因し、測定誤差が発生する可能性がある。そこで、本実施形態では、すべてのコイル通電経路が共有する共有通電経路(コイル通電部3の下流通電経路)に一つのスイッチング素子Q7を設け、このスイッチング素子Q7ですべてのコイル通電経路における過渡的な電流値の低下を発生させる。これにより、スイッチング素子Qの特性のバラツキに起因する測定誤差を排除することが可能になる。   By the way, when performing a saturation point detection by energizing each coil energization path, if a transient decrease in the current value is caused by a different switching element Q for each coil energization path, it is caused by variations in characteristics of the switching element Q, Measurement error may occur. Therefore, in the present embodiment, one switching element Q7 is provided in a common energization path (downstream energization path of the coil energization unit 3) shared by all the coil energization paths, and the transition element in all the coil energization paths is provided by this switching element Q7. Cause a significant decrease in current value. This makes it possible to eliminate measurement errors caused by variations in the characteristics of the switching element Q.

本実施形態の飽和点検出部4は、具体的な構成要素として、上記のスイッチング素子Q7と、その下流経路に設けられる抵抗R1と、過渡的な電流値の低下に伴う逆起電力の上昇を検出するコンパレータ7と、コンパレータ7の比較電圧(飽和点検出用の閾値S)を設定する抵抗R2、R3とを備えており、コンパレータ7の出力信号が制御部5に入力されるようになっている。   The saturation point detector 4 of the present embodiment includes, as specific components, the switching element Q7, the resistor R1 provided in the downstream path thereof, and the increase of the back electromotive force accompanying a transient decrease in current value. Comparator 7 for detection and resistors R2 and R3 for setting a comparison voltage (saturation point detection threshold S) of comparator 7 are provided, and an output signal of comparator 7 is input to control unit 5. Yes.

本実施形態の制御部5は、マイクロコントローラ(ワンチップマイコン)を用いて構成されており、各コイル通電経路に対する通電の開始から電流値の飽和点が検出されるまでの時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)を計測する時間計測処理と、各コイル通電経路の計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)にもとづいてロータの停止位置を判定するロータ停止位置判定処理とを実行するためのプログラムが書き込まれている。   The control unit 5 of the present embodiment is configured using a microcontroller (one-chip microcomputer), and the time from the start of energization to each coil energization path until the saturation point of the current value is detected (Tuv, Tvu, Rotor stop position determination for determining a rotor stop position based on a time measurement process for measuring Tvw, Twv, Twu, Tuw) and a measurement time (Tuv, Tvu, Tvw, Twv, Twu, Tuw) of each coil energization path A program for executing processing is written.

本実施形態の時間計測処理では、過渡的な電流値の低下を発生させるスイッチング素子Q7と計測対象のコイル通電経路に対応するスイッチング素子Q1〜Q6に一定電圧を印加するのと同時に計時用カウンタをスタートさせると共に、コンパレータ7の出力信号を監視し、当該出力信号の立下がりに応じて計時用カウンタをストップさせ、カウント値を読み込む。このカウント値は、コイル通電経路に対する通電の開始から電流値の飽和点が検出されるまでの時間に相当するものであり、以上の時間計測処理は、6つのコイル通電経路についてそれぞれ個別に実行される。   In the time measurement process of the present embodiment, a constant voltage is applied simultaneously to the switching element Q7 that causes a transient decrease in the current value and the switching elements Q1 to Q6 corresponding to the coil energization path to be measured. At the same time, the output signal of the comparator 7 is monitored, the time counter is stopped according to the fall of the output signal, and the count value is read. This count value corresponds to the time from the start of energization to the coil energization path until the saturation point of the current value is detected, and the above time measurement processing is executed individually for each of the six coil energization paths. The

