JP2013160628A - Confocal measurement device - Google Patents

Confocal measurement device Download PDF

Info

Publication number
JP2013160628A
JP2013160628A JP2012022539A JP2012022539A JP2013160628A JP 2013160628 A JP2013160628 A JP 2013160628A JP 2012022539 A JP2012022539 A JP 2012022539A JP 2012022539 A JP2012022539 A JP 2012022539A JP 2013160628 A JP2013160628 A JP 2013160628A
Authority
JP
Japan
Prior art keywords
light
confocal
measurement
lens
diffractive lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012022539A
Other languages
Japanese (ja)
Other versions
JP5834979B2 (en
Inventor
Masayuki Hayakawa
雅之 早川
Yoshihiro Yamashita
吉弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2012022539A priority Critical patent/JP5834979B2/en
Priority to CN201380006127.8A priority patent/CN104067090B/en
Priority to PCT/JP2013/050769 priority patent/WO2013114959A1/en
Priority to EP13744197.8A priority patent/EP2811259B9/en
Priority to TW102101886A priority patent/TWI500918B/en
Publication of JP2013160628A publication Critical patent/JP2013160628A/en
Application granted granted Critical
Publication of JP5834979B2 publication Critical patent/JP5834979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02035Shaping the focal point, e.g. elongated focus
    • G01B9/02036Shaping the focal point, e.g. elongated focus by using chromatic effects, e.g. a wavelength dependent focal point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02042Confocal imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Abstract

PROBLEM TO BE SOLVED: To provide a confocal measurement device that allows for alleviation of an influence on measurement of diffraction light of different orders by reflection light.SOLUTION: The confocal measurement device according to the present invention relates to a confocal measurement device measuring displacement of a measured object body using a confocal optical system. The confocal measurement device comprises: a light source that emits light of a plurality of wavelengths; a diffraction lens 1 that causes chromatic aberration along an optical axis direction in the light emitted from the light source; and a measurement section that measures intensity of light focused on a measured object body 200 for each wavelength, of the light in which the chromatic aberration is caused by the diffraction lens 1. Further, the confocal measurement device displaces a principal ray from the light source to the diffraction lens 1 with respect to the optical axis of the diffraction lens 1.

Description

本発明は、非接触で計測対象物の変位を計測する計測装置であって、共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置に関する。   The present invention relates to a measurement apparatus that measures the displacement of a measurement object in a non-contact manner, and relates to a confocal measurement apparatus that measures the displacement of the measurement object using a confocal optical system.

非接触で計測対象物の変位を計測する計測装置のうち、共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置が特許文献1に開示されている。特許文献1に開示されている共焦点計測装置は、複数の波長の光を出射する光源(たとえば白色光源)と、当該光源から出射する光に、光軸に沿って色収差を生じさせる回折レンズを備えている。特許文献1に開示されている共焦点計測装置は、計測対象物の変位に応じて合焦する光の波長が異なるので、ピンホールを通過する光の波長を計測することで計測対象物の変位を計測することができる。   Among the measurement apparatuses that measure the displacement of the measurement object in a non-contact manner, Patent Document 1 discloses a confocal measurement apparatus that measures the displacement of the measurement object using a confocal optical system. A confocal measurement device disclosed in Patent Document 1 includes a light source (for example, a white light source) that emits light of a plurality of wavelengths, and a diffractive lens that causes chromatic aberration along the optical axis in light emitted from the light source. I have. The confocal measurement device disclosed in Patent Document 1 has different wavelengths of light to be focused according to the displacement of the measurement object, so that the displacement of the measurement object is measured by measuring the wavelength of the light passing through the pinhole. Can be measured.

ここで、回折レンズには、原理上、一次回折光以外に二次回折光などの高次回折光が存在する。そのため、回折レンズを用いる共焦点計測装置では、予め計測に利用する次数を決めて光学設計を行なう必要がある。たとえば、計測に利用する次数を一次と決めて光学設計をした場合、共焦点計測装置は、一次回折光が集光する位置に計測対象物を配置することで、計測対象物の変位を計測することができる。   Here, in principle, the diffraction lens includes high-order diffracted light such as second-order diffracted light in addition to the first-order diffracted light. For this reason, in a confocal measurement device using a diffractive lens, it is necessary to determine the order used for measurement in advance and perform optical design. For example, when the optical design is determined by determining the order to be used for measurement as the primary, the confocal measurement device measures the displacement of the measurement target by placing the measurement target at the position where the first-order diffracted light is condensed. be able to.

しかし、共焦点計測装置は、計測に利用する次数を一次と決めて設計した場合であっても、高次回折光の信号(誤信号)を計測することがある。特に、計測対象物が鏡面を有する場合、共焦点計測装置は、計測対象物の鏡面で反射する高次回折光の信号をより多く計測することになる。そのため、共焦点計測装置は、高次回折光による計測への影響が大きくなる。たとえば、二次回折光が集光する位置に計測対象物を配置した場合、共焦点計測装置は、二次回折光による信号(誤信号)を利用して計測対象物の変位を誤って計測する場合があった。また、共焦点計測装置は、たとえば一次回折光のうち計測対象物で二次回折光として反射する光、または二次回折光のうち計測対象物で一次回折光として反射する光(以下、異なる次数の回折光の反射光ともいう)による信号(誤信号)を計測して、計測対象物の変位を誤って計測する場合があった。   However, the confocal measurement device may measure a signal (error signal) of high-order diffracted light even when the order used for measurement is determined to be primary. In particular, when the measurement object has a mirror surface, the confocal measurement device measures more signals of higher-order diffracted light reflected by the mirror surface of the measurement object. For this reason, the confocal measurement device has a large influence on measurement by higher-order diffracted light. For example, when the measurement object is arranged at a position where the second-order diffracted light is collected, the confocal measurement device may erroneously measure the displacement of the measurement object using a signal (error signal) by the second-order diffracted light. there were. In addition, the confocal measurement device is, for example, light that is reflected as a second-order diffracted light by the measurement object in the first-order diffracted light, or light that is reflected as the first-order diffracted light by the measurement object among the second-order diffracted light (hereinafter, diffraction of different orders In some cases, the displacement of the measurement object is erroneously measured by measuring a signal (incorrect signal) due to reflected light.

特に、設計次数において、一次の回折効率と、二次の回折効率とでは、効率が大きく異なる。そのため、共焦点計測装置において、二次回折光による誤信号よりも、一次回折光のうち計測対象物で二次回折光として反射する光(異なる次数の回折光の反射光)による誤信号のほうが、強度が大きくなりやすく、誤って計測する可能性が高い。   In particular, in the design order, the efficiency differs greatly between the primary diffraction efficiency and the secondary diffraction efficiency. Therefore, in the confocal measurement device, the intensity of the error signal due to the light reflected as the second-order diffracted light from the measurement object (diffracted light reflected from different orders) out of the first-order diffracted light is stronger than the error signal due to the second-order diffracted light. Is likely to be large, and there is a high possibility of erroneous measurement.

そこで、特許文献2および特許文献3では、高次回折光による計測への影響を緩和することが可能な回折レンズが開示されている。特許文献2および特許文献3で開示されている回折レンズは、鋸歯状に形成された面を持つ複数の回折素子を、積重ねて複層化した回折レンズである。   Therefore, Patent Document 2 and Patent Document 3 disclose a diffractive lens that can reduce the influence of high-order diffracted light on measurement. The diffractive lens disclosed in Patent Document 2 and Patent Document 3 is a diffractive lens in which a plurality of diffractive elements having a sawtooth-shaped surface are stacked to form a multilayer.

米国特許第5785651号明細書US Pat. No. 5,785,651 特開2004−126394号公報JP 2004-126394 A 特開2011−170028号公報JP 2011-170028 A

特許文献2および特許文献3で開示されている回折レンズは、単層の回折レンズに比べて製造工程が複雑で製造コストが高くなる問題があった。また、共焦点計測装置に複層化した回折レンズを用いる場合、当該共焦点計測装置の光学系で利用できるように、鋸歯状に形成された面を持つ回折素子を設計し、当該回折素子を積重ねる必要があるため、設計・開発コストも高くなる問題があった。   The diffractive lenses disclosed in Patent Document 2 and Patent Document 3 have a problem that the manufacturing process is complicated and the manufacturing cost is higher than that of a single-layer diffractive lens. In addition, when a diffractive lens having a multilayer structure is used for the confocal measurement device, a diffractive element having a sawtooth-shaped surface is designed so that the diffractive element can be used in the optical system of the confocal measurement device. There is a problem that the design and development costs increase because it is necessary to accumulate them.

本発明は斯かる事情に鑑みてなされたものであり、特に、誤って計測する可能性の高い、異なる次数の回折光の反射光による計測への影響を緩和することができる共焦点計測装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and in particular, there is a confocal measurement device that can reduce the influence of reflected light of diffracted light of different orders that is highly likely to be erroneously measured. The purpose is to provide.

本発明に従った共焦点計測装置は、共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置であって、複数の波長の光を出射する光源と、光源から出射する光に、光軸方向に沿って色収差を生じさせる回折レンズと、回折レンズで色収差を生じさせた光のうち、計測対象物において合焦する光の強度を波長ごとに計測する計測部とを備え、光源から回折レンズへの主光線を、回折レンズの光軸に対してずらしてある。   A confocal measurement device according to the present invention is a confocal measurement device that measures the displacement of an object to be measured using a confocal optical system, a light source that emits light of a plurality of wavelengths, and a light source that emits light from the light source. A diffractive lens that causes chromatic aberration in light along the optical axis direction, and a measurement unit that measures, for each wavelength, the intensity of light that is focused on a measurement object among the light that is chromatic aberration generated by the diffractive lens. The principal ray from the light source to the diffractive lens is shifted with respect to the optical axis of the diffractive lens.

また、本発明の共焦点計測装置では、好ましくは、回折レンズより計測対象物側に配置され、回折レンズで色収差を生じさせた光を計測対象物に集光する対物レンズをさらに備える。   In addition, the confocal measurement device of the present invention preferably further includes an objective lens that is arranged closer to the measurement object than the diffraction lens, and condenses the light generated by the diffractive lens on the measurement object.

また、本発明の共焦点計測装置では、好ましくは、回折レンズから光源および計測部までの光路に用いる光ファイバをさらに備え、光ファイバの端部を、回折レンズの光軸に対してずらすことで、前記光源から前記回折レンズへの主光線を、前記回折レンズの光軸に対してずらしてある。   In the confocal measurement device according to the present invention, preferably, an optical fiber used for an optical path from the diffraction lens to the light source and the measurement unit is further provided, and the end of the optical fiber is shifted with respect to the optical axis of the diffraction lens. The principal ray from the light source to the diffractive lens is shifted with respect to the optical axis of the diffractive lens.

本発明に従った別の共焦点計測装置は、共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置であって、複数の波長の光を出射する光源と、光源から出射する光に、光軸方向に沿って色収差を生じさせる回折レンズと、光源から回折レンズまでの間、および回折レンズより計測対象物側のうち少なくとも一方に配置されている光学素子と、回折レンズで色収差を生じさせた光のうち、計測対象物において合焦する光の強度を波長ごとに計測する計測部とを備え、光源から回折レンズへの主光線を、回折レンズの光軸に対して一致させ、光学素子の光軸を、回折レンズの光軸に対してずらしてある。   Another confocal measurement device according to the present invention is a confocal measurement device that measures the displacement of a measurement object using a confocal optical system, and includes a light source that emits light of a plurality of wavelengths, and a light source. A diffractive lens that causes chromatic aberration in the emitted light along the optical axis direction, an optical element that is disposed between the light source and the diffractive lens, and at least one of the measurement object side from the diffractive lens, and a diffractive lens And a measuring unit that measures the intensity of light focused on the measurement object for each wavelength among the light that causes chromatic aberration in step 1, and the principal ray from the light source to the diffractive lens is made to the optical axis of the diffractive lens. The optical axis of the optical element is shifted with respect to the optical axis of the diffractive lens.

また、本発明の別の共焦点計測装置では、好ましくは、回折レンズから光源および計測部までの光路に用いる光ファイバをさらに備え、光ファイバの端部を、光学素子の光軸に対してずらしてある。   In another confocal measurement device of the present invention, preferably, an optical fiber used in an optical path from the diffraction lens to the light source and the measurement unit is further provided, and the end of the optical fiber is shifted with respect to the optical axis of the optical element. It is.

本発明に従ったさらに別の共焦点計測装置は、共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置であって、複数の波長の光を出射する光源と、光源から出射する光に、光軸方向に沿って色収差を生じさせる回折レンズと、回折レンズで色収差を生じさせた光のうち、計測対象物において合焦する光の強度を波長ごとに計測する計測部と、回折レンズを格納する計測ヘッド部とを備え、回折レンズの光軸を、計測ヘッド部の長軸、または計測対象物へ光を出射する計測ヘッド部の出射面に対して傾けてある。   Yet another confocal measurement device according to the present invention is a confocal measurement device that measures the displacement of an object to be measured using a confocal optical system, a light source that emits light of a plurality of wavelengths, and a light source A diffractive lens that causes chromatic aberration in the direction of the optical axis of light emitted from the light source, and a measurement unit that measures, for each wavelength, the intensity of the light focused on the measurement object among the light that has generated chromatic aberration by the diffractive lens And a measurement head unit for storing the diffractive lens, and the optical axis of the diffractive lens is inclined with respect to the long axis of the measurement head unit or the exit surface of the measurement head unit that emits light to the measurement object.

また、本発明のさらに別の共焦点計測装置では、回折レンズより計測対象物側に配置され、回折レンズで色収差を生じさせた光を計測対象物に集光する対物レンズをさらに備える。   Further, another confocal measurement device according to the present invention further includes an objective lens that is disposed closer to the measurement object than the diffraction lens and collects light generated by the diffraction lens with chromatic aberration on the measurement object.

上記構成によれば、本発明に従った共焦点計測装置は、計測に利用する次数の回折光が集光する光軸と、異なる次数の回折光の反射光が集光する位置とをずらし、異なる次数の回折光の反射光を受光しにくくして、異なる次数の回折光の反射光による計測への影響を緩和することができる。   According to the above configuration, the confocal measurement device according to the present invention shifts the optical axis on which the diffracted light of the order used for measurement is condensed and the position on which the reflected light of the diffracted light of a different order is collected, It is difficult to receive the reflected light of the diffracted light of different orders, and the influence on the measurement by the reflected light of the diffracted light of different orders can be reduced.

本発明の実施の形態1に係る共焦点計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the confocal measuring device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る共焦点計測装置において採用されているヘッド部の共焦点光学系の構成を示す模式図である。It is a schematic diagram which shows the structure of the confocal optical system of the head part employ | adopted in the confocal measurement apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヘッド部の端面に取付けてあるレセプタクルの位置を示す模式図である。It is a schematic diagram which shows the position of the receptacle attached to the end surface of the head part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る共焦点計測装置において採用されているヘッド部の回折光の様子を説明するための模式図である。It is a schematic diagram for demonstrating the mode of the diffracted light of the head part employ | adopted in the confocal measuring device which concerns on Embodiment 1 of this invention. 光ファイバの光軸を、回折レンズの光軸に対して一致させ、光ファイバの端部を、回折レンズの光軸に対して一致させてあるヘッド部の回折光の様子を説明するための模式図である。Schematic for explaining the state of the diffracted light of the head part in which the optical axis of the optical fiber is aligned with the optical axis of the diffractive lens and the end of the optical fiber is aligned with the optical axis of the diffractive lens FIG. 本実施の形態2に係る共焦点計測装置において採用されているヘッド部の共焦点光学系の構成を示す模式図である。It is a schematic diagram which shows the structure of the confocal optical system of the head part employ | adopted in the confocal measurement apparatus which concerns on this Embodiment 2. FIG. 本実施の形態3に係る共焦点計測装置において採用されているヘッド部の共焦点光学系の構成を示す模式図である。It is a schematic diagram which shows the structure of the confocal optical system of the head part employ | adopted in the confocal measurement apparatus which concerns on this Embodiment 3. FIG.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る共焦点計測装置の構成を示す模式図である。図1に示す共焦点計測装置100は、ヘッド部10の共焦点光学系を利用して計測対象物200の変位を計測する計測装置である。共焦点計測装置100で計測する計測対象物200には、たとえば液晶表示パネルのセルギャップなどがある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of a confocal measurement device according to Embodiment 1 of the present invention. A confocal measurement device 100 illustrated in FIG. 1 is a measurement device that measures the displacement of the measurement target 200 using the confocal optical system of the head unit 10. The measurement object 200 measured by the confocal measurement device 100 includes, for example, a cell gap of a liquid crystal display panel.

共焦点計測装置100は、共焦点の光学系を有するヘッド部10、光ファイバ11を介して光学的に接続されたコントローラ部20、コントローラ部20から出力される信号を表示するモニタ部30を備えている。   The confocal measurement apparatus 100 includes a head unit 10 having a confocal optical system, a controller unit 20 optically connected via an optical fiber 11, and a monitor unit 30 that displays a signal output from the controller unit 20. ing.

ヘッド部10は、回折レンズ1、回折レンズ1より計測対象物200側に配置された対物レンズ2を備えている。回折レンズ1の焦点距離は、回折レンズから対物レンズまでの距離と、対物レンズの焦点距離との差より大きくしてある。   The head unit 10 includes a diffractive lens 1 and an objective lens 2 that is disposed closer to the measurement object 200 than the diffractive lens 1. The focal length of the diffractive lens 1 is larger than the difference between the distance from the diffractive lens to the objective lens and the focal length of the objective lens.