図3は、本発明の実施形態に係る各コイル通電経路の計測時間とロータ停止位置との関係を示すグラフ図である。
この図に示すように、各コイル通電経路の計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)は、ロータ停止位置と明確な関係を持つ。すなわち、360゜のロータ停止範囲において、6つコイル通電経路の計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)は、ロータが作り出す磁界に応じて3相のサイン波形(180゜で1周期)を示すと共に、ロータが作り出す磁界の極性(S極、N極)に応じてサイン波形の振幅に大きな変化を生じさせる。
FIG. 3 is a graph showing the relationship between the measurement time of each coil energization path and the rotor stop position according to the embodiment of the present invention.
As shown in this figure, the measurement time (Tuv, Tvu, Tvw, Twv, Twu, Tuw) of each coil energization path has a clear relationship with the rotor stop position. That is, in the 360 ° rotor stop range, the measurement time (Tuv, Tvu, Tvw, Twv, Twu, Tuw) of the six coil energization paths is a three-phase sine waveform (1 at 180 °) according to the magnetic field generated by the rotor. Period) and a large change in the amplitude of the sine waveform in accordance with the polarity of the magnetic field (S pole, N pole) created by the rotor.

例えば、6つコイル通電経路の計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)のうち、最小となる計測時間に着目すると、最小となる計測時間が60゜ピッチで入れ換わることが分る。したがって、最小となる計測時間を特定すれば、60゜ピッチで6つに分割したロータ停止範囲H1〜H6のうち、どのロータ停止範囲にロータが停止しているかを判定することが可能になる。また、各ロータ停止範囲内においては、ロータ停止位置に応じて計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)が変化するので、各ロータ停止位置における計測時間(Tuv、Tvu、Tvw、Twv、Twu、Tuw)を予めテーブルとして保持し、該テーブルを参照して詳細なロータ停止位置を特定するようにしてもよい。   For example, paying attention to the minimum measurement time among the measurement times (Tuv, Tvu, Tvw, Twv, Twu, Tuw) of six coil energization paths, it can be seen that the minimum measurement time is switched at a 60 ° pitch. The Therefore, if the minimum measurement time is specified, it is possible to determine in which rotor stop range of the rotor stop ranges H1 to H6 divided into six at 60 ° pitches. Also, within each rotor stop range, the measurement time (Tuv, Tvu, Tvw, Twv, Twu, Tuw) changes according to the rotor stop position, so the measurement time (Tuv, Tvu, Tvw, (Twv, Twu, Tuw) may be stored in advance as a table, and the detailed rotor stop position may be specified with reference to the table.

ところで、複数のコイル通電経路は、コイル固有の通電特性に起因し、上記の時間計測に際してバイアス値にバラツキが生じる可能性がある。このバラツキは、上記の最小値特定に影響を及ぼすので、ロータ停止位置の判定精度を低下させる惧れがある。そこで、本実施形態のロータ停止位置判定処理では、複数のコイル通電経路について、それぞれ、正方向に電流を流した場合の計測時間と、逆方向に電流を流した場合の計測時間との差分を演算し、各コイル通電経路の差分同士を比較することにより、ロータの停止位置を判定するようになっている。   By the way, the plurality of coil energization paths are caused by the energization characteristics unique to the coil, and there is a possibility that the bias value varies in the time measurement. This variation affects the above-described specification of the minimum value, which may reduce the accuracy of determining the rotor stop position. Therefore, in the rotor stop position determination process of the present embodiment, for each of the plurality of coil energization paths, the difference between the measurement time when the current is passed in the forward direction and the measurement time when the current is passed in the reverse direction is calculated. The rotor stop position is determined by calculating and comparing the differences between the respective coil energization paths.

図4は、本発明の実施形態に係る各コイル通電経路における正逆計測時間の差分とロータ停止位置との関係を示すグラフ図である。
この図に示すように、各コイル通電経路における正逆計測時間の差分は、ロータ停止位置と明確な関係を持つ。すなわち、360゜のロータ停止範囲において、6つコイル通電経路における正逆計測時間の差分(Tuv−Tvu、Tvu−Tuv、Tvw−Twv、Twv−Tvw、Twu−Tuw、Tuw−Twu)は、ロータが作り出す磁界に応じて6相のサイン波形(360゜で1周期)を示す。
FIG. 4 is a graph showing the relationship between the difference between the forward and reverse measurement times and the rotor stop position in each coil energization path according to the embodiment of the present invention.
As shown in this figure, the difference between the forward and reverse measurement times in each coil energization path has a clear relationship with the rotor stop position. That is, in the 360 ° rotor stop range, the difference (Tuv-Tvu, Tvu-Tuv, Tvw-Twv, Twv-Tvw, Twu-Tww, Tuw-Twu) between the forward and reverse measurement times in the six coil energization paths is the rotor. Shows a six-phase sine waveform (one period at 360 °) according to the magnetic field generated by.