ここで、回折レンズ1は、光源(たとえば、白色光源)から出射する光に、光軸方向に沿って色収差を生じさせる光学素子である。回折レンズ1は、レンズの表面に、たとえばキノフォーム形状あるいはバイナリ形状(ステップ形状、階段形状)などの微細な起伏形状を周期的に形成するか、光の透過率を周期的に変更する振幅型のゾーンプレートを形成してある。なお、回折レンズ1の構成は、上記の記載の構成に限定されるものではない。   Here, the diffractive lens 1 is an optical element that causes chromatic aberration in the light emitted from a light source (for example, a white light source) along the optical axis direction. The diffractive lens 1 is an amplitude type in which a fine undulation shape such as a kinoform shape or a binary shape (step shape, step shape) is periodically formed on the surface of the lens, or the light transmittance is periodically changed. The zone plate is formed. The configuration of the diffractive lens 1 is not limited to the configuration described above.

対物レンズ2は、回折レンズ1で色収差を生じさせた光を計測対象物200に集光する光学素子である。なお、共焦点計測装置100は、複数の波長の光を出射する光源に、白色光源を用いる場合について以下に説明する。   The objective lens 2 is an optical element that condenses the light generated by the diffractive lens 1 on the measurement object 200. The confocal measurement apparatus 100 will be described below in the case where a white light source is used as a light source that emits light of a plurality of wavelengths.

白色光源から出射する光は、光ファイバ11を介してヘッド部10に導かれている。白色光源から回折レンズ1への主光線が、回折レンズ1の光軸に対してずれるように、光ファイバ11とヘッド部10とを接続している。なお、光ファイバ11との接続を含むヘッド部10の詳細な構成については、後述する。ここで、白色光源から回折レンズ1への主光線とは、光を出射する光源と回折レンズの開口部の中心を通る光線であり、光ファイバ11の開口部の中心と回折レンズの開口部の中心を通る光線を、以下、光ファイバ11からの主光線という。また、ここで回折レンズの開口部とは、回折レンズのうち光ファイバ11からの出射光が透過する範囲をいう。   Light emitted from the white light source is guided to the head unit 10 via the optical fiber 11. The optical fiber 11 and the head unit 10 are connected so that the principal ray from the white light source to the diffractive lens 1 is deviated from the optical axis of the diffractive lens 1. The detailed configuration of the head unit 10 including the connection with the optical fiber 11 will be described later. Here, the principal ray from the white light source to the diffractive lens 1 is a light beam that passes through the center of the light source that emits light and the opening of the diffractive lens, and the center of the opening of the optical fiber 11 and the opening of the diffractive lens. Hereinafter, the light beam passing through the center is referred to as a principal light beam from the optical fiber 11. Here, the opening of the diffractive lens refers to a range in the diffractive lens through which light emitted from the optical fiber 11 is transmitted.

光ファイバ11は、ヘッド部10からコントローラ部20までの光路であるとともに、ピンホールとしても機能している。つまり、対物レンズ2で集光した光のうち、計測対象物200で合焦する光が、光ファイバ11の開口部で合焦することになる。そのため、光ファイバ11は、計測対象物200で合焦しない波長の光を遮光し、計測対象物200で合焦する光を通過させるピンホールとして機能することになる。ヘッド部10からコントローラ部20までの光路に光ファイバ11を用いることで、ピンホールが不要となる。   The optical fiber 11 is an optical path from the head unit 10 to the controller unit 20 and also functions as a pinhole. That is, of the light collected by the objective lens 2, the light focused on the measurement object 200 is focused on the opening of the optical fiber 11. Therefore, the optical fiber 11 functions as a pinhole that blocks light having a wavelength that is not focused on the measurement target 200 and allows light focused on the measurement target 200 to pass. By using the optical fiber 11 in the optical path from the head unit 10 to the controller unit 20, a pinhole is not necessary.

共焦点計測装置100は、ヘッド部10からコントローラ部20までの光路に光ファイバ11を用いない構成であっても良いが、当該光路に光ファイバ11を用いることで、ヘッド部10をコントロール部に対してフレキシブルに移動することが可能になる。また、共焦点計測装置100は、ヘッド部10からコントローラ部20までの光路に光ファイバ11を用いない構成の場合、ピンホールを備える必要があるが、光ファイバ11を用いる構成の場合、共焦点計測装置100は、ピンホールを備える必要がない。   The confocal measurement apparatus 100 may be configured not to use the optical fiber 11 in the optical path from the head unit 10 to the controller unit 20, but by using the optical fiber 11 in the optical path, the head unit 10 is used as a control unit. On the other hand, it becomes possible to move flexibly. In addition, the confocal measurement device 100 needs to have a pinhole in the case where the optical fiber 11 is not used in the optical path from the head unit 10 to the controller unit 20, but in the case where the optical fiber 11 is used, the confocal measurement device 100 needs The measuring device 100 does not need to have a pinhole.

コントローラ部20は、白色光源である白色LED(Light Emitting Diode)21、分岐光ファイバ22、分光器23、撮像素子24、制御回路部25を備えている。白色光源として白色LED21を用いているが、白色光を出射することができる光源であれば他の光源であってもよい。   The controller unit 20 includes a white LED (Light Emitting Diode) 21 that is a white light source, a branch optical fiber 22, a spectroscope 23, an image sensor 24, and a control circuit unit 25. Although the white LED 21 is used as the white light source, other light sources may be used as long as the light source can emit white light.

分岐光ファイバ22は、光ファイバ11と接続する側に一本の光ファイバ22a、反対側に二本の光ファイバ22b、22cを有している。なお、光ファイバ22bは白色LED21に、光ファイバ22cは分光器23にそれぞれ接続してある。そのため、分岐光ファイバ22は、白色LED21から出射する光を光ファイバ11に導くとともに、光ファイバ11を介してヘッド部10から戻る光を分光器23に導くことができる。   The branch optical fiber 22 has one optical fiber 22a on the side connected to the optical fiber 11 and two optical fibers 22b and 22c on the opposite side. The optical fiber 22b is connected to the white LED 21 and the optical fiber 22c is connected to the spectroscope 23. Therefore, the branch optical fiber 22 can guide the light emitted from the white LED 21 to the optical fiber 11 and guide the light returning from the head unit 10 via the optical fiber 11 to the spectroscope 23.

分光器23は、ヘッド部10から戻る光を反射する凹面ミラー23a、凹面ミラー23aで反射した光が入射する回折格子23b、回折格子23bから出射する光を集光する集光レンズ23cを有している。分光器23は、ヘッド部10から戻る光を波長ごとに分けることができれば、ツェルニターナ型、リトロー型などのいずれの構成であってもよい。   The spectroscope 23 includes a concave mirror 23a that reflects light returning from the head unit 10, a diffraction grating 23b that receives light reflected by the concave mirror 23a, and a condenser lens 23c that collects light emitted from the diffraction grating 23b. ing. The spectroscope 23 may be of any configuration such as a Zernitana type or a Littrow type as long as the light returning from the head unit 10 can be divided for each wavelength.

撮像素子24は、分光器23から出射する光の強度を計測するラインCMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)である。ここで、共焦点計測装置100では、分光器23および撮像素子24で、ヘッド部10から戻る光の強度を波長ごとに計測する計測部を構成している。なお、計測部は、ヘッド部10から戻る光の強度を波長ごとに計測することができれば、CCDなどの撮像素子24の単体で構成してもよい。   The imaging device 24 is a line CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) that measures the intensity of light emitted from the spectroscope 23. Here, in the confocal measurement device 100, the spectroscope 23 and the imaging device 24 constitute a measurement unit that measures the intensity of light returning from the head unit 10 for each wavelength. Note that the measurement unit may be configured by a single image sensor 24 such as a CCD as long as the intensity of light returning from the head unit 10 can be measured for each wavelength.

制御回路部25は、白色LED21や撮像素子24などの動作を制御する回路である。また、図示していないが、制御回路部25には、白色LED21や撮像素子24などを動作を調整するための信号を入力する入力インターフェース、撮像素子24の信号を出力する出力インターフェースなどを有している。   The control circuit unit 25 is a circuit that controls operations of the white LED 21 and the image sensor 24. Although not shown, the control circuit unit 25 has an input interface for inputting a signal for adjusting the operation of the white LED 21 and the image sensor 24, an output interface for outputting a signal of the image sensor 24, and the like. ing.

モニタ部30は、撮像素子24が出力した信号を表示する。たとえば、モニタ部30は、ヘッド部10から戻る光のスペクトル波形を描画し、計測対象物の変位が123.45μmであることを表示する。   The monitor unit 30 displays a signal output from the image sensor 24. For example, the monitor unit 30 draws a spectral waveform of the light returning from the head unit 10 and displays that the displacement of the measurement target is 123.45 μm.