例えば、6つコイル通電経路における正逆計測時間の差分(Tuv−Tvu、Tvu−Tuv、Tvw−Twv、Twv−Tvw、Twu−Tuw、Tuw−Twu)のうち、最小又は最大となる差分に着目すると、最小又は最小となる差分が60゜ピッチで入れ換わることが分る。したがって、最小又は最大となる差分を特定すれば、60゜ピッチで6つに分割したロータ停止範囲H1〜H6のうち、どのロータ停止範囲にロータが停止しているかを判定することが可能になる。また、2番目に小さい差分又は2番目に大きい差分に着目すると、2番目に小さい差分又は2番目に大きい差分が30゜ピッチで入れ換わることが分る。したがって、2番目に小さい差分又は2番目に大きい差分を特定すれば、30゜ピッチで12に分割したロータ停止範囲h1〜h12のうち、どのロータ停止範囲にロータが停止しているかを判定することが可能になる。   For example, pay attention to the difference which becomes the minimum or the maximum among the differences (Tuv-Tvu, Tvu-Tuv, Tvw-Twv, Twv-Tvw, Twu-Tuw, Tuw-Twu) of forward / reverse measurement times in six coil energization paths. Then, it can be seen that the minimum or minimum difference is switched at a 60 ° pitch. Therefore, if the difference which becomes the minimum or the maximum is specified, it becomes possible to determine in which rotor stop range of the rotor stop ranges H1 to H6 divided into six at 60 ° pitch. . If attention is paid to the second smallest difference or the second largest difference, it can be seen that the second smallest difference or the second largest difference is switched at a pitch of 30 °. Therefore, if the second smallest difference or the second largest difference is specified, it is determined in which rotor stop range of the rotor stop ranges h1 to h12 divided into 12 at 30 ° pitch. Is possible.

つぎに、制御部5の処理手順について、図5を参照して説明する。   Next, the processing procedure of the control unit 5 will be described with reference to FIG.

図5は、本発明の実施形態に係る制御部の処理手順を示すフローチャートである。
この図に示すように、制御部5は、まず、主制御回路6からの要求信号を受信したか否かを判断する(S1)。この判断結果がYESの場合は、6つのコイル通電経路(UV相、VU相、VW相、WV相、WU相、UW相)において、通電の開始から電流値の飽和点が検出されるまでの時間Tを計測する(S2〜S7)。
FIG. 5 is a flowchart showing a processing procedure of the control unit according to the embodiment of the present invention.
As shown in this figure, the controller 5 first determines whether a request signal from the main control circuit 6 has been received (S1). When this determination result is YES, in the six coil energization paths (UV phase, VU phase, VW phase, WV phase, WU phase, UW phase), from the start of energization until the saturation point of the current value is detected. Time T is measured (S2 to S7).

時間計測処理では、所定のコイル通電経路に通電を開始すると同時に(S21)、計時用カウンタをスタートさせ(S22)、コンパレータ7の出力信号を監視する(S23)。その後、コンパレータ7の出力信号が立下がったら、計時用カウンタをストップさせる(S24)。そして、所定のタイマ時間が経過したら(S25)、所定のコイル通電経路に対する通電を停止すると共に(S26)、計時用カウンタのカウント値を読み込む(S27)。   In the time measurement process, energization of a predetermined coil energization path is started (S21), the time counter is started (S22), and the output signal of the comparator 7 is monitored (S23). Thereafter, when the output signal of the comparator 7 falls, the time counter is stopped (S24). When the predetermined timer time has elapsed (S25), the energization to the predetermined coil energization path is stopped (S26), and the count value of the time counter is read (S27).

各コイル通電経路の時間計測が完了したら、各コイル通電経路の正逆計測時間の差分(Tuv−Tvu、Tvu−Tuv、Tvw−Twv、Twv−Tvw、Twu−Tuw、Tuw−Twu)を演算すると共に(S8)、これらの差分のなかから、最小又は最大の差分や、2番目に小さい差分又は2番目に大きい差分を特定し、特定した差分にもとづいてロータ停止範囲H1〜H6やロータ停止範囲h1〜h12を判定する(S9)。その後、判定結果を主制御回路6に送信し(S10)、最初の処理ステップS1に戻る。   When the time measurement of each coil energization path is completed, the difference between the forward and reverse measurement times of each coil energization path (Tuv-Tvu, Tvu-Tuv, Tvw-Twv, Twv-Tvw, Twu-Tuw, Tuw-Twu) is calculated. At the same time (S8), the minimum or maximum difference, the second smallest difference or the second largest difference is specified from these differences, and the rotor stop ranges H1 to H6 and the rotor stop range are determined based on the specified differences. h1 to h12 are determined (S9). Thereafter, the determination result is transmitted to the main control circuit 6 (S10), and the process returns to the first processing step S1.

叙述の如く構成された本実施形態によれば、複数のコイルU、V、Wが巻回されるステータの対向位置に、永久磁石を有するロータを回転自在に支持して構成されるブラシレスモータ2のロータ停止位置判定装置1であって、複数のコイル通電経路(UV相、VU相、VW相、WV相、WU相、UW相)に対して個別に通電するコイル通電部3と、各コイル通電経路を流れる電流値の飽和点を検出する飽和点検出部4と、通電の開始から電流値の飽和点が検出されるまでの時間を計測すると共に、各コイル通電経路の計測時間にもとづいてロータの停止位置を判定する制御部5と、を備え、飽和点検出部4は、各コイル通電経路を流れる電流値が飽和点に達した際に生じる過渡的な電流値の低下を検出する構成としてある。   According to the present embodiment configured as described, the brushless motor 2 is configured by rotatably supporting a rotor having a permanent magnet at a position facing a stator around which a plurality of coils U, V, and W are wound. Rotor stop position determination apparatus 1, and a coil energization section 3 that individually energizes a plurality of coil energization paths (UV phase, VU phase, VW phase, WV phase, WU phase, UW phase), and each coil A saturation point detection unit 4 that detects a saturation point of the current value flowing through the energization path, and measures the time from the start of energization until the saturation point of the current value is detected, and based on the measurement time of each coil energization path And a control unit 5 that determines a stop position of the rotor, and the saturation point detection unit 4 detects a transient decrease in current value that occurs when the current value flowing through each coil energization path reaches the saturation point. It is as.

すなわち、本発明の実施形態に係るロータ停止位置判定装置1は、通電の開始から電流値の飽和点が検出されるまでの時間にもとづいてロータの停止位置を判定するので、通電の開始から電流値が所定の閾値に達するまでの時間を計測する場合に比べ、計測期間を可及的に長くし、ロータ停止位置を高精度に判定することができる。しかも、電流値が飽和点に達した際に生じる過渡的な電流値の低下にもとづいて飽和点を検出するので、飽和点を精度良く検出し、ロータ停止位置の判定精度をさらに向上させることができる。   That is, the rotor stop position determination device 1 according to the embodiment of the present invention determines the rotor stop position based on the time from the start of energization until the saturation point of the current value is detected. Compared to the case where the time until the value reaches a predetermined threshold is measured, the measurement period can be made as long as possible, and the rotor stop position can be determined with high accuracy. In addition, since the saturation point is detected based on a transient decrease in the current value that occurs when the current value reaches the saturation point, the saturation point can be detected with high accuracy, and the determination accuracy of the rotor stop position can be further improved. it can.

また、飽和点検出部4は、過渡的な電流値の低下を、当該電流値の低下に伴ってコイル通電経路に生じる逆起電力にもとづいて検出するので、飽和点の検出精度をさらに向上させることができる。すなわち、過渡的な電流値の低下に伴ってコイル通電経路に生じる逆起電力は、過渡的な電流値の低下に比べて変化量が大きいので、飽和点を明確に識別できるだけでなく、簡単な回路構成で精度良く検出することが可能になる。   In addition, the saturation point detection unit 4 detects a transient decrease in the current value based on the back electromotive force generated in the coil energization path as the current value decreases, so that the saturation point detection accuracy is further improved. be able to. In other words, the back electromotive force generated in the coil energization path with a transient current value drop has a large amount of change compared to the transient current value drop. It becomes possible to detect with high accuracy by the circuit configuration.