共焦点計測装置100は、回折レンズ1をヘッド部10に用いているので、計測に利用する次数を一次と決めて設計した場合であっても、計測に利用する次数以外(高次)の回折光の誤信号を計測することがある。特に、計測対象物200が鏡面を有する場合、共焦点計測装置100は、計測に利用する次数以外(高次)の回折光による計測への影響が大きくなる。そこで、共焦点計測装置100では、ヘッド部10の共焦点光学系の構成を変更することで、計測で利用する次数以外の回折光による計測への影響を緩和している。   Since the confocal measurement device 100 uses the diffractive lens 1 for the head unit 10, even when the order used for measurement is determined to be the primary, the diffraction other than the order used for measurement (high order) is used. In some cases, an erroneous signal of light is measured. In particular, when the measurement target 200 has a mirror surface, the confocal measurement apparatus 100 is greatly affected by the diffracted light other than the order used for measurement (higher order). Therefore, in the confocal measurement device 100, the influence of the diffracted light other than the order used in the measurement is reduced by changing the configuration of the confocal optical system of the head unit 10.

図2は、本発明の実施の形態1に係る共焦点計測装置100において採用されているヘッド部10の共焦点光学系の構成を示す模式図である。図2に示すヘッド部10の共焦点光学系の構成は、回折レンズ1より計測対象物200側に対物レンズ2を配置する構成である。つまり、ヘッド部10は、光ファイバ11の端部から出射する光を回折レンズ1で光軸方向に沿って色収差を生じさせ、色収差が生じた光を対物レンズ2で計測対象物200に集光する。なお、ヘッド部10は、回折レンズ1より計測対象物200側に対物レンズ2を配置する構成に限定されるものではなく、回折レンズ1より光ファイバ11側にレンズなどの光学素子を配置してもよい。また、ヘッド部10は、対物レンズ2を配置しない構成であってもよい。   FIG. 2 is a schematic diagram showing the configuration of the confocal optical system of the head unit 10 employed in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention. The configuration of the confocal optical system of the head unit 10 shown in FIG. 2 is a configuration in which the objective lens 2 is arranged closer to the measurement object 200 than the diffraction lens 1. That is, the head unit 10 causes the light emitted from the end of the optical fiber 11 to cause chromatic aberration along the optical axis direction with the diffraction lens 1, and condenses the light with chromatic aberration onto the measurement object 200 with the objective lens 2. To do. The head unit 10 is not limited to the configuration in which the objective lens 2 is disposed on the measurement object 200 side with respect to the diffraction lens 1, and an optical element such as a lens is disposed on the optical fiber 11 side with respect to the diffraction lens 1. Also good. Further, the head unit 10 may have a configuration in which the objective lens 2 is not disposed.

光ファイバ11とヘッド部10との接続は、光ファイバ11の端部に取付けたコネクタ11aと、ヘッド部10の端面に設けたレセプタクル10aとを嵌合することで実現している。   The connection between the optical fiber 11 and the head portion 10 is realized by fitting a connector 11 a attached to the end portion of the optical fiber 11 and a receptacle 10 a provided on the end surface of the head portion 10.

さらに、ヘッド部10の端面に取付けてあるレセプタクル10aの位置について説明する。図3は、本発明の実施の形態1に係るヘッド部10の端面に取付けてあるレセプタクル10aの位置を示す模式図である。レセプタクル10aは、回折レンズ1の中心に対して図中の水平方向にずらしてヘッド部10の端面に取付けてある。   Furthermore, the position of the receptacle 10a attached to the end surface of the head unit 10 will be described. FIG. 3 is a schematic diagram showing the position of the receptacle 10a attached to the end surface of the head unit 10 according to Embodiment 1 of the present invention. The receptacle 10a is attached to the end surface of the head unit 10 while being shifted in the horizontal direction in the drawing with respect to the center of the diffractive lens 1.

図3に示すように、回折レンズ1の中心を通る中心線1b,1cと、レセプタクル10aの中心を通る中心線10bとをそれぞれ図示してある。なお、レセプタクル10aの中心は、回折レンズ1の中心に対して垂直方向に一致しているので、レセプタクル10aの中心を通る水平方向の中心線は、回折レンズ1の中心を通る中心線1bと重なるため図示していない。   As shown in FIG. 3, center lines 1b and 1c passing through the center of the diffractive lens 1 and a center line 10b passing through the center of the receptacle 10a are shown. Since the center of the receptacle 10a coincides with the center of the diffractive lens 1 in the vertical direction, the horizontal center line passing through the center of the receptacle 10a overlaps with the center line 1b passing through the center of the diffractive lens 1. Therefore, it is not illustrated.

図3から分かるように、レセプタクル10aの中心を通る中心線10bは、回折レンズ1の中心を通る中心線1cに対して図中左側にずれており、レセプタクル10aの中心は、回折レンズ1の中心に対して水平方向にずれている。そのため、レセプタクル10aにコネクタ11aを嵌合した場合、光ファイバ11の端部を、回折レンズ1の光軸に対してずらして接続することができる。よって、レセプタクル10aの中心を通る光ファイバ11からの主光線は、回折レンズ1の光軸に対してずれるので、回折レンズ1の光軸を通ることはなく、回折レンズ1の光軸に対して傾いている。なお、ヘッド部10の端面において、レセプタクル10aのずれ量X(図3)は、たとえば、ヘッド部10の長手方向の寸法A(図2)=64mm、短手方向の寸法B(図3)=24mmのとき、0.2mm〜0.3mm程度である。   As can be seen from FIG. 3, the center line 10b passing through the center of the receptacle 10a is shifted to the left in the figure with respect to the center line 1c passing through the center of the diffraction lens 1, and the center of the receptacle 10a is the center of the diffraction lens 1. Is displaced horizontally. Therefore, when the connector 11 a is fitted to the receptacle 10 a, the end of the optical fiber 11 can be connected with being shifted with respect to the optical axis of the diffractive lens 1. Therefore, the principal ray from the optical fiber 11 passing through the center of the receptacle 10a is shifted with respect to the optical axis of the diffractive lens 1, so that it does not pass through the optical axis of the diffractive lens 1, but with respect to the optical axis of the diffractive lens 1. Tilted. Note that, in the end face of the head portion 10, the displacement amount X (FIG. 3) of the receptacle 10a is, for example, the dimension A (FIG. 2) in the longitudinal direction of the head portion 10 = 64 mm, and the dimension B (FIG. 3) in the short direction. When it is 24 mm, it is about 0.2 mm to 0.3 mm.

ヘッド部10では、光ファイバ11からの主光線を回折レンズ1の光軸に対してずらして、光ファイバ11からの主光線を回折レンズ1の光軸に対して傾けてある。これにより、ヘッド部10は、計測で利用する次数(たとえば一次)の回折光が集光する光軸と、異なる次数の回折光の反射光(たとえば、一次回折光に対する二次回折光としての反射光)が集光する位置とをずらすことができる。   In the head unit 10, the chief ray from the optical fiber 11 is shifted with respect to the optical axis of the diffractive lens 1, and the chief ray from the optical fiber 11 is tilted with respect to the optical axis of the diffractive lens 1. As a result, the head unit 10 collects the optical axis on which the diffracted light of the order (for example, the first order) used in the measurement and the reflected light of the diffracted light of the different order (for example, the reflected light as the second order diffracted light with respect to the primary diffracted light). ) Can be shifted from the focused position.

具体的に、計測で利用する次数の回折光が集光する位置と、その他の次数の回折光が集光する位置との関係を模式図を用いて説明する。図4は、本発明の実施の形態1に係る共焦点計測装置100において採用されているヘッド部10の回折光の様子を説明するための模式図である。なお、計測で利用する次数は、一次としてある。   Specifically, the relationship between the position where the diffracted light of the order used in the measurement is collected and the position where the other orders of diffracted light are collected will be described with reference to schematic diagrams. FIG. 4 is a schematic diagram for explaining the state of diffracted light of the head unit 10 employed in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention. The order used in the measurement is primary.

図4に示すヘッド部10は、光ファイバ11からの主光線11bを、回折レンズ1の光軸1aに対してずらして、光ファイバ11からの主光線を回折レンズ1の光軸に対して傾けてある。なお、光ファイバ11からの主光線11bを、回折レンズ1の光軸1aに対してずらすことは、単に光ファイバ11からの主光線11bと、回折レンズ1の光軸1aとが平行にずれている場合に限定されるものではなく、光ファイバ11からの主光線11bと、回折レンズ1の光軸1aとが傾いてずれている場合も含まれる。   4 shifts the principal ray 11b from the optical fiber 11 with respect to the optical axis 1a of the diffraction lens 1, and tilts the principal ray from the optical fiber 11 with respect to the optical axis of the diffraction lens 1. It is. Note that shifting the principal ray 11b from the optical fiber 11 with respect to the optical axis 1a of the diffractive lens 1 simply shifts the principal ray 11b from the optical fiber 11 and the optical axis 1a of the diffractive lens 1 in parallel. However, the present invention is not limited to the case where the principal ray 11b from the optical fiber 11 and the optical axis 1a of the diffraction lens 1 are inclined and shifted.