また、過渡的な電流値の低下は、コイル通電経路の通電状態を切換えるスイッチング素子Qが発生させるので、スイッチング素子Qの選定により、過渡的な電流値の低下を明確に発生させることができる。   In addition, since the transient decrease in the current value is generated by the switching element Q that switches the energization state of the coil energization path, the transient decrease in the current value can be clearly generated by selecting the switching element Q.

また、すべてのコイル通電経路が共有する共有通電経路に過渡的な電流値の低下を発生させる一つのスイッチング素子Q7を設けたので、コイル通電経路毎に異なるスイッチング素子Qで過渡的な電流値の低下を発生させる場合に比べ、スイッチング素子Qの特性のバラツキに起因する測定誤差を排除し、ロータ停止位置の判定精度をさらに向上させることができる。   In addition, since the single switching element Q7 that causes the transient current value to decrease is provided in the common energization path shared by all the coil energization paths, the transient current value of the switching element Q is different for each coil energization path. Compared with the case where the reduction occurs, the measurement error due to the variation in the characteristics of the switching element Q can be eliminated, and the determination accuracy of the rotor stop position can be further improved.

また、本実施形態のロータ停止位置判定装置1は、ブラシレスモータ2を制御する主制御回路6とは独立して構成され、主制御回路6からの要求に応じてロータの停止位置を判定し、当該判定結果を主制御回路6に送信するので、主制御回路6に設けられる保護回路(例えば、電流制限回路)などの影響を受けることなく、ロータ停止位置判定に係る測定処理を実行することができ、しかも、各種のブラシレスモータ制御回路に組込み可能な汎用性の高いものとできる。   The rotor stop position determination device 1 of the present embodiment is configured independently of the main control circuit 6 that controls the brushless motor 2, determines the stop position of the rotor in response to a request from the main control circuit 6, Since the determination result is transmitted to the main control circuit 6, it is possible to execute the measurement process related to the rotor stop position determination without being affected by a protection circuit (for example, a current limiting circuit) provided in the main control circuit 6. Moreover, it can be highly versatile and can be incorporated into various brushless motor control circuits.

また、制御部5は、複数のコイル通電経路について、それぞれ、正方向に電流を流した場合の計測時間と、逆方向に電流を流した場合の計測時間とを取得すると共に、正方向の計測時間と逆方向の計測時間の差分を演算し、各コイル通電経路の差分同士を比較することにより、ロータの停止位置を判定するので、各コイル通電経路が持つ通電特性のバラツキを相殺し、ロータの停止位置を高精度に判定することが可能になる。   Further, the control unit 5 acquires, for each of the plurality of coil energization paths, a measurement time when a current is passed in the forward direction and a measurement time when a current is passed in the reverse direction, and the measurement in the forward direction. Since the rotor stop position is determined by calculating the difference between the time and the measurement time in the reverse direction and comparing the differences between the coil energization paths, the variation in the energization characteristics of each coil energization path is canceled out. Can be determined with high accuracy.

尚、本発明は、前記実施形態に限定されないことは勿論であって、特許請求の範囲から逸脱しない限り、構成の変更や追加は適宜行うことができることは言うまでもない。   Needless to say, the present invention is not limited to the above-described embodiment, and the configuration can be changed or added as appropriate without departing from the scope of the claims.

例えば、前記実施形態では、Y結線のブラシレスモータを例示したが、コイルの結線方式はΔ結線であってもよい。また、ブラシレスモータにおけるロータの磁極数や、ステータのコイル数も任意である。   For example, in the above-described embodiment, the Y-connection brushless motor is exemplified, but the coil connection method may be Δ connection. Further, the number of magnetic poles of the rotor and the number of coils of the stator in the brushless motor are arbitrary.

1 ロータ停止位置判定装置
2 ブラシレスモータ
3 コイル通電部
4 飽和点検出部
5 制御部
6 主制御回路
7 コンパレータ
Q スイッチング素子
DESCRIPTION OF SYMBOLS 1 Rotor stop position determination apparatus 2 Brushless motor 3 Coil energization part 4 Saturation point detection part 5 Control part 6 Main control circuit 7 Comparator Q Switching element

Claims (6)

複数のコイルが巻回されるステータの対向位置に、永久磁石を有するロータを回転自在に支持して構成されるブラシレスモータのロータ停止位置判定装置であって、
複数のコイル通電経路に対して個別に通電するコイル通電手段と、
各コイル通電経路を流れる電流値の飽和点を検出する飽和点検出手段と、
通電の開始から電流値の飽和点が検出されるまでの時間を計測する時間計測手段と、
各コイル通電経路の計測時間にもとづいてロータの停止位置を判定するロータ停止位置判定手段と、を備え、
前記飽和点検出手段は、各コイル通電経路を流れる電流値が飽和点に達した際に生じる過渡的な電流値の低下を検出することを特徴とするブラシレスモータのロータ停止位置判定装置。
A rotor stop position determination device for a brushless motor configured to rotatably support a rotor having a permanent magnet at a position facing a stator around which a plurality of coils are wound,
A coil energization means for energizing individually a plurality of coil energization paths;
Saturation point detection means for detecting a saturation point of a current value flowing through each coil energization path;
Time measuring means for measuring the time from the start of energization until the saturation point of the current value is detected;
Rotor stop position determination means for determining the rotor stop position based on the measurement time of each coil energization path,
The said saturation point detection means detects the transient fall of the current value which arises when the current value which flows through each coil energization path reaches a saturation point, The rotor stop position determination apparatus of the brushless motor characterized by the above-mentioned.
前記飽和点検出手段は、前記過渡的な電流値の低下を、当該電流値の低下に伴ってコイル通電経路に生じる逆起電力にもとづいて検出することを特徴とする請求項1記載のブラシレスモータのロータ停止位置判定装置。   2. The brushless motor according to claim 1, wherein the saturation point detecting unit detects the transient decrease in the current value based on a back electromotive force generated in the coil energization path as the current value decreases. Rotor stop position determination device. 前記過渡的な電流値の低下は、コイル通電経路の通電状態を切換えるスイッチング素子が発生させることを特徴とする請求項1又は2に記載のブラシレスモータのロータ停止位置判定装置。   The brush stop motor rotor stop position determination device according to claim 1 or 2, wherein the transient decrease in the current value is generated by a switching element that switches an energization state of a coil energization path. すべてのコイル通電経路が共有する共有通電経路に前記過渡的な電流値の低下を発生させる一つのスイッチング素子を設けたことを特徴とする請求項3記載のブラシレスモータのロータ停止位置判定装置。   4. The rotor stop position determination device for a brushless motor according to claim 3, wherein one switching element for generating the transient decrease in the current value is provided in a common energization path shared by all the coil energization paths. 前記コイル通電手段、前記飽和点検出手段、前記時間計測手段及び前記ロータ停止位置判定手段は、前記ブラシレスモータを制御する主制御回路とは独立して構成され、前記主制御回路からの要求に応じてロータの停止位置を判定し、当該判定結果を前記主制御回路に送信することを特徴とする請求項1〜4のいずれか一項に記載のブラシレスモータのロータ停止位置判定装置。   The coil energization means, the saturation point detection means, the time measurement means, and the rotor stop position determination means are configured independently of a main control circuit that controls the brushless motor, and according to a request from the main control circuit The rotor stop position determination device for a brushless motor according to any one of claims 1 to 4, wherein the stop position of the rotor is determined and the determination result is transmitted to the main control circuit. 前記ロータ停止位置判定手段は、複数のコイル通電経路について、それぞれ、正方向に電流を流した場合の計測時間と、逆方向に電流を流した場合の計測時間とを取得すると共に、正方向の計測時間と逆方向の計測時間の差分を演算し、各コイル通電経路の差分同士を比較することにより、ロータの停止位置を判定することを特徴とする請求項1〜5のいずれか一項に記載のブラシレスモータのロータ停止位置判定装置。   The rotor stop position determination means acquires a measurement time when a current is passed in the forward direction and a measurement time when a current is passed in the reverse direction for each of the plurality of coil energization paths, The rotor stop position is determined by calculating the difference between the measurement time and the measurement time in the opposite direction, and comparing the differences between the respective coil energization paths. The rotor stop position determination apparatus of the brushless motor as described.
JP2012025793A 2012-02-09 2012-02-09 Brushless motor rotor stop position determination device Expired - Fee Related JP5855967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025793A JP5855967B2 (en) 2012-02-09 2012-02-09 Brushless motor rotor stop position determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025793A JP5855967B2 (en) 2012-02-09 2012-02-09 Brushless motor rotor stop position determination device