そのため、回折レンズ1の一次回折光1dが集光する位置と、二次回折光1eが集光する位置とを通る光軸1de(以下、一次回折光1dを集光する光軸1deともいう)上に、回折レンズ1の一次回折光1dのうち、仮想面200bで反射し二次回折光として仮想面200aに集光する光(一次−二次回折光)1fが位置しなくなる。よって、光1fのような異なる次数の回折光の反射光は、光軸1de上に集光することがなく、計測部で二次回折光1eの誤信号が計測されにくくなる。異なる次数の回折光の反射光には、光1f以外に、二次回折光のうち、一次回折光として計測対象物200に集光する光(図示せず)も存在する。   Therefore, on the optical axis 1de (hereinafter also referred to as the optical axis 1de for condensing the first-order diffracted light 1d) passing through the position where the first-order diffracted light 1d is condensed and the position where the second-order diffracted light 1e is condensed. In addition, out of the first-order diffracted light 1d of the diffractive lens 1, the light (first-second-order diffracted light) 1f that is reflected by the virtual surface 200b and condensed on the virtual surface 200a as the second-order diffracted light is not positioned. Therefore, the reflected light of different orders of diffracted light such as the light 1f is not collected on the optical axis 1de, and it is difficult for the measuring unit to measure an error signal of the second-order diffracted light 1e. In addition to the light 1f, the reflected light of the diffracted light of different orders includes light (not shown) that is condensed on the measurement object 200 as the first-order diffracted light among the second-order diffracted light.

よって、図4に示すヘッド部10が、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とをずらすことができるので、異なる次数の回折光の反射光を受光しにくくなり、計測した信号に含まれる誤信号の割合が低下する。   Accordingly, the head unit 10 shown in FIG. 4 can shift the optical axis 1de on which the first-order diffracted light 1d is collected from the position on which the reflected light of the diffracted light of different orders is collected. It is difficult to receive the reflected light, and the ratio of erroneous signals included in the measured signal is reduced.

逆に、光ファイバ11からの主光線を、回折レンズ1の光軸に対して一致させてある焦点計測装置について説明する。図5は、光ファイバ11からの主光線を、回折レンズ1の光軸に対して一致させてあるヘッド部の回折光の様子を説明するための模式図である。なお、計測で利用する次数は、一次としてある。   On the contrary, a focus measuring apparatus in which the principal ray from the optical fiber 11 is matched with the optical axis of the diffractive lens 1 will be described. FIG. 5 is a schematic diagram for explaining the state of the diffracted light of the head unit in which the principal ray from the optical fiber 11 is matched with the optical axis of the diffractive lens 1. The order used in the measurement is primary.

図5に示すヘッド部10cは、光ファイバ11からの主光線11bを、回折レンズ1の光軸1aに一致させてある。   In the head portion 10 c shown in FIG. 5, the principal ray 11 b from the optical fiber 11 is made to coincide with the optical axis 1 a of the diffractive lens 1.

そのため、一次回折光1dを集光する光軸1de上に、回折レンズ1の一次回折光1dのうち、仮想面200bで反射し二次回折光として仮想面200aに集光する光(一次−二次回折光)1fが位置する。よって、光1fのような異なる次数の回折光の反射光は、光軸1de上に集光し、計測部で二次回折光1eの誤信号が計測される。   Therefore, on the optical axis 1de for condensing the first-order diffracted light 1d, among the first-order diffracted light 1d of the diffractive lens 1, light that is reflected by the virtual surface 200b and condensed as the second-order diffracted light on the virtual surface 200a (primary-secondary (Folding light) 1f is located. Therefore, the reflected light of the diffracted light of different orders such as the light 1f is collected on the optical axis 1de, and the erroneous signal of the secondary diffracted light 1e is measured by the measuring unit.

よって、図5に示すヘッド部10cは、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とが一致しているので、計測で利用する次数以外の回折光による計測への影響を受けることになる。   Therefore, in the head unit 10c shown in FIG. 5, since the optical axis 1de on which the first-order diffracted light 1d is collected coincides with the position on which the reflected light of the diffracted light of different orders is collected, the order used in the measurement It will be affected by measurement by diffracted light other than.

以上のように、本発明の実施の形態1に係る共焦点計測装置100は、ヘッド部10が、光ファイバ11からの主光線11bを、回折レンズ1の光軸1aに対してずらしてある。そのため、本発明の実施の形態1に係る共焦点計測装置100は、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とをずらすことができ、異なる次数の回折光の反射光を受光しにくくなり、異なる次数の回折光の反射光による計測への影響を緩和することができる。   As described above, in the confocal measurement device 100 according to Embodiment 1 of the present invention, the head unit 10 shifts the principal ray 11b from the optical fiber 11 with respect to the optical axis 1a of the diffractive lens 1. Therefore, the confocal measurement apparatus 100 according to Embodiment 1 of the present invention can shift the optical axis 1de on which the first-order diffracted light 1d is collected from the position on which the reflected light of different orders of diffracted light is collected. Therefore, it becomes difficult to receive the reflected light of the diffracted light of different orders, and the influence on the measurement by the reflected light of the diffracted light of different orders can be mitigated.

なお、ヘッド部10は、図4に示すように、対物レンズ2の光軸を、回折レンズ1の光軸1aに一致させる構成に限定されるものではなく、対物レンズ2の光軸を、回折レンズ1の光軸1aに対してずらしてある構成でもよい。   As shown in FIG. 4, the head unit 10 is not limited to the configuration in which the optical axis of the objective lens 2 coincides with the optical axis 1 a of the diffractive lens 1, and the optical axis of the objective lens 2 is diffracted. The configuration may be shifted with respect to the optical axis 1a of the lens 1.

(実施の形態2)
実施の形態1に係る共焦点計測装置100とは異なる構成で、計測で利用する次数以外の回折光による計測への影響を緩和することができる構成を、本実施の形態2に係る共焦点計測装置を説明する。
(Embodiment 2)
A configuration that is different from the confocal measurement device 100 according to the first embodiment and that can reduce the influence on the measurement by diffracted light other than the order used in the measurement is a confocal measurement according to the second embodiment. The apparatus will be described.

本実施の形態2に係る共焦点計測装置は、ヘッド部以外の構成が図1に示す実施の形態1に係る共焦点計測装置100と同じ構成であるため、同じ構成要素に同じ符号を付して詳細な説明を繰返さない。   Since the confocal measurement apparatus according to the second embodiment has the same configuration as the confocal measurement apparatus 100 according to the first embodiment shown in FIG. 1 except for the head unit, the same components are denoted by the same reference numerals. The detailed description will not be repeated.

図6は、本実施の形態2に係る共焦点計測装置において採用されているヘッド部の共焦点光学系の構成を示す模式図である。図6に示すヘッド部10dの共焦点光学系の構成は、回折レンズ1より計測対象物200側に対物レンズ2を配置する構成である。つまり、ヘッド部10dは、光ファイバ11の端部から出射する光を回折レンズ1で光軸方向に沿って色収差を生じさせ、色収差が生じた光を対物レンズ2で計測対象物200に集光する。なお、ヘッド部10dは、回折レンズ1より計測対象物200側に対物レンズ2を配置する構成に限定されるものではなく、回折レンズ1より光ファイバ11側にレンズなどの光学素子を配置してもよい。   FIG. 6 is a schematic diagram showing the configuration of the confocal optical system of the head unit employed in the confocal measurement apparatus according to the second embodiment. The configuration of the confocal optical system of the head unit 10 d shown in FIG. 6 is a configuration in which the objective lens 2 is arranged closer to the measurement object 200 than the diffraction lens 1. That is, the head unit 10 d causes the diffractive lens 1 to generate chromatic aberration along the optical axis direction of the light emitted from the end of the optical fiber 11, and condenses the chromatic aberration generated light on the measurement target 200 by the objective lens 2. To do. The head unit 10d is not limited to the configuration in which the objective lens 2 is disposed on the measurement object 200 side with respect to the diffraction lens 1, and an optical element such as a lens is disposed on the optical fiber 11 side with respect to the diffraction lens 1. Also good.

光ファイバ11とヘッド部10dとの接続は、図2で示したように、光ファイバ11の端部に取付けたコネクタ11aと、ヘッド部の端面に設けたレセプタクル10aとを嵌合することで実現している。   As shown in FIG. 2, the connection between the optical fiber 11 and the head portion 10d is realized by fitting the connector 11a attached to the end portion of the optical fiber 11 and the receptacle 10a provided on the end surface of the head portion. doing.

図6に示すヘッド部10dは、光ファイバ11からの主光線11bを、回折レンズ1の光軸1aに一致させてある。しかし、対物レンズ2の光軸2aは、回折レンズ1の光軸1aに対してずらしてある。なお、対物レンズ2の光軸2aを、回折レンズ1の光軸1aに対してずらすことは、単に対物レンズ2の光軸2aと、回折レンズ1の光軸1aとが平行にずれている場合に限定されるものではなく、対物レンズ2の光軸2aと、回折レンズ1の光軸1aとが傾いてずれている場合も含まれる。対物レンズ2は、光ファイバ11からの主光線11bを計測対象物200に集光させる。よって、対物レンズ2によって一次回折光1dは、光軸1de上に集光することになる。   In the head portion 10 d shown in FIG. 6, the principal ray 11 b from the optical fiber 11 is made to coincide with the optical axis 1 a of the diffractive lens 1. However, the optical axis 2 a of the objective lens 2 is shifted with respect to the optical axis 1 a of the diffractive lens 1. Note that shifting the optical axis 2a of the objective lens 2 with respect to the optical axis 1a of the diffractive lens 1 is simply when the optical axis 2a of the objective lens 2 and the optical axis 1a of the diffractive lens 1 are shifted in parallel. The optical axis 2a of the objective lens 2 and the optical axis 1a of the diffractive lens 1 are inclined and shifted. The objective lens 2 condenses the principal ray 11b from the optical fiber 11 on the measurement object 200. Therefore, the first-order diffracted light 1d is condensed on the optical axis 1de by the objective lens 2.

そのため、一次回折光1dを集光する光軸1de上に、回折レンズ1の一次回折光1dのうち、仮想面200bで反射し二次回折光として仮想面200aに集光する光(一次−二次回折光)1fが位置しなくなる。よって、光1fのような異なる次数の回折光の反射光は、光軸1de上に集光することがなく、計測部で二次回折光1eの誤信号が計測されにくくなる。異なる次数の回折光の反射光には、光1f以外に、二次回折光のうち、一次回折光として計測対象物200に集光する光(図示せず)も存在する。   Therefore, on the optical axis 1de for condensing the first-order diffracted light 1d, among the first-order diffracted light 1d of the diffractive lens 1, light that is reflected by the virtual surface 200b and condensed as the second-order diffracted light on the virtual surface 200a (primary-secondary (Folding light) 1f is not located. Therefore, the reflected light of different orders of diffracted light such as the light 1f is not collected on the optical axis 1de, and it is difficult for the measuring unit to measure an error signal of the second-order diffracted light 1e. In addition to the light 1f, the reflected light of the diffracted light of different orders includes light (not shown) that is condensed on the measurement object 200 as the first-order diffracted light among the second-order diffracted light.

よって、図6に示すヘッド部10は、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とをずらすことができるので、異なる次数の回折光の反射光を受光しにくくなり、計測した信号に含まれる誤信号の割合が低下する。   Accordingly, the head unit 10 shown in FIG. 6 can shift the optical axis 1de on which the first-order diffracted light 1d is collected and the position on which the reflected light of the diffracted light of different orders is collected, so that the diffracted light of different orders It is difficult to receive the reflected light, and the ratio of erroneous signals included in the measured signal is reduced.

以上のように、本発明の実施の形態2に係る共焦点計測装置は、ヘッド部10dが、対物レンズ2の光軸2aを、回折レンズ1の光軸1aに対してずらしてある。そのため、本発明の実施の形態2に係る共焦点計測装置は、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とをずらすことができ、異なる次数の回折光の反射光を受光しにくくなり、異なる次数の回折光の反射光による計測への影響を緩和することができる。   As described above, in the confocal measurement device according to Embodiment 2 of the present invention, the head unit 10 d shifts the optical axis 2 a of the objective lens 2 with respect to the optical axis 1 a of the diffraction lens 1. Therefore, the confocal measurement device according to Embodiment 2 of the present invention can shift the optical axis 1de on which the first-order diffracted light 1d is collected and the position on which the reflected light of the diffracted light of different orders is collected, It becomes difficult to receive the reflected light of diffracted light of different orders, and the influence on the measurement by the reflected light of diffracted light of different orders can be mitigated.

なお、本発明の実施の形態2に係る共焦点計測装置は、ヘッド部10dに、回折レンズ1より光ファイバ11側にレンズなどの光学素子をさらに配置し、当該光学素子の光軸を回折レンズ1の光軸1aに対してずらす構成であてもよい。   In the confocal measurement apparatus according to Embodiment 2 of the present invention, an optical element such as a lens is further arranged on the optical fiber 11 side of the diffractive lens 1 in the head unit 10d, and the optical axis of the optical element is set to the diffractive lens. It may be configured to be shifted with respect to one optical axis 1a.

(実施の形態3)
実施の形態1および2に係る共焦点計測装置とは異なる構成で、計測で利用する次数以外の回折光による計測への影響を緩和することができる構成を、本実施の形態3に係る共焦点計測装置を説明する。
(Embodiment 3)
The confocal structure according to the third embodiment is configured differently from the confocal measurement apparatus according to the first and second embodiments, and can reduce the influence on measurement by diffracted light other than the order used in the measurement. A measuring device will be described.

本実施の形態3に係る共焦点計測装置は、ヘッド部以外の構成が図1に示す実施の形態1に係る共焦点計測装置100と同じ構成であるため、同じ構成要素に同じ符号を付して詳細な説明を繰返さない。   Since the confocal measurement device according to the third embodiment has the same configuration as that of the confocal measurement device 100 according to the first embodiment shown in FIG. 1 except for the head unit, the same components are denoted by the same reference numerals. The detailed description will not be repeated.

図7は、本実施の形態3に係る共焦点計測装置において採用されているヘッド部の共焦点光学系の構成を示す模式図である。図7に示すヘッド部10eの共焦点光学系の構成は、回折レンズ1のみの構成で、計測対象物200側に対物レンズ2を配置しない構成である。つまり、ヘッド部10eは、光ファイバ11の端部から出射する光を回折レンズ1で光軸方向に沿って色収差を生じさせ、色収差が生じた光を計測対象物200に集光する。なお、ヘッド部10eは、回折レンズ1より計測対象物200側に対物レンズ2を配置する構成でも、回折レンズ1より光ファイバ11側にレンズなどの光学素子を配置する構成でもよい。   FIG. 7 is a schematic diagram showing the configuration of the confocal optical system of the head unit employed in the confocal measurement apparatus according to the third embodiment. The configuration of the confocal optical system of the head unit 10e shown in FIG. 7 is a configuration in which only the diffraction lens 1 is provided, and the objective lens 2 is not disposed on the measurement object 200 side. That is, the head unit 10 e causes the light emitted from the end of the optical fiber 11 to cause chromatic aberration along the optical axis direction by the diffraction lens 1, and condenses the light having the chromatic aberration on the measurement target 200. The head unit 10e may have a configuration in which the objective lens 2 is arranged on the measurement object 200 side with respect to the diffraction lens 1 or an optical element such as a lens on the optical fiber 11 side with respect to the diffraction lens 1.

また、ヘッド部10eは、図7に示すように回折レンズ1の光軸1aを、ヘッド部10eの長軸10fに対して傾くように回折レンズ1を固定してある。さらに、ヘッド部10eは、光ファイバ11からの主光線11bを、回折レンズ1の光軸1aに一致させてある。   Further, as shown in FIG. 7, the head portion 10e has the diffraction lens 1 fixed so that the optical axis 1a of the diffraction lens 1 is inclined with respect to the long axis 10f of the head portion 10e. Further, the head portion 10 e has the principal ray 11 b from the optical fiber 11 aligned with the optical axis 1 a of the diffractive lens 1.

ここで、ヘッド部10eの製造方法として、たとえば、ヘッド部10eの長軸10fに対して斜めになるようにヘッド部10eの筐体に穴10gを開け、開けた穴10gの開口部10hから回折レンズ1を挿入して、予め定められた位置に回折レンズ1を固定する。さらに、開口部10hの反対側に光ファイバ11を接続する。   Here, as a manufacturing method of the head portion 10e, for example, a hole 10g is formed in the housing of the head portion 10e so as to be inclined with respect to the long axis 10f of the head portion 10e, and diffraction is performed from the opening portion 10h of the opened hole 10g. The lens 1 is inserted and the diffractive lens 1 is fixed at a predetermined position. Furthermore, the optical fiber 11 is connected to the opposite side of the opening 10h.

次に、本実施の形態3に係る共焦点計測装置は、計測対象物200の垂線とヘッド部10eの長軸10fとが一致するようにヘッド部10eを配置して、計測対象物200の変位を計測する。このようにヘッド部10eを配置することで、回折レンズ1の一次回折光1dは、計測対象物200で集光する。一次回折光1dが集光する光軸が、光軸1deである。   Next, the confocal measurement apparatus according to the third embodiment disposes the measurement object 200 by arranging the head part 10e so that the perpendicular of the measurement object 200 and the major axis 10f of the head part 10e coincide. Measure. By arranging the head portion 10 e in this way, the first-order diffracted light 1 d of the diffractive lens 1 is collected by the measurement object 200. The optical axis on which the first-order diffracted light 1d is collected is the optical axis 1de.

しかし、ヘッド部10eの開口部10hから出射される光は、計測対象物200に対して傾いている。そのため、一次回折光1dを集光する光軸1de上に、回折レンズ1の一次回折光1dのうち、仮想面200bで反射し二次回折光として仮想面200aに集光する光(一次−二次回折光)1fが位置しなくなる。よって、光1fのような異なる次数の回折光の反射光は、光軸1de上に集光することがなく、計測部で二次回折光1eの誤信号が計測されにくくなる。異なる次数の回折光の反射光には、光1f以外に、二次回折光のうち、一次回折光として計測対象物200に集光する光(図示せず)も存在する。   However, the light emitted from the opening 10 h of the head portion 10 e is inclined with respect to the measurement target 200. Therefore, on the optical axis 1de for condensing the first-order diffracted light 1d, among the first-order diffracted light 1d of the diffractive lens 1, light that is reflected by the virtual surface 200b and condensed as the second-order diffracted light on the virtual surface 200a (primary-secondary (Folding light) 1f is not located. Therefore, the reflected light of different orders of diffracted light such as the light 1f is not collected on the optical axis 1de, and it is difficult for the measuring unit to measure an error signal of the second-order diffracted light 1e. In addition to the light 1f, the reflected light of the diffracted light of different orders includes light (not shown) that is condensed on the measurement object 200 as the first-order diffracted light among the second-order diffracted light.

よって、図7に示すヘッド部10は、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とをずらすことができるので、異なる次数の回折光の反射光を受光しにくくなり、計測した信号に含まれる誤信号の割合が低下する。   Therefore, the head unit 10 shown in FIG. 7 can shift the optical axis 1de on which the first-order diffracted light 1d is collected from the position on which the reflected light of the diffracted light of different orders is collected, so that the diffracted light of different orders It is difficult to receive the reflected light, and the ratio of erroneous signals included in the measured signal is reduced.

以上のように、本発明の実施の形態3に係る共焦点計測装置は、ヘッド部10eが、回折レンズ1の光軸1aを、ヘッド部10eの長軸10fに対して傾くように回折レンズ1を固定してある。そのため、本発明の実施の形態3に係る共焦点計測装置は、一次回折光1dが集光する光軸1deと、異なる次数の回折光の反射光が集光する位置とをずらすことができ、異なる次数の回折光の反射光を受光しにくくなり、異なる次数の回折光の反射光による計測への影響を緩和することができる。   As described above, in the confocal measurement device according to Embodiment 3 of the present invention, the diffractive lens 1 is such that the head unit 10e tilts the optical axis 1a of the diffractive lens 1 with respect to the major axis 10f of the head unit 10e. Is fixed. Therefore, the confocal measurement device according to Embodiment 3 of the present invention can shift the optical axis 1de on which the first-order diffracted light 1d is collected and the position on which the reflected light of the diffracted light of different orders is collected, It becomes difficult to receive the reflected light of diffracted light of different orders, and the influence on the measurement by the reflected light of diffracted light of different orders can be mitigated.

なお、ヘッド部10eは、回折レンズ1の光軸1aを、ヘッド部10eの長軸10fに対して傾くように回折レンズ1を固定してあると規定したが、回折レンズ1の光軸1aを、計測対象物200へ光を出射するヘッド部10eの出射面10iに対して傾けてある規定してもよい。つまり、計測対象物200の変位を測定するために、ヘッド部10eと計測対象物200とを正対させた場合、回折レンズ1の光軸1aが、計測対象物200に対して傾くようにヘッド部10eが構成されていればよい。また、ヘッド部10eの出射面10iは、計測対象物200と正対する仮想面であり、ヘッド部10eの筐体の現実の一面でなくてもよい。   The head portion 10e defines that the diffractive lens 1 is fixed so that the optical axis 1a of the diffractive lens 1 is inclined with respect to the long axis 10f of the head portion 10e. Alternatively, it may be defined that the head is inclined with respect to the emission surface 10i of the head unit 10e that emits light to the measurement target 200. That is, in order to measure the displacement of the measuring object 200, when the head unit 10 e and the measuring object 200 are opposed to each other, the optical axis 1 a of the diffractive lens 1 is tilted with respect to the measuring object 200. The part 10e should just be comprised. In addition, the emission surface 10i of the head unit 10e is a virtual surface that directly faces the measurement object 200, and may not be a real surface of the housing of the head unit 10e.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 回折レンズ、2 対物レンズ、10,10c,10d,10e ヘッド部、10a レセプタクル、11,22a,22b,22c 光ファイバ、11a コネクタ、20 コントローラ部、22 分岐光ファイバ、23 分光器、23a 凹面ミラー、23b 回折格子、23c 集光レンズ、24 撮像素子、25 制御回路部、30 モニタ部、100 共焦点計測装置、200 計測対象物。   DESCRIPTION OF SYMBOLS 1 Diffraction lens, 2 Objective lens, 10,10c, 10d, 10e Head part, 10a Receptacle 11,22a, 22b, 22c Optical fiber, 11a Connector, 20 Controller part, 22 Branch optical fiber, 23 Spectroscope, 23a Concave mirror , 23b Diffraction grating, 23c Condensing lens, 24 Image sensor, 25 Control circuit unit, 30 Monitor unit, 100 Confocal measurement device, 200 Measurement object.

Claims (7)

共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置であって、
複数の波長の光を出射する光源と、
前記光源から出射する光に、光軸方向に沿って色収差を生じさせる回折レンズと、
前記回折レンズで色収差を生じさせた光のうち、前記計測対象物において合焦する光の強度を波長ごとに計測する計測部と
を備え、
前記光源から前記回折レンズへの主光線を、前記回折レンズの光軸に対してずらしてある、共焦点計測装置。
A confocal measurement device that measures the displacement of a measurement object using a confocal optical system,
A light source that emits light of a plurality of wavelengths;
A diffractive lens that causes chromatic aberration along the optical axis direction of light emitted from the light source;
A measurement unit that measures, for each wavelength, the intensity of light that is focused on the measurement object among the light that has caused chromatic aberration by the diffraction lens, and
A confocal measurement device in which a principal ray from the light source to the diffractive lens is shifted with respect to an optical axis of the diffractive lens.
前記回折レンズより前記計測対象物側に配置され、前記回折レンズで色収差を生じさせた光を前記計測対象物に集光する対物レンズをさらに備える、請求項1に記載の共焦点計測装置。   The confocal measurement apparatus according to claim 1, further comprising an objective lens that is disposed closer to the measurement object than the diffractive lens and condenses the measurement object with light generated by chromatic aberration by the diffractive lens. 前記回折レンズから前記光源および前記計測部までの光路に用いる光ファイバをさらに備え、
前記光ファイバの端部を、前記回折レンズの光軸に対してずらすことで、前記光源から前記回折レンズへの主光線を、前記回折レンズの光軸に対してずらしてある、請求項1または請求項2に記載の共焦点計測装置。
An optical fiber used for an optical path from the diffraction lens to the light source and the measurement unit;
The principal ray from the light source to the diffractive lens is shifted with respect to the optical axis of the diffractive lens by shifting the end of the optical fiber with respect to the optical axis of the diffractive lens. The confocal measurement apparatus according to claim 2.
共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置であって、
複数の波長の光を出射する光源と、
前記光源から出射する光に、光軸方向に沿って色収差を生じさせる回折レンズと、
前記光源から前記回折レンズまでの間、および前記回折レンズより前記計測対象物側のうち少なくとも一方に配置されている光学素子と、
前記回折レンズで色収差を生じさせた光のうち、前記計測対象物において合焦する光の強度を波長ごとに計測する計測部と
を備え、
前記光源から前記回折レンズへの主光線を、前記回折レンズの光軸に対して一致させ、
前記光学素子の光軸を、前記回折レンズの光軸に対してずらしてある、共焦点計測装置。
A confocal measurement device that measures the displacement of a measurement object using a confocal optical system,
A light source that emits light of a plurality of wavelengths;
A diffractive lens that causes chromatic aberration along the optical axis direction of light emitted from the light source;
An optical element arranged between the light source and the diffractive lens, and at least one of the diffractive lens and the measurement object side; and
A measurement unit that measures, for each wavelength, the intensity of light that is focused on the measurement object among the light that has caused chromatic aberration by the diffraction lens, and
The principal ray from the light source to the diffractive lens is aligned with the optical axis of the diffractive lens,
A confocal measurement device in which an optical axis of the optical element is shifted with respect to an optical axis of the diffractive lens.
前記回折レンズから前記光源および前記計測部までの光路に用いる光ファイバをさらに備え、
前記光ファイバの端部を、前記光学素子の光軸に対してずらしてある、請求項4に記載の共焦点計測装置。
An optical fiber used for an optical path from the diffraction lens to the light source and the measurement unit;
The confocal measurement apparatus according to claim 4, wherein an end of the optical fiber is shifted with respect to an optical axis of the optical element.
共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置であって、
複数の波長の光を出射する光源と、
前記光源から出射する光に、光軸方向に沿って色収差を生じさせる回折レンズと、
前記回折レンズで色収差を生じさせた光のうち、前記計測対象物において合焦する光の強度を波長ごとに計測する計測部と、
前記回折レンズを格納する計測ヘッド部と
を備え、
前記回折レンズの光軸を、前記計測ヘッド部の長軸、または前記計測対象物へ光を出射する前記計測ヘッド部の出射面に対して傾けてある、共焦点計測装置。
A confocal measurement device that measures the displacement of a measurement object using a confocal optical system,
A light source that emits light of a plurality of wavelengths;
A diffractive lens that causes chromatic aberration along the optical axis direction of light emitted from the light source;
Of the light that causes chromatic aberration in the diffractive lens, a measurement unit that measures the intensity of light focused on the measurement object for each wavelength, and
A measuring head unit for storing the diffractive lens,
The confocal measurement device, wherein an optical axis of the diffractive lens is inclined with respect to a long axis of the measurement head unit or an emission surface of the measurement head unit that emits light to the measurement object.
前記回折レンズより前記計測対象物側に配置され、前記回折レンズで色収差を生じさせた光を前記計測対象物に集光する対物レンズをさらに備える、請求項6に記載の共焦点計測装置。   The confocal measurement apparatus according to claim 6, further comprising an objective lens that is disposed closer to the measurement object than the diffraction lens and collects light generated by the diffraction lens with chromatic aberration on the measurement object.
JP2012022539A 2012-02-03 2012-02-03 Confocal measuring device Active JP5834979B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012022539A JP5834979B2 (en) 2012-02-03 2012-02-03 Confocal measuring device
CN201380006127.8A CN104067090B (en) 2012-02-03 2013-01-17 confocal detection device
PCT/JP2013/050769 WO2013114959A1 (en) 2012-02-03 2013-01-17 Confocal measurement device
EP13744197.8A EP2811259B9 (en) 2012-02-03 2013-01-17 Confocal measurement device
TW102101886A TWI500918B (en) 2012-02-03 2013-01-18 Confocal measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022539A JP5834979B2 (en) 2012-02-03 2012-02-03 Confocal measuring device

Publications (2)

Publication Number Publication Date
JP2013160628A true JP2013160628A (en) 2013-08-19
JP5834979B2 JP5834979B2 (en) 2015-12-24

Family

ID=48905001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022539A Active JP5834979B2 (en) 2012-02-03 2012-02-03 Confocal measuring device

Country Status (5)

Country Link
EP (1) EP2811259B9 (en)
JP (1) JP5834979B2 (en)
CN (1) CN104067090B (en)
TW (1) TWI500918B (en)
WO (1) WO2013114959A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105046A (en) * 2017-03-14 2018-09-27 오므론 가부시키가이샤 Displacement measurement apparatus
JP2019066362A (en) * 2017-10-02 2019-04-25 オムロン株式会社 Sensor head
JP2022081498A (en) * 2016-09-07 2022-05-31 ケーエルエー コーポレイション Device and method for measuring height

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301004A (en) * 2015-11-05 2016-02-03 苏州威盛视信息科技有限公司 Light source detection device
US11313671B2 (en) * 2019-05-28 2022-04-26 Mitutoyo Corporation Chromatic confocal range sensing system with enhanced spectrum light source configuration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785651A (en) * 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
JP2004126394A (en) * 2002-10-04 2004-04-22 Nikon Corp Diffraction optical element
DE10321885A1 (en) * 2003-05-07 2004-12-02 Universität Stuttgart Confocal imaging arrangement has an imaging component with variable diffractive power whose main plane is arranged at least approximately in the focal plane of the test objective
US20060098872A1 (en) * 2004-03-22 2006-05-11 Stereo Display, Inc. Three-dimensional imaging system for pattern recognition
JP2007147299A (en) * 2005-11-24 2007-06-14 Kobe Steel Ltd Apparatus and method for measuring displacement
JP2008241712A (en) * 2007-03-27 2008-10-09 Mitsutoyo Corp Chromatic confocal sensor
JP2011170028A (en) * 2010-02-17 2011-09-01 Canon Inc Diffractive optical element and imaging optical system having the same
JP2012518445A (en) * 2009-02-23 2012-08-16 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Dental hand-held camera and optical three-dimensional measuring method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785851A (en) 1996-08-23 1998-07-28 Vesuvius Crucible Company High capacity filter
CN1376907A (en) * 2001-03-23 2002-10-30 成都中科百奥科技有限公司 Laser confocusing scanner for biochip
US7626705B2 (en) * 2007-03-30 2009-12-01 Mitutoyo Corporation Chromatic sensor lens configuration
DE102008020902B4 (en) * 2008-04-18 2010-07-29 Universität Stuttgart Arrangement and method for confocal spectral two-beam interferometry
US20090296075A1 (en) * 2008-05-29 2009-12-03 Nanometrics Incorporated Imaging Diffraction Based Overlay
TW201017149A (en) * 2008-08-06 2010-05-01 Invitrox Inc Use of focused light scattering techniques in biological applications
WO2010149403A1 (en) * 2009-06-22 2010-12-29 Asml Netherlands B.V. Object inspection systems and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785651A (en) * 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
JP2004126394A (en) * 2002-10-04 2004-04-22 Nikon Corp Diffraction optical element
DE10321885A1 (en) * 2003-05-07 2004-12-02 Universität Stuttgart Confocal imaging arrangement has an imaging component with variable diffractive power whose main plane is arranged at least approximately in the focal plane of the test objective
US20060098872A1 (en) * 2004-03-22 2006-05-11 Stereo Display, Inc. Three-dimensional imaging system for pattern recognition
JP2007147299A (en) * 2005-11-24 2007-06-14 Kobe Steel Ltd Apparatus and method for measuring displacement
JP2008241712A (en) * 2007-03-27 2008-10-09 Mitsutoyo Corp Chromatic confocal sensor
JP2012518445A (en) * 2009-02-23 2012-08-16 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Dental hand-held camera and optical three-dimensional measuring method
JP2011170028A (en) * 2010-02-17 2011-09-01 Canon Inc Diffractive optical element and imaging optical system having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022081498A (en) * 2016-09-07 2022-05-31 ケーエルエー コーポレイション Device and method for measuring height
KR20180105046A (en) * 2017-03-14 2018-09-27 오므론 가부시키가이샤 Displacement measurement apparatus
KR20190017841A (en) * 2017-03-14 2019-02-20 오므론 가부시키가이샤 Displacement measurement apparatus
KR102046158B1 (en) 2017-03-14 2019-11-18 오므론 가부시키가이샤 Displacement measurement apparatus
KR20190138766A (en) * 2017-03-14 2019-12-16 오므론 가부시키가이샤 Displacement measurement apparatus
KR102109948B1 (en) 2017-03-14 2020-05-12 오므론 가부시키가이샤 Displacement measurement apparatus
KR102160671B1 (en) 2017-03-14 2020-09-28 오므론 가부시키가이샤 Displacement measurement apparatus
JP2019066362A (en) * 2017-10-02 2019-04-25 オムロン株式会社 Sensor head

Also Published As

Publication number Publication date
EP2811259B9 (en) 2019-11-20
EP2811259A1 (en) 2014-12-10
CN104067090A (en) 2014-09-24
TWI500918B (en) 2015-09-21
EP2811259A4 (en) 2015-08-12
EP2811259B1 (en) 2019-07-03
JP5834979B2 (en) 2015-12-24
CN104067090B (en) 2016-10-12
TW201337239A (en) 2013-09-16
WO2013114959A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5966982B2 (en) Confocal measuring device
JP6997277B2 (en) Confocal displacement meter
TWI452256B (en) Confocal measuring device
KR101819006B1 (en) Optical measuring apparatus
JP6972273B2 (en) Confocal displacement meter
JP5834979B2 (en) Confocal measuring device
CN107209356B (en) Integrated optics for non-contact measurement of height and thickness
TWI658256B (en) Confocal measuring device
JP5870576B2 (en) Optical measuring device
EP3951466A1 (en) Confocal microscope unit and confocal microscope
CN100451580C (en) Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof
JP2017116493A (en) Confocal displacement meter
JP6586459B2 (en) Interference fringe projection optical system and shape measuring apparatus
TW201915430A (en) Sensor head
JP6371120B2 (en) measuring device
JP2022031539A (en) Optical sensor and abnormality detection method in optical sensor
JP2020020815A (en) Confocal displacement meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150