Publications (2)

Publication Number Publication Date
JP2013162736A true JP2013162736A (en) 2013-08-19
JP5855967B2 JP5855967B2 (en) 2016-02-09

Family

ID=49174555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025793A Expired - Fee Related JP5855967B2 (en) 2012-02-09 2012-02-09 Brushless motor rotor stop position determination device

Country Status (1)

Country Link
JP (1) JP5855967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2549741B (en) 2016-04-26 2020-06-17 Dyson Technology Ltd Method of controlling a brushless permanent-magnet motor
GB2549742B (en) 2016-04-26 2020-06-17 Dyson Technology Ltd Method of determining the rotor position of a permanent-magnet motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040943A (en) * 2002-07-05 2004-02-05 Nec Electronics Corp Method and device for detecting rotor stop position of sensorless motor, and method and device for starting
JP2009284654A (en) * 2008-05-22 2009-12-03 Nippon Soken Inc Rotor position estimation apparatus for brushless motor, activation control system for brushless motor, and activation control method for brushless motor
JP2011125079A (en) * 2009-12-08 2011-06-23 Mitsuba Corp Drive device for brushless motor and method of starting the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040943A (en) * 2002-07-05 2004-02-05 Nec Electronics Corp Method and device for detecting rotor stop position of sensorless motor, and method and device for starting
JP2009284654A (en) * 2008-05-22 2009-12-03 Nippon Soken Inc Rotor position estimation apparatus for brushless motor, activation control system for brushless motor, and activation control method for brushless motor
JP2011125079A (en) * 2009-12-08 2011-06-23 Mitsuba Corp Drive device for brushless motor and method of starting the same

Also Published As

Publication number Publication date
JP5855967B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP4801772B2 (en) Brushless motor control device and brushless motor control method
JP2008086180A (en) Motor drive control device and motor drive control system
KR101899014B1 (en) Structure and methord to control BLDC motor
JP4633433B2 (en) Method for commutation of brushless DC motor
JP2014110675A (en) Detection method, and three-phase permanent magnet synchronous motor
JP2004040943A (en) Method and device for detecting rotor stop position of sensorless motor, and method and device for starting
JP5967802B2 (en) Brushless motor rotor stop position determination device
AU2016366628A1 (en) Determining the parked position of a permanent-magnet motor
JP5638129B2 (en) Method and apparatus for determining zero passage of phase current of an electronic machine rectified electronically, in particular for determining the rotor position of an electric machine
JP5855967B2 (en) Brushless motor rotor stop position determination device
JP2010226779A (en) Motor driving apparatus
KR101328192B1 (en) Device for compensation of load factors in brushless direct current motors (bldc) with a stator and a rotor with magnets
JP2011125079A (en) Drive device for brushless motor and method of starting the same
US7906929B2 (en) Method and device for controlling a three-phase machine having several phase windings, which can be controlled by means of pulse width modulation
US9571021B2 (en) Motor control device and method for detecting out-of-step
JP5330728B2 (en) Brushless motor drive device
JP2013183592A (en) Rotor stop position determination device for brushless motor
JP5464793B2 (en) Motor drive device
US9118268B2 (en) Electronic commutation method in direct current electric motors
JP2010043949A (en) Stepping motor control circuit and analog electronic timepiece
JP2013031294A (en) Motor control device
JP7129802B2 (en) Motor control device, stepping motor system and motor control method
JP2018074710A (en) Drive unit of motor
JP5745955B2 (en) Driving apparatus and driving method
JP2005328635A (en) Controller of switched reluctance motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5855967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees